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Abstract: Demands in undergraduate education are shifting to reach larger student populations - 

especially learners beyond the brick-and-mortar classroom - which has led to more pressing 

demands to incorporate technologies that afford such learners access to high-quality, research-

based, digital instructional materials. In this article, we explore three theoretical perspectives 

that inform the development of such instructional materials. In our team’s efforts to develop a 

game-based learning applet for an existing inquiry-oriented curriculum, we have sought to 

theoretically frame our approach so that we can draw on the corpus of researcher knowledge 

from multiple disciplines. Accordingly, we will discuss three bodies of literature – realistic 

mathematics education’s [RME’s] approach to curriculum development, inquiry-oriented 

instruction and inquiry-based learning [IO/IBL], and game-based learning [GBL] - and draw on 

parallels across the three in order to form a coherent approach to developing digital games that 

draw on expertise in each field. 

Keywords: Realistic Mathematics Education, Inquiry-Oriented Teaching, Inquiry-Based 

Learning, Game Based Learning, Linear Algebra 

Introduction 

A number of researchers in undergraduate mathematics education have developed curricula 

that draw on the curriculum design principles of Realistic Mathematics Education (RME) and are 

intended to be implemented using an inquiry-oriented (IO) approach (e.g., Larson, Johnson, & 

Bartlo, 2013 (abstract algebra); Rasmussen et al., 2006 (differential equations); Wawro et al., 

2012 (linear algebra)). IO curricula fall within the broader spectrum of Inquiry-Based Learning 

(IBL) approaches that focus on student centered learning through exploration and engagement 

(Ernst, Hodge, & Yoshinobu, 2017) facilitated by an instructor’s interest in and use of student 

thinking (Rasmussen, Marrongelle, Kwon, & Hodge, in press). For the purpose of this paper we 

will give examples from an IO curriculum, but also use quotes and references from the more 

general IBL literature. 

In our current project we are exploring the extent to which technology can help mathematics 

educators extend inquiry-oriented (IO) curricula into learning contexts that are less conducive to 

inquiry-oriented approaches. Game Based Learning (GBL) provides a reasonable approach to 

addressing the constraints that large class sizes or non-co-located learning place on instructors’ 

implementation of IO curricula. GBL studies show a clear relation between games and learning 

as games provide a meaningful platform for large numbers of students to engage, participate, and 

guide their learning with proper and timely feedback (Barab, Gresalfi, & Ingram-Goble, 2010; 

Gee, 2003; Hamari et al., 2016; Rosenheck, Gordon-Messer, Clarke-Midura, & Klopfer, 2016). 

However, despite advances in technology and policy initiatives that support development of 

active learning and the incorporation of technology in classrooms, few digital games exist at the 

undergraduate level that explicitly incorporate a research-based curriculum. In this paper, we 

explore the three theoretical perspectives of RME, IO/IBL instruction, and GBL in order to 

identify the ways in which the three perspectives align and might contribute to the development 
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of digital media that incorporate knowledge and practices gained from each perspective.  

We begin with a discussion of each of the three theoretical framings illustrated with specific 

examples. For the first two framings we describe a task sequence and strategies for implementing 

that task sequence that come out of the Inquiry Oriented Linear Algebra (IOLA) curriculum. For 

the third framing, we provide a brief outline of a mathematics game, Rolly’s Adventure, 

developed by the third author, who drew on GBL principles in her game design. We then draw 

on each of these examples to demonstrate how aspects of RME, IO/IBL instruction and GBL 

align with each other and to point out a few ways that RME and IO/IBL might be used to inform 

design of future games, especially as we, the authors, move towards the development of a new 

digital game rooted in the existing IOLA curricular materials. 

