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Abstract Our brain perceives the world by exploiting multisensory cues to extract information

about various aspects of external stimuli. The sensory cues from the same stimulus should be

integrated to improve perception, and otherwise segregated to distinguish different stimuli. In

reality, however, the brain faces the challenge of recognizing stimuli without knowing in advance

the sources of sensory cues. To address this challenge, we propose that the brain conducts

integration and segregation concurrently with complementary neurons. Studying the inference of

heading-direction via visual and vestibular cues, we develop a network model with two reciprocally

connected modules modeling interacting visual-vestibular areas. In each module, there are two

groups of neurons whose tunings under each sensory cue are either congruent or opposite. We

show that congruent neurons implement integration, while opposite neurons compute cue disparity

information for segregation, and the interplay between two groups of neurons achieves efficient

multisensory information processing.

DOI: https://doi.org/10.7554/eLife.43753.001

Introduction
To survive as an animal is to face the daily challenge of perceiving and responding fast to a con-

stantly changing world. The brain carries out this task by gathering as much as possible information

about external environments via adopting multiple sensory modalities including vision, audition,

olfaction, tactile, vestibular perception, etc. These sensory modalities provide different types of

information about various aspects of the external world and serve as complementary cues to

improve perception in ambiguous conditions. For instance, while walking, both the visual input (optic

flow) and the vestibular signal (body movement) convey useful information about heading-direction,

and when integrated together, they give a more reliable estimate of heading-direction than either of

the sensory modalities could deliver on its own. Indeed, experimental data has shown that the brain

does integrate visual and vestibular cues to infer heading-direction and furthermore, the brain does

it in an optimal way as predicted by Bayesian inference (Fetsch et al., 2013). Over the past years,

experimental and theoretical studies verified that optimal information integration were found among

many sensory modalities, for example, integration of visual and auditory cues for inferring object

location (Alais and Burr, 2004), motion and texture cues for depth perception (Jacobs, 1999), visual
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and proprioceptive cues for hand position (van Beers et al., 1999), and visual and haptic cues for

object height (Ernst and Banks, 2002).

However, multisensory integration is only a part of multisensory information processing. While it

is appropriate to integrate sensory cues from the same stimulus of interest (Figure 1A left), sensory

cues from different stimuli need to be segregated rather than integrated in order to distinguish and

recognize individual stimuli (Figure 1A right). In reality, the brain does not know in advance whether

the cues are from the same or different objects. To accomplish the recognition task, we argue that

the brain should carry out multisensory integration and segregation concurrently: a group of neurons

integrates sensory cues, while the other computes the disparity information between sensory cues.

The interplay between the two groups of neurons determines the final choice of integration versus

segregation.

An accompanying consequence of multisensory integration is, however, that it inevitably incurs

information loss of individual cues (Figure 1, also see Materials and methods). Consider the example

of integrating the visual and vestibular cues to infer heading-direction, and suppose that both cues

have equal reliability. Given that one cue yields an estimate of � degree and the other an estimate of

�� degree, the integrated result is always 0 degree, irrespective to the value of � (Figure 1B). Once

the cues are integrated, the information associated with each individual cue (the value of �) is lost,

and the amount of lost information increases with the extent of integration. Thus, if only multisensory

integration is performed, the brain faces a chicken and egg dilemma in stimulus perception: without

integrating cues, it may be unable to recognize stimuli reliably in an ambiguous environment; but

once cues are integrated, the information from individual cues is lost. Concurrent multisensory inte-

gration and segregation is able to disentangle this dilemma. The information of individual cues can

be recovered by using the preserved disparity information if necessary, instead of re-gathering new

inputs from the external world. While there are other brain regions processing unisensory informa-

tion, concurrent multisensory integration and segregation provides a unified way to achieve: (1)

improved stimulus perception if the cues come from the same stimulus of interest; (2) differentiate

and recognize stimuli based on individual cues with little time delay if the cues come from different

stimuli of interest. This processing scheme is consistent with an experimental finding which showed

that the brain can still sense the difference between cues in multisensory integration (Wallace et al.,

2004; Girshick and Banks, 2009).
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Figure 1. Multisensory integration and segregation. (A) Multisensory integration versus segregation. Two

underlying stimulus features s1 and s2 independently generate two noisy cues x1 and x2, respectively. If the two

cues are from the same stimulus, they should be integrated, and in the Bayesian framework, the stimulus

estimation is obtained by computing the posterior pðs1jx1; x2Þ (or pðs2jx1; x2Þ) utilizing the prior knowledge pðs1; s2Þ
(left). If two cues are from different stimuli, they should be segregated, and the stimulus estimation is obtained by

computing the posterior pðs1jx1Þ (or pðs2jx2Þ) using the single cues (right). (B) Information of single cues is lost after

integration. The same integrated result ŝ ¼ 0
� is obtained after integrating two cues of opposite values (� and ��)

with equal reliability. Therefore, from the integrated result, the values of single cues are unknown.

DOI: https://doi.org/10.7554/eLife.43753.002

The following figure supplement is available for figure 1:

Figure supplement 1. Cue disparity information is lost after integration.

DOI: https://doi.org/10.7554/eLife.43753.003
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What are the neural substrates for implementing concurrent multisensory integration and segre-

gation? Previous studies investigating the integration of visual and vestibular cues to infer heading-

direction found that in each of two brain areas, namely, the dorsal medial superior temporal area

(MSTd) and the ventral intraparietal area (VIP), there are two types of neurons with comparable num-

ber displaying different multisensory behaviors: congruent and opposite cells (Figure 2) (Gu et al.,

2008; Chen et al., 2013). The tuning curves of a congruent cell in response to visual and vestibular

cues are similar (Figure 2A), whereas the tuning curve of an opposite cell in response to a visual cue

is shifted by 180 degrees (half of the period) compared to that in response to a vestibular cue

(Figure 2B). Data analysis and modeling studies suggested that congruent neurons are responsible

for cue integration (Gu et al., 2008; Gu et al., 2012; Zhang et al., 2016; Ma et al., 2006). However,

the computational role of opposite neurons remains largely unknown. They do not integrate cues as

their responses hardly change when a single cue is replaced by two cues with similar directions.

Interestingly, however, their responses vary significantly when the disparity between visual and ves-

tibular cues is enlarged (Morgan et al., 2008), indicating that opposite neurons are associated with

the disparity information between cues.

In the present study, we explore whether opposite neurons are responsible for cue segregation in

multisensory information processing. Experimental findings showed that many, rather than a single,

brain areas exhibit multisensory processing behaviors and that these areas are intensively and recip-

rocally connected with each other (Gu et al., 2008; Chen et al., 2013; Gu et al., 2016;

Boussaoud et al., 1990; Baizer et al., 1991). The architecture of these multisensory areas is consis-

tent with the structure of a decentralized model (Zhang et al., 2016), where information integration

naturally emerges through the interactions between distributed network modules and is robust to

local failure (Gu et al., 2012). The decentralized model successfully reproduces almost all known

phenomena observed in the multisensory integration experiments (Fetsch et al., 2013; Stein and

Stanford, 2008). Thus, we consider a decentralized multisensory processing model (Zhang et al.,

2016) in which each local processor receives a direct cue through feedforward inputs from the con-

nected sensory modality and meanwhile, accesses information of other indirect cues via reciprocal

connections between processors.

As a working example, we focus on studying the inference of heading-direction based on visual

and vestibular cues. The network model consists of interconnected MSTd and VIP modules, where

congruent and opposite neurons are widely found (Gu et al., 2008; Chen et al., 2013). Specifically,

we propose that congruent neurons in the two brain areas are reciprocally connected with each

other in the congruent manner: the closer between the preferred directions over the feedforward

cue of a pair of neurons in their respective brain areas, the stronger their connection is, and this con-

nection profile encodes effectively the prior knowledge about the two cues coming from the same

stimulus. On the other hand, opposite neurons in the two brain areas are reciprocally connected in

the opposite manner: the further away between the preferred directions over the feedforward
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Figure 2. Congruent and opposite neurons in MSTd. Similar results were found in VIP (Chen et al., 2011). (A–B)

Tuning curves of a congruent neuron (A) and an opposite neuron (B). The preferred visual and vestibular directions

are similar in (A) but are nearly opposite by 180˚ in (B). (C) The histogram of neurons according to their difference

between preferred visual and vestibular directions. Congruent and opposite neurons are comparable in numbers.

(A–B) are adapted from Gu et al. (2008), (C) from Gu et al. (2006).

DOI: https://doi.org/10.7554/eLife.43753.004
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cue of a pair of neurons in their respective brain areas (the maximal difference is 180 degree), the

stronger their connection is. Our model reproduces the tuning properties of opposite neurons, and

verifies that opposite neurons encode the disparity information between cues. Furthermore, we

demonstrate that this disparity information, in coordination with the integration result of congruent

neurons, enables the neural system to assess the validity of cue integration and to recover the lost

information of individual cues if necessary. Our study sheds light on our understanding of how the

brain achieves multisensory information processing efficiently.

Results

Probabilistic models of multisensory processing
The brain infers stimulus information based on ambiguous sensory cues. We therefore formulate the

multisensory processing problem in the framework of probabilistic inference, and as a working exam-

ple, we focus on studying the inference of heading-direction based on visual and vestibular cues.

Probabilistic model of multisensory integration
To begin with, we introduce the probabilistic model of multisensory integration. Suppose two stimu-

lus features fsmg generate two sensory cues fxmg, for m ¼ 1; 2 (the visual and vestibular cues), respec-

tively (Figure 1A), and we denote the corresponding likelihood functions as pðxmjsmÞ. The task of

multisensory processing is to infer fsmg based on fxmg. xm is referred to as the direct cue of sm (e.g.

the visual cue to MSTd) and xl ðl 6¼ mÞ the indirect cue of sm (e.g. the vestibular cue to MSTd).

Since heading-direction is a circular variable in the range of ð�p;p�, we adopt the von Mises,

rather than the Gaussian, distribution to carry out the theoretical analysis. In the form of the von

Mises distribution, the likelihood function is given by

pðxmjsmÞ ¼ 2pI0ðkmÞ½ ��1
exp km cosðxm� smÞ½ �

�Mðxm; sm;kmÞ;
(1)

where I0ðkÞ is the modified Bessel function of the first kind and order zero, and acts as the normaliza-

tion factor. sm is the mean of the von Mises distribution, that is the mean value of xm. km is a positive

number characterizing the concentration of the distribution, and controls the reliability of cue xm.

The prior pðs1; s2Þ describes the probability of concurrence of stimulus features ðs1; s2Þ. In the liter-

ature, the study of integration and segregation was often formulated as the issue of causal inference

(Sato et al., 2007; Körding et al., 2007; Shams and Beierholm, 2010). In general, the prior of

causal inference consists of more than one components, each corresponding to the causal structure

describing the relation between the multiple stimuli. In this study, we consider a single-component

integration prior which has been used in several multisensory integration studies (Bresciani et al.,

2006; Roach et al., 2006; Sato et al., 2007; Zhang et al., 2016), and it is sufficient to demonstrate

the role played by the congruent and opposite neurons, yet retaining a simpler mathematical frame-

work (see more discussions in Conclusions and Discussions). The integration prior is

pðs1; s2Þ ¼ ð2pÞ�1Mðs1 � s2;0;ksÞ

¼ ð2pÞ2I0ðksÞ
h i�1

exp ks cosðs1 � s2Þ½ �:
(2)

This prior reflects that the two stimulus features from the same stimulus tend to have similar val-

ues. The parameter ks specifies the concurrence probability of two stimulus features, and determines

the extent to which the two cues should be integrated. In the limit ks !¥, it will lead to full integra-

tion (see, e.g. Ernst and Banks, 2002). Note that the marginal prior pðsmÞ is a uniform distribution

according to the definition.

