
Evaluating the Potential for Hardware
Acceleration of Four NTRU-Based Key

Encapsulation Mechanisms Using
Software/Hardware Codesign

Farnoud Farahmand, Viet B. Dang, Duc Tri Nguyen, and Kris Gaj(B)

George Mason University, Fairfax, USA
{ffarahma,vdang6,dnguye69,kgaj}@gmu.edu

Abstract. The speed of NTRU-based Key Encapsulation Mechanisms
(KEMs) in software, especially on embedded software platforms, is lim-
ited by the long execution time of its primary operation, polynomial
multiplication. In this paper, we investigate the potential for speed-
ing up the implementations of four NTRU-based KEMs, using soft-
ware/hardware codesign, when targeting Xilinx Zynq UltraScale+ mul-
tiprocessor system-on-chip (MPSoC). All investigated algorithms com-
pete in Round 1 of the NIST PQC standardization process. They include:
ntru-kem from the NTRUEncrypt submission, Streamlined NTRU Prime
and NTRU LPRime KEMs of the NTRU Prime candidate, and NTRU-
HRSS-KEM from the submission of the same name. The most-time con-
suming operation, polynomial multiplication, is implemented in the Pro-
grammable Logic (PL) of Zynq UltraScale+ (i.e., in hardware) using
constant-time hardware architectures most appropriate for a given algo-
rithm. The remaining operations are executed in the Processing System
(PS) of Zynq, based on the ARM Cortex-A53 Application Processing
Unit. The speed-ups of our software/hardware codesigns vs. purely soft-
ware implementations, running on the same Zynq platform, are deter-
mined experimentally, and analyzed in the paper. Our experiments reveal
substantial differences among the investigated candidates in terms of
their potential to benefit from hardware accelerators, with the special
focus on accelerators aimed at offloading to hardware only the most
time-consuming operation of a given cryptosystems. The demonstrated
speed-ups vs. functionally equivalent purely software implementations
vary between 4.0 and 42.7 for encapsulation, and between 6.4 and 149.7
for decapsulation.

Keywords: Software/hardware implementation ·
Hardware accelerator · Key Encapsulation Mechanism ·

This paper is partially based upon work supported by the U.S. Department
of Commerce/National Institute of Standards and Technology under Grant no.
70NANB18H218, as well as the National Science Foundation under Grant no. CNS-
1801512.

c© Springer Nature Switzerland AG 2019
J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 23–43, 2019.
https://doi.org/10.1007/978-3-030-25510-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25510-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-25510-7_2

24 F. Farahmand et al.

Post-Quantum Cryptography · NTRU · System on Chip ·
Programmable logic · High-level synthesis ·
Embedded software platforms

1 Introduction

Hardware benchmarking of Post-Quantum Cryptography (PQC) candidates is
extremely challenging due to their high algorithmic complexity, specifications
geared more toward mathematicians than toward engineers, and the lack of
hardware description language libraries containing code of basic building blocks.
As a result, the workload for a single algorithm can easily reach several man-
months. Consequently, due to the Round 1 focus on evaluating security and
software efficiency [20], only a few candidates in the NIST PQC standardization
process have been fully implemented in hardware to date [9,12,15,16,22,24].
To make the matters worse, a substantial number of operations used by PQC
algorithms are both complex and sequential in nature. Porting these operations
to hardware can take a large number of man-hours, and at the same time bring
little benefit in terms of the total execution time.

In this paper, we propose an approach aimed at overcoming these difficul-
ties. This approach is based on the concept of software/hardware codesign. The
majority of the algorithm operations are implemented in software. Only a few
main operations (optimally just one), taking the majority of the execution time,
are offloaded to hardware.

This approach has become very practical in modern embedded systems due
to the emergence of special platforms, integrating the software programmability
of an ARM-based processor with the hardware programmability of FPGA fabric.
Examples include Xilinx Zynq 7000 System on Chip (SoC), Xilinx Zynq Ultra-
Scale+ MPSoC, Intel Arria 10 SoC FPGAs, and Intel Stratix 10 SoC FPGAs.
These devices support hybrid software/hardware codesigns composed of a tra-
ditional C program running on an ARM processor, communicating, using an
efficient interface protocol (such as AMBA AXI4), with a hardware accelerator
described manually using a hardware description language such as VHDL, or
generated automatically, using High-Level Synthesis.

Assuming that an implemented algorithm contains a limited number of oper-
ations, suitable for parallelization, and these operations contribute 91% or more
to the total execution time, then an order of magnitude (or higher) speed-up is
possible, with the amount of development time reduced from months to weeks
or even days.

An additional benefit of this approach is the possibility to easily estimate
the speed-ups that could be achieved by developing and implementing special
instructions of a general-purpose processor (such as ARM) supporting a specific
PQC algorithm or a group of related-algorithms.

Based on extensive software profiling experiments, conducted using both
ARM and AMD64 platforms, we have determined that all NTRU-based NIST
Round 1 KEMs are very suitable for software/hardware codesign. In particular,

Evaluating the Potential for Hardware Acceleration 25

for all of them, no more than three major operations contribute at least 92%
of the total execution time to both encapsulation and decapsulation. Addition-
ally, the most time consuming of these operations, polynomial multiplications in
Zq[x]/P and Z3[x]/P , with P selected as a polynomial of the prime degree n,
are very easily parallelizable and straightforward to implement in constant time
using moderate amount of hardware resources.

In the rest of this paper, we quantify the influence of a dedicated hardware
accelerator on the performance and implementation cost of each of the following
four Round 1 KEMs: NTRUEncrypt [6], NTRU-HRSS [13], Streamlined NTRU
Prime, and NTRU LPRime [5,21]. The speed-ups of the software/hardware code-
signs vs. purely software implementations are measured, and their influence on
the ranking of candidates is determined.

Table 1. Features of round 1 NTRU-based KEMs.