Realistic Mathematics Education and Inquiry-Oriented Linear Algebra (IOLA) 

Realistic Mathematics Education is a curriculum design theory rooted in the perspective that 

mathematics is a human activity. Accordingly, RME-based curricula focus on engaging students 

in activities that lend themselves to the development of more formal mathematics. Researchers 

rely on several design heuristics to guide the development of RME-based curricula (Gravemeijer, 

1999; Rasmussen & Blumenfeld, 2007; Zandieh & Rasmussen, 2010). For instance, researchers 

often focus on the historical development of the concept intended to be taught so that the 

curriculum supports students’ guided reinvention of the mathematics. In this paper, we focus on 

Gravemeijer’s (1999) four levels of activity to show how curricula might reflect the design 

theory. Situational activity involves students’ work on mathematical goals in experientially real 

settings. Referential activity involves models-of that refer to physical and mental activity in the 

original setting. General activity involves models-for that facilitate a focus on interpretations 

and solutions independent of the original task setting. Finally, formal activity involves students 

reasoning in ways that reflect the emergence of a new mathematical reality and no longer require 

prior models-for activity. 

The IOLA curriculum (http://iola.math.vt.edu) draws on RME instructional design heuristics 

to guide students through various levels of activity and reflection on that activity to leverage 

their informal, intuitive knowledge into more general and formal mathematics (Wawro, 

Rasmussen, Zandieh, & Larson, 2013). The first unit of the curriculum, referred to as the Magic 

Carpet Ride (MCR) sequence, serves as our example of RME instructional design (Wawro, 

Rasmussen, Zandieh, Sweeney, & Larson, 2012). As stated, situational activity involves 

students working toward mathematical goals in an experientially real setting. The first task of the 

MCR sequence serves to engage students in situational activity by asking them to investigate 

whether it is possible to reach a specific location with two modes of transportation: a magic 

carpet that, when ridden forward for a single hour, results in a displacement of 1 mile East and 2 

miles North of its starting location (along the vector <1, 2>) and a hoverboard, defined similarly 

along the vector <3, 1>. As students work through this task and share solutions with classmates, 

they develop notation for linear combinations of vectors and connections between vector 

equations and systems of equations, providing support for representing the notion of linear 

combinations geometrically and algebraically.  

The second task in the MCR sequence supports students’ referential activity – activity in 

which students refer to and draw generalizations about physical and mental activity, often from 

the situational activity in the original task setting. In the second task, students are asked to 

determine whether there is any location where Old Man Gauss can hide from them if they were 

to use the same two modes of transportation from the previous problem. As students work on this 

task, they begin to develop the ability to conceptualize movement in the plane using 
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combinations of vectors and also reason about the consequences of travel without actually 

calculating the results of linear combinations. This allows students to form conceptions of how 

vectors interact in linear combination without having to know the specific values comprising the 

vectors. The goal of the problem is to help students develop the notion of span in a two-

dimensional setting before formalizing the concept with a definition. As with the first task, 

students are able to build arguments about the span of the given vectors and rely on both 

algebraic and geometric representations to support their arguments.  

As students transition from the second task of MCR to the third, they have experience 

reasoning about linear combinations of vectors and systems of equations in terms of modes of 

transportation in two dimensions. In the third problem, students are asked to determine if, using 

three given vectors that represent modes of transportation in a three-dimensional world, they can 

take a journey that starts and ends at home (i.e., the origin). They are also given the restriction 

that the modes of transportation could only be used once for a fixed amount of time (represented 

by the scalars c1, c2, and c3). The purpose of the problem is to provide an opportunity for students 

to develop geometric imagery for linear dependence and linear independence that can be 

leveraged through students’ continued referential activity toward the development of the formal 

definitions of these concepts. 

In the fourth task, students have the opportunity to engage in general activity, which 

involves students reasoning in ways that are independent of the original setting. In this task, 

students are asked to create their own sets of vectors for ten different conditions – two sets (one 

linearly independent and one linearly dependent) meeting each of the five criteria: two vectors in 

!
2
, three vectors in !

2
, two vectors in !

3
, three vectors in !

3
, and four vectors in !