It has been revealed that in the congruent cueing condition, the brain integrates visual and vestib-

ular cues to infer heading-direction in a manner close to Bayesian inference (Gu et al., 2008;

Chen et al., 2013). Following Bayes’ theorem, optimal multisensory integration is achieved by com-

puting the posterior of two stimuli according to

pðs1; s2jx1;x2Þ / pðx1js1Þpðx2js2Þpðs1; s2Þ:
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Since the calculations of the two stimuli are exchangeable, hereafter we only present the results

for s1. The posterior of s1 is calculated through marginalizing the joint posterior in the above

equation,

pðs1jx1;x2Þ / pðx1js1Þ
Z

p

�p

pðx2js2Þpðs1; s2Þds2
/ pðs1jx1Þpðs1jx2Þ
»Mðs1;x1;k1ÞMðs1;x2;k2sÞ;

(3)

where we have used the conditions that the marginal prior distributions of sm and xm are uniform,

that is pðsmÞ ¼ pðxmÞ ¼ ð2pÞ�1. Note that pðs1jx2Þ /
R
pðx2js2Þpðs1; s2Þds2 is approximated to be

Mðs1;x2;k2sÞ through equating the mean resultant length of distribution (Equation 13) (Mardia and

Jupp, 2009).

The above equation indicates that in multisensory integration, the posterior of a stimulus given

combined cues is equal to the product of the posteriors given the individual cues. Notably, although

x1 and x2 are generated independently by s1 and s2 (since the visual and vestibular signal pathways

are separated), x2 also provides information of s1 due to the correlation between s1 and s2 specified

in the prior.

Finally, since the product of two von Mises distributions is again a von Mises distribution, the pos-

terior distribution is pðs1jx1; x2Þ ¼ Mðs1; ŝ1; k̂1Þ, whose mean and concentration can be obtained from

its moments given by

k̂1e
ĵs1 ¼ k1e

jx1 þk2se
jx2 ; (4)

where j is an imaginary number. Equation 4 is the result of Bayesian optimal integration in the form

of von Mises distributions, and they are the criteria to judge whether optimal cue integration is

achieved in the neural system. A link between the Bayesian criteria for von Mises and Gaussian distri-

butions is presented in Appendix 2.

Equation 4 indicates that the von Mises distribution of a circular variable can be interpreted as a

vector in a two-dimensional space with its mean and concentration representing the angle and

length of the vector, respectively (Figure 3A). In this interpretation, the product of two von Mises

distributions can be represented by the summation of the corresponding two vectors. Thus, optimal

multisensory integration is equivalent to vector summation (see Equation 4), with each vector repre-

senting the posterior of the stimulus given each cue (the sum of the two green vectors yields the

blue vector in Figure 3B).

Probabilistic model of multisensory segregation
The above probabilistic model for multisensory integration assumes that sensory cues are originated

from the same stimulus. In case they come from different stimuli, the cues need to be segregated,

and the neural system needs to infer stimuli based on individual cues. In practice, the brain needs to

differentiate these two situations. In order to achieve reliable multisensory processing, we propose

that while integrating sensory cues, the neural system simultaneously extracts the disparity informa-

tion between cues, so that with this complementary information, the neural system can assess the

validity of cue integration.

An accompanying consequence of multisensory integration is that the stimulus information associ-

ated with individual cues is lost once they are integrated (see Figure 1—figure supplement 1).

Hence besides assessing the validity of integration, extracting both congruent and disparity informa-

tion by simultaneous integration and segregation enables the system to recover the lost information

of individual cues if needed.

The disparity information of stimulus one obtained from the two cues is defined to be

pdðs1jx1;x2Þ / pðs1jx1Þ=pðs1jx2Þ; (5)

which is the ratio between the posterior given two cues and hence measures the discrepancy

between the estimates from different cues. By taking the expectation of logpd over the distribution

pðs1jx1Þ, it gives rise to the Kullback-Leibler divergence between the two posteriors given each cue.
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This disparity measure was also used to discriminate alternative moving directions in Jazayeri et al.

(2006).

Utilizing the property of the von Mises distribution and the periodicity of heading directions

(� cosðs1 � x2Þ ¼ cosðs1 � x2 � pÞ), Equation 5 can be re-written as

pdðs1jx1;x2Þ / pðs1jx1Þpðs1jx2 þpÞ
/ Mðs1;x1;k1ÞMðs1;x2 þp;k2sÞ:

(6)

Thus, the disparity information between two cues can also be expressed as the product of the

posterior given the direct cue and the posterior given the indirect cue with the cue direction shifted

by p. Indeed, analogous to the derivation of Equation 3, Equation 6 can be deduced in the same

framework as multisensory integration but with the stimulus prior pðs1; s2Þ being modified by a shift p

in the angular difference. Similarly, pdðs1jx1;x2Þ ¼M s1;Dŝ1;Dk̂1ð Þ whose mean and concentration can

be derived as

Dk̂1e
jDŝ1 ¼ k1e

jx1 �k2se
jx2 : (7)

The above equation is the criteria to judge whether the disparity information between two cues is

encoded in the neural system.

Similar to the geometrical interpretation of multisensory integration, multisensory segregation is

interpreted as vector subtraction (the subtraction between two green vectors yields the red vector

in Figure 3B). This enables us to assess the validity of multisensory integration. When the two vec-

tors representing the posteriors given the individual cues have small disparity, that is the estimates

from individual cues tend to support each other, the length of the summed vector is long, implying
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Figure 3. Geometric interpretation of multisensory processing of circular variables. (A) Two von Mises distributions

plotted in the polar coordinate (bottom-left) and their corresponding geometric representations (top-right). A von

Mises distribution can be represented as a vector, with its mean and concentration corresponding to the angle

and length of the vector, respectively. (B) Geometric interpretation of cue integration and the cue disparity

information. The posteriors of s1 given single cues are represented by two vectors (green). Cue integration (blue) is

the sum of the two vectors (green), and the cue disparity information (red) is the difference of the two vectors. (C–

E) The mean and concentration of the integration (blue) and the cue disparity information (red) as a function of the

cue reliability (C), cue disparity (D), and reliability of prior (E). In all plots, ks ¼ 50, k1 ¼ k2 ¼ 50, x1 ¼ 0
� and

x2 ¼ 20
�, except that the variables are k1 ¼ k2 in C, x2 in D, and ks in E.
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that the posterior of cue integration has a strong confidence, whereas the length of the subtracted

vector is short, implying that the weak confidence of two cues are disparate (Figure 3D). If the two

vectors associated with the individual cues have a large disparity, the interpretation becomes the

opposite (Figure 3D). Thus, by comparing the lengths of the summed and subtracted vectors, the

neural system can assess whether two cues should be integrated or segregated.

Figure 3C and E further describes the integration and segregation behaviors when the model

parameters vary. As shown in Figure 3C, when the likelihoods have weak reliabilities, the network

estimate relies more on the prior. Since the prior encourages integration of the two stimuli, the pos-

terior estimate of stimulus one becomes more biased towards cue 2. At the same time, the mean of

the disparity information is biased toward the angular difference of the likelihood peaks. On the

other hand, when the likelihoods are strong, the network estimate relies more on the likelihood, and

the posterior estimate of stimulus one becomes less biased toward cue 2. The behavior when the

prior concentration ks varies can be explained analogously (Figure 3E).

A notable difference between von Mises distribution and Gaussian distribution is that the concen-

tration of integration and disparity information changes with cue disparity in von Mises distribution

(Figure 3D), while they are fixed in Gaussian distribution (Ernst, 2006).

Neural implementation of cue integration and segregation
Before introducing the neural circuit model, we first describe intuitively how opposite neurons

encode the cue disparity information and the motivation of the proposed network structure.

Optimal multisensory integration computes the posterior of a stimulus given combined cues

according to Equation 3, which is equivalent to solving the equation

ln pðs1jx1; x2Þ ¼ ln pðs1jx1Þ þ ln pðs1jx2Þ. Ma et al. found that under the conditions that neurons fire

independent Poisson spikes, the optimal integration can be achieved by combining the neuronal

responses under single cue conditions, that is rjðx1; x2Þ ¼ rjðx1Þ þ rjðx2Þ (see details in Materials and

methods), where rðx1; x2Þ and rðxmÞ are the responses of a population of neurons to the combined

and single cues respectively (Ma et al., 2006). Ma et al. further demonstrated that such a response

property can be approximately achieved in a biological neural network. Similarly, multisensory segre-

gation computes the disparity information between cues according to

ln pdðs1jx1; x2Þ ¼ ln pðs1jx1Þ þ ln pðs1jx2 þ pÞ (see Equation 6). Analogous to multisensory integration,

multisensory segregation can be achieved by rjðx1; x2Þ ¼ rjðx1Þ þ rj0ðx2Þ, where the preferred stimulus

of neurons satisfying �j0 ¼ �j þ p (see details in Materials and methods). That is, the neurons combine

the responses to the direct cue and the responses to the indirect cue but shifted to opposite direc-

tion. This inspires us to consider a network model where the inputs of indirect cue received by oppo-

site neurons are shifted to opposite direction via connections. Below, we present the network model

and demonstrate that the opposite neurons emerge from the connectivity and are able to achieve

cue segregation.

The decentralized neural network model
The neural circuit model we consider has the decentralized structure (Zhang et al., 2016), in the

sense that it consists of two reciprocally connected modules (local processors), representing MSTd

and VIP respectively (Figure 4A). Each module carries out multisensory processing via cross-talks

between modules. This decentralized architecture achieves integration in a distributed way and is

robust to local failure, and it agrees with the experimental findings that neurons in MSTd and VIP

both exhibit multisensory responses and that the two areas are abundantly connected with each

other (Boussaoud et al., 1990; Baizer et al., 1991). Below we only describe the key features of the

decentralized network model, and its detailed mathematical description is presented in Materials

and methods (Equations 16-22).

At each module, there exist two groups of excitatory neurons: congruent and opposite neurons

(blue and red circles in Figure 4A respectively), and they have the same number of neurons, as sup-

ported by experiments (Figure 2C) (Chen et al., 2011; Gu et al., 2006). Each group of neurons is

modeled as a continuous attractor neural network (CANN), mimicking the encoding of heading-

direction in neural systems (Zhang, 1996; Wu et al., 2008). In CANN, each neuron is uniquely identi-

fied by its preferred heading direction � with respect to the direct cue conveyed by feedforward

inputs. The neurons in the same group are recurrently connected, and the recurrent connection

Zhang et al. eLife 2019;8:e43753. DOI: https://doi.org/10.7554/eLife.43753 7 of 33

Research article Neuroscience

https://doi.org/10.7554/eLife.43753


strength between neurons � and �0 is modeled as a von Mises function decaying with the disparity

between two neurons’ preferred directions j�� �0j (Figure 4B black line and Equation 17). In the

model, the recurrent connection strength is not very strong to support persistent activities after

switching off external stimuli, because no persistent activity is observed in multisensory areas. More-

over, neuronal responses in the same group are normalized by the total activity of the population

(Equation 20), called divisive normalization (Carandini and Heeger, 2012), mimicking the effect of a

pool of inhibitory neurons (purple disks in Figure 4B). Each group of neurons has its individual inhibi-

tory neuron pool, and the two pools of inhibitory neurons in the same module share their overall

activities (Equation 21), which intends to introduce mutual inhibition between congruent and oppo-

site neurons.

