
Computational Statistics and Data Analysis 139 (2019) 164–177

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Regularized joint estimation of related vector autoregressive
models
A. Skripnikov ∗, G. Michailidis
Department of Statistics, University of Florida, 102 Griffin-Floyd Hall, P.O. Box 118545, Gainesville, FL 32611, USA

a r t i c l e i n f o

Article history:
Received 24 October 2018
Received in revised form 27 March 2019
Accepted 14 May 2019
Available online 22 May 2019

Keywords:
Attention deficit hyperactivity disorder
Group lasso
Regularized estimation
Resting-state fMRI
Stability selection
Vector autoregression

a b s t r a c t

In a number of applications, one has access to high-dimensional time series data on
several related subjects. A motivating application area comes from the neuroimaging
field, such as brain fMRI time series data, obtained from various groups of subjects
(cases/controls) with a specific neurological disorder. The problem of regularized joint
estimation of multiple related Vector Autoregressive (VAR) models is discussed, lever-
aging a group lasso penalty in addition to a regular lasso one, so as to increase
statistical efficiency of the estimates by borrowing strength across the models. A
modeling framework is developed that it allows for both group-level and subject-specific
effects for related subjects, using a group lasso penalty to estimate the former. An
estimation procedure is introduced, whose performance is illustrated on synthetic data
and compared to other state-of-the-art methods. Moreover, the proposed approach
is employed for the analysis of resting state fMRI data. In particular, a group-level
descriptive analysis is conducted for brain inter-regional temporal effects of Attention
Deficit Hyperactive Disorder (ADHD) patients as opposed to controls, with the data
available from the ADHD-200 Global Competition repository.

Published by Elsevier B.V.

1. Introduction

With recent advances in technology and growing amounts of available data (e.g. click-generated web browsing data,
social networks, image and video data), there is a strong interest in modeling and analysis of high-dimensional time
series data. Application areas include gene regulatory network inference (Michailidis and d’Alché Buc, 2013), brain fMRI
data (Song et al., 2011), macroeconomic time series forecasting and structural analysis (Bańbura et al., 2010; Lin and
Michailidis, 2017), to name a few. Their common characteristic is the large number of variable relationships being analyzed
relative to the time points available, thus leading to a high-dimensional statistical estimation problem. In many cases, the
temporal dynamics of the data under consideration are well captured by autoregressive models, and hence the use of
vector autoregressive models (VAR) enables the modeling of temporal dependencies between the variables. However,
in the presence of a large number of parameters to estimate, and only a few time points, one needs to incorporate
appropriate sparsity assumptions into the VAR modeling framework. To enforce sparsity, it is common to employ an
ℓ1 lasso penalty (Basu et al., 2015a,b), with theoretical properties established in the former paper.

As previously mentioned, in many applications, on top of the typical high-dimensional setting, one also has to perform
estimation of time series across a moderate to large number of related subjects. As a motivating example, the area
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of medical research brings about a lot of experimental settings with multiple subjects being monitored over time,
e.g. a collection of fMRI time series data for a group of patients. Looking at patients with a particular disease/disorder
(e.g. Alzheimer’s), it is expected that connectivity across brain regions exhibits common structural patterns. However, it
has been well documented that, albeit sharing the same disorder, patients still exhibit individual patterns (Woolrich et al.,
2004; Beckmann et al., 2003), which leads to subject heterogeneity.

Standard analysis pipelines for fMRI time series data typically involve estimating a network for each subject separately,
with subsequent accumulation of the estimates for further group-level analysis (Narayan and Allen, 2016). That approach
has been applied to study brain activity for Alzheimer’s disease (Huang et al., 2010), autism (Narayan et al., 2015),
Parkinson’s disease (Liu et al., 2014), among others. While providing tools for group-level analysis, this approach does
not incorporate the underlying assumption of similarity across subjects within the same group (e.g. cases or controls)
into the estimation procedure.

A key contribution of this work is the development of a joint modeling framework that would enforce the similarity
assumption into the estimation procedure, while also enabling estimation of subject-specific network effects. Proposed
method increases the effective sample size for common structure estimation by borrowing strength across related time
series. Additionally, the framework permits detection of most pronounced individual effects for each subject (if present).
The problem of joint estimation has received attention in the literature recently, primarily focusing on the estimation of
multiple graphical models. Those approaches leverage various penalties that encourage both sparsity and joint estimation
of the parameters across the models; see the hierarchical penalty used in Guo et al. (2011) or fused lasso penalty
in Danaher et al. (2014) and Ma and Michailidis (2016). In this work, we employ a group lasso penalty due to its ability
to clearly identify a common structure across multiple subjects, while letting the magnitudes of effects vary. After having
detected the common structure, a standard lasso procedure will be applied to obtain sparse estimates of subject-specific
effects.