3
. From their 

example generation, students create conjectures about properties of sets of vectors with respect to 

linear independence and linear dependence. This is general activity because students work with 

vectors without referring back explicitly to the MCR scenario as they explore properties of the 

linear in/dependence of sets of vectors in !
2 
and !

3
; furthermore, students often extend their 

conjectures to !
n
. Finally, students engage in formal activity as they use the definitions of span 

and linear independence in service of other arguments without having to re-unpack the 

definitions’ meanings. This does not tend to occur during the MCR sequence but rather during 

the remainder of the semester as students work on tasks unrelated to the MCR sequence.  

Effectiveness and Challenges of Inquiry-Oriented Instruction 

Effectively implemented inquiry-oriented instructional approaches have been related to 

improved levels of conceptual understanding and equivalent levels of computational 

performance in areas ranging from K-12 mathematics, to undergraduate mathematics, physics, 

and chemistry (e.g., Cai, Wang N., Moyer, Wang, C., & Nie 2011; Deslauriers, Schelew, & 

Wieman, 2011; Kwon, Rasmussen, & Allen, 2005; Lewis & Lewis, 2005). To enact an RME 

curriculum, a classroom must engage students in inquiry into the mathematics of the problems 

posed. These classrooms are problem-based and student-centered, characteristics that overlap 

with other Inquiry Based Learning (IBL) and active learning classrooms (Laursen, Hassi, Kogan, 

& Weston, 2014). Consistent with others in the field (e.g., Kuster et al, 2017), in this work, we 

consider inquiry-oriented instruction to fall under the broader category of inquiry-based 

instruction. Research has shown that students who engage in cognitively demanding 

mathematical tasks have shown greater learning gains than those who do not (Stein & Lane, 

1996). Furthermore, Stein and Lane (1996) found that those gains were greater in classrooms 

where students were encouraged to use multiple representations, multiple solution paths, and 

21st Annual Conference on Research in Undergraduate Mathematics Education 1272







larger than the size of the hole and fraction notation is used to both label the relationship of the 

brick to the hole (one and two-fifths) and the different choices. 

RA was designed specifically with GBL principles to support players in mathematizing their 

own gaming experience, and engaging in mathematical play (Williams-Pierce, 2017). In this 

fashion, RA served as a proxy for the role of the instructor in the brokering process (Rasmussen, 

Zandieh & Wawro, 2009; Wenger, 1998), in that the game required players to act as producers 

(Gee, 2003) in reinventing the mathematics underlying RA. In other words, an intentionally 

designed mathematics game can serve as a responsive digital context that mediates interactions 

between the player, the game, and the mathematical community. Ideally, a well-designed 

mathematics game uses the principles of failure and feedback to support players in experiencing 

a pleasantly frustrating and authentically mathematized world. In the following section, we focus 

more explicitly on how GBL, RME, and IO Instruction can be carefully blended in designs that 

evoke the best of each world. 

Connecting GBL, RME, and IO Instruction - Blending Theoretical Worlds 

The game design principles outlined above and illustrated with Rolly’s Adventure align well 

with the nature of inquiry-oriented instruction using an RME-based curriculum. In Figure 4, we 

draw heavily on Gee’s (2003) notion that good game design is good learning design to show 

parallels between principles of game design, RME curriculum design, and inquiry instruction and 

learning. Statements in the boxes of Figure 4 are all quotes or close paraphrases of various 

authors as indicated.  

Looking across the rows in Figure 4 we see that both digital games and RME curricula place 

importance on the structure of the task sequence. The sequence should start with an activity in 

which students can immediately engage, but that has the potential to be generalized to a more 

sophisticated understanding that will help in solving more complex problems. We see this both 

in the increasing complexity of the tasks in Rolly’s Adventure (RA) and in the magic carpet ride 

(MCR) tasks. In particular, student experiences graphically and imaginatively exploring the 

MCR scenario can be generalized to more formal notions of span and linear independence. As 

our project progresses, we can envision students being immersed in the MCR scenario through a 

digital game environment that allows for numerous episodes of growing complexity, from which 

student generalizations could emerge.  