Between modules, neurons of the same type are reciprocally connected with each other

(Figure 4A–B). For congruent neurons, they are connected with each other in the congruent manner

(Equation 18 and Figure 4B blue line), that is, the more similar their preferred directions are, the

stronger the neuronal connection is. For opposite neurons, they are connected in the opposite man-

ner (Equation 19 and Figure 4B red line), that is, the more different their preferred directions are,

the stronger the neuronal connection is. Since the maximum difference between two circular varia-

bles is p, an opposite neuron in one module preferring � has the strongest connection to the oppo-

site neuron preferring �þ p in the other module. This agrees with our intuitive understanding as

described above (as suggested by Equation 6): to calculate the disparity information between two

cues, the neuronal response to the combined cues should integrate its responses to the direct cue

and its response to the indirect one but with the cue direction shifted by p (through the offset recip-

rocal connections). We set the connection profile between the opposite neurons to be of the same

strength and width as that between the congruent ones (comparing Equations 18 and 19), ensuring
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Figure 4. The decentralized neural circuit model for multisensory processing. (A) The network consists of two

modules, which can be regarded as MSTd and VIP respectively. Each module has two groups of excitatory

neurons, congruent (blue circles) and opposite neurons (red circles). Each group of excitatory neurons are

connected recurrently with each other, and they are all connected to an inhibitory neuron pool (purple disk) to

form a continuous attractor neural network. Each module receives a direct cue through feedforward inputs.

Between modules, congruent neurons are connected in the congruent manner (blue arrows), while opposite

neurons are connected in the opposite manner (brown lines). (B) Connection profiles between neurons. Black line

is the recurrent connection pattern between neurons of the same type in the same module. Blue and red lines are

the reciprocal connection patterns between congruent and opposite neurons across modules respectively. (C) The

reliability of the network’s estimate of a stimulus is encoded in the peak firing rate of the neuronal population.

Typical parameters of network model: ! ¼ 3� 10
�4, Jint ¼ 0:5, Jrc ¼ 0:3Jc, Jrp ¼ 0:5Jrc, Ib and F in Equation 22 are

1 and 0.5 respectively.
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that the tuning functions of the opposite neurons have the similar shape as those of the congruent

ones, as observed in the experimental data (Chen et al., 2011).

When sensory cues are applied, the neurons combine the feedforward, recurrent, and reciprocal

inputs to update their activities (Equation 16), and the multisensory integration and segregation will

be accomplished by the reciprocal connections between network modules. The results are presented

below.

Tuning properties of congruent and opposite neurons
Simulating the neural circuit model, we first checked the tuning properties of neurons. The simula-

tion results for an example congruent neuron and an example opposite neuron in module 1 respond-

ing to single cues are presented in Figure 5. It shows that the congruent neuron, in response to

either cue 1 or cue 2, prefers the same direction (�90˚) (Figure 5A), whereas the opposite neuron,

while preferring �90˚ for cue 1, prefers 90˚ for cue 2 (Figure 5B). Thus, the tuning properties of con-

gruent and opposite neurons naturally emerge through the network dynamics.

We further checked the responses of neurons to combined cues and found that when there is no

disparity between the two cues, the response of a congruent neuron is enhanced compared to the

single cue conditions (green line in Figure 5A), whereas the response of an opposite neuron is sup-

pressed compared to its response to the direct cue (green line in Figure 5B). These properties agree

with the experimental data (Gu et al., 2008; Chen et al., 2013) and is also consistent with the inter-

pretation that the integrated and segregated amplitudes are respectively proportional to the vector

sum and difference in Figure 3. Following the experimental protocol (Morgan et al., 2008), we also

plotted the bimodal tuning curves of the example neurons in response to the combined cues of vary-

ing reliability, and observed that when cue 1 has a relatively high reliability, the bimodal responses

of both neurons are dominated by cue 1 (Figure 5C–D), indicating that the neuronal firing rates are

affected more significantly by varying the angle of cue 1 than by that of cue 2, whereas when the

reliability of cue 1 is reduced, the result becomes the opposite (Figure 5E–F). These behaviors agree

with the experimental observations (Morgan et al., 2008).
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and an example opposite neuron (B) in module 1 under three cueing conditions. (C–D) The bimodal tuning properties of the example congruent (C)
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order as the connections. Parameters: (A–B) a1 ¼ 0:35U0, and a2 ¼ 0:8U0; (C–F) a2 ¼ 1:5U0 in (C–D) while a1 ¼ 0:1U0 in (E–F). Other parameters are the

same as those in Figure 4.
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Apart from the congruent and opposite neurons, the experiments also found that there exist a

portion of neurons, called intermediate neurons, whose preferred directions to different cues are

neither exactly the same nor the opposite, but rather have differences in between 0˚ and

180˚ (Gu et al., 2006; Chen et al., 2011). We found that by considering the realistic imperfectness

of neuronal reciprocal connections (e.g. adding random components in the reciprocal connections in

Equations (18 and 19), see Materials and methods), our model reproduced the distribution of inter-

mediate neurons as observed in the experiment (Figure 5G–H) (Gu et al., 2006; Chen et al., 2011).

Cue integration and segregation via congruent and opposite neurons
In response to the noisy inputs in a cueing condition, the population activity of the same group of

neurons in a module exhibits a bump-shape (Figure 6A), and the position of the bump is interpreted

as the network’s estimate of the stimulus (Figure 6B) (Deneve et al., 1999; Wu et al., 2002;

Wu et al., 2008). In a single instance, we used the population vector to read out the stimulus value
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Figure 6. Optimal cue integration and segregation collectively emerge in the neural population activities in the network model. (A) Illustration of the

population response of congruent neurons in module 1 when both cues are presented. Color indicates firing rate. Right panel is the temporal average

firing rates of the neural population during cue presentation, with shaded region indicating the standard deviation (SD). Note that the neuron index �

refers to the preferred direction with respect to the direct cue conveyed by feedforward inputs. (B) The position of the population activity bump at each

instance is interpreted as the network’s estimate of the stimulus, referred to as z1, which is decoded by using population vector. Right panel is the

distribution of the decoded network’s estimate during cue presentation. (C–E) The temporal average population activities of congruent (blue) and

opposite (red) neurons in module 1 (top row) and module 2 (bottom row) under three cueing conditions: only cue 1 is presented (C), only cue 2 is

presented (D), and both cues are simultaneously presented (E). (F–I) Comparing the estimates from congruent and opposite neurons in module 1 with

the theoretical predictions, with varying cue intensity (F), with varying cue disparity (G), and with varying reciprocal connection strength between

modules (H and I). Symbols: network results; lines: theoretical prediction. The theoretical predictions for the estimates of congruent and opposite

neurons are obtained by Equations 4 and 7. Parameters: (A–E) a1 ¼ a2 ¼ 0:35U0; (F) a2 ¼ 0:7U0; (G–I) a1 ¼ a2 ¼ 0:7U0, and others are the same as

those in Figure 4. In (F–H), x1 ¼ 0
�, x2 ¼ 20

� and in (I), x1 ¼ 0
�, x2 ¼ 160

�.

DOI: https://doi.org/10.7554/eLife.43753.008

The following figure supplements are available for figure 6:

Figure supplement 1. Illustration of decoded joint distributions from congruent and opposite neurons.

DOI: https://doi.org/10.7554/eLife.43753.009

Figure supplement 2. Test of network’s performance.

DOI: https://doi.org/10.7554/eLife.43753.010
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(Equation 23) (Georgopoulos et al., 1986). The statistics of the bump position sampled from a col-

lection of instances reflects the posterior distribution of the stimulus estimated by the neural popula-

tion under the given cueing condition.

To validate the hypothesis that congruent and opposite neurons are responsible for cue integra-

tion and segregation respectively, we carried out simulations following the protocol in multisensory

experiments (Fetsch et al., 2013), that is, we first applied individual cues to the network and

decoded the network’s estimate of the stimulus through population vector (see details in Materials

and methods). With these results, the theoretical predictions for cue integration and segregation

were calculated according to Equations 4 and 7, respectively; we then applied the combined cues

to the network, decoded the network’s estimate, and compared them with the theoretical

predictions.

Let us first look at the network’s estimate under single cue conditions. Consider the case that

only cue 1 is presented to module 1 at �30˚. The population activities of congruent and opposite

neurons at module 1 are similar, both centered at �30˚ (Figure 6C top), since both types of neurons

receive the same feedforward input. On the other hand, in module 2, congruent neurons’ responses

are centered at �30˚, while opposite neurons’ responses are centered at 150˚ due to the offset recip-

rocal connections (Figure 6C bottom). Similar population activities exist under cue 2 condition

(Figure 6D).

We further look at the the network’s estimate under the combined cue condition. Consider the

case that cues 1 and 2 are simultaneously presented to the network at the directions �30˚ and 30˚

respectively. Then the disparity between the two cues is 60˚, which is less than 90˚. Compared with

single cue conditions, the responses of congruent neurons are enhanced (comparing Figure 6E with

Figure 6C-D), reflecting the increased reliability of the estimate after cue integration. Indeed, the

decoded distribution from congruent neurons sharpens in the combined cue condition and moves to

a location between cue 1 and cue 2 (Figure 6—figure supplement 1 green), which is a typical phe-

nomenon associated with cue integration. In contrast, with combined cues, the responses of oppo-

site neurons are suppressed compared with those of the direct cue (comparing Figure 6E with

Figure 6C-D). Certainly, the distribution of cue disparity information decoded from opposite neu-

rons in combined cue condition is wider than that that under the direct cue condition (Figure 6—fig-

ure supplement 1 purple). Note that when the cue disparity is larger than 90˚, the relative response

of congruent and opposite neurons will be reversed (results are not shown here).

To demonstrate that the network implements cue integration and segregation and how the net-

work encodes the probabilistic model (Equations 1 and 2), we changed a parameter at a time, and

then compared the decoded results from congruent and opposite neurons with the theoretical pre-

dictions. Figure 6F–I indicates that the network indeed implements optimal integration and segre-

gation. Moreover, comparing the network results with the results of the probabilistic model, we

could find the analogy that the input intensity encodes the reliability of the likelihood (Equation 1,

comparing Figure 6F with Figure 3C), and the reciprocal connection strength effectively represents

the reliability of the integration prior (Equation 2, comparing Figure 6H with Figure 3E), which is

consistent with a previous study (Zhang et al., 2016). We further systematically changed the network

and input parameters over a large parameter region and compare the network results with theoreti-

cal predictions. Our results indicated that the network model achieves cue integration and segrega-

tion robustly over a large range of parameters (Figure 6—figure supplement 2), as long as the

connection strengths are not so large that winner-take-all happens in the network model.

