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Drawing on Three Fields of Education Research to Frame the Development of Digital Games for
Inquiry-Oriented Linear Algebra

Michelle Zandieh David Plaxco Caro Williams-Pierce Ashish Amresh
Arizona State Clayton State University at Albany, Arizona State
University University SUNY University

Abstract: Demands in undergraduate education are shifting to reach larger student populations -
especially learners beyond the brick-and-mortar classroom - which has led to more pressing
demands to incorporate technologies that afford such learners access to high-quality, research-
based, digital instructional materials. In this article, we explore three theoretical perspectives
that inform the development of such instructional materials. In our team’s efforts to develop a
game-based learning applet for an existing inquiry-oriented curriculum, we have sought to
theoretically frame our approach so that we can draw on the corpus of researcher knowledge
from multiple disciplines. Accordingly, we will discuss three bodies of literature — realistic
mathematics education’s [RME’s] approach to curriculum development, inquiry-oriented
instruction and inquiry-based learning [IO/IBL], and game-based learning [GBL] - and draw on
parallels across the three in order to form a coherent approach to developing digital games that
draw on expertise in each field.

Keywords: Realistic Mathematics Education, Inquiry-Oriented Teaching, Inquiry-Based
Learning, Game Based Learning, Linear Algebra

Introduction

A number of researchers in undergraduate mathematics education have developed curricula
that draw on the curriculum design principles of Realistic Mathematics Education (RME) and are
intended to be implemented using an inquiry-oriented (I0) approach (e.g., Larson, Johnson, &
Bartlo, 2013 (abstract algebra); Rasmussen et al., 2006 (differential equations); Wawro et al.,
2012 (linear algebra)). IO curricula fall within the broader spectrum of Inquiry-Based Learning
(IBL) approaches that focus on student centered learning through exploration and engagement
(Ernst, Hodge, & Yoshinobu, 2017) facilitated by an instructor’s interest in and use of student
thinking (Rasmussen, Marrongelle, Kwon, & Hodge, in press). For the purpose of this paper we
will give examples from an 1O curriculum, but also use quotes and references from the more
general IBL literature.

In our current project we are exploring the extent to which technology can help mathematics
educators extend inquiry-oriented (IO) curricula into learning contexts that are less conducive to
inquiry-oriented approaches. Game Based Learning (GBL) provides a reasonable approach to
addressing the constraints that large class sizes or non-co-located learning place on instructors’
implementation of 1O curricula. GBL studies show a clear relation between games and learning
as games provide a meaningful platform for large numbers of students to engage, participate, and
guide their learning with proper and timely feedback (Barab, Gresalfi, & Ingram-Goble, 2010;
Gee, 2003; Hamari et al., 2016; Rosenheck, Gordon-Messer, Clarke-Midura, & Klopfer, 2016).
However, despite advances in technology and policy initiatives that support development of
active learning and the incorporation of technology in classrooms, few digital games exist at the
undergraduate level that explicitly incorporate a research-based curriculum. In this paper, we
explore the three theoretical perspectives of RME, IO/IBL instruction, and GBL in order to
identify the ways in which the three perspectives align and might contribute to the development
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of digital media that incorporate knowledge and practices gained from each perspective.

We begin with a discussion of each of the three theoretical framings illustrated with specific
examples. For the first two framings we describe a task sequence and strategies for implementing
that task sequence that come out of the Inquiry Oriented Linear Algebra (IOLA) curriculum. For
the third framing, we provide a brief outline of a mathematics game, Rolly’s Adventure,
developed by the third author, who drew on GBL principles in her game design. We then draw
on each of these examples to demonstrate how aspects of RME, IO/IBL instruction and GBL
align with each other and to point out a few ways that RME and IO/IBL might be used to inform
design of future games, especially as we, the authors, move towards the development of a new
digital game rooted in the existing IOLA curricular materials.