Feature NTRUEncrypt NTRU-HRSS Streamlined NTRU

Prime

NTRU LPRime

Polynomial P xn − 1 Φn = (xn − 1)/(x − 1)

irreducible in Zq [x]

xn − x − 1

irreducible in Zq [x]

xn − x − 1

irreducible in Zq [x]

Degree n∗ Prime Prime Prime Prime

Modulus q 2d 2ceil(3.5+log2(n)) Prime Prime

Weight w Fixed weight for

f and g

N/A Fixed weight for f

and r. 3w ≤ 2n

16w + 1 ≤ q

Fixed weight for b

and a. 3w ≤ 2n

16w + 2δ + 3 ≤ q

Quotient

rings

R/q:

Zq [x]/(xn − 1)

R/q: Zq [x]/(xn − 1)

S/3: Z3[x]/(Φn)

R/q:

Zq [x]/(xn − x − 1)

R/3:

Z3[x]/(xn − x − 1)

R/q:

Zq [x]/(xn − x − 1)

R/3:

Z3[x]/(xn − x − 1)

#Poly Mults

for

encapsulation

1 in R/q 1 in R/q 1 in R/q 2 in R/q

#Poly Mults

for

decapsulation

2 in R/q 2 in R/q

1 in S/3

2 in R/q

1 in R/3

3 in R/q

Private key f

of the form

1+3F

Yes No No No

Invertibility

checks in key

generation

Yes No Yes No

Decryption

failures

Yes No No No

∗ denoted by N in the specification of NTRUEncrypt and by p in the specifications of Streamlined

NTRU Prime and NTRU LPRime

2 Background

Basic features of four investigated Round 1 NTRU-based KEMs are summarized
in Table 1. NTRUEncrypt is the only candidate that uses a reducible polynomial,

26 F. Farahmand et al.

which may potentially increase its attack surface. It is also the only candidate
with a non-zero probability of decryption failure, and one of the two (together
with Streamlined NTRU Prime) requiring invertibility checks in key generation.
All polynomials have a prime degree n. Three features that have primary influ-
ence on the area of a corresponding hardware accelerator include: (a) prime vs.
power-of-two modulus q for operations on polynomial coefficients; (b) require-
ment for operations in additional rings, such as Z3[x]/(Φn) in NTRU-HRSS and
Z3[x]/(xn − x − 1) in Streamlined NTRU Prime; (c) Private key of the form
1 + 3F in NTRUEncrypt.

The execution time of Encapsulation and Decapsulation is affected primarily
by the required number of polynomial multiplications (Poly Mults), which is the
lowest in case of NTRUEncrypt and the highest in case of NTRU LPRime. The
fixed weight of polynomials with small coefficients affects the execution time of
a polynomial multiplication only in case of using a rotator-based multiplier [4,
8,14].

In Table 2, the numerical values of parameters in the implemented variants
of KEMs are summarized. All investigated KEMs use approximately the same
values of the polynomial degree n, which in hardware leads to similar Poly Mult
execution times in terms of the number of clock cycles. NTRUEncrypt and
NTRU-HRSS have an advantage of using a modulus q being a power of two,
which substantially reduces the time of Poly Mult in software, and the area of
the Poly Mult accelerator in hardware. Three out of four KEMs are claimed to
belong to the security category 5, with the number of pre-quantum security bits
estimated to be close to 256. NTRU-HRSS is the only investigated candidate
limited to the security category 1, with the number of pre-quantum security bits
estimated at 136 (i.e., slightly above 128). It should be stressed that no other sets
of parameters, corresponding to any higher security category are provided in the
specification of this KEM. Similarly, no other parameter sets, corresponding to
any lower security levels, are defined in the specifications of Streamlined NTRU
Prime or NTRU LPRime. The public and private key sizes are the smallest for
NTRUEncrypt and the largest for Streamlined NTRU Prime.

3 Previous Work

3.1 Hardware Accelerators for NTRUEncrypt

In 2001, Bailey et al. [4] introduced and implemented a Fast Convolution Algo-
rithm for polynomial multiplication, exploiting the sparsity of polynomials.
In [14], Kamal et al. analyzed several implementation options for traditional
NTRUEncrypt [11] targeting Virtex-E family of FPGAs. In this design, the
polynomial multiplier took advantage of the ternary nature of polynomials in
NTRUEncrypt and utilized an empirically chosen Barrel shifter (rotator). The
results were reported for the parameter set with (n = 251, q =128). Liu et al.
implemented the truncated polynomial ring multiplier using linear feedback shift
register (LFSR) in 2015 [17] and an extended LFSR [18] in 2016. Both designs
were implemented using Cyclone IV FPGAs. The former paper reported results

Evaluating the Potential for Hardware Acceleration 27

Table 2. Numerical values of parameters in the implemented variants of round 1
NTRU-based KEMs.

Feature NTRUEncrypt NTRU-HRSS Streamlined NTRU

Prime

NTRU LPRime

Parameter

set

NTRU-743 ntruhrss701 sntrup4591761 ntrulpr4591761

Degree n 743 701 761 761

Modulus q 2048 = 211 8192 = 213 212 < 4591 < 213 212 < 4591 < 213

Polynomials

with small

coefficients

Fixed weight 494

for f and g.

Uniform trinary

for r and m

Uniform T+ for f and

g. Uniform trinary for r

and m

Fixed weight 286 for

f and r. Uniform

trinary for g and m

Fixed weight 250 for

b and a.

Expected

failure rates

2−112 0 0 0

Security

category

5 1 5 5

Pre-quantum

security bits

256 136 248 225

Shared key

size in bits

384 256 256 256

Public key

size∗
1023 1140 1218 1047

Secret key

size∗
1173 1422 1600 1238

Ciphertext

size∗
1023 1281 1047 1175

∗ sizes in bytes

for three parameter sets with (n = 251, q = 128), (n = 347, q= 128), and (n = 503,
q =256). The latter paper reported results for 12 parameter sets specified in
the IEEE Standard NTRUEncrypt SVES [2]. Out of these parameter sets, the
closest one to the cases considered in this paper was the parameter set with
(n =761, q =2048). None of the aforementioned designs was made open-source.
In [8], the first full constant-time implementation of the IEEE Standard NTRU-
Encrypt SVES [2] was reported. This implementation supported two parame-
ter sets, with (n = 1499, q = 2048) and (n = 1087, q = 2048), and targeted the
Xilinx Virtex UltraScale FPGA. As described above, the results reported in
these papers concerned different parameter values and/or different (mostly much
older) hardware platforms. Additionally, all aforementioned hardware implemen-
tations other than [17] and [8] were not constant time. As a result, their com-
parison with the results presented in this work is neither practical nor fair.

3.2 Software-Hardware Codesign of PQC Algorithms

Only a few attempts to accelerate software implementations of post-quantum
cryptosystems have been made through software/hardware (SW/HW) codesign.
A coprocessor consisting of the PicoBlaze softcore and several parallel acceler-
ation units for the McEliece cryptosystem was implemented on Spartan-3AN

28 F. Farahmand et al.

FPGAs by Ghosh et al. [10]. No speed-up vs. purely software implementation
using PicoBlaze was reported.

In 2015, Aysu et al. [3] built a high-speed implementation of a lattice-based
digital signature scheme using SW/HW codesign techniques. The paper focused
on the acceleration of signature generation. The design targeted the Cyclone
IV FPGA family and consisted of the NIOS2 soft processor, a hash unit, and
a polynomial multiplier. Compared to the C implementation running on the
NIOS2 processor, the most efficient software/hardware codesign reported in the
paper achieved the speed-up of 26,250x at the expense of the increase in the
number of Logic Elements by a factor of 20.