Concurrent multisensory processing
The above results elucidate that congruent neurons integrate cues, whereas opposite neurons com-

pute the disparity between cues. Based on these complementary information, the brain can access

the validity of cue integration and can also recover the stimulus information associated with single

cues lost due to integration. Below, rather than exploring the detailed neural circuit models, we

demonstrate that the brain has resources to implement these two operations based on the activities

of congruent and opposite neurons.
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Assessing integration vs. segregation
The competition between congruent and opposite neurons can determine whether the brain should

integrate or segregate two cues. Figure 7A displays how the mean firing rates of two types of neu-

rons change with the cue disparity, which shows that the activity of congruent neurons decreases

with the disparity, whereas the activity of opposite neurons increases with the disparity, and they are

equal at the disparity value of 90˚. The brain can judge the validity of integration based on the com-

petition between these two groups of neurons (see more remarks in Conclusions and Discussions).

Specifically, the group of congruent neurons wins when the cue disparity is small, indicating the

choice of integration, and the group of opposite neurons wins when the cue disparity is large, indi-

cating the choice of segregation. The decision boundary is at the disparity of 90˚, if the activities of

congruent and opposite neurons have equal weights in decision-making. In reality, however, the

brain may assign different weights to congruent and opposite neurons and realize a decision bound-

ary at the position satisfying the statistics of inputs (Figure 7B).

Recovering the single cue information
Once the decision for cue segregation is reached, the neural system at each module needs to

decode the stimulus based purely on the direct cue, and ignores the irrelevant indirect one. Through

combining the complementary information from congruent and opposite neurons, the neural system

can recover the stimulus estimates lost in integration, without re-gathering new inputs from lower

brain areas if needed (see more remarks in Conclusions and Discussions).
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Figure 7. Concurrent multisensory processing with congruent and opposite neurons. (A–B) Accessing integration

versus segregation through the joint activity of congruent and opposite neurons. (A) The firing rate of congruent

and opposite neurons exhibit complementary changes with cue disparity x1 � x2. (B) The decision boundary of the

competition between congruent and opposite neurons changes with read out weight from congruent Wcong and

opposite neurons Woppo. It is given by the value of x1 � x2 at which Wcongr
c
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o
m. Dashed line is when

Wcong ¼ Woppo, the decision boundary is at 90˚. (C–D) Recovering single cue information from two types of neurons.

(C) Illustration of recovering through the joint activities of congruent (blue) and opposite (red) neurons under the

combined cue condition. We decoded the estimate from congruent and opposite neurons respectively, and then

vector sum the decoded results recovering the single cue information. (D) Comparing the recovered mean of the

stimulus given the direct cue with the actual value. Parameters: those in (A–B) are the same as those in Figure 6A,

and those in D are the same as those in Figure 6—figure supplement 2.
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According to Equations 3 and 6, the posterior distribution of the stimulus given the direct cue

can be recovered by

lnpðs1jx1Þ ¼ lnpðs1jx1;x2Þþ lnpdðs1jx1;x2Þ½ �=2: (8)

As suggested in Ma et al. (2006) and Jazayeri et al. (2006), the above operation can be realized

by considering neurons receiving the activities of congruent neurons (representing lnpðs1jx1;x2Þ,
Figure 7C blue) and opposite neurons (representing lnpdðs1jx1;x2Þ, Figure 7C red) as inputs and

generate Poisson spikes, such that the location of population responses and the summed activity

encode respectively the mean and variance of the posterior pðs1jx1Þ (Figure 7C green).

Without actually building a neural circuit model, we decoded the stimulus by utilizing the activi-

ties of congruent and opposite neurons according to Equation 8, and compared the recovered

result with the estimate of a module when only the direct cue is presented (see the detail in Materi-

als and methods). Figure 7D further shows that the recovering agrees with actual distribution and is

robust against a variety of parameters (R2 ¼ 0:985). Thus, through combining the activities of congru-

ent and opposite neurons, the neural system can recover the lost stimulus information from direct

cues if necessary.

Experimental predictions
The key structure of our network model can be tested in experiments. For instance, we may measure

the correlations between congruent neurons and between opposite neurons across modules, and

the correlations between congruent and opposite neurons within and across modules. According to

the connection structure of our model, the averaged correlations between the same type of neurons

across modules are positive due to the excitatory connections between them, whereas the averaged

correlations between different types of neurons within and across modules are negative due to the

competition between them. We may also inactivate one type of neurons in one module and observe

the neurons in the other module, the activity of the same type of neurons is suppressed, whereas

the activity of the other type of neurons is enhanced.

Furthermore, our hypothesis on the computational role of opposite neurons can be evaluated by

experiments. Through recording the activities of individual congruent neurons in awake monkeys

when the monkeys are performing heading-direction discrimination, previous studies demonstrated

that congruent neurons implement optimal cue integration in the congruent cueing condition

(Gu et al., 2008; Chen et al., 2013). We can carry out a similar experiment to check whether oppo-

site neurons encode the cue disparity information. The task is to discriminate whether the disparity

from two cues, x1 � x2, is either smaller or larger than 0˚. To rule out the influence of the change of

integrated direction to the activities of neurons, we fix the center of two cues, for example, the cen-

ter is fixed at 0˚, that is x1 þ x2 ¼ 0
�, but the disparity between cues x1 � x2 varies over trials.

Figure 8A plots the responses of an example opposite neuron and an example congruent neuron

respectively in our model with respect to the cue disparity x1 � x2. It shows that the firing rate of the

opposite neurons changes much more significantly with the cue disparity than that of the congruent

neuron, suggesting that the opposite neuron’s response might be more informative to the change

of cue disparity compared with a congruent neuron. To quantify how the activity of a single neuron

can be used to discriminate the cue disparity, we apply receiver-operating-characteristics (ROC)

analysis to construct the neurometric function (Figure 8B), which measures the fraction of correct

discrimination (see Materials and methods). Indeed, the opposite neurons can discriminate the cue

disparity much finer than congruent neurons (Figure 8C). In addition, our model also reproduces the

same discrimination task studied in Gu et al. (2008) and Chen et al. (2013), that is to discriminate

whether the heading-direction is on the left or right hand side of a reference direction under differ-

ent cueing conditions (Figure 8—figure supplement 1).

Discussion
Animals face challenges of processing information fast in order to survive in natural environments,

and over millions of years of evolution, the brain has developed efficient strategies to handle these

challenges. In multisensory processing, such a challenge is to integrate/segregate multisensory sen-

sory cues rapidly without knowing in advance whether these cues are from the same or different
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stimuli. To resolve this challenge, we argue that the brain should carry out multisensory processing

concurrently by employing congruent and opposite cells to realize complementary functions. Specifi-

cally, congruent neurons perform cue integration with opposite neurons computing the cue disparity

simultaneously, so that the information they extract are complementary, based on which the neural

system can assess the validity of integration and recover the lost information associated with single

cues if necessary. Through this process, the brain can, on one hand, achieve improved stimulus per-

ception if the cues are from the same stimulus of interest, and on the other hand, differentiate and

recognize stimuli based on individual cues with little time delay if the cues are from different stimuli

of interest. We built a biologically plausible network model to validate this processing strategy. The

model consists of two reciprocally connected modules representing MSTd and VIP, respectively, and

it carries out heading-direction inference based on visual and vestibular cues. Our model successfully

reproduces the tuning properties of opposite neurons, verifying that opposite neurons encode the

disparity information between cues, and demonstrates that the interplay between congruent and

opposite neurons can implement concurrent multisensory processing.

Opposite neurons have been found in experiments for years (Chen et al., 2013; Gu et al., 2008),

but their functional role remains a mystery. There have been few studies investigating this issue, and

two computational works were reported (Kim et al., 2016; Sasaki et al., 2017), where the authors

explored the contribution of opposite neurons in a computational task of inferring self-motion direc-

tion by eliminating the confound information of object motion. They showed that opposite neurons

are essential, as they provide complementary information to congruent neurons necessary to accom-

plish the required computation. This result is consistent with our idea that opposite neurons are

indispensable in multisensory processing, but our study goes one step further by theoretically pro-

posing that opposite neurons encode the disparity information between cues and that congruent

and opposite neurons jointly realize concurrent multisensory processing.

It is worthwhile to point out that in the present study, we have only demonstrated that congruent

neurons implement Bayesian cue integration within the framework of a single-component prior and

that opposite neurons encode the cue disparity information, and we have not explored whether they

can combine together to realize a full Bayesian inference for multisensory processing. In the full

Bayesian inference, also termed as the causal inference (Körding et al., 2007; Sato et al., 2007;
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Figure 8. Discrimination of cue disparity by single neurons. (A) The tuning curve of an example congruent (blue)

and opposite (red) neuron with respect to cue disparity x1 � x2. In the tuning with respect to cue disparity, the

mean of two cues was always at 0˚, that is x1 þ x2 ¼ 0, while their disparity x1 � x2 was varied from �32˚ to 32˚ with

a step of 4˚. The two example neurons are in network module 1, and both prefer 90˚ with respect to cue 1.

However, the congruent neuron prefers 90˚ of cue 2, while the opposite neuron prefers �90˚ with respect to cue 2.

Error bar indicates the SD of firing rate across trials. (B) The neurometric function of the example congruent and

opposite neuron in a discrimination task to determine whether the cue disparity x1 � x2 is larger than 0˚ or not.

Lines are the cumulative Gaussian fit of the neurometric function. (C) Averaged neuronal discrimination thresholds

of the example congruent and opposite neurons. Parameters: a1 ¼ 0:25U0, a2 ¼ 0:8U0, and others are the same as

those in Figure 4.

DOI: https://doi.org/10.7554/eLife.43753.012

The following figure supplement is available for figure 8:

Figure supplement 1. Discrimination of heading direction by single neurons.

DOI: https://doi.org/10.7554/eLife.43753.013
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Shams and Beierholm, 2010), the neural system utilizes the prior knowledge about the probabilities

of two cues coming from the same or different objects. The prior can be written as

pðs1; s2Þ ¼
X2

C¼1

pðs1; s2jCÞpðCÞ; (9)

where C¼ 1 corresponds to the causal structure of two cues from the same object and C¼ 2 the

causal structure of two cues from different objects. The posterior of stimuli is expressed as

pðs1; s2jx1;x2Þ ¼
P

C pðs1; s2jx1;x2;CÞpðCjx1;x2Þ, which requires estimating the causal structure of cues. It

is possible that opposite neurons, which encode the cue disparity information, can help the neural

system to implement the causal inference. But to fully address this question, we need to resolve a

number of issues, including the exact form of the prior, the network structure for realizing model

selection, and the relevant experimental evidence, which will be the subject of our future research.

The present study only investigated integration and segregation of two sensory cues, but our

model can be generalized to the cases of processing more than two cues that may happen in reality

(Wozny et al., 2008). In such situations, the network model consists of N>2 modules, and in module

m, the received sensory cues can be differentiated as the direct one and the integrated results

through combining all cues,

pd smjx1; . . . ;xNð Þ / pðsmjxmÞ
QN

j¼1
pðsmjxjÞ

h i1=N
: (10)

Congruent neurons can be reciprocally connected with each other between modules in the con-

gruent manner as described above, so that they integrate the direct and all indirect cues optimally in

the distributed manner. Opposite neurons could receive the direct cue from feedforward inputs

(numerator in Equation 10), and receive the activities of congruent neurons in the opposite manner

(denominator in Equation 10) through offset connection by 180˚. The interplay between congruent

and opposite neurons determines whether the direct cue should be integrated with all other cues at

each module, and their joint activities can recover the stimulus information based only on the direct

cue if necessary. This encoding strategy is similar with the norm-based encoding of face found in IT

neurons (Leopold et al., 2006).

