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Abstract Our brain perceives the world by exploiting multisensory cues to extract information
about various aspects of external stimuli. The sensory cues from the same stimulus should be
integrated to improve perception, and otherwise segregated to distinguish different stimuli. In
reality, however, the brain faces the challenge of recognizing stimuli without knowing in advance
the sources of sensory cues. To address this challenge, we propose that the brain conducts
integration and segregation concurrently with complementary neurons. Studying the inference of
heading-direction via visual and vestibular cues, we develop a network model with two reciprocally
connected modules modeling interacting visual-vestibular areas. In each module, there are two
groups of neurons whose tunings under each sensory cue are either congruent or opposite. We
show that congruent neurons implement integration, while opposite neurons compute cue disparity
information for segregation, and the interplay between two groups of neurons achieves efficient
multisensory information processing.

DOI: https://doi.org/10.7554/eLife.43753.001

Introduction

To survive as an animal is to face the daily challenge of perceiving and responding fast to a con-
stantly changing world. The brain carries out this task by gathering as much as possible information
about external environments via adopting multiple sensory modalities including vision, audition,
olfaction, tactile, vestibular perception, etc. These sensory modalities provide different types of
information about various aspects of the external world and serve as complementary cues to
improve perception in ambiguous conditions. For instance, while walking, both the visual input (optic
flow) and the vestibular signal (body movement) convey useful information about heading-direction,
and when integrated together, they give a more reliable estimate of heading-direction than either of
the sensory modalities could deliver on its own. Indeed, experimental data has shown that the brain
does integrate visual and vestibular cues to infer heading-direction and furthermore, the brain does
it in an optimal way as predicted by Bayesian inference (Fetsch et al., 2013). Over the past years,
experimental and theoretical studies verified that optimal information integration were found among
many sensory modalities, for example, integration of visual and auditory cues for inferring object
location (Alais and Burr, 2004), motion and texture cues for depth perception (Jacobs, 1999), visual
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and proprioceptive cues for hand position (van Beers et al., 1999), and visual and haptic cues for
object height (Ernst and Banks, 2002).

However, multisensory integration is only a part of multisensory information processing. While it
is appropriate to integrate sensory cues from the same stimulus of interest (Figure 1A left), sensory
cues from different stimuli need to be segregated rather than integrated in order to distinguish and
recognize individual stimuli (Figure 1A right). In reality, the brain does not know in advance whether
the cues are from the same or different objects. To accomplish the recognition task, we argue that
the brain should carry out multisensory integration and segregation concurrently: a group of neurons
integrates sensory cues, while the other computes the disparity information between sensory cues.
The interplay between the two groups of neurons determines the final choice of integration versus
segregation.

An accompanying consequence of multisensory integration is, however, that it inevitably incurs
information loss of individual cues (Figure 1, also see Materials and methods). Consider the example
of integrating the visual and vestibular cues to infer heading-direction, and suppose that both cues
have equal reliability. Given that one cue yields an estimate of § degree and the other an estimate of
—0 degree, the integrated result is always 0 degree, irrespective to the value of 6 (Figure 1B). Once
the cues are integrated, the information associated with each individual cue (the value of 6) is lost,
and the amount of lost information increases with the extent of integration. Thus, if only multisensory
integration is performed, the brain faces a chicken and egg dilemma in stimulus perception: without
integrating cues, it may be unable to recognize stimuli reliably in an ambiguous environment; but
once cues are integrated, the information from individual cues is lost. Concurrent multisensory inte-
gration and segregation is able to disentangle this dilemma. The information of individual cues can
be recovered by using the preserved disparity information if necessary, instead of re-gathering new
inputs from the external world. While there are other brain regions processing unisensory informa-
tion, concurrent multisensory integration and segregation provides a unified way to achieve: (1)
improved stimulus perception if the cues come from the same stimulus of interest; (2) differentiate
and recognize stimuli based on individual cues with little time delay if the cues come from different
stimuli of interest. This processing scheme is consistent with an experimental finding which showed
that the brain can still sense the difference between cues in multisensory integration (Wallace et al.,
2004; Girshick and Banks, 2009).
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Figure 1. Multisensory integration and segregation. (A) Multisensory integration versus segregation. Two
underlying stimulus features s; and s, independently generate two noisy cues x; and x,, respectively. If the two
cues are from the same stimulus, they should be integrated, and in the Bayesian framework, the stimulus
estimation is obtained by computing the posterior p(s;|x;,x2) (or p(s2|x1,x2)) utilizing the prior knowledge p(s, s2)
(left). If two cues are from different stimuli, they should be segregated, and the stimulus estimation is obtained by
computing the posterior p(sy|x;) (or p(s2]x2)) using the single cues (right). (B) Information of single cues is lost after
integration. The same integrated result § = 0° is obtained after integrating two cues of opposite values (6§ and —0)
with equal reliability. Therefore, from the integrated result, the values of single cues are unknown.

DOI: https://doi.org/10.7554/eLife.43753.002

The following figure supplement is available for figure 1:

Figure supplement 1. Cue disparity information is lost after integration.
DOI: https://doi.org/10.7554/eLife.43753.003
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What are the neural substrates for implementing concurrent multisensory integration and segre-
gation? Previous studies investigating the integration of visual and vestibular cues to infer heading-
direction found that in each of two brain areas, namely, the dorsal medial superior temporal area
(MSTd) and the ventral intraparietal area (VIP), there are two types of neurons with comparable num-
ber displaying different multisensory behaviors: congruent and opposite cells (Figure 2) (Gu et al.,
2008; Chen et al., 2013). The tuning curves of a congruent cell in response to visual and vestibular
cues are similar (Figure 2A), whereas the tuning curve of an opposite cell in response to a visual cue
is shifted by 180 degrees (half of the period) compared to that in response to a vestibular cue
(Figure 2B). Data analysis and modeling studies suggested that congruent neurons are responsible
for cue integration (Gu et al., 2008; Gu et al., 2012; Zhang et al., 2016; Ma et al., 2006). However,
the computational role of opposite neurons remains largely unknown. They do not integrate cues as
their responses hardly change when a single cue is replaced by two cues with similar directions.
Interestingly, however, their responses vary significantly when the disparity between visual and ves-
tibular cues is enlarged (Morgan et al., 2008), indicating that opposite neurons are associated with
the disparity information between cues.

In the present study, we explore whether opposite neurons are responsible for cue segregation in
multisensory information processing. Experimental findings showed that many, rather than a single,
brain areas exhibit multisensory processing behaviors and that these areas are intensively and recip-
rocally connected with each other (Gu et al., 2008; Chen et al., 2013, Gu et al., 2016;
Boussaoud et al., 1990; Baizer et al., 1991). The architecture of these multisensory areas is consis-
tent with the structure of a decentralized model (Zhang et al., 2016), where information integration
naturally emerges through the interactions between distributed network modules and is robust to
local failure (Gu et al., 2012). The decentralized model successfully reproduces almost all known
phenomena observed in the multisensory integration experiments (Fetsch et al., 2013; Stein and
Stanford, 2008). Thus, we consider a decentralized multisensory processing model (Zhang et al.,
2016) in which each local processor receives a direct cue through feedforward inputs from the con-
nected sensory modality and meanwhile, accesses information of other indirect cues via reciprocal
connections between processors.

As a working example, we focus on studying the inference of heading-direction based on visual
and vestibular cues. The network model consists of interconnected MSTd and VIP modules, where
congruent and opposite neurons are widely found (Gu et al., 2008; Chen et al., 2013). Specifically,
we propose that congruent neurons in the two brain areas are reciprocally connected with each
other in the congruent manner: the closer between the preferred directions over the feedforward
cue of a pair of neurons in their respective brain areas, the stronger their connection is, and this con-
nection profile encodes effectively the prior knowledge about the two cues coming from the same
stimulus. On the other hand, opposite neurons in the two brain areas are reciprocally connected in
the opposite manner: the further away between the preferred directions over the feedforward
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Figure 2. Congruent and opposite neurons in MSTd. Similar results were found in VIP (Chen et al., 2011). (A-B)
Tuning curves of a congruent neuron (A) and an opposite neuron (B). The preferred visual and vestibular directions
are similar in (A) but are nearly opposite by 180° in (B). (C) The histogram of neurons according to their difference
between preferred visual and vestibular directions. Congruent and opposite neurons are comparable in numbers.
(A-B) are adapted from Gu et al. (2008), (C) from Gu et al. (2006).

DOI: https://doi.org/10.7554/eLife.43753.004
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cue of a pair of neurons in their respective brain areas (the maximal difference is 180 degree), the
stronger their connection is. Our model reproduces the tuning properties of opposite neurons, and
verifies that opposite neurons encode the disparity information between cues. Furthermore, we
demonstrate that this disparity information, in coordination with the integration result of congruent
neurons, enables the neural system to assess the validity of cue integration and to recover the lost
information of individual cues if necessary. Our study sheds light on our understanding of how the
brain achieves multisensory information processing efficiently.

Results

Probabilistic models of multisensory processing

The brain infers stimulus information based on ambiguous sensory cues. We therefore formulate the
multisensory processing problem in the framework of probabilistic inference, and as a working exam-
ple, we focus on studying the inference of heading-direction based on visual and vestibular cues.

Probabilistic model of multisensory integration
To begin with, we introduce the probabilistic model of multisensory integration. Suppose two stimu-
lus features {s,} generate two sensory cues {x,}, for m = 1,2 (the visual and vestibular cues), respec-
tively (Figure 1A), and we denote the corresponding likelihood functions as p(x,|s,). The task of
multisensory processing is to infer {s,} based on {x,}. x, is referred to as the direct cue of s, (e.g.
the visual cue to MSTd) and x; (I # m) the indirect cue of s,, (e.g. the vestibular cue to MSTd).

Since heading-direction is a circular variable in the range of (—, |, we adopt the von Mises,
rather than the Gaussian, distribution to carry out the theoretical analysis. In the form of the von
Mises distribution, the likelihood function is given by

P(Xmlsm) = [ZWIQ(Km)]ilGXp[Km coS(Xpm — Sm)] ™
= M (X3 Sy K )5

where Iy(k) is the modified Bessel function of the first kind and order zero, and acts as the normaliza-
tion factor. s, is the mean of the von Mises distribution, that is the mean value of x,,. k,, is a positive
number characterizing the concentration of the distribution, and controls the reliability of cue x,,.