Migliore et al. [19] presented a hardware/software codesign for the lattice-
based Fan-Vercauteren (FV) homomorphic encryption scheme with the major-
ity of the Karatsuba-based multiplication/relinearization operation performed
in hardware. The platform used for hardware acceleration was Stratix V GX
FPGA. Software ran on a PC, based on Intel i7-4910MQ, with 4 cores operat-
ing at 2.9 GHz, connected with the FPGA-based DE5-450 Terasic board using
PCI Express (PCIe) 3.0, with eight lines, capable of handling transfers with the
throughput up to 250 MB/s per line in full-duplex. The speed-up compared to
the purely software implementation was estimated to be 1.4x.

Wang et al. [23] reported a software/hardware implementation of the PQC
digital signature scheme XMSS. The selected platform was an Intel Cyclone V
SoC, and the software part of the design was implemented using a soft-core
processor RISC-V. Hardware accelerators supported a general-purpose SHA-256
hash function, as well as several XMSS specific operations. The design achieved
the speed-up of 23x for signing and 18x for verification over a purely software
implementation running on RISC-V.

All the aforementioned platforms were substantially different than the plat-
forms used in this work. The algorithms and their parameters were also substan-
tially different. As a result, limited information could be inferred regarding the
optimal software/hardware partitioning, expected speed-up, or expected com-
munication overhead.

4 Methodology

4.1 Platform and Software

The platform selected for our experiments is Xilinx Zynq UltraScale+ MPSoC
XCZU9EG-2FFVB1156E, which is fabricated using a 16 nm technology and
mounted on the ZCU102 Evaluation Kit from Xilinx. This MPSoC is composed of
two major parts sharing the same chip, the PS and PL. The PS (Processing Sys-
tem) includes a quad-core ARM Cortex-A53 Application Processing Unit (APU),
a dual-core ARM Cortex-R5 Real-Time Processing Unit (RPU), Graphics Pro-
cessing Unit, 256 kB On-Chip Memory, and more. Each processor of the APU
and RPU is equipped with a 32 kB instruction cache and a 32 kB data cache. In
our experiments, we use only one processor of the APU (Core 0 of Cortex-A53)
running at the frequency of 1.2 GHz. The PL (Programmable Logic) includes

Evaluating the Potential for Hardware Acceleration 29

a programmable FPGA fabric similar to that of Virtex UltraScale+ FPGAs.
The software used is Xilinx Vivado Design Suite HLx Edition, Xilinx Software
Development Kit (XSDK), and Xilinx Vivado HLS, all with the versions no.
2017.2.

A high-level block diagram of the experimental software/hardware codesign
platform is shown in Fig. 1. The hardware accelerator, implementing the Poly-
nomial Multiplier unit, is denoted as Poly Mult. This accelerator is extended
with the Input and Output FIFOs, as well as AXI DMA, for high-speed com-
munication with the Processing System. The details of the Input and Output
FIFO interfaces are shown in Fig. 2. Timing measurements are performed using
an AXI Timer, capable of measuring time in clock cycles of the 200 MHz system
clock. The Poly Mult unit can operate at a variable frequency different than that
of DMA. This frequency can be changed at run time using the Clocking Wizard,
controlled from software. As a result, the Input and Output FIFOs use different
clocks for their read and write operations.

Output FIFOInput FIFO Poly Mult

Zynq Processing System

AXI DMA

FIFO
Interface

FIFO
Interface

AXI Stream
Interface

AXI Stream
Interface

AX
I L

ite

In
te

rf
ac

e

AX
I F

ul
l

In
te

rf
ac

e

AX
I L

ite

In
te

rf
ac

e

IR
Q

Clocking wizard

rd_clkwr_clk wr_clk rd_clkclk

UUT_clk

Main Clock
AX

I L
ite

In

te
rf

ac
e

AXI TimerAXI Lite
Interface

Fig. 1. High-level block diagram of the experimental SW/HW co-design platform.

4.2 Design of Hardware Using the RTL Methodology

The Register-Transfer Level (RTL) designs of hardware accelerators for NTRU-
based KEMs follow closely the block diagrams shown in Figs. 3, 4, 5 and 6.

30 F. Farahmand et al.

fifo_empty

Input FIFO fifo_read

fifo_data

axis_tvalid

axis_tready

axis_tdata

axis_tvalid

Output FIFO
axis_tready

axis_tdata

fifo_write

fifo_full

fifo_data
axis_tlast

Fig. 2. The input and output FIFO interface.

d

d

d

d d

d d …. d

d

0 1 2 n-1

d*n

….

ld ld ld ld

d*n

d

d….

….

dddd

sin

din

dout

sel
d

Mod qd

0s

en en en en

(a) Zq LFSR. The blue part is only utilized in Streamlined NTRU Prime and NTRU
LPRime

2

2

2 2

2 2 …. 2

2

0 1 2 n-1

2n

….

ld ld ld ld

2n

2

2….

….

2222

din

dout

+
mod 3

2

2

en en en en

(b) Z3 LFSR

Fig. 3. LFSR block diagrams. (Color figure online)

The Zq LFSR, used in all KEMs, is initialized with the value of a polynomial
a(x) with large coefficients. In each subsequent iteration, the output from LFSR
contains the value a(x) · xi mod P . In a single clock cycle, a simple multipli-
cation by x, namely a(x) · xi+1 mod P= a(x) · xi · x mod P , is performed. For
P = xn − 1, this multiplication is equivalent to rotation. For P = xn − x − 1, an
extra addition mod q, marked in Fig. 3a with the blue background is required.

Evaluating the Potential for Hardware Acceleration 31

0s

c0
su
m
_f
b 0

su
m
_f
b 1

su
m
_f
b n

-1

ro0
ro1 ron-1

su
m

0

su
m

1

su
m

n-
1

11n
11

11n

ro

11

11

11

11

<<1
11

0s

c0

11

11

11

11

<<1
11

0s

c0

11

11

11

11

<<1
11

11n

111111

….

….

111111

11
REP

c0 c0v 11
c0v

11
c0v

Reg_h

64

in
fif
o_

da
ta

infifo_read

infifo_em
pty

64

outfifo_w
riteou

tf
ifo

_f
ul
l

ou
tf
ifo

_d
at
a

10...0 63...0

Controller

he
ad

er

he
ad

er

11n

en

2

r_RAMf_RAM

64 645 5

2 2

== -1

== 0

c0

1010

do

wr_ad rd_addi

do

wr_ad rd_addi

sumsum_fb

64 64

11n

Zq_PISO

11
c_t

EXT

en

ld

11n
eq_0

Zq_LFSR
en
ld

sel

dinsin

dout

we we

Fig. 4. Block diagram of the Poly Mult unit for NTRUEncrypt.

The multiplication in the ring S/3 for NTRU-HRSS and R/3 for Streamlined
NTRU Prime is performed using the Z3 LFSR, shown Fig. 3b. This circuit oper-
ates using the same principle as Zq LFSR, except all polynomial coefficients are
reduced mod 3.