In the present study, we only demonstrated by analysis that the neural system can utilize the joint

activities of congruent and opposite neurons to assess the validity of cue integration and to recover

the information of direct cues in cue integration, but we did not go into the detail of how the brain

actually carries out these operations. For assessing the validity of cue integration, essentially it is to

compare the activities of congruent and opposite neurons and the winner indicates the choice. This

competition process can be implemented easily in neural circuitry. For instance, it can be imple-

mented by considering that congruent and opposite neurons are connected to the same inhibitory

neuron pool which induces competition between them, such that only one group of neurons will sus-

tain active responses after competition to represent the choice; alternatively, the activities of congru-

ent and opposite neurons provide competing inputs to a decision-making network, and the latter

generates the choice by accumulating evidence over time (Wang, 2008; Engel and Wang, 2011).

Both mechanisms are feasible but further experiments are needed to clarify which one is used in

practice. For recovering the stimulus information from direct cues by using the activities of congru-

ent and opposite neurons, this study has shown that it can be done in a biologically plausible neural

network, since the operation is expressed as solving the linear equation given by Equation 8. A con-

cern is, however, whether recovering is really needed in practice, since at each module, the neural

system may employ an additional group of neurons to retain the stimulus information estimated

from the direct cue. An advantage of recovering the lost stimulus information by utilizing congruent

and opposite neurons is saving the computational resource, but this needs to be verified by

experiments.

The present study focused on investigating the role of opposite neurons in heading-direction

inference with visual and vestibular cues as an example. In essence, the contribution of opposite neu-

rons is to retain the disparity information between features to be integrated for the purpose of con-

current processing. We therefore expect that opposite neurons, or their counterparts of similar

functions, is a general characteristic of neural information processing where feature integration and
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segregation are involved (Born, 2000; Thiele et al., 2002; Nadler et al., 2013; Goncalves and

Welchman, 2017). Indeed, for example, it has been found in the visual system, there exist ‘what not’

detectors which respond best to discrepancies between cues (analogous to opposite neurons) and

they facilitate depth and shape perceptions (Goncalves and Welchman, 2017; Rideaux and Welch-

man, 2018). We hope that this study gives us insight into understanding the general principle of

how the brain integrates/segregates multiple sources of information efficiently.

Materials and methods

Probabilistic model and its inference
The probabilistic model used in this study is widely adopted in multisensory research

(Bresciani et al., 2006; Ernst, 2006; Roach et al., 2006; Sato et al., 2007). Suppose that two sen-

sory cues x1 and x2 are independently generated by two underlying stimuli s1 and s2 respectively. In

the example of visual-vestibular cue integration (Fetsch et al., 2013), s1 and s2 refer to the underly-

ing visual and vestibular moving direction, while x1 and x2 are internal representations of moving

direction in the visual and vestibular cortices. Because moving direction is a circular variable, we also

assume that both sm and xm (m ¼ 1; 2) are circular variables distributed in the range ð�p;p�. Because
each cue is independently generated by the corresponding underlying stimulus, the joint likelihood

function can be factorized

pðx1;x2js1; s2Þ ¼ pðx1js1Þpðx2js2Þ:

In this study, each likelihood function pðxmjsmÞ (m¼ 1;2) is modeled by the von Mises distribution,

which is a variant of circular Gaussian distribution (Mardia and Jupp, 2009; Murray and Morgen-

stern, 2010), given by Equation 1. Note that in Equation 1, km is a positive number characterizing

the concentration of the distribution, which is analogous to the inverse of the variance (s�2) of

Gaussian distribution. In the limit of large km, a von Mises distribution Mðxm; sm;kmÞ approaches to a

Gaussian distribution with variance of k�1

m (see details in Appendix 1, Mardia and Jupp, 2009).

The prior pðs1; s2Þ specifies the probability of occurrence of s1 and s2, and is set as a von Mises dis-

tribution of the discrepancy between two stimuli (Bresciani et al., 2006; Roach et al., 2006;

Zhang et al., 2016), given by Equation 2. Note that the marginal prior of either stimulus,

for example pðs1Þ ¼
R
p

�p
pðs1; s2Þds2 ¼ 1=2p is a uniform distribution.

Inference
The inference of underlying stimuli can be conducted by using Bayes’ theorem to derive the

posterior

pðs1; s2jx1;x2Þ / pðx1js1Þpðx2js2Þpðs1; s2Þ; (11)

The posterior of either stimuli, for example stimulus s1, can be obtained by marginalizing the joint

posterior (Equation 11) as follows (the posterior of can be similarly obtained by interchanging indi-

ces 1 and 2)

pðs1jx1;x2Þ ¼
Z

p

�p

pðs1; s2jx1;x2Þds2

/ pðx1js1Þ
Z

p

�p

pðx2js2Þpðs1; s2Þds2
/ pðs1jx1Þpðs1jx2Þ;

(12)

where we used the fact that both marginal distributions pðsmÞ and pðxmÞ are uniform and then inter-

changed the role of xm and s1 in their conditional distributions. It indicates that the posterior of s1
given two cues corresponds to a product of posterior of s1 when each xm is individually presented,

which could effectively accumulate the information of s1 from both cues. pðs1jx2Þ can be calculated as

(see details in Appendix 1),

pðs1jx2Þ /
Z

p

�p

pðx2js2Þpðs1; s2Þds2 ’Mðs1;x2;k2sÞ; where Aðk2sÞ ¼ Aðk2ÞAðksÞ: (13)
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AðkÞ ¼
R
p

�p
cos�ekcos�d�=

R
p

�p
ekcos�d� calculates the mean resultant length (first order trigonometric

statistics), measuring the dispersion of a von Mises distribution. An approximation was used in the

calculation through equating the mean resultant length of the integral with that of a von Mises distri-

bution (Mardia and Jupp, 2009), because the integral of the product of two von Mises distributions

is no longer a von Mises distribution. The meaning of Aðk2sÞ can be understood by considering the

Gaussian equivalent of von Mises distribution, where the inverse of concentration k
�1 can approxi-

mate the variance of Gaussian distribution, yielding k
�1

2s »k
�1

2
þk

�1

s .

Finally, substituting the detailed expression into Equation 12,

pðs1jx1;x2Þ / exp k1 cosðs1 � x1Þþk2s cosðs1 � x2Þ½ �
/ exp½ðk1 cosx1þk2s cosx2Þcos s1 þðk1 sinx1 þk2s sinx2Þsin s1�
/ exp k̂1 cosðs1 � ŝ1Þ½ �:

The expressions of the mean ŝ1 and concentration k̂1 can be found in Equation 4. The expres-

sions of Dŝ1 and Dk̂1 in the disparity information can be similarly calculated and is shown in

Equation 7.

Loss of cue information after integration
We could calculate the amount of cue information after integration in theory. Unlike the Gaussian

distribution, it is not easy to analytically calculate the amount of information contained in a von Mises

distribution. To simplify the analysis, we use a Gaussian approximation for a von Mises distribution

first, and then calculate the amount of cue information contained in the posterior distribution

pðs1; s2jx1; x2Þ in Gaussian case. This approximation will significantly simplify the information analysis,

without changing the basic conclusion and theoretical insight.

With a large concentration parameter k, a von Mises distribution Mðs; x; kÞ can be approximated

by a Gaussian distribution Nðs; x; k�1Þ (Mardia and Jupp, 2009). Thus, we approximate the von

Mises likelihood pðxmjsmÞ ¼ Mðxm; sm; kmÞ into a Gaussian likelihood as Nðxm; sm; k�1

m Þ, and approxi-

mate the von Mises prior pðs1; s2Þ into a Gaussian prior as Nðs1; s2; k�1

s Þ. Then the posterior distribu-

tion in the Gaussian case can be calculated to be (see Zhang et al., 2016),

pðsjxÞ ¼N ðs; hsjxi;CovðsjxÞÞ;

where

hsjxi ¼ k
�1

2
þk

�1

s k
�1

1

k
�1

2
k
�1

1
þk

�1

s

� �
x1
x2

� �

;

CovðsjxÞ ¼ 1

k�1

1
þk�1

2
þk�1

s

k
�1

1
ðk�1

2
þk

�1

s Þ k
�1

1
k
�1

2

k
�1

1
k
�1

2
k
�1

2
ðk�1

1
þk

�1

s Þ

� �

:

The Fisher information of cue x1 contained in the posterior pðsjxÞ can be calculated to be

Iðx1ÞjpðsjxÞ ¼�
Z

q
2

qx2
1

lnpðsjxÞ
� �

pðsjxÞds

¼ qhsjxi>
qx1

CovðsjxÞ�1 qhsjxi
qx1

¼ k1
k
�1

2
þk

�1

s

k�1

1
þk�1

2
þk�1

s

:

The likelihood conveys all cue information, where the amount of information of cue x1 in the likeli-

hood is

Iðx1ÞjpðxjsÞ ¼ k1:

Thus the percentage of lost information of cue 1 is

Pctlossðx1Þ ¼ 1�
Iðx1ÞjpðsjxÞ
Iðx1ÞjpðxjsÞ

¼ k
�1

1

k�1

1
þk�1

2
þk�1

s

:
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We see the amount of information loss increases with ks, which controls the extent of integration

(Figure 1—figure supplement 1). When ks !¥, the two cues will be fully integrated, and then the

amount of information loss reaches maximum.

Analysis leading to neural implementation
Here, we present the analysis that inspires us to propose the network model implementing integra-

tion and segregation.

Neural encoding model
Suppose there is a population of N neurons representing the estimate of stimulus s1. We adopt a

widely used encoding model that the firing activities r of neurons are independent with each other,

and each satisfies a Poisson distribution with the rate specified by its tuning curve (Ma et al., 2006).

In this encoding model for s1 (the case for s2 is similar),

lnpðrjs1Þ ¼ ln

�
YN

j¼1

p rjjs1
� �

�

¼
XN

j¼1

ln
fjðs1Þrj
rj!

e�fjðs1Þ
� �

¼
XN

j¼1

rjfjðs1Þ�
XN

j¼1

fiðs1Þ�
XN

j¼1

ln rj!
� �

;

(14)

where rj and fjðs1Þ are the firing rate and tuning curve of j-th neuron representing s1, respectively.

Because heading direction is a circular variable ranging from �p to p, the tuning curve can be mod-

eled as a circular function,

fjðs1Þ ¼ f ð�j� s1Þ
¼ Rexp acosð�j � s1Þ

� �
;

where R is the maximal firing rate of the neuron, �j is the preferred stimulus of j-th neuron, and the

preference of all neurons f�jgNj¼1
uniformly cover the whole stimulus space. With the assumption that

the summed mean firing rate of all neurons (the second term in Equation 14) is a constant irrelevant

to stimulus value, and focusing on terms that are responsive to stimuli, we can get the detailed

expression for the encoding model,

lnpðrjs1Þ ¼ a
XN

j¼1

rj cosð�j � s1Þþ const: (15)

Then the distribution for stimulus s1 becomes a von Mises distribution (Mardia and Jupp, 2009),

pðs1jrÞ ¼Mðs1; ŝ1; k̂1Þ:

The mean ŝ1 and concentration k̂1 of the stimulus are

ŝ1 ¼ tan�1

PN
j¼1

rj sin�j
PN

j¼1
rj cos�j

 !