The prior p(s1,s;) describes the probability of concurrence of stimulus features (s1,s3). In the liter-
ature, the study of integration and segregation was often formulated as the issue of causal inference
(Sato et al., 2007, Kérding et al., 2007; Shams and Beierholm, 2010). In general, the prior of
causal inference consists of more than one components, each corresponding to the causal structure
describing the relation between the multiple stimuli. In this study, we consider a single-component
integration prior which has been used in several multisensory integration studies (Bresciani et al.,
2006; Roach et al., 2006; Sato et al., 2007; Zhang et al., 2016), and it is sufficient to demonstrate
the role played by the congruent and opposite neurons, yet retaining a simpler mathematical frame-
work (see more discussions in Conclusions and Discussions). The integration prior is

p(si,s2) = (277)71/\/1(‘?1 —52;0,k;)

. _1 @)
- [(277) IO(KS)] explics cos(s1 — 52)].

This prior reflects that the two stimulus features from the same stimulus tend to have similar val-
ues. The parameter «, specifies the concurrence probability of two stimulus features, and determines
the extent to which the two cues should be integrated. In the limit k; — oo, it will lead to full integra-
tion (see, e.g. Ernst and Banks, 2002). Note that the marginal prior p(s,) is a uniform distribution
according to the definition.

It has been revealed that in the congruent cueing condition, the brain integrates visual and vestib-
ular cues to infer heading-direction in a manner close to Bayesian inference (Gu et al., 2008;
Chen et al., 2013). Following Bayes' theorem, optimal multisensory integration is achieved by com-
puting the posterior of two stimuli according to

p(s1,820x1,%2) o< p(x[si)p(xals2)p(si, 52).
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Since the calculations of the two stimuli are exchangeable, hereafter we only present the results
for s1. The posterior of s; is calculated through marginalizing the joint posterior in the above
equation,

plsifrr) ocplals) / pcalsa)p(s1,52)dsa

OCP(SI |X1 )P(Sl |X2) (3)

=~ M(s1;x1, K1) M(81;%2,K25),

where we have used the conditions that the marginal prior distributions of s, and x, are uniform,
that is p(s,) =p(x.) = (2m)"". Note that p(si|x2) o [p(xa|s2)p(si,2)ds, is approximated to be
M(s1;x2,K25) through equating the mean resultant length of distribution (Equation 13) (Mardia and
Jupp, 2009).

The above equation indicates that in multisensory integration, the posterior of a stimulus given
combined cues is equal to the product of the posteriors given the individual cues. Notably, although
x; and x, are generated independently by s; and s, (since the visual and vestibular signal pathways
are separated), x, also provides information of s; due to the correlation between s, and s, specified
in the prior.

Finally, since the product of two von Mises distributions is again a von Mises distribution, the pos-
terior distribution is p(sy|x1,x2) = M(sq; 51, k1), whose mean and concentration can be obtained from
its moments given by

kleﬁl :Klejx] -i-Kng‘,’sz7 (4)

where j is an imaginary number. Equation 4 is the result of Bayesian optimal integration in the form
of von Mises distributions, and they are the criteria to judge whether optimal cue integration is
achieved in the neural system. A link between the Bayesian criteria for von Mises and Gaussian distri-
butions is presented in Appendix 2.

Equation 4 indicates that the von Mises distribution of a circular variable can be interpreted as a
vector in a two-dimensional space with its mean and concentration representing the angle and
length of the vector, respectively (Figure 3A). In this interpretation, the product of two von Mises
distributions can be represented by the summation of the corresponding two vectors. Thus, optimal
multisensory integration is equivalent to vector summation (see Equation 4), with each vector repre-
senting the posterior of the stimulus given each cue (the sum of the two green vectors yields the
blue vector in Figure 3B).

Probabilistic model of multisensory segregation

The above probabilistic model for multisensory integration assumes that sensory cues are originated
from the same stimulus. In case they come from different stimuli, the cues need to be segregated,
and the neural system needs to infer stimuli based on individual cues. In practice, the brain needs to
differentiate these two situations. In order to achieve reliable multisensory processing, we propose
that while integrating sensory cues, the neural system simultaneously extracts the disparity informa-
tion between cues, so that with this complementary information, the neural system can assess the
validity of cue integration.

An accompanying consequence of multisensory integration is that the stimulus information associ-
ated with individual cues is lost once they are integrated (see Figure 1—figure supplement 1).
Hence besides assessing the validity of integration, extracting both congruent and disparity informa-
tion by simultaneous integration and segregation enables the system to recover the lost information
of individual cues if needed.

The disparity information of stimulus one obtained from the two cues is defined to be

pa(silxr,x2) o< p(silxr) /p(si]xz), (5)

which is the ratio between the posterior given two cues and hence measures the discrepancy
between the estimates from different cues. By taking the expectation of logp, over the distribution
p(s1|x1), it gives rise to the Kullback-Leibler divergence between the two posteriors given each cue.
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Figure 3. Geometric interpretation of multisensory processing of circular variables. (A) Two von Mises distributions
plotted in the polar coordinate (bottom-left) and their corresponding geometric representations (top-right). A von
Mises distribution can be represented as a vector, with its mean and concentration corresponding to the angle
and length of the vector, respectively. (B) Geometric interpretation of cue integration and the cue disparity
information. The posteriors of s; given single cues are represented by two vectors (green). Cue integration (blue) is
the sum of the two vectors (green), and the cue disparity information (red) is the difference of the two vectors. (C-
E) The mean and concentration of the integration (blue) and the cue disparity information (red) as a function of the
cue reliability (C), cue disparity (D), and reliability of prior (E). In all plots, x; = 50, k1 = k; = 50, x; = 0° and

x; = 20°, except that the variables are k; = k; in C, x, in D, and k, in E.

DOI: https://doi.org/10.7554/eLife.43753.005

This disparity measure was also used to discriminate alternative moving directions in Jazayeri et al.
(2006).

Utilizing the property of the von Mises distribution and the periodicity of heading directions
(= cos(s; — x2) = cos(s; — xp — 7)), Equation 5 can be re-written as

pa(si|xi,xz) oc p(silxr)p(si|rx2 + )

6
o< M(s13x1, K1) M(s1500 + 77, Kay). ©

Thus, the disparity information between two cues can also be expressed as the product of the
posterior given the direct cue and the posterior given the indirect cue with the cue direction shifted
by . Indeed, analogous to the derivation of Equation 3, Equation 6 can be deduced in the same
framework as multisensory integration but with the stimulus prior p(s;,s,) being modified by a shift =
in the angular difference. Similarly, pa(si|x1,x2) = M(s1;A81,Ak;) whose mean and concentration can
be derived as

AIA('IEIIAgl = K]e/x' - Kzseixz. (7)

The above equation is the criteria to judge whether the disparity information between two cues is
encoded in the neural system.

Similar to the geometrical interpretation of multisensory integration, multisensory segregation is
interpreted as vector subtraction (the subtraction between two green vectors yields the red vector
in Figure 3B). This enables us to assess the validity of multisensory integration. When the two vec-
tors representing the posteriors given the individual cues have small disparity, that is the estimates
from individual cues tend to support each other, the length of the summed vector is long, implying
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that the posterior of cue integration has a strong confidence, whereas the length of the subtracted
vector is short, implying that the weak confidence of two cues are disparate (Figure 3D). If the two
vectors associated with the individual cues have a large disparity, the interpretation becomes the
opposite (Figure 3D). Thus, by comparing the lengths of the summed and subtracted vectors, the
neural system can assess whether two cues should be integrated or segregated.

Figure 3C and E further describes the integration and segregation behaviors when the model
parameters vary. As shown in Figure 3C, when the likelihoods have weak reliabilities, the network
estimate relies more on the prior. Since the prior encourages integration of the two stimuli, the pos-
terior estimate of stimulus one becomes more biased towards cue 2. At the same time, the mean of
the disparity information is biased toward the angular difference of the likelihood peaks. On the
other hand, when the likelihoods are strong, the network estimate relies more on the likelihood, and
the posterior estimate of stimulus one becomes less biased toward cue 2. The behavior when the
prior concentration «; varies can be explained analogously (Figure 3E).

A notable difference between von Mises distribution and Gaussian distribution is that the concen-
tration of integration and disparity information changes with cue disparity in von Mises distribution
(Figure 3D), while they are fixed in Gaussian distribution (Ernst, 2006).

Neural implementation of cue integration and segregation
Before introducing the neural circuit model, we first describe intuitively how opposite neurons
encode the cue disparity information and the motivation of the proposed network structure.

Optimal multisensory integration computes the posterior of a stimulus given combined cues
according to Equation 3, which is equivalent to solving the equation
Inp(si)xr,x2) = Inp(si|x;) + Inp(si|x2). Ma et al. found that under the conditions that neurons fire
independent Poisson spikes, the optimal integration can be achieved by combining the neuronal
responses under single cue conditions, that is r;j(x;,x) = r;(x;) 4+ r;(x2) (see details in Materials and
methods), where r(x;,x;) and r(x,) are the responses of a population of neurons to the combined
and single cues respectively (Ma et al., 2006). Ma et al. further demonstrated that such a response
property can be approximately achieved in a biological neural network. Similarly, multisensory segre-
gation  computes the disparity information  between cues according to
Inpy(si|x1,x2) = Inp(si|x1) + Inp(si|x2 + 7) (see Equation 6). Analogous to multisensory integration,
multisensory segregation can be achieved by r;(xi,x,) = rj(x) + r;(x2), where the preferred stimulus
of neurons satisfying 6; = 0; +  (see details in Materials and methods). That is, the neurons combine
the responses to the direct cue and the responses to the indirect cue but shifted to opposite direc-
tion. This inspires us to consider a network model where the inputs of indirect cue received by oppo-
site neurons are shifted to opposite direction via connections. Below, we present the network model
and demonstrate that the opposite neurons emerge from the connectivity and are able to achieve
cue segregation.

The decentralized neural network model

The neural circuit model we consider has the decentralized structure (Zhang et al., 2016), in the
sense that it consists of two reciprocally connected modules (local processors), representing MSTd
and VIP respectively (Figure 4A). Each module carries out multisensory processing via cross-talks
between modules. This decentralized architecture achieves integration in a distributed way and is
robust to local failure, and it agrees with the experimental findings that neurons in MSTd and VIP
both exhibit multisensory responses and that the two areas are abundantly connected with each
other (Boussaoud et al., 1990; Baizer et al., 1991). Below we only describe the key features of the
decentralized network model, and its detailed mathematical description is presented in Materials
and methods (Equations 16-22).