The entire Poly Mult unit for NTRUEncrypt is shown in Fig. 4. The multi-
plication of a polynomial a(x) with large coefficients by a polynomial b(x) with
small coefficients (limited to −1, 0, and 1), involves calculating a(x) · xi mod P ,
multiplying it by bi, and adding it to the partial sum. The multiplication of each
coefficient by −1 is accomplished by calculating their one’s complement (using
an XOR with c0v, obtained by replicating c0 11 times) and the addition of c0
as carry-in to the following adder, represented by a square with +.

Coefficients of the public key h, are preloaded to the NTRUEncrypt Zq LFSR
before an encapsulation starts. All of these coefficients can be stored in Reg h,
and loaded back to Zq LFSR in a single clock cycle, in case this LFSR is used
in-between for any operation not involving h. Similarly, coefficients of the private
key f are preloaded to the asymmetric f RAM, visible at the input as a 32x64
RAM, and at the output as a 1024x2 RAM, before the decryption starts.

32 F. Farahmand et al.

0s

c0

su
m
_f
b 0

su
m
_f
b 1

su
m
_f
b n

-1

zqo0
zqo1 zqon-1

su
m

0

su
m

1

su
m

n-
1

sum

13

13n

2

sum_fb

13

13

13

13

0s

c0

13

13

13

0s

c0

13

13

13

13

1313
13

13n

….

….

13
c0v 13

c0v
13

c0v

Reg_h

r_RAMf_RAM

64 64

64

Zq_PISO

13
c_t

in
fif
o_

da
ta

infifo_read

infifo_em
pty

64

outfifo_w
riteou

tf
ifo

_f
ul
l

ou
tf
ifo

_d
at
a

12...0 63...0

5 5

2 2

he
ad

er

64 64

he
ad

er

13n

13

2n

0s

c0r

sum_r0

sum_r1

sum_rn-1

z3o0

z3o1

z3on-1

22

2

2

0s

c0r
22

2

2

0s

c0r

22

2

2

2

2

…
.…
.

2n

64

5

10

in
fif
o_

da
ta

2

== -1 == 0

finv_eq0

r
64

Controller

EXT

Z3_PISO

sum_r

64

r

2n

Mod 3

2n

== -1

== 0

13
REP c0v

eq_0

c0

1010

13n

en
do

wr_ad rd_addi

en

ld

do

wr_ad rd_addi

finv_RAM

do

w
r_
ad

rd
_a

d

di

su
m
_2

en

ld

finv_eqm1

Center_3q

15n

sum_r
2n su

m
_r

n-
1

su
m
_r

n-
1

2

su
m
_r

n-
1

Zq_LFSR
en
ld

sel

dinsin

dout

we we

Z3_LFSRen
ld

din dout

we

Fig. 5. Block diagram of the Poly Mult unit for NTRU-HRSS. (Color figure online)

The partial and final results are stored in the Zq PISO (Parallel-In Serial-
Out) unit, with the parallel input of the width of 11 · n bits, the parallel output
of the same width (used to enable the accumulation of intermediate products),
and the serial output of the width of 11 bits used to read out the final result to
the output FIFO.

The multiplication t = r ∗h, performed during encapsulation and the second
part of decapsulation, takes n = 743 clock cycles. The multiplication m′ =
f ∗ c = (1 + 3 · F) ∗ c, performed during the first part of decapsulation, requires
two additional clock cycles, used respectively for the calculation of F ∗c+2 ·F ∗c
(with the multiplication of each coefficient of F ∗c by 2 accomplished using a shift
to the left by one, denoted in the diagram as << 1) and c+3·F ∗c. In this paper,
a ∗ b denotes polynomial multiplication, and a · b denotes regular multiplication,
i.e., a multiplication of a polynomial and a constant, or a multiplication of two
polynomial terms.

The Controller is responsible for generating suitable select and enable signals,
communication with the Input and Output FIFOs, interpreting the input headers
with instructions sent by the respective driver, and generating the output header
containing the status and error codes that are sent back to the driver.

A block diagram of the hardware accelerator for NTRU-HRSS is shown in
Fig. 5. The new part, marked using the blue background, is responsible for opera-
tions in the ring S/3. Compared to NTRUEncrypt, the size of all large coefficients
increases from 11 to 13 bits. The portion of the circuit responsible for performing

Evaluating the Potential for Hardware Acceleration 33

0s

c0

su
m
_f
b 0

su
m
_f
b 1

su
m
_f
b n

-1

ro0 ro1 ron-1

su
m

0

su
m

1

su
m

n-
1

sum

13n

13

13n

2

sum_fb

13

13

13

13

0s

c0

13

13

13

0s

c0

13

13

13

13

131313

13n

….

….

13
REPc0

c0v 13
c0v

13
c0v

Reg_h
r_RAMf_RAM

64 64

64

Zq_PISO

13c_t

in
fif
o_

da
ta

infifo_read

infifo_em
pty

64

outfifo_w
riteou

tf
ifo

_f
ul
l

ou
tf
ifo

_d
at
a

12...0 63...0

5 5

2 2

he
ad

er

64 64
he

ad
er

13n

13M
od

 q

sum_fb

2n

0s

c0r

sum_r0

sum_r1

sum_rn-1

ro0

ro1

ron-1

22

2

2

0s

c0r
22

2

2

0s

c0r

22

2

2
2

2

2

…
.

…
.

2n

64

5

10

in
fif
o_

da
ta

2

== -1 == 0

c0r finv_eq0

r
64

Controller

EXT

Z3_PISO

sum_r

64

r

2n

Mod 3

2n

Zq_LFSR

== -1

== 0 eq_0

c0

1010

Reg_A

13n

en

do

wr_ad rd_addi

en
ld

sel

en

ld

do

wr_ad rd_addi

finv_RAM

do

w
r_
ad

rd
_a

d

di

dinsin

13

M
od

 q

M
od

 q13 13

en

ld

dout

Z3_LFSRen
ld

din dout

en

r
64

wewe

we

Fig. 6. Block diagram of the Poly Mult units for Streamlined NTRU Prime and NTRU
LPRime. The blue parts are used only in the design for Streamlined NTRU Prime and
the red part is used only in the design for NTRU LPRime. (Color figure online)

multiplication by f = (1 + 3 · F) is removed. Other than that, the operation of
the circuit remains almost identical.

A block diagram of the hardware accelerators for Streamlined NTRU Prime
and NTRU LPRime is shown in Fig. 6. The operations in R/3 are necessary
only in case of Streamlined NTRU Prime and are similar to operations in S/3
for NTRU-HRSS. Compared to NTRU-HRSS, the main difference is the need
for reduction of partial sums, involving large coefficients, mod q. Since now, q is
a 13-bit prime, a conditional subtraction is necessary. An additional register A
is required for NTRU LPRime only, increasing the number of required flip-flops.