While the introduced joint estimation procedure can be used in other time series settings (economic data for cities
or states with shared manufacturing and industrial features, gene expression data for matched patients, sales data for
similar stores), the primary motivating application is resting-state fMRI time series data for studying the spontaneous brain
temporal dynamics of various cognitive disorders. The literature previously cited on group-level inference for cognitive
disorders focused on estimating functional brain connectivity (studying correlations between brain region signals) rather
than inferring lead–lag relations between the brain regions. The resting-state data represent monotone within-brain
fluctuations, and VAR models are suitable for capturing the temporal dynamics in such data. Further, we assume each
patient’s VAR model to be a perturbation of some common underlying VAR model for the group under consideration (be it
subjects with disease or healthy controls), the structure of which will be estimated by our joint procedure based on a group
lasso penalty. Note that certain objections have been raised in the literature on the use of VAR models for neuroimaging
data (Cole et al., 2010; Ramsey et al., 2010). Nevertheless, we attempt to address some of those issues in our ADHD study
in Section 4. For example, one of the six problems with the use of VAR models in application to fMRI data discussed
in Ramsey et al. (2010) concerns the varying signal strength across the brain regions from multiple study participants,
even though they all share a common abstract processing structure. In our framework, this issue is addressed directly via
a group lasso penalty that, while enforcing a common structure, allows for variability in magnitudes of common effects. It
is also worth mentioning that a joint estimation approach via regularizing penalties had been used before for brain fMRI
time series data (Belilovsky et al., 2016; Chu et al., 2015), but only for functional connectivity estimation, while we apply
it to infer lead–lag relations.

To introduce the joint modeling framework, consider a p-variate stationary time series X (k)
t = (x(k)1,t , . . . , x

(k)
p,t )⊺, t =

1, . . . , T , k = 1, . . . , K , for K related subjects. VAR model with lag order D, or VAR(D), is given by

X (k)
t = A(k)

1 X (k)
t−1 + · · · + A(k)

D X (k)
t−D + ϵ

(k)
t , ϵ

(k)
t ∼ N(0, σ 2

(k)Ip), (1)

t = D, . . . , T , k = 1, . . . , K ,

where A(k)
d is a p × p transition matrix that captures temporal effects of order d between the p variables for subject

k, d = 1, . . . ,D, k = 1, . . . , K . We further assume a diagonal error covariance matrix Σk = σ 2
(k)Ip, which allows us

to break problem (1) into p simpler sub-problems that can be solved in parallel. In this work, we focus on the case of
VAR model with lag order one (D = 1), so as to emphasize studying the properties of the joint estimation procedure
rather than the aspects of lag order selection. The joint estimation approach starts with the assumption of common and
individual components for each VAR model: A(k)

d = A(k)
d,C + A(k)

d,I , d = 1, . . . ,D, k = 1, . . . , K . Afterwards, an iterative
two-stage estimation algorithm is proposed, consisting of a group lasso optimization procedure to jointly estimate the
common components {A(k)

d,C } of the K subjects during the first stage, followed by a sparse lasso optimization procedure to
estimate the individual components {A(k)

d,I} at stage two. The group lasso penalty effectively groups the respective elements
of the transition matrices across all K subjects and either retains or excludes the whole group from the model, which
guarantees a shared structure of the resulting common component estimates. Meanwhile, the residuals from the common
component signal are used as data to estimate the individual structures, representing subject-specific effects, via standard
lasso optimization.

The remainder of the paper is organized as follows: Section 2 describes the joint modeling framework and introduces
the two-stage estimation procedure, Section 3 demonstrates the simulation study results of the joint estimation procedure



166 A. Skripnikov and G. Michailidis / Computational Statistics and Data Analysis 139 (2019) 164–177

for various settings and compares its performance with other state-of-the-art methods, Section 4 provides substantial
empirical application of the introduced method to resting-state fMRI data for ADHD study, while Section 5 contains
concluding remarks and discussions of future work.