Realistic Mathematics Education and Inquiry-Oriented Linear Algebra (IOLA)

Realistic Mathematics Education is a curriculum design theory rooted in the perspective that
mathematics is a human activity. Accordingly, RME-based curricula focus on engaging students
in activities that lend themselves to the development of more formal mathematics. Researchers
rely on several design heuristics to guide the development of RME-based curricula (Gravemeijer,
1999; Rasmussen & Blumenfeld, 2007; Zandieh & Rasmussen, 2010). For instance, researchers
often focus on the historical development of the concept intended to be taught so that the
curriculum supports students’ guided reinvention of the mathematics. In this paper, we focus on
Gravemeijer’s (1999) four levels of activity to show how curricula might reflect the design
theory. Situational activity involves students’ work on mathematical goals in experientially real
settings. Referential activity involves models-of that refer to physical and mental activity in the
original setting. General activity involves models-for that facilitate a focus on interpretations
and solutions independent of the original task setting. Finally, formal activity involves students
reasoning in ways that reflect the emergence of a new mathematical reality and no longer require
prior models-for activity.

The IOLA curriculum (http://iola.math.vt.edu) draws on RME instructional design heuristics
to guide students through various levels of activity and reflection on that activity to leverage
their informal, intuitive knowledge into more general and formal mathematics (Wawro,
Rasmussen, Zandieh, & Larson, 2013). The first unit of the curriculum, referred to as the Magic
Carpet Ride (MCR) sequence, serves as our example of RME instructional design (Wawro,
Rasmussen, Zandieh, Sweeney, & Larson, 2012). As stated, situational activity involves
students working toward mathematical goals in an experientially real setting. The first task of the
MCR sequence serves to engage students in situational activity by asking them to investigate
whether it is possible to reach a specific location with two modes of transportation: a magic
carpet that, when ridden forward for a single hour, results in a displacement of 1 mile East and 2
miles North of its starting location (along the vector <1, 2>) and a hoverboard, defined similarly
along the vector <3, 1>. As students work through this task and share solutions with classmates,
they develop notation for linear combinations of vectors and connections between vector
equations and systems of equations, providing support for representing the notion of linear
combinations geometrically and algebraically.

The second task in the MCR sequence supports students’ referential activity — activity in
which students refer to and draw generalizations about physical and mental activity, often from
the situational activity in the original task setting. In the second task, students are asked to
determine whether there is any location where Old Man Gauss can hide from them if they were
to use the same two modes of transportation from the previous problem. As students work on this
task, they begin to develop the ability to conceptualize movement in the plane using
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combinations of vectors and also reason about the consequences of travel without actually
calculating the results of linear combinations. This allows students to form conceptions of how
vectors interact in linear combination without having to know the specific values comprising the
vectors. The goal of the problem is to help students develop the notion of span in a two-
dimensional setting before formalizing the concept with a definition. As with the first task,
students are able to build arguments about the span of the given vectors and rely on both
algebraic and geometric representations to support their arguments.

As students transition from the second task of MCR to the third, they have experience
reasoning about linear combinations of vectors and systems of equations in terms of modes of
transportation in two dimensions. In the third problem, students are asked to determine if, using
three given vectors that represent modes of transportation in a three-dimensional world, they can
take a journey that starts and ends at home (i.e., the origin). They are also given the restriction
that the modes of transportation could only be used once for a fixed amount of time (represented
by the scalars ci, ¢z, and c3). The purpose of the problem is to provide an opportunity for students
to develop geometric imagery for linear dependence and linear independence that can be
leveraged through students’ continued referential activity toward the development of the formal
definitions of these concepts.

In the fourth task, students have the opportunity to engage in general activity, which
involves students reasoning in ways that are independent of the original setting. In this task,
students are asked to create their own sets of vectors for ten different conditions — two sets (one
linearly independent and one linearly dependent) meeting each of the five criteria: two vectors in
Rz, three vectors in Rz, two vectors in R3, three vectors in R3, and four vectors in R®. From their
example generation, students create conjectures about properties of sets of vectors with respect to
linear independence and linear dependence. This is general activity because students work with
vectors without referring back explicitly to the MCR scenario as they explore properties of the
linear in/dependence of sets of vectors in R?and R? ; furthermore, students often extend their
conjectures to R”. Finally, students engage in formal activity as they use the definitions of span
and linear independence in service of other arguments without having to re-unpack the
definitions’ meanings. This does not tend to occur during the MCR sequence but rather during
the remainder of the semester as students work on tasks unrelated to the MCR sequence.