4.3 Design of Hardware Using the HLS Methodology

The reference implementation of NTRUEncrypt in C, for n = 743, is based on
the grade school algorithm for multiplication (also known as schoolbook, paper-
and-pencil, etc.). Only for n equal to a power of 2, the fully recursive Karatsuba
multiplication is used. When the grade school implementation of Poly Mult
in C was provided at the input of Vivado HLS, the resulting circuit required
tens of thousands of clock cycles to complete a single multiplication (even after
inserting multiple Vivado HLS directives in the form of pragmas). The similar

34 F. Farahmand et al.

results were obtained by using an earlier C implementation of Poly Mult, based
on the concept of Rotation, developed by OnBoard Security [1].

As a result, the decision was made to treat C like a hardware description
language, and implement Poly Mult from scratch, in such a way to infer the
circuit from Fig. 4. This attempt appeared to be successful, which was indicated
by reaching almost exactly the same number of clock cycles as that required by
the RTL implementation. The same approach was then applied to the remaining
three candidates.

The HLS-ready C code was first verified using a C testbench, based on the
reference software implementation used as a source of test vectors. The resulting
HDL code was then verified using exactly the same VHDL testbench which
was used to verify the RTL implementation. The implementation phase (logic
synthesis, mapping, placing, and routing) was identical for both RTL and HLS
approaches. In the HLS flow, the first result estimates, in terms of the number of
clock cycles, maximum clock frequency, and resource utilization, were generated
in the form of reports by Vivado HLS. However, except for the number of clock
cycles (which was accurate), the remaining numbers did not match the final
post-place & route results.

5 Results

The results of profiling for the purely software implementations, running on a
single core of ARM Cortex-A53, at the frequency of 1.2 GHz, are presented in
the left portion of Table 3. For each of the four investigated algorithms and each
major operation (Encapsulation and Decapsulation), four most time-consuming
functions are identified. In each of the investigated cases, the most time consum-
ing function is poly mult(), responsible for performing polynomial multiplication
in R/q. The contribution of this function varies between 78.2% in case of the
NTRUEncrypt encapsulation, up to 99.5% in case of the Streamlined NTRU
Prime decapsulation. poly mult() is the only function listed among the four most
time-consuming functions for all 8 investigated operations. It is also a function
with a well-known potential for vast parallelization (and thus a very substan-
tial speed-up) in hardware. As a result, poly mult() was a natural candidate
for offloading to hardware, and no other function listed in Table 3 could offer
a clear potential for delivering an additional speed-up, especially for multiple
algorithms.

The number of clock cycles required by Poly Mult, the maximum clock fre-
quency, and the resource utilization obtained using the RTL and HLS approaches
are summarized in Table 4. In both cases, the number of clock cycles is deter-
mined using simulation. The maximum clock frequency is obtained by using
Vivado in combination with the automated hardware optimization tool called
Minerva [7]. The obtained values correspond to the static timing analysis results
after placing and routing, and have been confirmed experimentally using our
setup shown in Fig. 1. The resource utilization is based on the post-place and
route reports of Vivado. Only resources used to implement Poly Mult are listed in

Evaluating the Potential for Hardware Acceleration 35

Table 3. Profiling results for the software and software/hardware implementations
targeting Zynq UltraScale+ MPSoC. (SW) and (HW) indicate whether poly mult() is
executed in software or in hardware. x2 means that a given function is called twice.

Function Time [us] Time [%] Function Time [us] Time [%]

Software Software/Hardware

NTRUEncrypt - Encaps

1. poly mult (SW) 743.510 78.177 1. generate r 91.665 38.286

2. generate r 91.665 9.638 2. mask m 40.960 17.108

3. mask m 40.960 4.307 3. poly mult (HW) 32.115 13.414

4. crypto hash sha512 x2 17.650 1.856 4. crypto hash sha512 x2 17.650 7.372

NTRUEncrypt - Decaps

1. poly mult (SW) x2 1492.870 87.800 1. generate r 79.890 29.999

2. generate r 79.890 4.699 2. poly mult (HW) x2 55.966 21.015

3. unmask m 40.865 2.403 3. unmask m 40.865 15.345

4. unpack secret key CCA 17.975 1.057 4. unpack secret key CCA 17.975 6.750

NTRU-HRSS - Encaps

1. poly mult (SW) 3091.550 97.585 1. poly Rq frommsg 31.570 28.138

2. poly Rq frommsg 31.570 0.997 2. poly mult (HW) 31.521 28.094

3. owcpa samplemsg 11.445 0.361 3. owcpa samplemsg 11.445 10.201

4. poly Rq getnoise 10.595 0.334 4. poly Rq getnoise 10.595 9.443

NTRU-HRSS - Decaps

1. poly mult (SW) x2 9302.780 99.211 1. poly mult (HW) x2 51.333 39.678

2. poly Rq frommsg 30.460 0.325 2. poly Rq frommsg 30.460 23.544

3. unpack sk 10.315 0.110 3. unpack sk 10.315 7.973

4. poly Rq getnoise 9.975 0.106 4. poly Rq getnoise 9.975 7.710

Streamlined NTRU Prime - Encaps

1. poly mult (SW) 11, 846.950 92.702 1. small random weightw 766.025 77.933

2. small random weightw 766.025 5.994 2. FIPS202 SHA3 512 155.080 15.777

3. FIPS202 SHA3 512 155.080 1.214 3. poly mult (HW) 34.003 3.459

4. rq decode 10.165 0.080 4. rq decode 10.165 1.034

Streamlined NTRU Prime - Decaps

1. poly mult (SW) x2 35, 546.140 99.489 1. FIPS202 SHA3 512 154.535 64.734

2. FIPS202 SHA3 512 154.535 0.433 2. poly mult (HW) x2 52.428 21.962

3. rq decode 10.145 0.028 3. rq decode 10.145 4.250

4. rq round3 9.045 0.025 4. rq round3 9.045 3.789

NTRU LPRime - Encaps

1. poly mult (SW) x2 23, 693.840 97.908 1. small seeded weightw 327.195 57.686

2. small seeded weightw 327.195 1.352 2. FIPS202 SHA3 512 x2 106.355 18.751

3. FIPS202 SHA3 512 x2 106.355 0.439 3. poly mult (HW) x2 53.663 9.461

4. rq fromseed 28.995 0.120 4. rq fromseed 28.995 5.112

NTRU LPRime - Decaps

1. poly mult (SW) x2 35, 540.750 98.598 1. small seeded weightw 339.285 58.920

2. small seeded weightw 339.285 0.941 2. FIPS202 SHA3 512 x2 102.960 17.880

3. FIPS202 SHA3 512 x2 102.960 0.286 3. poly mult (HW) x2 68.484 11.893

4. rq fromseed 29.000 0.080 4. rq fromseed 29.000 5.036

36 F. Farahmand et al.

Table 4. Differences in results obtained using the RTL and HLS approaches.