2. Problem formulation

We start by writing the posited VAR model (1) in standard regression form. First, we drop k from the notation,
k = 1, . . . , K , and show the sequence of required algebraic transformations for a single VAR(D) model:

Xt = A1Xt−1 + · · · + ADXt−D + ϵt , ϵt ∼ N(0, σ 2Ip), t = D, . . . , T . (2)

The assumption on the error covariance being diagonal, cov(ϵt ) = σ 2Ip for ϵt = (ϵ1,t , . . . , ϵp,t )⊺, t = D, . . . , T , allows us
to represent the temporal dynamics for each of the p variables as the following system of equations:

xj,t =

p∑
l=1

(A1[j, l] xl,t−1 + · · · + AD[j, l] xl,t−D) + ϵj,t , ϵj,t ∼ N(0, σ 2), (3)

t = D, . . . , T , j = 1, . . . , p,

where Ad[j, l] is order-d temporal effect of lth variable on jth, l, j = 1, . . . , p. If we let Ad[j, .] = (Ad[j, 1], . . . , Ad[j, p])⊤, d
= 1, . . . ,D, then all T − D + 1 equations from (3) can be represented in a compact matrix form for each variable j
respectively:(xj,T

. . .

xj,D

)
  

X̃j

=

( x1,T−1 . . . xp,T−1 . . . x1,T−D . . . xp,T−D
. . . . . . . . . . . . . . . . . . . . .

x1,D−1 . . . xp,D−1 . . . x1,0 . . . xp,0

)
  

Z

(A1[j, .]
. . .

AD[j, .]

)
  

A[j,.]

+

(
ϵj,T
. . .

ϵj,D

)
  

ϵ̃j

,

X̃j
(T−D+1)×1

= Z
(T−D+1)×(Dp)

A[j, .]  
(Dp)×1

+ ϵ̃j,
(T−D+1)×1

ϵ̃j ∼ N(0, σ 2IT−D+1), j = 1, . . . , p. (4)

Next, reintroducing k, k = 1, . . . , K , back into the notation and using the standard regression representation (4) for
all K VAR models under consideration, we obtain (for j = 1, . . . , p):⎧⎪⎨⎪⎩

X̃ (1)
j = Z(1) A(1)

[j, .] + ϵ̃
(1)
j , ϵ̃

(1)
j ∼ N(0, σ 2

(1)IT−D+1),
. . .

X̃ (K )
j = Z(K ) A(K )

[j, .] + ϵ̃
(K )
j , ϵ̃

(K )
j ∼ N(0, σ 2

(K )IT−D+1),
(5)

where A(k)
[j, .] corresponds to the temporal effects (of all D orders) that each of p variables has on the jth variable for the

kth subject, k = 1, . . . , K .

2.1. Decomposition into common and idiosyncratic components

A key modeling assumption is that of shared structure across all K subjects. In the model, this is manifested through
similar sparsity patterns across the K transition matrices. In addition, due to natural variability among subjects, one has to
account for the presence of heterogeneity in the form of certain subject-specific effects. Both of these aspects are captured
by decomposing each subject’s transition matrix into two parts:

A(k)
d = A(k)

d,C + A(k)
d,I , d = 1, . . . ,D, k = 1, . . . , K , (6)

where A(k)
d,C is the common component of order-d temporal effects for kth subject, while A(k)

d,I is the idiosyncratic component.
Applying this representation to equations in (5), we get (for j = 1, . . . , p):⎧⎪⎨⎪⎩

X̃ (1)
j = Z(1) (A(1)

C [j, .] + A(1)
I [j, .]) + ϵ̃

(1)
j , ϵ̃

(1)
j ∼ N(0, σ 2

(1)IT−D+1),
. . .

X̃ (K )
j = Z(K ) (A(K )

C [j, .] + A(K )
I [j, .]) + ϵ̃

(K )
j , ϵ̃

(K )
j ∼ N(0, σ 2

(K )IT−D+1).
(7)

Assuming a VAR model for each subject to be a perturbation of a common underlying VAR model, we proceed to enforce
the common support constraint on A(1)

C [j, .], . . . ,A(K )
C [j, .], denoted by A(1)

C [j, .] ≈ A(2)
C [j, .] ≈ . . . ≈ A(K )

C [j, .], j = 1, . . . , p.
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More formally, defining support of a vector βββ = (β1, . . . , βm)⊺ ∈ Rm as support(βββ) = {i : βi ̸= 0}, this assumption
is equivalent to support(A(1)