Effectiveness and Challenges of Inquiry-Oriented Instruction

Effectively implemented inquiry-oriented instructional approaches have been related to
improved levels of conceptual understanding and equivalent levels of computational
performance in areas ranging from K-12 mathematics, to undergraduate mathematics, physics,
and chemistry (e.g., Cai, Wang N., Moyer, Wang, C., & Nie 2011; Deslauriers, Schelew, &
Wieman, 2011; Kwon, Rasmussen, & Allen, 2005; Lewis & Lewis, 2005). To enact an RME
curriculum, a classroom must engage students in inquiry into the mathematics of the problems
posed. These classrooms are problem-based and student-centered, characteristics that overlap
with other Inquiry Based Learning (IBL) and active learning classrooms (Laursen, Hassi, Kogan,
& Weston, 2014). Consistent with others in the field (e.g., Kuster et al, 2017), in this work, we
consider inquiry-oriented instruction to fall under the broader category of inquiry-based
instruction. Research has shown that students who engage in cognitively demanding
mathematical tasks have shown greater learning gains than those who do not (Stein & Lane,
1996). Furthermore, Stein and Lane (1996) found that those gains were greater in classrooms
where students were encouraged to use multiple representations, multiple solution paths, and
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where multiple explanations were considered; in contrast, gains were lower in classrooms where
the teacher demonstrated a process students could use to solve the task.

Implementation of the MCR task sequence described above is dependent on an inquiry-
oriented classroom environment. Rasmussen and Kwon (2007) describe inquiry both as student
inquiry into the mathematics through engagement in novel and challenging problems and
instructor inquiry into students’ mathematics to provide feedback to advance the mathematical
agenda of the classroom. The MCR sequence is comprised of tasks that allow for multiple
strategies and representations. Since the tasks are non-trivial, students are challenged with
debating their answers and explaining their arguments. In addition, Tasks 2 and 3 each allow
students to engage in mathematical activity that can be leveraged by the instructor to introduce
formal definitions (span in Task 2, linear independence in Task 3). In both cases the instructor
serves the role of broker between the classroom community and the mathematical community
(Rasmussen, Zandieh & Wawro, 2009; Wenger, 1998) by taking student ideas and connecting
them with the formal mathematical definitions. This brokering move of “interpreting between
communities facilitates the students’ sense of ownership of ideas and belief that mathematics is
something that can be reinvented and figured out” (Zandieh, Wawro, & Rasmussen, 2017).

Game-Based Learning

Game Based Learning (GBL) is the use of digital games with educational objectives to
significantly improve learning outcomes. Games are designed to be enjoyable and fun where
students overcome challenges and goals (including educational goals) by gaining mastery of the
rules within a constrained environment or setting (Dickey, 2005). Research in game-based
learning has emphasized the importance of incorporating thoughtful learning theories into the
design of games (Williams-Pierce, 2016; Gee, 2005; Gresalfi, 2015; Gresalfi & Barnes, 2016).
Recently, there have been several GBL approaches that have been implemented in secondary and
post-secondary classrooms (Sung & Gwo-Jen Hwang, 2013; Lester et al., 2014), most
successfully when projects have used GBL in conjunction with an existing pedagogical approach
(Salen, 2011; Shute, & Torres, 2012). Several learning and pedagogical approaches have been
identified that align well with GBL (e.g., Barab, et al., 2012; Hamari, et al., 2016), and many
projects approach learning from a constructivist perspective (e.g., Wilson, 1996; Kiili, 2005; Wu,
et al., 2012). Curricula developed from constructivist perspectives typically engage students in
activities in a problem-solving scenario so that students have opportunities to build on their
understanding through reflective abstraction on their prior activity towards more advanced ways
of thinking. We illustrate GBL with examples from Rolly’s Adventure (RA), a videogame
developed by the third author to support student learning about fractions.

/

Figure 1: (a) The player (shown here in a purple helmet) enters the puzzle; (b) the player activates the first
button, (c) the puzzle catches on fire.