;

k̂1 ¼ PN
j¼1

rj sin�i

� �2

þ PN
j¼1

rj cos�j

� �2
� �1=2

:

Implementing multisensory integration
Given the encoding model, we then explore the neuronal operations required to implement multi-

sensory integration given the neural representation mentioned above. Because the estimate of s1 is

fully represented by the neural population r, the activities of the neural population that implements

integration using Equation (3) should satisfy

lnpðs1jrðx1;x2ÞÞ ¼ lnpðs1jrðx1ÞÞþ lnpðs1jrðx2ÞÞ;

where rðx1;x2Þ denotes the population firing activity given the cues x1 and x2 together, and similarly
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for rðx1Þ and rðx2Þ. Substituting the encoding model (Equation 15) into above equation, we can find

that

rjðx1;x2Þ ¼ rjðx1Þþ rjðx2Þ:

The above equation indicates that the neuronal responses given two cues should be the combina-

tion of their responses when either cue is given, in order to implement integration. This is the same

as the result in the previous work (Ma et al., 2006).

Implementing multisensory segregation
Similarly, in order to implement multisensory segregation (Equation 6), the neuronal responses

should satisfy

lnpdðs1jrðx1;x2ÞÞ ¼ lnpðs1jrðx1ÞÞ� lnpðs1jrðx2ÞÞ:

Substituting the neural encoding model into the above equation (Equation 15),
X

j

rjðx1;x2Þcosð�j � s1Þ ¼
X

j

rjðx1Þcosð�j� s1Þ�
X

j

rjðx2Þcosð�j� s1Þ:

At first sight, the above equation could indicate that the multisensory segregation can be

achieved by the suppression from the neural activity when giving cue 2,

rjðx1;x2Þ ¼ rjðx1Þ� rjðx2Þ:

However, due to the constraint that the neuronal firing rate is a positive number, rjðx1;x2Þ would
be rectified to be zero if rjðx2Þ is larger than rjðx1Þ. When this happens, the neurons fail to represent

the magnitude of the disparity between two cues.

Fortunately, this problem can be resolved by using the property of cosine function that

cosðxþ pÞ ¼ � cosðxÞ,

�
X

j

rjðx2Þcosð�j� s1Þ ¼
X

j

rjðx2Þcos½ð�jþpÞ
|fflfflfflffl{zfflfflfflffl}

�j0

�s1Þ�

¼
X

j

rj0ðx2Þcosð�j � s1Þ; where �j ¼ �j0 þp:

The second equality is obtained through changing the dummy variables j and j0. Canceling the

cosine terms, it can be derived that the activity of each neuron should satisfy

rjðx1;x2Þ ¼ rjðx1Þþ rj0ðx2Þ; where �j ¼ �j0 þp:

The above equation indicates that in order to achieve optimal segregation, the neurons should

combine the neuronal responses under direct cue rjðx1Þ, and the responses under indirect cue but

rotated to the opposite direction rj0ðx2Þ. This is consistent with the definition of opposite neurons

(Gu et al., 2008; Chen et al., 2013).

Dynamics of a decentralized network model
We adopted a decentralized network model to implement concurrent multisensory integration and

segregation (Zhang et al., 2016). The network model is composed of two modules, with each mod-

ule consisting of two groups of neurons with the same number: one is intended to model congruent

neurons and another is for opposite neurons. Each neuronal group is modeled as a continuous

attractor neural network (Wu et al., 2008; Fung et al., 2010; Zhang and Wu, 2012), which has

been widely used to model the coding of continuous stimuli in the brain (Ben-Yishai et al., 1995;

Georgopoulos et al., 1986; Samsonovich and McNaughton, 1997) and it can optimally implement

maximal likelihood inference (Deneve et al., 1999; Wu et al., 2002). Denote unmð�; tÞ and rnmð�; tÞ as
the synaptic input and firing rate at time t respectively for an n-type neuron (n ¼ c; o represents the

congruent and opposite neurons, respectively) in module m (m ¼ 1; 2) whose preferred heading

direction with respect to the feedforward cue m is �. It is worthwhile to emphasize that � is the pre-

ferred direction only to the feedforward cue, for example the feedforward cue to network module 1
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is cue 1, but � does not refer to the preferred direction given another cue, because the preferred

direction of an opposite neuron given each cue is different. In the network model, the network

module m = 1, 2 can be regarded as the brain areas MSTd and VIP, respectively. For simplicity, we

assume that the two network modules are symmetric, and only present the dynamical equations for

network module 1. The dynamical equations for network module 2 can be obtained by interchanging

the indices 1 and 2 in the following dynamical equations.

The dynamics of the synaptic input of n-type neurons in network module m, unmð�; tÞ, is governed

by

t

qunmð�; tÞ
qt

¼�unmð�; tÞþ
Xp

�0¼�p

Wrcð�;�0Þrnmð�0; tÞþ
Xp

�0¼�p

Wn
rpð�;�0Þrnk 6¼mð�0; tÞþ Inmð�; tÞ; (16)

where Inmð�; tÞ is the feedforward inputs from unisensory brain areas conveying cue information.

Wrcð�;�0Þ is the recurrent connections from neuron �0 to neuron � within the same group of neurons

and in the same network module, which is set to be

Wrcð�;�0Þ ¼
Jrc

2pI0ðaÞ
exp acosð�� �0Þ½ �; (17)

where a is the connection width and effectively controls the width of neuronal tuning curves.

Wn
rpð�;�0Þ denotes the reciprocal connections between congruent neurons across network modules

(n¼ c), or between opposite neurons across network modules (n¼ o). Wc
rpð�;�0Þ is the reciprocal con-

nections between congruent cells across two modules (the superscript c denotes the connections

are in a congruent manner, that is a 0˚ neuron will have the strongest connection with a 0˚ neuron),

Wc
rpð�;�0Þ ¼

Jrp

2pI0ðaÞ
exp acosð�� �0Þ½ �: (18)

Note that � and �0 in the above equation denote the preferred direction of two neurons at differ-

ent network modules over their respective feedforward cues. For simplicity, Wc
rpð�;�0Þ and Wrcð�;�0Þ

have the same connection width a. This simplification does not change the basic conclusion substan-

tially. A previous study indicates that the reciprocal connection strength Jrp determines the extent of

cue integration, and effectively represents the correlation of two underlying stimuli in the prior

pðs1; s2Þ (Zhang et al., 2016). Moreover, the opposite neurons from different network modules are

connected in an opposite manner with an offset of p,

Wo
rpð�;�0Þ ¼

Jrp

2pI0ðaÞ
exp acosð�� �0þpÞ½ �: (19)

Hence, an opposite neurons preferring 0˚ of cue 1 in network module 1 will have the strongest

connection with the opposite neurons preferring of 180˚ of cue 2 in network module 2. It is worth-

while to note that the strength and width of Wc
rpð�;�0Þ and Wo

rpð�;�0Þ are the same, in order to convey

the same information from the indirect cue. This is also supported by the fact that the tuning curves

of the congruent and opposite neurons have similar tuning strengths and widths (Chen et al., 2011).

Each neuronal group contains an inhibitory neuron pool which sums all excitatory neurons’ activi-

ties and then divisively normalize the response of the excitatory neurons,

rnmð�; tÞ ¼
½unmð�; tÞ�2þ
1þ!Dn

mðtÞ
; (20)

where ! controls the magnitude of divisive normalization, and ½x�þ ¼maxðx;0Þ is the negative recti-

fied function. Dn
mðtÞ denotes the response of the inhibitory neuron pool associated with neurons of

type n in network module m at time t, which sums up the synaptic inputs of the same type of excit-

atory neurons unmð�; tÞ and also receives the inputs from the other type of neurons un
0
mð�; tÞ,

Dn
mðtÞ ¼

P

�½unmð�; tÞ�2þ þ Jint
P

�½un
0

mð�; tÞ�2þ: (21)

Jint is a positive coefficient not larger than 1, which effectively controls the sharing between the

inhibitory neuron pool associated with the congruent and opposite neurons in the same network
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module. The partial share of the two inhibitory neuron pools inside the same network module intro-

duces competition between two types of neurons, improving the robustness of network.

The feedforward inputs convey the direct cue information from the unisensory brain area to a net-

work module, for example the feedforward inputs received by MSTd neurons is from MT which

extracts the heading direction from optic flow,

Inmð�; tÞ ¼ I ffmð�Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FI
ff
mð�Þ

q

�mð�; tÞþ Ibþ
ffiffiffiffiffiffiffi
FIb

p
�nmð�; tÞ;

where I ffmð�Þ ¼ am exp½acosð�� xmÞ=2� a=2�:
(22)

The feedforward inputs contain two parts: one conveys the cue information (the first two terms in

above equation) and another the background inputs (the last two terms in the above equation),

which are always present no matter whether a cue is presented or not. The variance of the noise in

the feedforward inputs FI ffmð�Þ is proportional to their mean, and F characterizes the Fano factor. The

multiplicative noise is in accordance with the Poisson variability of the cortical neurons’ response. am

is the intensity of the feedforward input and effectively controls the reliability of cue m. xm is the

direction of cue m. Ib is the mean of background input. �mð�; tÞ and �nmð�; tÞ are mutually independent

Gaussian white noises of zero mean with variances satisfying h�mð�; tÞ�m0ð�0; t0Þi ¼ dmm0dð�� �0Þdðt� t0Þ,
and h�nmð�; tÞ�n

0
m0ð�0; t0Þi ¼ dmm0dnn0dð�� �0Þdðt� t0Þ. Note that the cue-associated noise �mð�; tÞ to congru-

ent and opposite neurons are exactly the same, while the background noise �nmð�; tÞ to congruent

and opposite neurons are independent of each other. Previous works indicated that the exact form

of the feedforward inputs is not crucial, as long as they have a uni-modal shape (Zhang and Wu,

2012).

Network simulation and parameters
In our simulation, each network module contains 180 congruent and opposite neurons, respectively,

whose preferred direction with respect to the feedforward cue is uniformly distributed in the feature

space (�180˚, 180˚]. For simplicity, the parameters of the two network modules were chosen sym-

metric with each other, that is all structural parameters of the two modules have the same value. The

synaptic time constant t was rescaled to one as a dimensionless number and the time step size was

0:01t in simulation. All connections have the same width a ¼ 3, which is equivalent to a value of

about 40˚ for the width of tuning curves of the neurons. The dynamical equations are solved by using

Euler method.