C [j, .]) ≡ support(A(2)
C [j, .]) ≡ . . . ≡ support(A(K )

C [j, .]). Moreover, the sparsity assumption is
imposed on the individual components A(1)

I [j, .], . . . , A(K )
I [j, .] to recover the most important subject-specific effects. Lastly,

for parameter identifiability we assume A(k)
C [j, .] ⊥ A(k)

I [j, .] (A(k)
C [j, .] is ‘‘perpendicular’’ to A(k)

I [j, .]), implying that the
intersection of the supports for A(k)

C [j, .] and A(k)
I [j, .] is empty, or, more formally, support(A(k)

C [j, .])∩ support(A(k)
I [j, .]) ≡ ∅,

k = 1, . . . , K , j = 1, . . . , p. The full set of the described constraints for system (7) is outlined below:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A(1)
C [j, .] ≈ A(2)

C [j, .] ≈ . . . ≈ A(K )
C [j, .], j = 1, . . . , p,

A(k)
I [j, .] - sparse, k = 1, . . . , K , j = 1, . . . , p,

A(k)
C [j, .] ⊥ A(k)

I [j, .], k = 1, . . . , K , j = 1, . . . , p.

(8)

2.2. A two-stage estimation procedure

To estimate parameters A(k)
C [j, .], A(k)

I [j, .], k = 1, . . . , K , j = 1, . . . , p, presented in (7), while enforcing the set of
aforementioned constraints (8), we formulate it as a bi-convex optimization task, which can be solved via an iterative two-
stage approach that is always guaranteed to converge to a local minimum (Gorski et al., 2007; Goh et al., 1994). First, we
take care of nuisance parameters {σ(k), k = 1, . . . , K } by plugging in maximum likelihood estimators {σ̂(k), k = 1, . . . , K }

that are calculated as in Lütkepohl (2005) for the system of Eqs. (1). Next, we set βββ j,C = (A(1)
C [j, .], . . . ,A(K )

C [j, .])⊤, βββ j,I =

(A(1)
I [j, .], . . . ,A(K )

I [j, .])⊤, X̃j = (X̃ (1)
j , . . . , X̃ (K )

j )⊤, j = 1, . . . , p, D̂σ̂2 = Diag(σ̂ 2
(1), . . . , σ̂

2
(1)  

T−D+1

, σ̂ 2
(2), . . . , σ̂

2
(2)  

T−D+1

, . . . , σ̂ 2
(K ), . . . , σ̂

2
(K )  

T−D+1

).

Note that Z̃ ∈ RK (T−D+1)×K (Dp) is a block-diagonal matrix, with the kth block equal to Z(k)
∈ R(T−D+1)×(Dp) from Eqs. (5),

k = 1, . . . , K . Moreover, for an arbitrary vector βββ = (β1, . . . , βm) ∈ Rm, let us denote ∥βββ∥
2
2 =

∑m
l=1 β2

l , ∥βββ∥2 =√∑m
l=1 β2

l , ∥βββ∥1 =
∑m

l=1 |βl|. A large optimization problem corresponding to solving Eqs. (7) with constraints (8) is as
follows

min
βββ j,C ,βββ j,I

f (βββ j,C ,βββ j,I ) =

min
βββ j,C ,βββ j,I

∥D̂
−

1
2

σ̂2 (X̃j − Z̃[βββ j,C + βββ j,I ])∥2
2 + λG

j

p∑
i=1

∥(βββ (1)
j,C [i], . . . ,βββ

(K )
j,C [i])⊺∥2 (9)

+ λS
j ∥βββ j,I∥1 + λ∞

p∑
i=1

K∑
k=1

|βββ
(k)
j,C [i] · βββ

(k)
j,I [i]|,

where βββ
(k)
j,C [i] = A(k)

C [j, i], βββ
(k)
j,I [i] = A(k)

I [j, i], k = 1, . . . , K , i = 1, . . . , p. Here, each of the constraints from (8)
is addressed via a respective penalty term. Group lasso penalty λG

j
∑p

i=1 ∥(βββ (1)
j,C [i], . . . ,βββ

(K )
j,C [i])T∥2, introduced in Yuan

and Lin (2006), either shrinks ith element to zero for all K vectors βββ
(1)
j,C , . . . ,βββ