RA begins with Rolly in the top left of the screen (see Figure 1). Rolly needs to roll past the
obstacle (the gap) in the middle of the screen. The player’s avatar is below Rolly in the purple
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hat. The player can choose from three options to press at the bottom of the screen. If the player
chooses incorrectly the area explodes in fire and the golden bricks in the center show the result
of the choice (see Figure 1c.)

In Figure 1, the player chose the single black circle and this did not change the size or shape
of the golden brick. They then received feedback that their answer was incorrect (the fire that
sends their avatar back to start over), and what the direct result of their action was (one black
circle results in a single golden brick). Such instantaneous feedback and failure are considered
crucial aspects of supporting learning during gameplay (e.g., Gee, 2005; Juul, 2009). If the
player chooses the two black circles, the size of the bricks doubles to fill the space and Rolly
(and thus the player) is able to move past the obstacle (see Figure 2), thus receiving positive
feedback as to the accuracy of their choice.

Figure 2: The player (a) activates the second button, (b) the bricks appear from a haze, and (c) successfully travels
over the space now filled with bricks

As the player progresses through the challenges the brick or bricks in the obstacle will
change in relationship to the space, and the way that the choices are indicated will also change.
For example, the golden brick in Figures 1 and 2 represent one-half of the hole (the obstacle),
and the next puzzle (not shown) has a block that represents one-fourth of the hole, following
recommendations that halving a half is a natural next step in the learning of fractions (e.g.,
Empsen, 2002; Kieren, 1995; Smith, 2002).

Figure 3: (a) is the fourth puzzle, where the brick is two-thirds of the hole; (b) is the fourteenth and final puzzle in
RA, where the brick is one and two-fifths of the hole.

RA was designed specifically to begin with simpler puzzles and become more complex as
players move through the trajectory, such that as players develop generalizations about the game,
new puzzles emerge that continue to challenge and nuance these generalizations, so the player
has a “pleasantly frustrating” experience (Gee, 2003). Accordingly, mathematical notation
becomes introduced that supports the player in being more precise and accurate just as they
begin to struggle, as a way of developing a sense of “intellectual need” (Harel, 2013) so that
players find the notation immediately useful (following Gee, 2005). Figure 3 shows some
examples of how the game becomes more complex. Note that the fourth puzzle (Figure 3a) has
bricks that are not an integer multiple of the size of the hole. Correspondingly the player’s
options include whole and half circles. In the fourteenth puzzle (Figure 3b) the initial bricks are

21st Annual Conference on Research in Undergraduate Mathematics Education 1274



larger than the size of the hole and fraction notation is used to both label the relationship of the
brick to the hole (one and two-fifths) and the different choices.

RA was designed specifically with GBL principles to support players in mathematizing their
own gaming experience, and engaging in mathematical play (Williams-Pierce, 2017). In this
fashion, RA served as a proxy for the role of the instructor in the brokering process (Rasmussen,
Zandieh & Wawro, 2009; Wenger, 1998), in that the game required players to act as producers
(Gee, 2003) in reinventing the mathematics underlying RA. In other words, an intentionally
designed mathematics game can serve as a responsive digital context that mediates interactions
between the player, the game, and the mathematical community. Ideally, a well-designed
mathematics game uses the principles of failure and feedback to support players in experiencing
a pleasantly frustrating and authentically mathematized world. In the following section, we focus
more explicitly on how GBL, RME, and IO Instruction can be carefully blended in designs that
evoke the best of each world.

Connecting GBL, RME, and 10 Instruction - Blending Theoretical Worlds

The game design principles outlined above and illustrated with Rolly’s Adventure align well
with the nature of inquiry-oriented instruction using an RME-based curriculum. In Figure 4, we
draw heavily on Gee’s (2003) notion that good game design is good learning design to show
parallels between principles of game design, RME curriculum design, and inquiry instruction and
learning. Statements in the boxes of Figure 4 are all quotes or close paraphrases of various
authors as indicated.