In considering the nature of the tasks we see that GBL, RME and IO/IBL all place emphasis 

on tasks that are novel and ill-structured allowing for a challenging but do-able problem-solving 

experience. The RA game (Williams-Pierce, in press) and the MCR tasks (Wawro et al., 2012) 

have both been empirically shown to be challenging, but manageable for students. A digital 

game based on the MCR sequence would share this novel approach. Through an iterative design 

process, tasks in the digital game can be created to be challenging but approachable for linear 

algebra students.  

 The teacher’s role in inquiry classrooms is particularly important (Rasmussen & Kwon, 

2007; Rasmussen et al., in press). Games can take on some of these roles. A well-designed game 

can intervene at desired junctures and provide real-time guidance or feedback based on the 

situation that the player is facing. A game can take on the role of the broker between the player 

(student) and the larger mathematics community. This brokering occurs both (1) through game 

play being consistent with the mathematical principles that the students are learning and (2) 

through students being gradually introduced to accepted mathematical notation and terminology.  
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Ultimately the first three categories are aimed at creating an optimal environment for student 

learning. The students’ roles include producing ideas and explanations that allow for their 

guided reinvention of the mathematics. In RA players create increasingly nuanced 

generalizations as more complex situations are presented. Student creation of generalizations 

also occurs in the MCR sequence (Rasmussen, Wawro, & Zandieh, 2015). Our goals as we work 

toward creating a digital game based on the MCR sequence will be for players of this game to 

construct, analyze and critique mathematical arguments in the game scenario. For this to happen 

students need to both (1) experience the mathematical principles/structures through the feedback 

from gameplay and (2) reflect on their experiences and codify them in some way. In addition to 

having aspects of the game serve in the teacher role, the game may also need to have aspects that 

serve in the role of other students in the classroom with whom a student would collaborate in an 

IO or IBL setting (Ernst et al., 2017).  

In conclusion, we believe that these overlapping aspects of GBL, RME and IO/IBL provide a 

solid starting point for creating a digital game based on the existing IOLA curriculum. As 

development progresses we will be able to explore affordances and constraints of the digital 

environment in comparison with the in-person IO classroom.  
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 GBL RME IO/IBL 

Structure 

of task 

sequence 

Good games confront players in the 

initial game levels with problems that 

are specifically designed to allow 

players to form good generalizations 

about what will work well later when 

they face more complex problems.
 1
 

Lessons should have 

experientially real 

starting points and 

engage in situational, 

referential, and general 

activity. 
4
 

---- 

Nature of 

the tasks 

Good games operate at the outer and 

growing edge of a player’s 

competence, remaining challenging, 

but do-able ... [therefore] they are 

often also pleasantly frustrating, 

which is a very motivating state for 

human beings 
1
 

Challenging tasks, 

often situated in 

realistic situations, 

serve as the starting 

point for students’ 

mathematical inquiry.
 3
 

IBL methods invite students to 

work out ill-structured but 

meaningful problems. 
2
  

Students should solve novel 

problems 
3
 

Teachers’ 

role 

Good games give information “on 

demand” and “just in time,” not out 

of the contexts of actual use or apart 

from people’s purposes and goals… 
1
 

Teachers to build on 

students’ thinking by 

posing new questions 

and tasks. 
3
 

Students present and discuss 

solutions; instructors guide and 

monitor this process. 
2
 

Empower learners to see 

mathematics as a human activity. 
3
 

Students’ 

role 

Games allow players to be producers 

and not just consumers. 
1
 

Empower learners to 

see themselves as 

capable of reinventing 

mathematics 
3
  

Students construct, analyze, and 

critique mathematical arguments. 

Their ideas and explanations 

define and drive progress through 

the curriculum. 
2
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