At each module, there exist two groups of excitatory neurons: congruent and opposite neurons
(blue and red circles in Figure 4A respectively), and they have the same number of neurons, as sup-
ported by experiments (Figure 2C) (Chen et al., 2011; Gu et al., 2006). Each group of neurons is
modeled as a continuous attractor neural network (CANN), mimicking the encoding of heading-
direction in neural systems (Zhang, 1996; Wu et al., 2008). In CANN, each neuron is uniquely identi-
fied by its preferred heading direction 6 with respect to the direct cue conveyed by feedforward
inputs. The neurons in the same group are recurrently connected, and the recurrent connection
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Figure 4. The decentralized neural circuit model for multisensory processing. (A) The network consists of two
modules, which can be regarded as MSTd and VIP respectively. Each module has two groups of excitatory
neurons, congruent (blue circles) and opposite neurons (red circles). Each group of excitatory neurons are
connected recurrently with each other, and they are all connected to an inhibitory neuron pool (purple disk) to
form a continuous attractor neural network. Each module receives a direct cue through feedforward inputs.
Between modules, congruent neurons are connected in the congruent manner (blue arrows), while opposite
neurons are connected in the opposite manner (brown lines). (B) Connection profiles between neurons. Black line
is the recurrent connection pattern between neurons of the same type in the same module. Blue and red lines are
the reciprocal connection patterns between congruent and opposite neurons across modules respectively. (C) The
reliability of the network’s estimate of a stimulus is encoded in the peak firing rate of the neuronal population.
Typical parameters of network model: w =3 x 1074, J;y = 0.5, J,. = 0.3J;, J,, = 0.5J,¢, I, and F in Equation 22 are
1 and 0.5 respectively.

DOI: https://doi.org/10.7554/eLife.43753.006

strength between neurons 6 and @ is modeled as a von Mises function decaying with the disparity
between two neurons’ preferred directions |# — ¢'| (Figure 4B black line and Equation 17). In the
model, the recurrent connection strength is not very strong to support persistent activities after
switching off external stimuli, because no persistent activity is observed in multisensory areas. More-
over, neuronal responses in the same group are normalized by the total activity of the population
(Equation 20), called divisive normalization (Carandini and Heeger, 2012), mimicking the effect of a
pool of inhibitory neurons (purple disks in Figure 4B). Each group of neurons has its individual inhibi-
tory neuron pool, and the two pools of inhibitory neurons in the same module share their overall
activities (Equation 21), which intends to introduce mutual inhibition between congruent and oppo-
site neurons.

Between modules, neurons of the same type are reciprocally connected with each other
(Figure 4A-B). For congruent neurons, they are connected with each other in the congruent manner
(Equation 18 and Figure 4B blue line), that is, the more similar their preferred directions are, the
stronger the neuronal connection is. For opposite neurons, they are connected in the opposite man-
ner (Equation 19 and Figure 4B red line), that is, the more different their preferred directions are,
the stronger the neuronal connection is. Since the maximum difference between two circular varia-
bles is 7, an opposite neuron in one module preferring 0 has the strongest connection to the oppo-
site neuron preferring 6 + 7 in the other module. This agrees with our intuitive understanding as
described above (as suggested by Equation 6): to calculate the disparity information between two
cues, the neuronal response to the combined cues should integrate its responses to the direct cue
and its response to the indirect one but with the cue direction shifted by 7 (through the offset recip-
rocal connections). We set the connection profile between the opposite neurons to be of the same
strength and width as that between the congruent ones (comparing Equations 18 and 19), ensuring
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that the tuning functions of the opposite neurons have the similar shape as those of the congruent
ones, as observed in the experimental data (Chen et al., 2011).

When sensory cues are applied, the neurons combine the feedforward, recurrent, and reciprocal
inputs to update their activities (Equation 16), and the multisensory integration and segregation will
be accomplished by the reciprocal connections between network modules. The results are presented
below.

Tuning properties of congruent and opposite neurons

Simulating the neural circuit model, we first checked the tuning properties of neurons. The simula-
tion results for an example congruent neuron and an example opposite neuron in module 1 respond-
ing to single cues are presented in Figure 5. It shows that the congruent neuron, in response to
either cue 1 or cue 2, prefers the same direction (—90°) (Figure 5A), whereas the opposite neuron,
while preferring —90° for cue 1, prefers 90° for cue 2 (Figure 5B). Thus, the tuning properties of con-
gruent and opposite neurons naturally emerge through the network dynamics.

We further checked the responses of neurons to combined cues and found that when there is no
disparity between the two cues, the response of a congruent neuron is enhanced compared to the
single cue conditions (green line in Figure 5A), whereas the response of an opposite neuron is sup-
pressed compared to its response to the direct cue (green line in Figure 5B). These properties agree
with the experimental data (Gu et al., 2008; Chen et al., 2013) and is also consistent with the inter-
pretation that the integrated and segregated amplitudes are respectively proportional to the vector
sum and difference in Figure 3. Following the experimental protocol (Morgan et al., 2008), we also
plotted the bimodal tuning curves of the example neurons in response to the combined cues of vary-
ing reliability, and observed that when cue 1 has a relatively high reliability, the bimodal responses
of both neurons are dominated by cue 1 (Figure 5C-D), indicating that the neuronal firing rates are
affected more significantly by varying the angle of cue 1 than by that of cue 2, whereas when the
reliability of cue 1 is reduced, the result becomes the opposite (Figure 5E-F). These behaviors agree
with the experimental observations (Morgan et al., 2008).
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Figure 5. Tuning properties of congruent and opposite neurons in the network model. (A-B) The tuning curves of an example congruent neuron (A)
and an example opposite neuron (B) in module 1 under three cueing conditions. (C-D) The bimodal tuning properties of the example congruent (C)
and the example opposite (D) neurons when cue 1 has relatively higher reliability than cue 2 in driving neurons in module 1, with @; = 0.58a,, where a,,
is the amplitude of cue m given by Equation 22. The two marginal curves around each contour plot are the unimodal tuning curves. (E-F) Same as (C-
D), but cue 1 has a reduced reliability with a; = 0.12a,. (G-H) The histogram of the differences of neuronal preferred directions with respect to two
cues in module 1 (G) and module 2 (H), when the reciprocal connections across network modules contain random components of roughly the same
order as the connections. Parameters: (A-B) a; = 0.35U, and a; = 0.8Up; (C-F) ap = 1.5U; in (C-D) while a; = 0.1U, in (E-F). Other parameters are the
same as those in Figure 4.
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Apart from the congruent and opposite neurons, the experiments also found that there exist a
portion of neurons, called intermediate neurons, whose preferred directions to different cues are
neither exactly the same nor the opposite, but rather have differences in between 0° and
180° (Gu et al., 2006; Chen et al., 2011). We found that by considering the realistic imperfectness
of neuronal reciprocal connections (e.g. adding random components in the reciprocal connections in
Equations (18 and 19), see Materials and methods), our model reproduced the distribution of inter-
mediate neurons as observed in the experiment (Figure 5G-H) (Gu et al., 2006; Chen et al., 2011).

Cue integration and segregation via congruent and opposite neurons

In response to the noisy inputs in a cueing condition, the population activity of the same group of
neurons in a module exhibits a bump-shape (Figure 6A), and the position of the bump is interpreted
as the network’s estimate of the stimulus (Figure 6B) (Deneve et al., 1999; Wu et al., 2002,
Wu et al., 2008). In a single instance, we used the population vector to read out the stimulus value
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Figure 6. Optimal cue integration and segregation collectively emerge in the neural population activities in the network model. (A) lllustration of the
population response of congruent neurons in module 1 when both cues are presented. Color indicates firing rate. Right panel is the temporal average
firing rates of the neural population during cue presentation, with shaded region indicating the standard deviation (SD). Note that the neuron index 6
refers to the preferred direction with respect to the direct cue conveyed by feedforward inputs. (B) The position of the population activity bump at each
instance is interpreted as the network’s estimate of the stimulus, referred to as z;, which is decoded by using population vector. Right panel is the
distribution of the decoded network’s estimate during cue presentation. (C-E) The temporal average population activities of congruent (blue) and
opposite (red) neurons in module 1 (top row) and module 2 (bottom row) under three cueing conditions: only cue 1 is presented (C), only cue 2 is
presented (D), and both cues are simultaneously presented (E). (F-I) Comparing the estimates from congruent and opposite neurons in module 1 with
the theoretical predictions, with varying cue intensity (F), with varying cue disparity (G), and with varying reciprocal connection strength between
modules (H and ). Symbols: network results; lines: theoretical prediction. The theoretical predictions for the estimates of congruent and opposite
neurons are obtained by Equations 4 and 7. Parameters: (A-E) a; = a; = 0.35Uy; (F) ay = 0.7Uy; (G-1) @) = a; = 0.7Uy, and others are the same as
those in Figure 4. In (F-H), x; = 0°, x, =20° and in (I), x; = 0°, xo = 160°.

DOI: https://doi.org/10.7554/elife.43753.008

The following figure supplements are available for figure 6:

Figure supplement 1. lllustration of decoded joint distributions from congruent and opposite neurons.

DOV https://doi.org/10.7554/eLife.43753.009

Figure supplement 2. Test of network’s performance.

DOI: https://doi.org/10.7554/eLife.43753.010
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(Equation 23) (Georgopoulos et al., 1986). The statistics of the bump position sampled from a col-
lection of instances reflects the posterior distribution of the stimulus estimated by the neural popula-
tion under the given cueing condition.

To validate the hypothesis that congruent and opposite neurons are responsible for cue integra-
tion and segregation respectively, we carried out simulations following the protocol in multisensory
experiments (Fetsch et al., 2013), that is, we first applied individual cues to the network and
decoded the network’s estimate of the stimulus through population vector (see details in Materials
and methods). With these results, the theoretical predictions for cue integration and segregation
were calculated according to Equations 4 and 7, respectively; we then applied the combined cues
to the network, decoded the network’'s estimate, and compared them with the theoretical
predictions.

Let us first look at the network’s estimate under single cue conditions. Consider the case that
only cue 1 is presented to module 1 at —30°. The population activities of congruent and opposite
neurons at module 1 are similar, both centered at —30° (Figure 6C top), since both types of neurons
receive the same feedforward input. On the other hand, in module 2, congruent neurons’ responses
are centered at —30°, while opposite neurons’ responses are centered at 150° due to the offset recip-
rocal connections (Figure 6C bottom). Similar population activities exist under cue 2 condition
(Figure 6D).

We further look at the the network’s estimate under the combined cue condition. Consider the
case that cues 1 and 2 are simultaneously presented to the network at the directions —30° and 30°
respectively. Then the disparity between the two cues is 60°, which is less than 90°. Compared with
single cue conditions, the responses of congruent neurons are enhanced (comparing Figure 6E with
Figure 6C-D), reflecting the increased reliability of the estimate after cue integration. Indeed, the
decoded distribution from congruent neurons sharpens in the combined cue condition and moves to
a location between cue 1 and cue 2 (Figure 6—figure supplement 1 green), which is a typical phe-
nomenon associated with cue integration. In contrast, with combined cues, the responses of oppo-
site neurons are suppressed compared with those of the direct cue (comparing Figure 6E with
Figure 6C-D). Certainly, the distribution of cue disparity information decoded from opposite neu-
rons in combined cue condition is wider than that that under the direct cue condition (Figure 6—fig-
ure supplement 1 purple). Note that when the cue disparity is larger than 90°, the relative response
of congruent and opposite neurons will be reversed (results are not shown here).