Metric RTL HLS HLS/RTL

NTRUEncrypt

#cycles for Poly Mult in Encaps 744 743 0.999

#cycles for Poly Mult in Decaps 1, 491 1, 488 0.971

Maximum Clk Freq [MHz] 330 251 0.761

#LUTs 27, 912 42, 667 1.529

#Slices 4, 431 6, 268 1.415

#FFs 24, 697 24, 756 1.002

#BRAMs 4 3 0.750

NTRU-HRSS

#cycles for Poly Mult in Encaps 702 703 1.001

#cycles for Poly Mult in Decaps 2, 111 2, 110 0.999

Maximum Clk Freq [MHz] 300 295 0.983

#LUTs 33, 230 32, 196 0.969

#Slices 5, 476 6, 622 1.209

#FFs 32, 327 48, 792 1.609

#BRAMs 6 4 0.667

Streamlined NTRU prime

#cycles for Poly Mult in Encaps 762 761 0.998

#cycles for Poly Mult in Decaps 2, 291 2, 291 1.000

Maximum Clk Freq [MHz] 255 155 0.608

#LUTs 65, 207 88, 678 1.360

#Slices 9, 699 13, 690 1.411

#FFs 32, 929 31, 764 0.965

#BRAMs 6 4 0.667

NTRU LPRime

#cycles for Poly Mult in Encaps 1, 524 1, 522 0.998

#cycles for Poly Mult in Decaps 2, 287 2, 283 0.998

Maximum Clk Freq [MHz] 255 158 0.620

#LUTs 52, 297 77, 385 1.480

#Slices 8, 483 12, 215 1.440

#FFs 39, 730 39, 832 1.002

#BRAMs 4 3 0.750

Evaluating the Potential for Hardware Acceleration 37

Table 4. Additional logic implemented in hardware, shown in Fig. 1, such as AXI
DMA, Input FIFO, Output FIFO, Clocking Wizard, and AXI Timer, requires
additional 7,858 LUTs, 1,593 Slices, 8,794 flip-flops, and 11 BRAMs.

Overall, the HLS-based implementations match very well (or even outper-
form) manually developed RTL implementations in terms of the number of
clock cycles and the number of storage elements (flip-flops and BRAMs). The
only exception is NTRU-HRSS, where the number of flip-flops is about 61%
larger in case of using HLS. However, the HLS-based implementations require
between 36% and 53% of more LUTs, and between 41% and 44% of more Slices.
Once again the only exception is NTRU-HRSS, where the number of LUTs is
comparable, at the expense of the substantial increase in the number of flip-
flops. Additionally, the maximum clock frequency of the HLS-generated designs
reached between 61% and 98% of the frequency of the manually-generated RTL
designs. The development time was comparable because of the additional learn-
ing curve and more frequent trial-and-error tests necessary to develop an optimal
HLS-ready C code.

Overall, the RTL approach was demonstrated to be superior, although not
by a high margin. This approach is also more mature and more trusted by the
cryptographic engineering community. As a result, in the rest of this paper, only
results obtained using the RTL approach are reported and analyzed.

In Table 5, area overhead caused by special operations specific to particular
KEMs is listed. Overall, Streamlined NTRUPrime and NTRU LPRime pay quite
substantial price in terms of both maximum clock frequency and area compared
to NTRUEncrypt and NTRU-HRSS. For example, replacing q = 213 by the 13-
bit prime q = 4591 between NTRU-HRSS and Streamlined NTRU Prime, results
in the 15% decrease in the maximum clock frequency, and increase in the number
of LUTs by approximately a factor of two. The number of storage elements, flip-
flops and BRAMs, remains approximately the same. Supporting operations in
S/3 for NTRU-HRSS and R/3 for Streamlined NTRU Prime requires 26.4%

Table 5. Area overhead of special operations of NTRU-based KEMs.

Operations LUTs FFs

NTRUEncrypt

Logic supporting multiplication by 1+3F 12.0% 0%

NTRU-HRSS

Logic supporting operations in S/3 26.4% 16.4%

Streamlined NTRU Prime

Logic supporting operations in R/3 8.4% 9.3%

Logic supporting mod q 38.0% 0%

NTRU LPRime

Logic supporting mod q 53.2% 0%

Logic for register A 0% 24.9%

38 F. Farahmand et al.

and 8.4% of the total number of accelerator LUTs, respectively. The percentage
is larger in NTRU-HRSS primarily because of the smaller total area required
by this KEM. The resource utilization in absolute area units (LUTs, FFs) is
comparable. Supporting special multiplication by 1+3F in NTRUEncrypt costs
about 12% of the total number of LUTs, and the special register A in NTRU
LPRime requires about 25% more flip-flops.

Table 6. Timing results.

Algorithm Total

SW [ms]

Total SW/

HW [ms]

Total

speed-up

Poly Mul

SW [ms]

Poly Mul

HW [ms]

Poly Mul

speed-up

SW part

Sped up

by HW [%]

Encapsulation

NTRUEncrypt 0.951 0.239 4.0 0.744 0.032 23.2 78.18

NTRU-HRSS 3.168 0.112 28.2 3.092 0.032 98.1 97.58

Strl NTRU Prime 12.780 0.983 13.0 11.847 0.034 348.4 92.70

NTRU LPRime 24.200 0.567 42.7 23.694 0.054 441.5 97.91

Decapsulation

NTRUEncrypt 1.700 0.266 6.4 1.493 0.056 26.7 87.80

NTRU-HRSS 9.377 0.129 72.5 9.303 0.051 181.2 98.95

Strl NTRU Prime 35.729 0.239 149.7 35.546 0.052 678.0 99.49

NTRU LPRime 36.046 0.576 62.6 35.541 0.068 519.0 98.60

Timing results are summarized in Table 6. For each investigated KEM and
each major operation (Encapsulation and Decapsulation), we list the total exe-
cution time in software (for the reference software implementations in C running
on ARM Cortex-A53 of Zynq UltraScale+ MPSoC), the total execution time in
software and hardware (after offloading polynomial multiplications to hardware),
and the obtained speed-up. The ARM processor runs at 1.2 GHz, DMA for the
communication between the processor and the hardware accelerator at 200 MHz,
and the hardware accelerators at the maximum frequencies, specific for the RTL
implementations of each algorithm, listed in Table 4. All execution times were
obtained through experimental measurements using the setup shown in Fig. 1.

The total speed-up varies from 4.0 for encapsulation in NTRUEncrypt to
149.7 for decapsulation in the Streamlined NTRU Prime. The main reason for
such big differences is the percentage of time spent by the respective software
implementation for operations offloaded to hardware. For the aforementioned
two operations, this percentage varies from 78.18% to 99.49%.