The range of parameters was listed in the following if not mentioned otherwise. The detailed

parameters for each figure can be found in figure captions. The strength of divisive normalization

was ! ¼ 3� 10
�4, and Jint ¼ 0:5 which controls the proportion of share between the inhibition pools

affiliated with congruent and opposite neurons in the same module (Equation 21). The absolute val-

ues of ! and Jint did not affect our basic results substantially, and they only determine the maximal

firing rate the neurons can reach. Of the particular values we chose, the firing rate of the neurons

saturates at around 50 Hz. The recurrent connection strength between neurons of the same type

and in the same network module was Jrc ¼ ½0:3; 0:4�Jc, where Jc is the minimal recurrent strength for

a network module to hold persistent activity after switching off feedforward inputs. The expression

of Jc is shown in Equation (A39) in Appendix 3. The strength of the reciprocal connections between

the network modules is Jrp ¼ ½0:1; 0:9�Jrc, and is always smaller than the recurrent connection strength

within the same network module. The sum of the recurrent strength Jrc and reciprocal strength Jrp

cannot be too large, since otherwise the congruent and opposite neurons in the same network mod-

ule will have strong competition resulting in the emergence of winner-take-all behavior. However,

the winner-take-all behavior was not observed in experiments. The input intensity a was scaled rela-

tive to U0 ¼ Jce
a=2=½2p!ð1þ JintÞI0ða=2Þ�, and is distributed in ½0:3; 1:5�U0, where U0 is the value of the

synaptic bump height that a group of neurons can hold without receiving feedforward input and

reciprocal inputs when Jrc ¼ Jc. The range of the input intensity was chosen to be wide enough to

cover the super-linear to nearly saturated regions of the input-firing rate curve of the neurons. The

strength of the background input was Ib ¼ 1, and the Fano factors of feedforward and background

inputs were set to 0.5, which led to the Fano factor of single neuron responses taking values of the

order 1. In simulations, the position of the population activity bump was read out by calculating the
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population vector (Georgopoulos et al., 1986; Dayan and Abbott, 2001). For example, the posi-

tion of the population activities of the congruent neurons in module 1 at time t was estimated as

zc
1
ðtÞ ¼ arg

P

� r
c
1
ð�; tÞej�

� �
; (23)

where j is the imaginary unit, and the function arg½�� outputs the angle of a vector. Note that � is the

preferred direction over the direct cue conveyed by feedforward inputs. For the example pertaining

to the above equation, � refers to the preference over cue 1. To reproduce the tuning curves (Fig-

ures 5 and 6), the network dynamics was simulated for a single long trial and the neuronal responses

in equilibrium state was averaged over time to get the mean and concentration of the firing rate dis-

tribution. To perform ROC analysis (Figure 8 and Figure 8—figure supplement 1), the network

model was simulated for 30 trials. The number of trials is consistent with experimental studies

(Gu et al., 2008), and it does not influence the results substantially as long as it is large enough. The

network model was simulated by using MATLAB, and the corresponding code can be found

at https://github.com/wenhao-z/Opposite_neuron (copy archived at https://github.com/elifescien-

ces-publications/Opposite_neuron).

Demo tasks of network model
Testing network’s performance of integration and segregation
We compared the network’s estimate under three cueing conditions in simulations, that is either cue

1 or cue 2 is individually presented, or both cues are simultaneously presented. In each cueing condi-

tion, we simulate the network dynamics for sufficient long time to guarantee it is in equilibrium state,

where the estimates made by congruent and opposite neurons in the two network modules are

decoded respectively. Denote znmðtjxlÞ as the bump position at time t when only cue xl (l ¼ 1; 2) is pre-

sented. Simulations show that the distribution of the bump position over time is well approximated

by a von Mises distribution. The mean of the estimate is obtained through averaging across time

(equivalent to average across trials at equilibrium) (Mardia and Jupp, 2009),

hznmjxli ¼ arg
1

Nt

X

t

ejz
n
mðtjxlÞ

 !

;

where Nt denotes the number of data points and is set to 5� 10
4 in simulation. To estimate the con-

centration of the probabilistic population code, we consider the posterior distribution of the popula-

tion vector decoded from each individual instance, rather than the width distribution of the bumps

obtained from the individual instances. Hence we consider the mean resultant length of the von

Mises distribution given by Equation (A4). When the distribution is sufficiently sharp, it can be

approximated by the von Mises distribution in the neighborhood of the peak. Hence the concentra-

tion is estimated by

kðznmjxlÞ ¼ A�1

��
�
�
1

Nt

X

t

ejz
n
mðtjxlÞ

�
�
�

�

;

where A�1ð�Þ denotes the inverse function of Að�Þ in Equation (A4). To verify whether the congruent

neurons in each module achieve optimal cue integration, we calculated the theoretical prediction

obtained by adding the estimates of the same group of neurons in single cue conditions according

to Equation (4) (corresponding to the sum of the green vectors in Figure 3B),

~kcme
j~zcm ¼

X2

l¼1

kðzcmjxlÞejhz
c
m jxli;

where ~zcm and ~kcm denote, respectively, the predicted mean and concentration for the estimate of

congruent neurons in module m in the combined cueing condition. This prediction is then compared

with the actual mean and concentration of the estimate from the same group of neurons in the com-

bined cueing condition. Results are displayed in Figure 6—figure supplement 1.

We further tested whether the opposite neurons in a module implements optimal cue segrega-

tion. The theoretical prediction was obtained by substituting the mean and concentration of the
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posterior represented by congruent neurons under single cue conditions into Equation (7) (corre-

sponding to the difference of the green vectors in Figure 3B),

~kome
j~zom ¼ kðzcmjxmÞejhz

c
mjxmi�kðzcmjxm0Þejhzcmjxm0 i; (24)

where ~zom and ~kom denote, respectively, the predicted mean and concentration of the estimate of

opposite neurons in module m in the combined cue condition. It is expected that the estimates of

congruent and opposite neurons have the same mean and concentration given the direct cue, that is

kðzcmjxmÞejhz
c
m jxmi ¼ kðzomjxmÞejhz

o
mjxmi, while given the indirect cue, their estimates have the same concen-

tration but opposite mean, that is kðzcmjxm0Þejhzcm jxm0 i ¼�kðzomjxm0Þejhzom jxm0 i. Thus, the theoretical predic-

tion for opposite neurons can also be obtained by

~kome
j~zom ¼ kðzomjxmÞejhz

o
mjxmiþkðzomjxm0Þejhzomjxm0 i: (25)

We checked that Equations (24, 25) give the same prediction on the estimate of the opposite

neurons. We used Equation (25) to predict the estimate of the opposite neurons in the combined

cue condition. Results are presented in Figure 6—figure supplement 1.

Reconstructing stimulus estimate under direct cue from congruent and
opposite neurons’ activity
The stimulus estimate from its direct cue can be recovered from the joint activities of congruent and

opposite neurons in real-time when two cues are simultaneously presented. Equation 8 indicates

that the reconstruction of the posterior distribution of the direct cue can be achieved by multiplying

the decoded distribution from congruent and opposite neurons in a network module. Thus, for

example, the reconstructed estimate of stimulus one at time t given its direct cue can be obtained

by

ŝ1ðtÞjx1 ¼ arg
P

� r
c
1
ð�; tÞ

� �
ejz

c
1
ðtÞþ P

� r
o
1
ð�; tÞ

� �
ejz

o
1
ðtÞ� �

; (26)

where zc
1
ðtÞ and zo

1
ðtÞ are the positions of the population activities of the congruent and opposite neu-

rons in network module 1, respectively, which were decoded by using population vector (Equa-

tion 23). In real-time reconstruction, the sum of firing rate represents the concentration of the

distribution. This is supported by the finding that the reliability of the distribution is encoded by the

summed firing rate in probabilistic population code (Ma et al., 2006; Zhang et al., 2016).

Discriminating cue disparity on single neurons
A discrimination task was designed on the responses of single neurons to demonstrate that opposite

neurons encode cue disparity information. The task is to discriminate whether the cue disparity,

x1 � x2, is either smaller or larger than 0˚. In the discrimination task, the mean direction of two cues,

x1 þ x2 ¼ 0, is fixed at 0˚, in order to rule out the influence of the change of integrated direction to

neuronal activity. Meanwhile, the disparity between two cues, x1 � x2, is changed from �32˚ to 32˚

with a step of 4˚. For each combination of cue direction, we applied three cueing conditions (cue 1,

cue 2, combined cues) to the network model for 30 trials and the firing rate distributions of the sin-

gle neurons were obtained (Figure 8A and B).

We chose an example congruent neuron preferring 90˚ in network module 1, and also an example

opposite neuron in network module 1 preferring 90˚ with respect to cue 1. We used receiver operat-

ing characteristic (ROC) analysis (Britten et al., 1992) to compute the discriminating ability of the

example neurons on cue disparity. The ROC value counts the proportion of instances where the

direction of cue 1, x1, is larger than the one of cue 2. Neurometric functions (Figure 8B and E) were

constructed from those ROC values and were fitted with cumulative Gaussian functions by least

square, and then the standard deviation of the cumulative Gaussian function was interpreted as the

neuronal discrimination threshold (Figure 8C) (Gu et al., 2008). A smaller value of the discrimination

threshold means that the neuron is more sensitive in the discrimination task. Although we adopted

the von Mises distribution in the probabilistic model, the firing rate distribution of single neurons

can be well fitted by a Gaussian distribution, justifying the use of the cumulative Gaussian distribu-

tion to fit the ROC values.
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Discriminating heading direction on single neurons
To reproduce experimental findings (Gu et al., 2008; Chen et al., 2013), we conducted a task of

discriminating whether a stimulus value is smaller or larger than 0˚ based on the activities of an

example congruent and an opposite neurons which are the same as the one described in Materials

and methods. The directions of the two cues were always the same, and were simultaneously

changed from �32˚ to 32˚. The construction of neurometric function and the estimate of neuronal

discrimination threshold are the same as the discrimination task presented in main text.

Similar with typical cue experiments (Chen et al., 2013; Gu et al., 2008), for each neuron, we

used the Gaussian distribution to predict the discrimination threshold under combined cues by those

under separate single-cue conditions,

sprediction ¼ s1s2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

1
þs2

2

q

; (27)

where s1 and s2 are the neuronal discrimination thresholds of a neuron under cue 1 and cue 2 condi-

tions, respectively. The results are presented in Figure 8—figure supplement 1.
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Background of the von Mises Distribution

Definition of the von Mises distribution
The von Mises probability density function for a circular variable x is defined as

Mðx;�;kÞ ¼ 1

2pI0ðkÞ
exp kcosðx��Þ½ �; (A1)

where � is the mean of x, and the concentration parameter k measures the dispersion of x

around its mean value. I0ðkÞ is the modified Bessel function of the first kind and zero order,

which is given by

I0ðkÞ ¼
1

2p

Z
2p

0

exp kcosxð Þdx: (A2)

Note that Mðx;�� p; kÞ is equal to Mðx;�;�kÞ. To avoid the indeterminacy of the

parameter k, it is usual to take k>0.

Apart from using k to measure the concentration, we usually use the mean resultant

length � to measure the dispersion of a circular variable, because it can be more easily

estimated from sampled data. The mean resultant length is defined as

�¼E½cosðx��Þ�: (A3)

Note that 0 � � � 1 means that the distribution is fully concentrated at the point �, while

� ¼ 0 means that the distribution is so scattered that there is no concentration around any

particular point.

For a von Mises distribution with � ¼ 0, its mean resultant length is calculated to be

� � AðkÞ

¼ 1

2pI0ðkÞ

Z
2p

0

cosðxÞekcosxdx: (A4)

Relationship to the normal distribution
When k is large, we let � ¼ k

1=2ðx� �Þ, and the von Mises distribution is approximated to be

Mð�;0;kÞ / exp �k½1� cosðk�1=2�Þ�
� �

: (A5)

Further approximating 1� cosðk�1=2�Þ ¼ 1

2
k
�1�2 þOðk�2Þ for small �, we have

Mð�;0;kÞ / exp ��2=2
� �

/Nð�;0;1Þ: (A6)

Thus, the von Mises distribution can be approximated to be a normal distribution for large

k and small jx� �j, that is

Mðx;�;kÞ»Nðx;�;k�1Þ: (A7)

Relationship to the wrapped normal distribution
In general, a von Mises distribution can be approximated by a wrapped normal distribution

with the same mean � and the same mean resultant length AðkÞ. The wrapped normal

distribution WNðx;�; �Þ is obtained by wrapping a normal distribution on a circle. For a
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random variable x, the corresponding random variable xw of the wrapped distribution is

obtained by

xw ¼ xðmod 2pÞ; (A8)

and the wrapped distribution satisfies

fwðxÞ ¼
X¥

k¼�¥
f ðxþ 2kpÞ; (A9)

where f ðxÞ is the probability density function of x.