To demonstrate that the network implements cue integration and segregation and how the net-
work encodes the probabilistic model (Equations 1 and 2), we changed a parameter at a time, and
then compared the decoded results from congruent and opposite neurons with the theoretical pre-
dictions. Figure 6F-I indicates that the network indeed implements optimal integration and segre-
gation. Moreover, comparing the network results with the results of the probabilistic model, we
could find the analogy that the input intensity encodes the reliability of the likelihood (Equation 1,
comparing Figure 6F with Figure 3C), and the reciprocal connection strength effectively represents
the reliability of the integration prior (Equation 2, comparing Figure 6H with Figure 3E), which is
consistent with a previous study (Zhang et al., 2016). We further systematically changed the network
and input parameters over a large parameter region and compare the network results with theoreti-
cal predictions. Our results indicated that the network model achieves cue integration and segrega-
tion robustly over a large range of parameters (Figure 6—figure supplement 2), as long as the
connection strengths are not so large that winner-take-all happens in the network model.

Concurrent multisensory processing

The above results elucidate that congruent neurons integrate cues, whereas opposite neurons com-
pute the disparity between cues. Based on these complementary information, the brain can access
the validity of cue integration and can also recover the stimulus information associated with single
cues lost due to integration. Below, rather than exploring the detailed neural circuit models, we
demonstrate that the brain has resources to implement these two operations based on the activities
of congruent and opposite neurons.
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Assessing integration vs. segregation

The competition between congruent and opposite neurons can determine whether the brain should
integrate or segregate two cues. Figure 7A displays how the mean firing rates of two types of neu-
rons change with the cue disparity, which shows that the activity of congruent neurons decreases
with the disparity, whereas the activity of opposite neurons increases with the disparity, and they are
equal at the disparity value of 90°. The brain can judge the validity of integration based on the com-
petition between these two groups of neurons (see more remarks in Conclusions and Discussions).
Specifically, the group of congruent neurons wins when the cue disparity is small, indicating the
choice of integration, and the group of opposite neurons wins when the cue disparity is large, indi-
cating the choice of segregation. The decision boundary is at the disparity of 90°, if the activities of
congruent and opposite neurons have equal weights in decision-making. In reality, however, the
brain may assign different weights to congruent and opposite neurons and realize a decision bound-
ary at the position satisfying the statistics of inputs (Figure 7B).

Recovering the single cue information

Once the decision for cue segregation is reached, the neural system at each module needs to
decode the stimulus based purely on the direct cue, and ignores the irrelevant indirect one. Through
combining the complementary information from congruent and opposite neurons, the neural system
can recover the stimulus estimates lost in integration, without re-gathering new inputs from lower
brain areas if needed (see more remarks in Conclusions and Discussions).
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Figure 7. Concurrent multisensory processing with congruent and opposite neurons. (A-B) Accessing integration
versus segregation through the joint activity of congruent and opposite neurons. (A) The firing rate of congruent
and opposite neurons exhibit complementary changes with cue disparity x; — x. (B) The decision boundary of the
competition between congruent and opposite neurons changes with read out weight from congruent W, and
opposite neurons W,,,,. It is given by the value of x; — x, at which Wegngrs, = Woper?,. Dashed line is when

Weong = Woppo, the decision boundary is at 90°. (C-D) Recovering single cue information from two types of neurons.
(C) lllustration of recovering through the joint activities of congruent (blue) and opposite (red) neurons under the
combined cue condition. We decoded the estimate from congruent and opposite neurons respectively, and then
vector sum the decoded results recovering the single cue information. (D) Comparing the recovered mean of the
stimulus given the direct cue with the actual value. Parameters: those in (A-B) are the same as those in Figure 6A,
and those in D are the same as those in Figure 6—figure supplement 2.
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According to Equations 3 and 6, the posterior distribution of the stimulus given the direct cue
can be recovered by

Inp(si|x1) = [lnp(sy|x1,x2) + lnpy (s |x1,x2)] /2. (8)

As suggested in Ma et al. (2006) and Jazayeri et al. (2006), the above operation can be realized
by considering neurons receiving the activities of congruent neurons (representing Inp(s;|x;,x2),
Figure 7C blue) and opposite neurons (representing Inp,(si|x1,x2), Figure 7C red) as inputs and
generate Poisson spikes, such that the location of population responses and the summed activity
encode respectively the mean and variance of the posterior p(s;|x;) (Figure 7C green).

Without actually building a neural circuit model, we decoded the stimulus by utilizing the activi-
ties of congruent and opposite neurons according to Equation 8, and compared the recovered
result with the estimate of a module when only the direct cue is presented (see the detail in Materi-
als and methods). Figure 7D further shows that the recovering agrees with actual distribution and is
robust against a variety of parameters (R* = 0.985). Thus, through combining the activities of congru-
ent and opposite neurons, the neural system can recover the lost stimulus information from direct
cues if necessary.

Experimental predictions

The key structure of our network model can be tested in experiments. For instance, we may measure
the correlations between congruent neurons and between opposite neurons across modules, and
the correlations between congruent and opposite neurons within and across modules. According to
the connection structure of our model, the averaged correlations between the same type of neurons
across modules are positive due to the excitatory connections between them, whereas the averaged
correlations between different types of neurons within and across modules are negative due to the
competition between them. We may also inactivate one type of neurons in one module and observe
the neurons in the other module, the activity of the same type of neurons is suppressed, whereas
the activity of the other type of neurons is enhanced.

Furthermore, our hypothesis on the computational role of opposite neurons can be evaluated by
experiments. Through recording the activities of individual congruent neurons in awake monkeys
when the monkeys are performing heading-direction discrimination, previous studies demonstrated
that congruent neurons implement optimal cue integration in the congruent cueing condition
(Gu et al., 2008; Chen et al., 2013). We can carry out a similar experiment to check whether oppo-
site neurons encode the cue disparity information. The task is to discriminate whether the disparity
from two cues, x; — xp, is either smaller or larger than 0°. To rule out the influence of the change of
integrated direction to the activities of neurons, we fix the center of two cues, for example, the cen-
ter is fixed at 0°, that is x; +x, =0°, but the disparity between cues x; — x, varies over trials.
Figure 8A plots the responses of an example opposite neuron and an example congruent neuron
respectively in our model with respect to the cue disparity x; — x,. It shows that the firing rate of the
opposite neurons changes much more significantly with the cue disparity than that of the congruent
neuron, suggesting that the opposite neuron’s response might be more informative to the change
of cue disparity compared with a congruent neuron. To quantify how the activity of a single neuron
can be used to discriminate the cue disparity, we apply receiver-operating-characteristics (ROC)
analysis to construct the neurometric function (Figure 8B), which measures the fraction of correct
discrimination (see Materials and methods). Indeed, the opposite neurons can discriminate the cue
disparity much finer than congruent neurons (Figure 8C). In addition, our model also reproduces the
same discrimination task studied in Gu et al. (2008) and Chen et al. (2013), that is to discriminate
whether the heading-direction is on the left or right hand side of a reference direction under differ-
ent cueing conditions (Figure 8—figure supplement 1).

Discussion

Animals face challenges of processing information fast in order to survive in natural environments,
and over millions of years of evolution, the brain has developed efficient strategies to handle these
challenges. In multisensory processing, such a challenge is to integrate/segregate multisensory sen-
sory cues rapidly without knowing in advance whether these cues are from the same or different
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Figure 8. Discrimination of cue disparity by single neurons. (A) The tuning curve of an example congruent (blue)
and opposite (red) neuron with respect to cue disparity x; — x2. In the tuning with respect to cue disparity, the
mean of two cues was always at 0", that is x; +x, = 0, while their disparity x; — x, was varied from —32° to 32" with
a step of 4°. The two example neurons are in network module 1, and both prefer 90° with respect to cue 1.
However, the congruent neuron prefers 90° of cue 2, while the opposite neuron prefers —90° with respect to cue 2.
Error bar indicates the SD of firing rate across trials. (B) The neurometric function of the example congruent and
opposite neuron in a discrimination task to determine whether the cue disparity x; — x, is larger than 0° or not.
Lines are the cumulative Gaussian fit of the neurometric function. (C) Averaged neuronal discrimination thresholds
of the example congruent and opposite neurons. Parameters: a; = 0.25Up, a; = 0.8U,, and others are the same as
those in Figure 4.

DOI: https://doi.org/10.7554/elife.43753.012

The following figure supplement is available for figure 8:

Figure supplement 1. Discrimination of heading direction by single neurons.
DOI: https://doi.org/10.7554/elife.43753.013

stimuli. To resolve this challenge, we argue that the brain should carry out multisensory processing
concurrently by employing congruent and opposite cells to realize complementary functions. Specifi-
cally, congruent neurons perform cue integration with opposite neurons computing the cue disparity
simultaneously, so that the information they extract are complementary, based on which the neural
system can assess the validity of integration and recover the lost information associated with single
cues if necessary. Through this process, the brain can, on one hand, achieve improved stimulus per-
ception if the cues are from the same stimulus of interest, and on the other hand, differentiate and
recognize stimuli based on individual cues with little time delay if the cues are from different stimuli
of interest. We built a biologically plausible network model to validate this processing strategy. The
model consists of two reciprocally connected modules representing MSTd and VIP, respectively, and
it carries out heading-direction inference based on visual and vestibular cues. Our model successfully
reproduces the tuning properties of opposite neurons, verifying that opposite neurons encode the
disparity information between cues, and demonstrates that the interplay between congruent and
opposite neurons can implement concurrent multisensory processing.

Opposite neurons have been found in experiments for years (Chen et al., 2013; Gu et al., 2008),
but their functional role remains a mystery. There have been few studies investigating this issue, and
two computational works were reported (Kim et al., 2016; Sasaki et al., 2017), where the authors
explored the contribution of opposite neurons in a computational task of inferring self-motion direc-
tion by eliminating the confound information of object motion. They showed that opposite neurons
are essential, as they provide complementary information to congruent neurons necessary to accom-
plish the required computation. This result is consistent with our idea that opposite neurons are
indispensable in multisensory processing, but our study goes one step further by theoretically pro-
posing that opposite neurons encode the disparity information between cues and that congruent
and opposite neurons jointly realize concurrent multisensory processing.