The time required for the polynomial multiplication in hardware is similar for
all algorithms, to the large extant because a significant percentage of that time
is spent for the DMA initialization and data transfer, and only a small percent-
age on actual computations. The software/hardware communication overhead is
quantified in Table 7. It is defined as the percentage of the total number of clock
cycles used for the DMA initialization and the input/output data transfer vs.
the total number of clock cycles used by the hardware accelerator. As shown in
the respective rows of Table 7, this overhead varies between 78% and 89%.

Evaluating the Potential for Hardware Acceleration 39

Table 7. Software/hardware communication overhead.

Feature NTRU
Encrypt

NTRU-
HRSS

Streamlined
NTRU Prime

NTRU
LPRime

Encapsulation

#cycles for transfer
(input + output)

25 + 744 23 + 702 25 + 762 25 + 1523

#cycles for Poly Muls 746 702 765 1,531

#cycles for DMA init 4,908 4,877 5,249 7,654

Total #cycles 6,423 6,304 6,801 10,733

Transfer overhead % 88.39 88.86 88.75 85.74

Decapsulation

#cycles for transfer
(input + output)

769 + 1488 725 + 725 763 + 787 787 + 2285

#cycles for Poly Muls 1,494 2,111 2,296 2,295

#cycles for DMA init 7,442 6,706 6,640 8,330

Total #cycles 11,193 10,267 10,486 13,697

Transfer overhead % 86.65 79.44 78.10 83.24

Table 8. Actual speed-up for Zynq UltraScale+ MPSoC (with Proc. Clk =1.2 GHz,
Comm. Clk = 200 MHz, Accel. Clk = Max. Clk Freq from Table 3) vs. estimated speed-
up for the case of Special Instructions (SI) of ARM Cortex A53 (Proc. Clk = Comm.
Clk = Accel. Clk = 1.2 GHz).

Feature NTRU
Encrypt

NTRU-
HRSS

Streamlined
NTRU Prime

NTRU
LPRime

Encapsulation

Poly Mul speed-up act 24.56 101.92 349.98 444.03

Poly Mul speed-up SI 471.14 2,079.81 7,328.01 7,387.49

Ratio SI/Actual 19.19 20.41 20.94 16.64

Total speed-up act 3.97 28.24 13.00 42.67

Total speed-up SI 4.51 38.01 13.44 46.80

Ratio SI/A 1.14 1.35 1.03 1.10

Decapsulation

Poly Mul speed-up act 29.03 192.35 682.91 522.98

Poly Mul speed-up SI 382.07 2,507.91 8,872.67 6,357.21

Ratio SI/Actual 13.16 13.04 12.99 12.16

Total speed-up actual 6.38 72.48 149.67 62.60

Total speed-up SI 7.77 110.68 187.38 70.20

Ratio SI/A 1.22 1.53 1.25 1.12

40 F. Farahmand et al.

In spite of this communication penalty, the speed-up for the polynomial mul-
tiplication itself is very high. For all KEMs other than NTRUEncrypt, this speed-
up exceeds 98. For NTRUEncrypt, it is about 23 for encapsulation and 27 for
decapsulation. This lower speed-up can be attributed primarily to the faster
software implementation (due to the use of q = 211).

Overall, offloading polynomial multiplication to hardware has substantially
changed the ranking of investigated KEMs. In pure software, NTRUEncrypt was
by far the most efficient, followed by NTRU-HRSS, and trailed by Streamlined
NTRU Prime and NTRU LPRime. In the software/hardware implementation,
NTRU-HRSS was the fastest for both basic operations. For encapsulation it was
followed by NTRUEncrypt, NTRU LPRime, and Streamlined NTRU Prime, and
for decapsulation, by Streamlined NTRU Prime, NTRUEncrypt, and NTRU
LPRime. However, when analyzing these results, one needs to keep in mind
that NTRU-HRSS provides much lower security level compared to all remaining
KEMs (the security strength category 1 vs. 5), and the specifications of these
KEMs do not support comparing all of them at the same security level.

Using the actual results for the existing modern embedded systems platform,
Zynq UltraScale+ MPSoC, we can also estimate the results for a hypothetical
future platform, an ARM processor, equipped with special instructions capable
of executing polynomial multiplication. We assume that in such platform, the
number of clock cycles required for computations and input/output transfer will
remain the same. However, both the Poly Mult and the transfer of data will be
performed at the same frequency as the frequency of the processor itself (e.g.,
1.2 GHz). We also assume that the DMA initialization is not any longer required.

The speed-ups calculated under such assumptions are referred to as speed-ups
for the case of Special Instructions (SI). These speed-ups are summarized and
compared with the actual speed-ups (obtained for Zynq UltraScale+ MPSoC)
in Table 8. The SI speed-ups for Poly Mult itself exceed the actual speed ups by
a factor varying between 16.64 and 20.94 for encapsulation, and between 12.16
and 13.16 for decapsulation. At the same time, the total speed-ups improve for
the case of special instructions by much smaller factor, varying between 1.03 and
1.35 for encapsulation, and between 1.12 and 1.53 for decapsulation. As a result,
our study can be used as a relatively accurate predictor of the improvements
possible by extending a modern ARM processor with special instructions capable
of performing the respective variants of Poly Mult.

On the other hand, our current study cannot be used to predict the perfor-
mance and ranking of the investigated candidates when implemented entirely in
hardware. Such implementations can benefit from elimination of the communi-
cation overhead between a processor and a hardware accelerator. They may also
take advantage of an ability to parallelize some additional operations, other than
Poly Mult. At the same time for many auxiliary operations, which are sequential
in nature, moving from a processor to reconfigurable fabric, operating at much
lower clock frequency, may have either negative or at least negligible effect on the
overall performance. As a result, the actual full hardware implementations are

Evaluating the Potential for Hardware Acceleration 41

required to properly rank candidates in terms of their performance in FPGAs
and ASICs.

When it comes to alternative software/hardware implementations, the right
side of Table 3, may serve as a starting point for future work. This side, presents
the results of profiling for our software/hardware implementations. Only for
the NTRU-HRSS decapsulation, Poly Mult remains the most time-consuming
operation. For all remaining algorithms it moves to the second or third position
in the ranking. The new most time consuming functions, such as generate r
for NTRUEncrypt, small random weightw for the Streamlined NTRU Prime -
Encapsulation, and small seeded weightw for NTRU LPRime are likely to be
parallalizable and thus suitable for offloading to hardware. On the other hand,
FIPS202 SHA3 512 is mostly sequential, and thus it is likely to offer a lower
performance gain when implemented in hardware. Additional factors, such as
the development effort, the total size of inputs and outputs of a given function,
as well as the area/memory requirements may need to be taken into account
when investigating any alternative software/hardware partitioning schemes.