Looking across the rows in Figure 4 we see that both digital games and RME curricula place
importance on the structure of the task sequence. The sequence should start with an activity in
which students can immediately engage, but that has the potential to be generalized to a more
sophisticated understanding that will help in solving more complex problems. We see this both
in the increasing complexity of the tasks in Rolly’s Adventure (RA) and in the magic carpet ride
(MCR) tasks. In particular, student experiences graphically and imaginatively exploring the
MCR scenario can be generalized to more formal notions of span and linear independence. As
our project progresses, we can envision students being immersed in the MCR scenario through a
digital game environment that allows for numerous episodes of growing complexity, from which
student generalizations could emerge.

In considering the nature of the tasks we see that GBL, RME and 10/IBL all place emphasis
on tasks that are novel and ill-structured allowing for a challenging but do-able problem-solving
experience. The RA game (Williams-Pierce, in press) and the MCR tasks (Wawro et al., 2012)
have both been empirically shown to be challenging, but manageable for students. A digital
game based on the MCR sequence would share this novel approach. Through an iterative design
process, tasks in the digital game can be created to be challenging but approachable for linear
algebra students.

The teacher’s role in inquiry classrooms is particularly important (Rasmussen & Kwon,
2007; Rasmussen et al., in press). Games can take on some of these roles. A well-designed game
can intervene at desired junctures and provide real-time guidance or feedback based on the
situation that the player is facing. A game can take on the role of the broker between the player
(student) and the larger mathematics community. This brokering occurs both (1) through game
play being consistent with the mathematical principles that the students are learning and (2)
through students being gradually introduced to accepted mathematical notation and terminology.
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Theoretical Framing
GBL RME 10/IBL
Structure | Good games confront players in the Lessons should have -
of task initial game levels with problems that | experientially real
sequence | are specifically designed to allow starting points and
players to form good generalizations | engage in situational,
about what will work well later when | referential, and general
they face more complex problems. ' activity. *
Nature of | Good games operate at the outer and | Challenging tasks, IBL methods invite students to
the tasks | growing edge of a player’s often situated in work out ill-structured but
competence, remaining challenging, | realistic situations, meaningful problems. *
but do-able ... [therefore] they are serve as the starting Students should solve novel
often also pleasantly frustrating, point for students’ problems *
which is a very motivating state for mathematical inquiry.
human beings
Teachers’ | Good games give information “on Teachers to build on Students present and discuss
role demand” and “just in time,” not out students’ thinking by solutions; instructors guide and
of the contexts of actual use or apart | posing new questions | monitor this process. *
from people’s purposes and goals... ' | and tasks. * Empower learners to see
mathematics as a human activity. ?
Students’ | Games allow players to be producers | Empower learners to Students construct, analyze, and
role and not just consumers. see themselves as critique mathematical arguments.
capable of reinventing | Their ideas and explanations
mathematics * define and drive progress through
the curriculum. 2

Figure 4: Aligning three areas of our team’s expertise that inform game design.
'Gee, 2003; Laursen et al, 2014, *Rasmussen & Kwon, 2007; ‘Gravemeijer, 1999

Ultimately the first three categories are aimed at creating an optimal environment for student
learning. The students’ roles include producing ideas and explanations that allow for their
guided reinvention of the mathematics. In RA players create increasingly nuanced
generalizations as more complex situations are presented. Student creation of generalizations

also occurs in the MCR sequence (Rasmussen, Wawro, & Zandieh, 2015). Our goals as we work
toward creating a digital game based on the MCR sequence will be for players of this game to
construct, analyze and critique mathematical arguments in the game scenario. For this to happen
students need to both (1) experience the mathematical principles/structures through the feedback
from gameplay and (2) reflect on their experiences and codify them in some way. In addition to
having aspects of the game serve in the teacher role, the game may also need to have aspects that
serve in the role of other students in the classroom with whom a student would collaborate in an
IO or IBL setting (Ernst et al., 2017).

In conclusion, we believe that these overlapping aspects of GBL, RME and IO/IBL provide a
solid starting point for creating a digital game based on the existing IOLA curriculum. As
development progresses we will be able to explore affordances and constraints of the digital
environment in comparison with the in-person 1O classroom.
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