It is worthwhile to point out that in the present study, we have only demonstrated that congruent
neurons implement Bayesian cue integration within the framework of a single-component prior and
that opposite neurons encode the cue disparity information, and we have not explored whether they
can combine together to realize a full Bayesian inference for multisensory processing. In the full
Bayesian inference, also termed as the causal inference (Kérding et al., 2007; Sato et al., 2007,
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Shams and Beierholm, 2010), the neural system utilizes the prior knowledge about the probabilities
of two cues coming from the same or different objects. The prior can be written as

2

pls1,52) =Y _pls1,5:[C)p(C), ©)

C=1

where C =1 corresponds to the causal structure of two cues from the same object and C =2 the
causal structure of two cues from different objects. The posterior of stimuli is expressed as
p(s1,820x1,x2) = > p(s1,820x1,%2, C)p(Clx1,x2), which requires estimating the causal structure of cues. It
is possible that opposite neurons, which encode the cue disparity information, can help the neural
system to implement the causal inference. But to fully address this question, we need to resolve a
number of issues, including the exact form of the prior, the network structure for realizing model
selection, and the relevant experimental evidence, which will be the subject of our future research.

The present study only investigated integration and segregation of two sensory cues, but our
model can be generalized to the cases of processing more than two cues that may happen in reality
(Wozny et al., 2008). In such situations, the network model consists of N>2 modules, and in module
m, the received sensory cues can be differentiated as the direct one and the integrated results
through combining all cues,
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Congruent neurons can be reciprocally connected with each other between modules in the con-
gruent manner as described above, so that they integrate the direct and all indirect cues optimally in
the distributed manner. Opposite neurons could receive the direct cue from feedforward inputs
(numerator in Equation 10), and receive the activities of congruent neurons in the opposite manner
(denominator in Equation 10) through offset connection by 180°. The interplay between congruent
and opposite neurons determines whether the direct cue should be integrated with all other cues at
each module, and their joint activities can recover the stimulus information based only on the direct
cue if necessary. This encoding strategy is similar with the norm-based encoding of face found in IT
neurons (Leopold et al., 2006).

In the present study, we only demonstrated by analysis that the neural system can utilize the joint
activities of congruent and opposite neurons to assess the validity of cue integration and to recover
the information of direct cues in cue integration, but we did not go into the detail of how the brain
actually carries out these operations. For assessing the validity of cue integration, essentially it is to
compare the activities of congruent and opposite neurons and the winner indicates the choice. This
competition process can be implemented easily in neural circuitry. For instance, it can be imple-
mented by considering that congruent and opposite neurons are connected to the same inhibitory
neuron pool which induces competition between them, such that only one group of neurons will sus-
tain active responses after competition to represent the choice; alternatively, the activities of congru-
ent and opposite neurons provide competing inputs to a decision-making network, and the latter
generates the choice by accumulating evidence over time (Wang, 2008; Engel and Wang, 2011).
Both mechanisms are feasible but further experiments are needed to clarify which one is used in
practice. For recovering the stimulus information from direct cues by using the activities of congru-
ent and opposite neurons, this study has shown that it can be done in a biologically plausible neural
network, since the operation is expressed as solving the linear equation given by Equation 8. A con-
cern is, however, whether recovering is really needed in practice, since at each module, the neural
system may employ an additional group of neurons to retain the stimulus information estimated
from the direct cue. An advantage of recovering the lost stimulus information by utilizing congruent
and opposite neurons is saving the computational resource, but this needs to be verified by
experiments.

The present study focused on investigating the role of opposite neurons in heading-direction
inference with visual and vestibular cues as an example. In essence, the contribution of opposite neu-
rons is to retain the disparity information between features to be integrated for the purpose of con-
current processing. We therefore expect that opposite neurons, or their counterparts of similar
functions, is a general characteristic of neural information processing where feature integration and
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segregation are involved (Born, 2000; Thiele et al., 2002; Nadler et al., 2013; Goncalves and
Welchman, 2017). Indeed, for example, it has been found in the visual system, there exist ‘what not’
detectors which respond best to discrepancies between cues (analogous to opposite neurons) and
they facilitate depth and shape perceptions (Goncalves and Welchman, 2017, Rideaux and Welch-
man, 2018). We hope that this study gives us insight into understanding the general principle of
how the brain integrates/segregates multiple sources of information efficiently.

Materials and methods

Probabilistic model and its inference

The probabilistic model used in this study is widely adopted in multisensory research
(Bresciani et al., 2006; Ernst, 2006; Roach et al., 2006; Sato et al., 2007). Suppose that two sen-
sory cues x; and x, are independently generated by two underlying stimuli s; and s, respectively. In
the example of visual-vestibular cue integration (Fetsch et al., 2013), s, and s, refer to the underly-
ing visual and vestibular moving direction, while x; and x, are internal representations of moving
direction in the visual and vestibular cortices. Because moving direction is a circular variable, we also
assume that both s,, and x,, (m = 1,2) are circular variables distributed in the range (—, 7]. Because
each cue is independently generated by the corresponding underlying stimulus, the joint likelihood
function can be factorized

plxi,x2ls1,52) = plxasi)p(xalsz).

In this study, each likelihood function p(xul|sn,) (m=1,2) is modeled by the von Mises distribution,
which is a variant of circular Gaussian distribution (Mardia and Jupp, 2009; Murray and Morgen-
stern, 2010), given by Equation 1. Note that in Equation 1, k,, is a positive number characterizing
the concentration of the distribution, which is analogous to the inverse of the variance (072) of
Gaussian distribution. In the limit of large k,,, a von Mises distribution M (x,,;s.,&,) approaches to a
Gaussian distribution with variance of ;! (see details in Appendix 1, Mardia and Jupp, 2009).

The prior p(s1, s2) specifies the probability of occurrence of s; and s,, and is set as a von Mises dis-
tribution of the discrepancy between two stimuli (Bresciani et al., 2006; Roach et al., 2006;
Zhang et al., 2016), given by Equation 2. Note that the marginal prior of either stimulus,
for example p(s1) = [7_p(s1,s2)ds = 1/2m is a uniform distribution.

Inference
The inference of underlying stimuli can be conducted by using Bayes' theorem to derive the
posterior

p(s1,520x1,%2) o p(x1|s1)p(x2]s2)p(s1,52), (11)

The posterior of either stimuli, for example stimulus s;, can be obtained by marginalizing the joint
posterior (Equation 11) as follows (the posterior of can be similarly obtained by interchanging indi-
ces 1 and 2)

o
p(silxi,x) :/ p(s1,820x1,x2)ds>

w

' p(Xl\Sl)/ p(xals2)p(si,s2)dsa (12)

ks

o< p(s1]x1)p(si|x2),

where we used the fact that both marginal distributions p(s,,) and p(x,) are uniform and then inter-
changed the role of x,, and s; in their conditional distributions. It indicates that the posterior of s;
given two cues corresponds to a product of posterior of s; when each x, is individually presented,
which could effectively accumulate the information of s; from both cues. p(s;|x,) can be calculated as
(see details in Appendix 1),

p(si]x) 0(/ p(x2|s2)p(s1,82)dsy =~ M(s1;x2,kK25), Where A(kay) =A(kz)A(ky). (13)

v
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A(k) = [T _cosfe s%df/ [T e<<*’dh calculates the mean resultant length (first order trigonometric
statistics), measuring the dispersion of a von Mises distribution. An approximation was used in the
calculation through equating the mean resultant length of the integral with that of a von Mises distri-
bution (Mardia and Jupp, 2009), because the integral of the product of two von Mises distributions
is no longer a von Mises distribution. The meaning of A(ky;) can be understood by considering the

Gaussian equivalent of von Mises distribution, where the inverse of concentration x~!

can approxi-
mate the variance of Gaussian distribution, yielding k3! =x; ! + 1.

Finally, substituting the detailed expression into Equation 12,

p(si]x1,x2) ocexplr;cos(s; —x1) + kascos(s; —x2)]
o exp[(K1 cosx| + Ko;COSX2) cOs s + (K1 Sinx; + Koy sinx; ) sin sy |
o exp[k; cos(s; — $§1)].

The expressions of the mean 3; and concentration k; can be found in Equation 4. The expres-
sions of A3; and Ak; in the disparity information can be similarly calculated and is shown in
Equation 7.

Loss of cue information after integration

We could calculate the amount of cue information after integration in theory. Unlike the Gaussian
distribution, it is not easy to analytically calculate the amount of information contained in a von Mises
distribution. To simplify the analysis, we use a Gaussian approximation for a von Mises distribution
first, and then calculate the amount of cue information contained in the posterior distribution
p(s1,82]x1,%2) in Gaussian case. This approximation will significantly simplify the information analysis,
without changing the basic conclusion and theoretical insight.

With a large concentration parameter k, a von Mises distribution M(s; x, k) can be approximated
by a Gaussian distribution N (s;x,k~!) (Mardia and Jupp, 2009). Thus, we approximate the von
Mises likelihood p(xu|sm) = M (Xu; $m, km) into a Gaussian likelihood as N (xy;sm,x;,'), and approxi-
mate the von Mises prior p(s,s2) into a Gaussian prior as N (si;s2, k;!). Then the posterior distribu-
tion in the Gaussian case can be calculated to be (see Zhang et al., 2016),

p(s|x) =N (s; {s|x), Cov(s|x)),

—1 ~1 —1
K, +K K X1
(slx) = (K2—1 y K—I_LK—I) (x )v
: I % 51) 2 1,1
1 K, (K, +K_ K] Ky
Cov(slx) = 1 —1 71< L ’ )
Ky Ky +KT\ K Ky Ky (K KG)

where

The Fisher information of cue x; contained in the posterior p(s|x) can be calculated to be

Ty =- [ [aa—);lnp<s|x>]p<s|x)ds

A(slx) " ~10(s|x)

=7 Cov(s|x)” —-~
a)ﬁ V(S| ) axl

B Ky K]
- kil s 4kl

1 2 s

The likelihood conveys all cue information, where the amount of information of cue x; in the likeli-
hood is

I(xl)\p(xm =Ki-

Thus the percentage of lost information of cue 1 is

Z(x1)] (s]x)
Pctipss(x1) =1 ——20%
Z(x1) |p(x‘x)
k!
K+ rg k]
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We see the amount of information loss increases with «;, which controls the extent of integration
(Figure 1—figure supplement 1). When k; — o, the two cues will be fully integrated, and then the
amount of information loss reaches maximum.

Analysis leading to neural implementation
Here, we present the analysis that inspires us to propose the network model implementing integra-
tion and segregation.