6 Conclusions

Using SW/HW codesign allows the implementers of candidates for new crypto-
graphic standards (such as NIST PQC standards) to substantially reduce the
development time compared to the use of purely hardware implementations.
The implementers avoid reproducing in hardware the cumbersome and mostly
sequential operations required for input/output, as well as multiple auxiliary
operations that have a negligible influence on the total execution time. Instead,
they can focus on major and most time consuming operations, which can easily
contribute about 90% to the total execution time, and are suitable for paralleliza-
tion. In this study, we have clearly demonstrated the viability of this approach
in case of four Round 1 NIST PQC candidates and their major operation, Poly
Mult. The obtained results shed a light on the correct ranking of the investigated
four NTRU-based KEMs when offloading the most time consuming operations
to hardware is a design option.

References

1. NTRU Open Source Project. https://github.com/NTRUOpenSourceProject
2. IEEE Standard Specification for Public Key Cryptographic Techniques Based on

Hard Problems over Lattices, P1363.1-2008, March 2009
3. Aysu, A., Yuce, B., Schaumont, P.: The future of real-time security: Latency-

optimized lattice-based digital signatures. ACM Transact. Embed. Comput. Syst.
(TECS) 14(3), 43 (2015)

4. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44709-1 22

https://github.com/NTRUOpenSourceProject
https://doi.org/10.1007/3-540-44709-1_22
https://doi.org/10.1007/3-540-44709-1_22

42 F. Farahmand et al.

5. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime, August 2017. https://ntruprime.cr.yp.to/ntruprime-20160511.pdf

6. Chen, C., Hostein, J., Whyte, W., Zhang, Z.: NIST PQ Submission: NTRUEncrypt
A lattice based encryption algorithm, May 2018. https://www.onboardsecurity.
com/nist-post-quantum-crypto-submission

7. Farahmand, F., Ferozpuri, A., Diehl, W., Gaj, K.: Minerva: automated hardware
optimization tool. In: 2017 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig), pp. 1–8. IEEE, December 2017

8. Farahmand, F., Sharif, M.U., Briggs, K., Gaj, K.: A high-speed constant-time hard-
ware implementation of NTRUEncrypt SVES. In: 2018 International Conference
on Field Programmable Technology (ICFPT) (2018)

9. Ferozpuri, A., Gaj, K.: High-speed FPGA implementation of the NIST round 1
rainbow signature scheme. In: International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig 2018), pp. 1–6. IEEE, December 2018

10. Ghosh, S., Delvaux, J., Uhsadel, L., Verbauwhede, I.: A speed area optimized
embedded co-processor for McEliece cryptosystem. In: 23rd International Confer-
ence on Application-Specific Systems, Architectures and Processors (ASAP), Delft,
Netherlands, 9–11 July 2012, pp. 102–108. IEEE (2012). https://doi.org/10.1109/
ASAP.2012.16

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) Algorithmic Number Theory, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

12. Howe, J., Oder, T., Krausz, M., Güneysu, T.: Standard lattice-based key
encapsulation on embedded devices. IACR Transact. Cryptogr. Hardw. Embed.
Syst. 2018(3), 372–393 (2018). https://tches.iacr.org/index.php/TCHES/article/
view/7279

13. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-HRSS-KEM:
algorithm specifications and supporting documentation, November 2017. https://
csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
round-1/submissions/NTRU HRSS KEM.zip

14. Kamal, A.A., Youssef, A.M.: An FPGA implementation of the NTRUEncrypt
cryptosystem. In: 2009 International Conference on Microelectronics - ICM, pp.
209–212, December 2009

15. Koziel, B., Azarderakhsh, R.: SIKE - supersingular isogeny key encapsulation:
VHDL implementation, November 2017. https://sike.org

16. Kuo, P.C., et al.: High performance post-quantum key exchange on FPGAs. Cryp-
tology ePrint Archive, Report 2017/690 (2017). https://eprint.iacr.org/2017/690

17. Liu, B., Wu, H.: Efficient architecture and implementation for NTRUEncrypt sys-
tem. In: 2015 IEEE 58th International Midwest Symposium on Circuits and Sys-
tems (MWSCAS), pp. 1–4, August 2015

18. Liu, B., Wu, H.: Efficient multiplication architecture over truncated polynomial
ring for NTRUEncrypt system. In: 2016 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), pp. 1174–1177, May 2016

19. Migliore, V., Real, M.M., Lapotre, V., Tisserand, A., Fontaine, C., Gogniat,
G.: Hardware/software co-design of an accelerator for FV homomorphic encryp-
tion scheme using Karatsuba algorithm. IEEE Transact. Comput. 67(3), 335–347
(2018)

20. National Institute of Standards and Technology: Post-Quantum Cryptography,
December 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

https://ntruprime.cr.yp.to/ntruprime-20160511.pdf
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://doi.org/10.1109/ASAP.2012.16
https://doi.org/10.1109/ASAP.2012.16
https://doi.org/10.1007/BFb0054868
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
https://sike.org
https://eprint.iacr.org/2017/690
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Evaluating the Potential for Hardware Acceleration 43

21. National Institute of Standards and Technology: Post-Quantum Cryptogra-
phy: Round 1 Submissions, December 2017. https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

22. Oder, T., Güneysu, T.: Implementing the NewHope-simple key exchange on low-
cost FPGAs. In: Fifth International Conference on Cryptology and Information
Security, Latin America, La Habana, Cuba, 20–22 September 2017 (2017)

23. Wang, W., et al.: XMSS and embedded systems - XMSS hardware accelerators
for RISC-V. Cryptology ePrint Archive, Report 2018/1225 (2017). https://eprint.
iacr.org/2017/138.pdf

24. Wang, W., Szefer, J., Niederhagen, R.: FPGA-based Niederreiter cryptosystem
using binary Goppa codes. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 77–98. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-79063-3 4. http://caslab.csl.yale.edu/code/niederreiter/

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/138.pdf
https://eprint.iacr.org/2017/138.pdf
https://doi.org/10.1007/978-3-319-79063-3_4
https://doi.org/10.1007/978-3-319-79063-3_4
http://caslab.csl.yale.edu/code/niederreiter/

	Evaluating the Potential for Hardware Acceleration of Four NTRU-Based Key Encapsulation Mechanisms Using Software/Hardware Codesign
	1 Introduction
	2 Background
	3 Previous Work
	3.1 Hardware Accelerators for NTRUEncrypt
	3.2 Software-Hardware Codesign of PQC Algorithms

	4 Methodology
	4.1 Platform and Software
	4.2 Design of Hardware Using the RTL Methodology
	4.3 Design of Hardware Using the HLS Methodology

	5 Results
	6 Conclusions
	References