Hence the probability density function of the wrapped normal distribution is defined as

WN x;�;�ð Þ ¼ 1
ffiffiffiffiffiffi
2p

p
s

X¥

k¼�¥
exp �ðx��þ 2kpÞ2

2s2

" #

; (A10)

where � ¼ expð�s
2=2Þ is mean resultant length of the wrapped normal distribution.

By matching the mean and the mean resultant length of a von Mises distribution and a

wrapped normal distribution, we have following approximation,

Mðx;�;kÞ ’WN x;�;AðkÞð ÞþOðk�1=2Þ; k!¥: (A11)

It has been shown that this approximation works very well, even in the worst case when

k ~ 1:4 (ch. 3 in Mardia and Jupp, 2009).

Product of two von Mises distributions
The cue integration involves calculating the product of two von Mises distributions (see

Equation 3 in the main text)

pðsjx1;x2Þ / pðx1jsÞpðx2jsÞ; (A12)

where pðxmjsÞ ¼ Mðs; xm; kmÞ for m ¼ 1; 2. Substituting detailed expressions, the right hand side

of the above equation is,

pðsjx1Þpðsjx2Þ ¼
1

ð2pÞ2I0ðk1ÞI0ðk2Þ
exp k1 cosðs� x1Þþk2 cosðs� x2Þ½ �: (A13)

The two cosine terms inside the exponential function in the above equation can be merged

together,

k1 cosðs� x1Þþk2 cosðs� x2Þ
¼ k1ðcosx1 cossþ sinx1 sinsÞþk2ðcosx2 cos sþ sinx2 sinsÞ
¼ ðk1 cosx1þk2 cosx2Þcos sþðk1 sinx1 þk2 sinx2Þ sins
¼ k3 cosðs� x3Þ;

(A14)

where

k3 ¼ ðk1 cosx1 þk2 cosx2Þ2 þðk1 sinx1 þk2 sinx2Þ2
h i1=2

¼ k
2

1
þk

2

2
þ 2k1k2 cosðx1� x2Þ

� �1=2
;

(A15)

x3 ¼ tan�1
k1 sinx1þk2 sinx2

k1 cosx1þk2 cosx2

� �

: (A16)

It is worthwhile to note that Equations. (A15 and A16) can be concisely expressed in

complex representation,
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k3e
jx3 ¼ k1e

jx1 þk2e
jx2 ; (A17)

where kejx geometrically corresponds to a vector in the 2D complex plane, with k and x

representing the length and angle of the vector, respectively.

Adding the normalization constant, we get

pðsjx1;x2Þ ¼
1

2pI0ðk3Þ
exp k3 cosðs� x3Þ½ �: (A18)

Integral of the product of two von Mises distributions
The calculation of pðx2js1Þ involves the integral of the product of two von Mises distributions,

pðx2js1Þ ¼
Z

2p

0

pðx2js2Þpðs2js1Þds2

¼ 1

ð2pÞ2I0ðk1ÞI0ðksÞ

Z
2p

0

exp k2 cosðs2 � x2Þþks cosðs2 � s1Þ½ �ds2:
(A19)

Using the results in Equations (A14-A16), we get

pðx2js1Þ ¼
I0 k

2

2
þk

2

s þ 2k2ks cosðs1 � x2Þ
� �1=2
� �

2pI0ðk2ÞI0ðksÞ
: (A20)

The above equation is not a von Mises distribution, but it can be approximated as one. The

two von Mises distributions in Equation (A19) can be approximated by wrapped normal

distributions, respectively (see Equation A11), which are

pðx2js2Þ ¼Mðx2; s2;k2Þ ’WNðs2;x2;Aðk2ÞÞ; (A21)

pðs2js1Þ ¼Mðs2; s1;ksÞ ’WNðs2; s1;AðksÞÞ: (A22)

With these approximations, Equation (A19) becomes

pðx2js1Þ ’
Z

2p

0

WNðx2; s2;Aðk2ÞÞWNðs2; s1;AðksÞÞds2
¼WNðx2; s1;Aðk2ÞAðk2ÞÞ:

(A23)

Using the approximation of Equation (A11), we finally get

pðx2js1Þ ’M x2; s1;A
�1fAðk2ÞAðksÞg

� �
: (A24)
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Appendix 2

DOI: https://doi.org/10.7554/eLife.43753.015

Multisensory integration with Gaussian distribution
In the main text, we came across the probabilistic multisensory integration with von Mises

distributions. To see its difference with that using Gaussian distribution, we present the result

for Gaussian distribution below. In the Gaussian case, the likelihood function is given by

pðxmjsmÞ ¼N ðxm; sm;s2

mÞ ¼
1
ffiffiffiffiffiffi
2p

p
sm

exp �ðxm� smÞ2
2s2

m

" #

; (A25)

where the inverse of the variance of Gaussian distribution is related to the concentration of

von Mises distribution (Equation 1), that is s�2

m » km, for large km (Equation A7).

The stimulus prior in Gaussian distribution is written as (compared to Equation 2),

pðs1; s2Þ ¼
1

ffiffiffiffiffiffi

2p
p

ssLs
exp �ðs1� s2Þ2

2s2
s

" #

; (A26)

where Ls ¼ 2p for heading direction.

Substituting Equations (A25 and A26) into Equation (3), the posterior pðs1jx1; x2Þ is
calculated to be

pðs1jx1;x2Þ ¼Nðs1; ŝ1; ŝ2

1
Þ; (A27)

where the mean and variance of the posterior are

ŝ
�2

1
¼ s

�2

1
þðs2

2
þs

2

s Þ�1; (A28)

ŝ1 ¼ ŝ
2

1
s
�2

1
x1þðs2

2
þs

2

s Þ�1
x2

h i

; (A29)

Note that the reliability of cue integration using von Mises distribution decreases with the

cue disparity ðx1 � x2Þ (see Equation A15), but in the Gaussian case, the reliability of cue

integration ŝ
�2

1
is independent of the cue disparity.
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Theoretical analysis of a single network module
We conduct theoretical analysis to understand the dynamics of a single network module

without receiving feedforward inputs and reciprocal inputs from another module. This analysis

could help us to understand how recurrent connections between neurons and the divisive

normalization determine the neural dynamics, and help us to set network parameters.

Cutting off feedforward and reciprocal inputs corresponds to setting Inmð�; tÞ ¼ 0 and

Jrp ¼ 0. Consequently, the network dynamics is simplified to be,

t

q

qt
unmð�; tÞ ¼�unmð�; tÞþ

Xp

�0¼�p

Wrcð�;�0Þrnmð�0; tÞ; ðn¼ c;oÞ (A30)

rnmð�; tÞ ¼
unmð�; tÞ
� �2

þ
1þ!Dn

mðtÞ
; (A31)

Dn
mðtÞ ¼

Xp

�0¼�p

unmð�0; tÞ
� �2

þþJint un
0

mð�0; tÞ
h i2

þ

� �

; n0 6¼ n: (A32)

We see that congruent and opposite neurons in the same module compete with each other

via divisive normalization, (Equation A32), whose effect is to divisively scale down neuronal

activities (Equation A31). Hence, the divisive normalization only influences the amplitudes of

population activities, not the bump shapes. The shapes of population activities unmð�; tÞ and
rnmð�; tÞ are fully determined by recurrent connections Wrcð�; �0Þ. Since the recurrent connection

Wrcð�; �0Þ is a von Mises function, and the convolution of two von Mises functions can be

approximated by a new von Mises function, we propose the ansatz that neuronal population

activities have the von Mises shape in the stationary state, which are written as,

unmð�jznmðtÞÞ»Un
m exp

a

2
cosð�� znmðtÞÞ�

a

2

h i

; (A33)

rnmð�jznmðtÞÞ»Rn
m exp acosð�� znmðtÞÞ� a

� �
; ðm¼ 1; 2; n¼ c; oÞ: (A34)

where Un
m and Rn

m denote, respectively, the heights of synaptic inputs and neuronal firing rates

of n-type neurons in module m. znm denotes the bump location in the feature space.

In order to check the validity of the proposed von Mises ansatz, we substitute

Equations (A33,A34) into the network dynamics (Equations A30-A32), and get the stationary

state of the network (see details in the subsequent section), which is

Un
m ¼ �Jrc

I0ðaÞ
ea=2I0ða=2Þ

Rn
m; (A35)

where � ¼ N=2p is the neuronal density with N the number of neuron in the group. Meanwhile,

substituting the von Mises ansatz into the divisive normalization (Equations A31,A32), we get

another relationship between Rn
m and Un

m,

Rn
m ¼ Un

m
2

1þ 2p!�ðUn
m
2þ JintUn0

m
2ÞI0ðaÞe�a

; ðn0 6¼ nÞ: (A36)

Under the condition of no reciprocal and feedforward inputs, there exists a symmetric

solution for the heights of congruent and opposite neurons’ population responses, that is Un
m

and Rn
m. Although an asymmetric solution for the heights of congruent and opposite neurons’

responses also exists, we don’t consider it in current theoretical study.
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Denote the heights of congruent and opposite neurons’ responses as Uc
m ¼ Uo

m � Um and

Rc
m ¼ Ro

m � Rm, respectively. Combining Equations (A35, A36) yields,

½2p!ð1þ JintÞ�I0ðaÞI0ða=2Þe�a=2�U2 � �JrcI0ðaÞUþ ea=2I0ða=2Þ ¼ 0; (A37)

whose solution is calculated to be

Um ¼
�JrcI0ðaÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�JrcI0ðaÞÞ2 � 8p!ð1þ JintÞ�I0ðaÞI0ða=2Þ2
q

2p!ð1þ JintÞ�I0ðaÞI0ða=2Þe�a=2
: (A38)

Um has a real value when the recurrent connection strength Jrc is larger than a critical value

Jc, which is given by

Jc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p!ð1þ JintÞI0ða=2Þ2
�I0ðaÞ

s

: (A39)

This real-value solution of Um implies that the network holds persistent response without

external inputs. Jc is the minimal strength of recurrent connections to hold a persistent activity.

Since no persistent activity was observed in multisensory brain areas such as MSTd and VIP, Jc
is the upper bound for the recurrent strength Jrc in our model.

Verification of the von Mises ansatz of network activity
Substituting the von Mises ansatz (Equations A33 and A34) into the network dynamics

(Equation A30), we have

LHS¼ tUn
ma

2

dznm
dt

sinð�� znmÞexp
a

2
cosð�� znmÞ�

a

2

h i

; (A40)

RHS¼ �Un
m exp

a

2
cosð�� znmÞ�

a

2

h i

þ JrcR
n
me

�a

2pI0ðaÞ
Xp

�0¼�p

exp½acosð�� �0Þþ acosð�0 � znmÞ�d�0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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The recurrent inputs Ircð�Þ (the 2nd term in RHS in above equation) can be calculated as,

Ircð�Þ ¼ JrcR
n
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(A42)

The first approximation in the above calculation comes from the conversion from discrete

summation to continuous integral, where � ¼ N=2p is the neuronal density corresponding to

the reciprocal of the summation intervals. The last two approximations are from the

convolution of two von Mises distributions as given by Equation (A24).
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