Neural encoding model

Suppose there is a population of N neurons representing the estimate of stimulus s;. We adopt a
widely used encoding model that the firing activities r of neurons are independent with each other,
and each satisfies a Poisson distribution with the rate specified by its tuning curve (Ma et al., 2006).
In this encoding model for s, (the case for s, is similar),

Inp(rs:) —m[ﬁp(rjlﬁ)}

J=1

N T;
:Z]n Ff(%!)e—fj(5|)] (14)
J

rifi(s1) — Zfi(sl) - Zln(rj!),

1 =1 =1

-

~.
Il

where r; and f;(s;) are the firing rate and tuning curve of j-th neuron representing s, respectively.
Because heading direction is a circular variable ranging from —= to ar, the tuning curve can be mod-
eled as a circular function,

fi(s1) =f(0;—s1)
= Rexp|acos(f; —s1)],
where R is the maximal firing rate of the neuron, 6; is the preferred stimulus of j-th neuron, and the
preference of all neurons {@};VZI uniformly cover the whole stimulus space. With the assumption that
the summed mean firing rate of all neurons (the second term in Equation 14) is a constant irrelevant

to stimulus value, and focusing on terms that are responsive to stimuli, we can get the detailed
expression for the encoding model,

N
Inp(r|s;) :aercos(Qj—sl) + const. (15)
=

Then the distribution for stimulus s; becomes a von Mises distribution (Mardia and Jupp, 2009),
p(silr) = M(s1;81,k1).
The mean §; and concentration k; of the stimulus are
N .
) 1 [ 5= Tjsing
51 = tan N |’
> j—1Tjcost;

) ,11/2
ki = {(Z;V:]rjsinﬁi) +(ZJN:] rjcos(}j) } .

Implementing multisensory integration

Given the encoding model, we then explore the neuronal operations required to implement multi-
sensory integration given the neural representation mentioned above. Because the estimate of s; is
fully represented by the neural population r, the activities of the neural population that implements
integration using Equation (3) should satisfy

np(sir(xi,22)) = Inp(sie(x)) +Inp(si[r(x)),

where r(x;,x,) denotes the population firing activity given the cues x; and x, together, and similarly
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for r(x;) and r(x;). Substituting the encoding model (Equation 15) into above equation, we can find
that

rj(x1,x0) =15(x1) +17(x2).

The above equation indicates that the neuronal responses given two cues should be the combina-
tion of their responses when either cue is given, in order to implement integration. This is the same
as the result in the previous work (Ma et al., 2006).

Implementing multisensory segregation
Similarly, in order to implement multisensory segregation (Equation 6), the neuronal responses
should satisfy

Inpa(si|r(x,x2)) =Inp(sir(x)) — Inp(si|r(x)).

Substituting the neural encoding model into the above equation (Equation 15),

E rj(x1,x2) cos(f; — s1) E rj(x) cos(6; —s1) E rj(x2) cos(6; — s1).

At first sight, the above equation could indicate that the multisensory segregation can be
achieved by the suppression from the neural activity when giving cue 2,

rj(x1,20) =15(x1) — 1j(x2).

However, due to the constraint that the neuronal firing rate is a positive number, r;(x;,x;) would
be rectified to be zero if rj(x,) is larger than r;(x;). When this happens, the neurons fail to represent
the magnitude of the disparity between two cues.

Fortunately, this problem can be resolved by using the property of cosine function that
cos(x + ) = — cos(x),

—ZI’j()CQ)COS(@j —Sl er x2 COS +7T) _Sl)}
J 0;
= er, (x2) cos(6; —s1), where 6; =6y + .

The second equality is obtained through changing the dummy variables j and j. Canceling the
cosine terms, it can be derived that the activity of each neuron should satisfy

rj(x1,x2) =1j(x1) + 17 (%2), where 6; =6 + .

The above equation indicates that in order to achieve optimal segregation, the neurons should
combine the neuronal responses under direct cue r;(x;), and the responses under indirect cue but
rotated to the opposite direction r;(x,). This is consistent with the definition of opposite neurons
(Gu et al., 2008; Chen et al., 2013).

Dynamics of a decentralized network model

We adopted a decentralized network model to implement concurrent multisensory integration and
segregation (Zhang et al., 2016). The network model is composed of two modules, with each mod-
ule consisting of two groups of neurons with the same number: one is intended to model congruent
neurons and another is for opposite neurons. Each neuronal group is modeled as a continuous
attractor neural network (Wu et al., 2008; Fung et al., 2010; Zhang and Wu, 2012), which has
been widely used to model the coding of continuous stimuli in the brain (Ben-Yishai et al., 1995;
Georgopoulos et al., 1986; Samsonovich and McNaughton, 1997) and it can optimally implement
maximal likelihood inference (Deneve et al., 1999; Wu et al., 2002). Denote u”,(0,t) and r(6,1) as
the synaptic input and firing rate at time ¢ respectively for an n-type neuron (n = ¢, 0 represents the
congruent and opposite neurons, respectively) in module m (m = 1,2) whose preferred heading
direction with respect to the feedforward cue m is 6. It is worthwhile to emphasize that 0 is the pre-
ferred direction only to the feedforward cue, for example the feedforward cue to network module 1
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is cue 1, but 6 does not refer to the preferred direction given another cue, because the preferred
direction of an opposite neuron given each cue is different. In the network model, the network
module m = 1, 2 can be regarded as the brain areas MSTd and VIP, respectively. For simplicity, we
assume that the two network modules are symmetric, and only present the dynamical equations for
network module 1. The dynamical equations for network module 2 can be obtained by interchanging
the indices 1 and 2 in the following dynamical equations.

The dynamics of the synaptic input of n-type neurons in network module m, u?(0,1), is governed
by

oul (0,1) N ., ! ! .
T = Z W,(0,0)r gzﬁw (007, (0, 1) + 1 (0,1), (16)

where I".(6,t) is the feedforward inputs from unisensory brain areas conveying cue information.
W,.(6,6) is the recurrent connections from neuron ¢ to neuron 6 within the same group of neurons
and in the same network module, which is set to be

Wrc(gv 9/) =

re /

explacos(6 — ¢ 17
i@ Placoso — ) (17)
where a is the connection width and effectively controls the width of neuronal tuning curves.
W,(0,0') denotes the reciprocal connections between congruent neurons across network modules

(n=c), or between opposite neurons across network modules (n=0). W¢

w

(0,0) is the reciprocal con-
nections between congruent cells across two modules (the superscript ¢ denotes the connections
are in a congruent manner, that is a 0° neuron will have the strongest connection with a 0° neuron),

W, (0,0) = 27710( )exp[a cos(6 —¢')]. (18)

Note that § and @' in the above equation denote the preferred direction of two neurons at differ-
ent network modules over their respective feedforward cues. For simplicity, Wy, (0,6') and W,.(0,¢")
have the same connection width a. This simplification does not change the basic conclusion substan-
tially. A previous study indicates that the reciprocal connection strength J,, determines the extent of
cue integration, and effectively represents the correlation of two underlying stimuli in the prior
p(s1,52) (Zhang et al., 2016). Moreover, the opposite neurons from different network modules are
connected in an opposite manner with an offset of 7,

Wy (0,6) = ZWJI:)p(a) explacos(f — 60 + ). (19)
Hence, an opposite neurons preferring 0° of cue 1 in network module 1 will have the strongest
connection with the opposite neurons preferring of 180° of cue 2 in network module 2. It is worth-
while to note that the strength and width of Wy (6,0') and Wy, (6,0') are the same, in order to convey
the same information from the indirect cue. This is also supported by the fact that the tuning curves
of the congruent and opposite neurons have similar tuning strengths and widths (Chen et al., 2011).
Each neuronal group contains an inhibitory neuron pool which sums all excitatory neurons’ activi-
ties and then divisively normalize the response of the excitatory neurons,

(AN
0,1) =—"———*t 20
) = 20)
where w controls the magnitude of divisive normalization, and [x], = max(x,0) is the negative recti-
fied function. D2 (¢) denotes the response of the inhibitory neuron pool associated with neurons of
type n in network module m at time r, which sums up the synaptic inputs of the same type of excit-
atory neurons u” (6,¢) and also receives the inputs from the other type of neurons u” (6,1),

DI(1) = S [t (0,00 + T S [t (0,1)]7. 1)

Jin is a positive coefficient not larger than 1, which effectively controls the sharing between the
inhibitory neuron pool associated with the congruent and opposite neurons in the same network
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module. The partial share of the two inhibitory neuron pools inside the same network module intro-
duces competition between two types of neurons, improving the robustness of network.

The feedforward inputs convey the direct cue information from the unisensory brain area to a net-
work module, for example the feedforward inputs received by MSTd neurons is from MT which
extracts the heading direction from optic flow,

1(0,1) = FL(0) + \/ FEL (0)6,4(0,2) + I, + V/FIye? (6, 1),
where  [7(0) = a,, explacos(0 — x,)/2 — a/2].

(22)

The feedforward inputs contain two parts: one conveys the cue information (the first two terms in
above equation) and another the background inputs (the last two terms in the above equation),
which are always present no matter whether a cue is presented or not. The variance of the noise in
the feedforward inputs FF (6) is proportional to their mean, and F characterizes the Fano factor. The
multiplicative noise is in accordance with the Poisson variability of the cortical neurons’ response. a,
is the intensity of the feedforward input and effectively controls the reliability of cue m. x,, is the
direction of cue m. I, is the mean of background input. &,(0,7) and €,(6,r) are mutually independent
Gaussian white noises of zero mean with variances satisfying (£,,(0,1)&, (6',1)) = 8, d(0 — 0)8(t — '),
and (¢ (0,0)e",(0',1)) = 8,umS,w8(0 — 0')8(t — ). Note that the cue-associated noise &, (0,t) to congru-
ent and opposite neurons are exactly the same, while the background noise €., (6,r) to congruent
and opposite neurons are independent of each other. Previous works indicated that the exact form
of the feedforward inputs is not crucial, as long as they have a uni-modal shape (Zhang and Wu,
2012).

Network simulation and parameters

In our simulation, each network module contains 180 congruent and opposite neurons, respectively,
whose preferred direction with respect to the feedforward cue is uniformly distributed in the feature
space (—180°, 180°]. For simplicity, the parameters of the two network modules were chosen sym-
metric with each other, that is all structural parameters of the two modules have the same value. The
synaptic time constant T was rescaled to one as a dimensionless number and the time step size was
0.017 in simulation. All connections have the same width a = 3, which is equivalent to a value of
about 40° for the width of tuning curves of the neurons. The dynamical equations are solved by using
Euler method.

The range of parameters was listed in the following if not mentioned otherwise. The detailed
parameters for each figure can be found in figure captions. The strength of divisive normalization
was w =3 x 107, and J;,, = 0.5 which controls the proportion of share between the inhibition pools
affiliated with congruent and opposite neurons in the same module (Equation 21). The absolute val-
ues of w and J;,, did not affect our basic results substantially, and they only determine the maximal
firing rate the neurons can reach. Of the particular values we chose, the firing rate of the neurons
saturates at around 50 Hz. The recurrent connection strength between neurons of the same type
and in the same network module was J,. = [0.3,0.4]J., where J. is the minimal recurrent strength for
a network module to hold persistent activity after switching off feedforward inputs. The expression
of J, is shown in Equation (A39) in Appendix 3. The strength of the reciprocal connections between
the network modules is J,, = [0.1,0.9]J,., and is always smaller than the recurrent connection strength
within the same network module. The sum of the recurrent strength J,. and reciprocal strength J,,,
cannot be too large, since otherwise the congruent and opposite neurons in the same network mod-
ule will have strong competition resulting in the emergence of winner-take-all behavior. However,
the winner-take-all behavior was not observed in experiments. The input intensity a was scaled rela-
tive to Uy = J.e¥/?/[2mw(1 + Jim)lo(a/2)], and is distributed in [0.3, 1.5]Uy, where Uy is the value of the
synaptic bump height that a group of neurons can hold without receiving feedforward input and
reciprocal inputs when J,. = J.. The range of the input intensity was chosen to be wide enough to
cover the super-linear to nearly saturated regions of the input-firing rate curve of the neurons. The
strength of the background input was I, = 1, and the Fano factors of feedforward and background
inputs were set to 0.5, which led to the Fano factor of single neuron responses taking values of the
order 1. In simulations, the position of the population activity bump was read out by calculating the
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population vector (Georgopoulos et al., 1986; Dayan and Abbott, 2001). For example, the posi-
tion of the population activities of the congruent neurons in module 1 at time ¢ was estimated as

g (1) =arg 32, ri(0,1)e”], (23)

where j is the imaginary unit, and the function arg[-] outputs the angle of a vector. Note that 6 is the
preferred direction over the direct cue conveyed by feedforward inputs. For the example pertaining
to the above equation, 0 refers to the preference over cue 1. To reproduce the tuning curves (Fig-
ures 5 and 6), the network dynamics was simulated for a single long trial and the neuronal responses
in equilibrium state was averaged over time to get the mean and concentration of the firing rate dis-
tribution. To perform ROC analysis (Figure 8 and Figure 8—figure supplement 1), the network
model was simulated for 30 trials. The number of trials is consistent with experimental studies
(Gu et al., 2008), and it does not influence the results substantially as long as it is large enough. The
network model was simulated by using MATLAB, and the corresponding code can be found
at https://github.com/wenhao-z/Opposite_neuron (copy archived at https://github.com/elifescien-
ces-publications/Opposite_neuron).

Demo tasks of network model

Testing network’s performance of integration and segregation

We compared the network’s estimate under three cueing conditions in simulations, that is either cue
1 or cue 2 is individually presented, or both cues are simultaneously presented. In each cueing condi-
tion, we simulate the network dynamics for sufficient long time to guarantee it is in equilibrium state,
where the estimates made by congruent and opposite neurons in the two network modules are
decoded respectively. Denote 77,(t|x;) as the bump position at time 7 when only cue x; (I = 1,2) is pre-
sented. Simulations show that the distribution of the bump position over time is well approximated
by a von Mises distribution. The mean of the estimate is obtained through averaging across time
(equivalent to average across trials at equilibrium) (Mardia and Jupp, 2009),

L
() = o (NZM />> |

Loy

where N, denotes the number of data points and is set to 5 x 10* in simulation. To estimate the con-
centration of the probabilistic population code, we consider the posterior distribution of the popula-
tion vector decoded from each individual instance, rather than the width distribution of the bumps
obtained from the individual instances. Hence we consider the mean resultant length of the von
Mises distribution given by Equation (A4). When the distribution is sufficiently sharp, it can be
approximated by the von Mises distribution in the neighborhood of the peak. Hence the concentra-
tion is estimated by
)

where A~!(.) denotes the inverse function of A(-) in Equation (A4). To verify whether the congruent
neurons in each module achieve optimal cue integration, we calculated the theoretical prediction

1 -
Kk(zx) =A"" (’— E /(1)
(e ) N, <

obtained by adding the estimates of the same group of neurons in single cue conditions according
to Equation (4) (corresponding to the sum of the green vectors in Figure 3B),

2
RE efon — ZK(anIX1)e’<Z;"">,

=1

where z¢, and k¢, denote, respectively, the predicted mean and concentration for the estimate of
congruent neurons in module m in the combined cueing condition. This prediction is then compared
with the actual mean and concentration of the estimate from the same group of neurons in the com-
bined cueing condition. Results are displayed in Figure 6—figure supplement 1.

We further tested whether the opposite neurons in a module implements optimal cue segrega-
tion. The theoretical prediction was obtained by substituting the mean and concentration of the
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posterior represented by congruent neurons under single cue conditions into Equation (7) (corre-
sponding to the difference of the green vectors in Figure 3B),

,;gneﬁ,“n =k(Z, |xm)ei<zf"\xm> — k(< ‘xm,)eﬂzf;\m)’ 24)

where z% and k9, denote, respectively, the predicted mean and concentration of the estimate of
opposite neurons in module m in the combined cue condition. It is expected that the estimates of
congruent and opposite neurons have the same mean and concentration given the direct cue, that is
K (2, | ) €GP = (20 |x,,)€nbn), while given the indirect cue, their estimates have the same concen-
tration but opposite mean, that is k(5 [x, )e/@F) = —k (22 |x, )&/ ) . Thus, the theoretical predic-
tion for opposite neurons can also be obtained by

,}Zle/??; — K(an|xm)ej<zl")1|x’”> +x(2, ‘xm,)e/’&;’,\xmr). (25)

We checked that Equations (24, 25) give the same prediction on the estimate of the opposite
neurons. We used Equation (25) to predict the estimate of the opposite neurons in the combined
cue condition. Results are presented in Figure 6—figure supplement 1.

Reconstructing stimulus estimate under direct cue from congruent and

opposite neurons’ activity

The stimulus estimate from its direct cue can be recovered from the joint activities of congruent and
opposite neurons in real-time when two cues are simultaneously presented. Equation 8 indicates
that the reconstruction of the posterior distribution of the direct cue can be achieved by multiplying
the decoded distribution from congruent and opposite neurons in a network module. Thus, for
example, the reconstructed estimate of stimulus one at time t given its direct cue can be obtained

by
$1(0)x1 = arg[(3o, 75 (0,1)) 5 + (30,74 (6,1)) € 0], (26)

where z{(¢) and z{(r) are the positions of the population activities of the congruent and opposite neu-
rons in network module 1, respectively, which were decoded by using population vector (Equa-
tion 23). In real-time reconstruction, the sum of firing rate represents the concentration of the
distribution. This is supported by the finding that the reliability of the distribution is encoded by the
summed firing rate in probabilistic population code (Ma et al., 2006; Zhang et al., 2016).

Discriminating cue disparity on single neurons

A discrimination task was designed on the responses of single neurons to demonstrate that opposite
neurons encode cue disparity information. The task is to discriminate whether the cue disparity,

x| — Xxp, is either smaller or larger than 0. In the discrimination task, the mean direction of two cues,

x1 +x, =0, is fixed at 0°, in order to rule out the influence of the change of integrated direction to
neuronal activity. Meanwhile, the disparity between two cues, x; — x,, is changed from —32° to 32°
with a step of 4°. For each combination of cue direction, we applied three cueing conditions (cue 1,
cue 2, combined cues) to the network model for 30 trials and the firing rate distributions of the sin-
gle neurons were obtained (Figure 8A and B).

We chose an example congruent neuron preferring 90° in network module 1, and also an example
opposite neuron in network module 1 preferring 90° with respect to cue 1. We used receiver operat-
ing characteristic (ROC) analysis (Britten et al., 1992) to compute the discriminating ability of the
example neurons on cue disparity. The ROC value counts the proportion of instances where the
direction of cue 1, x|, is larger than the one of cue 2. Neurometric functions (Figure 8B and E) were
constructed from those ROC values and were fitted with cumulative Gaussian functions by least
square, and then the standard deviation of the cumulative Gaussian function was interpreted as the
neuronal discrimination threshold (Figure 8C) (Gu et al., 2008). A smaller value of the discrimination
threshold means that the neuron is more sensitive in the discrimination task. Although we adopted
the von Mises distribution in the probabilistic model, the firing rate distribution of single neurons
can be well fitted by a Gaussian distribution, justifying the use of the cumulative Gaussian distribu-
tion to fit the ROC values.
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Discriminating heading direction on single neurons
To reproduce experimental findings (Gu et al., 2008; Chen et al., 2013), we conducted a task of
discriminating whether a stimulus value is smaller or larger than O° based on the activities of an
example congruent and an opposite neurons which are the same as the one described in Materials
and methods. The directions of the two cues were always the same, and were simultaneously
changed from —32° to 32°. The construction of neurometric function and the estimate of neuronal
discrimination threshold are the same as the discrimination task presented in main text.

Similar with typical cue experiments (Chen et al., 2013; Gu et al., 2008), for each neuron, we
used the Gaussian distribution to predict the discrimination threshold under combined cues by those
under separate single-cue conditions,

Oprediction = 01 0'2/ 0'% + 0'%7 (27)

where o, and o, are the neuronal discrimination thresholds of a neuron under cue 1 and cue 2 condi-
tions, respectively. The results are presented in Figure 8—figure supplement 1.
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Appendix 1

DOI: https://doi.org/10.7554/elife.43753.015

Background of the von Mises Distribution

Definition of the von Mises distribution

The von Mises probability density function for a circular variable x is defined as

M, ) = expliccos(x— ], (A1)

2’7T]0(K)
where 1 is the mean of x, and the concentration parameter k measures the dispersion of x

around its mean value. Iy(k) is the modified Bessel function of the first kind and zero order,
which is given by

1

10(K) :E

2w
/ exp(k cosx)dx. (A2)
0

Note that M (x; u — 7, k) is equal to M (x; u, —k). To avoid the indeterminacy of the
parameter k, it is usual to take k>0.

Apart from using  to measure the concentration, we usually use the mean resultant
length p to measure the dispersion of a circular variable, because it can be more easily
estimated from sampled data. The mean resultant length is defined as

p =Elcos(x — u)]. (A3)
Note that 0 < p < 1 means that the distribution is fully concentrated at the point u, while
p = 0 means that the distribution is so scattered that there is no concentration around any

particular point.
For a von Mises distribution with p = 0, its mean resultant length is calculated to be

p =A(k)

1 o cos
= TRy
Zwlo(K)/o cosl)e

Relationship to the normal distribution
When « is large, we let € = k!/2(x — ), and the von Mises distribution is approximated to be

M(&;0,k) OCEXp<7K[1 fcos(Kfl/zf)]) (A5)

Further approximating 1 — cos(k~1/2¢) = 1k 1€ + O(k2) for small ¢, we have
M(&0,k) < exp(—€/2) x N'(£0,1). (A6)

Thus, the von Mises distribution can be approximated to be a normal distribution for large
k and small |x — p|, that is

M(%; 1 6) =N (3 1671, (A7)

Relationship to the wrapped normal distribution

In general, a von Mises distribution can be approximated by a wrapped normal distribution
with the same mean u and the same mean resultant length A(k). The wrapped normal
distribution WN (x; u, p) is obtained by wrapping a normal distribution on a circle. For a
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random variable x, the corresponding random variable x,, of the wrapped distribution is
obtained by

X,y = x(mod 27), (A8)
and the wrapped distribution satisfies
Fol®) =Y flx+2km), (A9)
k=—o0

where f(x) is the probability density function of x.
Hence the probability density function of the wrapped normal distribution is defined as

1 & — p+ 2km)?
WN (x; 11, p) = Vrno Z exp {_M} (A10)

i 202

where p = exp(—a?/2) is mean resultant length of the wrapped normal distribution.
By matching the mean and the mean resultant length of a von Mises distribution and a
wrapped normal distribution, we have following approximation,

M (x; 1, ) = WN (x; 11, A(K)) + O(k™1/?), Kk — 0. (A11)

It has been shown that this approximation works very well, even in the worst case when
k~1.4 (ch. 3 in Mardia and Jupp, 2009).

Product of two von Mises distributions
The cue integration involves calculating the product of two von Mises distributions (see
Equation 3 in the main text)

p(slxr,x2) o< p(xi|s)p(x2ls), (A12)

where p(x,|s) = M(s; X, kn) for m = 1,2. Substituting detailed expressions, the right hand side
of the above equation is,

1

meXP[chos(s—xl)Jer cos(s —x2)). (A13)

p(slxi)p(slx2) =
The two cosine terms inside the exponential function in the above equation can be merged
together,

K1 cos(s —x1) + K2 cos(s — xz)

= k1 (cosx) coss + sinx; sins) + Kz (cosx; coss + sinx, sins)

. . . (A14)
= (k1 cOSX| + K2 COSX2) cos s + (ki sinxy + Ky sinx, ) sins
= K3 cos(s —x3),
where
[ cos + racosz)? + (s sin, +rasin)?]
k3 = |(KjCOSX] + Ko COSX; K1 Sinx; + ko sinx
3 1 1+ K2 2 1 1tk 2 (A15)
1/2
= [K% +K% + 2K K7 cos(xy fxz)] / ,
_1 [ K1sinxy + Ko sinxy
x3=tan [——MM—=|. (A16)
K1 COSX] + K COSXp

It is worthwhile to note that Equations. (A15 and A16) can be concisely expressed in
complex representation,

Zhang et al. eLife 2019;8:e43753. DOI: https://doi.org/10.7554/eLife.43753 29 of 33


https://doi.org/10.7554/eLife.43753

e LI F E Research article Neuroscience

K3e/.x3 = Klem + Kzeixz, (A1 7)
where ke’ geometrically corresponds to a vector in the 2D complex plane, with k and x
representing the length and angle of the vector, respectively.

Adding the normalization constant, we get

pslxy,x2) :#(K%)exp[iq cos(s —x3)]. (A18)

Integral of the product of two von Mises distributions

The calculation of p(x;|s;) involves the integral of the product of two von Mises distributions,

27
p(xals1) :/ p(xa|s2)p(salsi)ds,
0

" . (A19)
= m/{) exp|ky cos(s2 — x2) + Ky cos(sy — s1)]dsy.
o(K1)lo(Ks
Using the results in Equations (A14-A16), we get
In [K% +Kf + 2K2K; cOs (s fxz)]l/z)
plxlsy) = (A20)

277[0(K2)10 (Ks)

The above equation is not a von Mises distribution, but it can be approximated as one. The
two von Mises distributions in Equation (A19) can be approximated by wrapped normal
distributions, respectively (see Equation A11), which are

P(x2]s2) = M(x2352,K2) 2 WN (52;x2,A(k2)), (A21)

p(s2]s1) = M(s2551,k5) = WN (s2551,A(Ky)). (A22)

With these approximations, Equation (A19) becomes
2

plaals)) =~ : WN (x2552,A(k2) )WN (52351, A(Ks) )ds2 (A23)

=WN (x2;51,A(k2)A(K2)).
Using the approximation of Equation (A11), we finally get
p(a)s1) = M (x2551,A" {A(k2)A(k,) }). (A24)
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Multisensory integration with Gaussian distribution

In the main text, we came across the probabilistic multisensory integration with von Mises
distributions. To see its difference with that using Gaussian distribution, we present the result
for Gaussian distribution below. In the Gaussian case, the likelihood function is given by

1 m ~— dm :
p(xm‘sm) :N(xm%gm:o—i) = \/2—77_0_ exp |:(x20';):| s (A25)

where the inverse of the variance of Gaussian distribution is related to the concentration of
von Mises distribution (Equation 1), that is 0,2 =k, for large k,, (Equation A7).
The stimulus prior in Gaussian distribution is written as (compared to Equation 2),

2
LR { (51 =5) } , (A26)

S1,82) =
pls1,s2) V2mogLy 20’?

where L, = 27 for heading direction.
Substituting Equations (A25 and A26) into Equation (3), the posterior p(s;|x;,x;) is
calculated to be

p(silxi,x2) =N (s1381,67), (A27)

where the mean and variance of the posterior are
612 =0y + (03 +07) (A28)
§ =67 [o;ZxI + (02 + O'f)_lxz] : (A29)
Note that the reliability of cue integration using von Mises distribution decreases with the

cue disparity (x; — x;) (see Equation A15), but in the Gaussian case, the reliability of cue
integration 72 is independent of the cue disparity.
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Theoretical analysis of a single network module
We conduct theoretical analysis to understand the dynamics of a single network module
without receiving feedforward inputs and reciprocal inputs from another module. This analysis
could help us to understand how recurrent connections between neurons and the divisive
normalization determine the neural dynamics, and help us to set network parameters.

Cutting off feedforward and reciprocal inputs corresponds to setting 7 (6,7) = 0 and
J» = 0. Consequently, the network dynamics is simplified to be,

a n n = / /
I§um(9, 1)=—u(6,1) +0f§,ﬁ W, (6,0 (6',1), (n=c,0) (A30)
. [, (6,1)]
r(0,1) = I+ wDy (*) (A31)
AGESY ([u"m(0'7t)ﬁ+.li,,, [u"m/(G’,t)]i), W #n. (A32)
0'=—m

We see that congruent and opposite neurons in the same module compete with each other
via divisive normalization, (Equation A32), whose effect is to divisively scale down neuronal
activities (Equation A31). Hence, the divisive normalization only influences the amplitudes of
population activities, not the bump shapes. The shapes of population activities u” (¢, ¢) and
(60, 1) are fully determined by recurrent connections W,.(6,6'). Since the recurrent connection
W,.(6,8') is a von Mises function, and the convolution of two von Mises functions can be
approximated by a new von Mises function, we propose the ansatz that neuronal population
activities have the von Mises shape in the stationary state, which are written as,

ul (0|22 (1)) = Ul exp [zcos(ﬁ z (t))—g], (A33)
1 (6] (1)) =Ry explacos(§ — 2 (1)) —a],(m=1,2; n=c, o). (A34)

where U” and R, denote, respectively, the heights of synaptic inputs and neuronal firing rates
of n-type neurons in module m. zZ, denotes the bump location in the feature space.

In order to check the validity of the proposed von Mises ansatz, we substitute
Equations (A33,A34) into the network dynamics (Equations A30-A32), and get the stationary
state of the network (see details in the subsequent section), which is

I
Ut — pJ 0@

rcm mr (A35)

where p = N /2 is the neuronal density with N the number of neuron in the group. Meanwhile,
substituting the von Mises ansatz into the divisive normalization (Equations A31,A32), we get
another relationship between R’ and U”,

bm2
m
1+ 2mwp(Un? + Jian,'f)IO (a)e

n __
m

(0 #n). (A36)

Under the condition of no reciprocal and feedforward inputs, there exists a symmetric
solution for the heights of congruent and opposite neurons’ population responses, that is U,
and R”. Although an asymmetric solution for the heights of congruent and opposite neurons'’
responses also exists, we don’t consider it in current theoretical study.
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Denote the heights of congruent and opposite neurons’ responses as US, = U° = U,, and
RS, = R° = R, respectively. Combining Equations (A35, A36) yields,

Raw(1 4 Ji) plo(@)lo(a/2)e™ 2| U? — plrelo(a)U + e*Iy(a/2) =0, (A37)

whose solution is calculated to be

o plrelo(a) £ \/ (pdyelo(@))? = 87w(1 + Jin) plo (@) I (a/2)*

" 27w(1 4+ Jins) plo (a)Io(a/2)e=/2 (A38)

U,, has a real value when the recurrent connection strength J,. is larger than a critical value
J., which is given by

. \/877(.0(1 +Ju)lo(a/2)° (A39)
plo(a)

This real-value solution of U,, implies that the network holds persistent response without
external inputs. J, is the minimal strength of recurrent connections to hold a persistent activity.
Since no persistent activity was observed in multisensory brain areas such as MSTd and VIP, J.
is the upper bound for the recurrent strength J,. in our model.

Verification of the von Mises ansatz of network activity
Substituting the von Mises ansatz (Equations A33 and A34) into the network dynamics
(Equation A30), we have

tUadz), . @ a ny_ @
LHS = o sin(0 —z2) exp [2 cos(0—22) 2] ; (A40)
RHS= —U"exp [ZCOS(Q —7%) —g] +M i explacos(0 — ') +acos(0 —7")]d0
iz 2 "2l 2ml(a) =, "

Le(0) (A41)
“+aexp [gcos(b? —x)— 621] +aexp ECOS(G —x)— ﬂ £(0,1)

+IBkg+ IBkge(G,t).

The recurrent inputs 1,.(0) (the 2nd term in RHS in above equation) can be calculated as,

Rl e~ -
= %egﬁexp[a cos(0 — ') +acos(¢ —z)]do’

1:(6)

Ry [T
~ %/ explacos(f — ') +acos(# —z),)]d6’
O (A42)

=~ pl R e~ “2mly(a) M(0;2,A {A(a)*})
=ply Ry e~ 2mly(a) M(0;z,a/2)
. D(a) a a
_ ) a/2 10 “ _ony _ <
pJrcRe To(@/2) exp [2008(0 ) 2} .

The first approximation in the above calculation comes from the conversion from discrete
summation to continuous integral, where p = N/2 is the neuronal density corresponding to
the reciprocal of the summation intervals. The last two approximations are from the
convolution of two von Mises distributions as given by Equation (A24).
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