(K )
j,C , where βββ

(k)
j,C = A(k)

C [j, .], or estimates
it to be non-zero for all K vectors. This guarantees the identical support across all K common component estimates,
A(1)
C [j, .] ≈ A(2)

C [j, .] ≈ . . . ≈ A(K )
C [j, .]. Sparse lasso penalty λS

j ∥βββ j,I∥1, first introduced in Tibshirani (1996), leads to
each A(k)

I [j, .], k = 1, . . . , K , j = 1, . . . , p, having only a few non-zero elements, hence being sparse. Penalty term
λ∞

∑p
i=1
∑K

k=1 |βββ
(k)
j,C [i] · βββ

(k)
j,I [i]| has a tuning parameter value λ∞ set high enough, so that the Hadamard product of βββ j,C

and βββ j,I is equal to 0. Hence, it leads to βββ
(k)
j,C [i] ̸= 0 implying βββ

(k)
j,I [i] = 0, and, vice versa, βββ (k)

j,I [i] ̸= 0 implying βββ
(k)
j,C [i] = 0.

This guarantees support(βββ (k)
j,C ) ∩ support(βββ (k)

j,I ) ≡ ∅, leading to A(k)
C [j, .] ⊥ A(k)

I [j, .] ∀ j, k, j = 1, . . . , p, k = 1, . . . , K .
For the joint function f (βββ j,C ,βββ j,I ) being optimized in (9), using definition of convexity and knowledge of operations

preserving convexity (Boyd and Vandenberghe, 2004), we may show that: fixing βββ j,I at some value β̂ββ j,I , f (βββ j,C , β̂ββ j,I ) is a
convex function of βββ j,C ; fixing βββ j,C at some value β̂ββ j,C , f (β̂ββ j,C ,βββ j,I ) is a convex function of βββ j,I . By definition (Gorski et al.,
2007), it leads to f (βββ j,C ,βββ j,I ) constituting a biconvex function of its arguments βββ j,C and βββ j,I . Below we present a two-stage
algorithm performing an alternate convex search method (Gorski et al., 2007; Wendell and Hurter Jr, 1976), where, for
a general biconvex function f (x, y), one alternatively updates x and y in the following manner: fix y at initializing value
ŷ, y ≡ ŷ; solve the convex optimization problem for x, x̂ = argminx f (x, ŷ); fix x at optimizer value x̂, x ≡ x̂; solve the
convex optimization problem for y, ŷ = argminy f (x̂, y)); and so on.
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Two-Stage Estimation Algorithm (for arbitrary j, j = 1, . . . , p)

0. Initialize β̂ββ j,I with a zero-vector, β̂ββ j,I ≡ 0.
1. First stage: Proceed to solve minβββ j,C f (βββ j,C , β̂ββ j,I ), which is equivalent to solving the following convex group lasso

optimization criterion

min
βββ j,C

∥D̂
−

1
2

σ̂2 ([X̃j − Z̃β̂ββ j,I ] − Z̃(C)βββ j,C )∥2
2 + λG

j

p∑
i=1

∥(βββ (1)
j,C [i], . . . ,βββ

(K )
j,C [i])⊺∥2, (10)

where matrix Z̃(C) is such that Z̃(C)
[., i] ≡ Z̃[, i] if β̂ββ j,I [i] = 0, and Z̃(C)

[., i] ≡ 0 if β̂ββ j,I [i] ̸= 0. Using such matrix Z̃(C)

guarantees that optimizer β̂ββ j,C ≡ argminβββ j,C
f (βββ j,C , β̂ββ j,I ) will have non-overlapping support with β̂ββ j,I , β̂ββ j,C ⊥ β̂ββ j,I .

We do this instead of explicitly including the penalty term λ∞
∑p

i=1
∑K

k=1 |βββ
(k)
j,C [i] · βββ

(k)
j,I [i]| from (9), simplifying the

process of optimization.
2. Second stage: Let β̂ββ j,C denote the estimate of βββ j,C from the first stage. Proceed to solve minβββ j,I f (β̂ββ j,C ,βββ j,I ), which

is equivalent to the following convex lasso problem

min
βββ j,I

∥D̂
−

1
2

σ̂2 ([X̃j − Z̃(I)β̂ββ j,C ] − Z̃βββ j,I )∥2
2 + λS

j ∥βββ j,I∥1, (11)

where matrix Z̃(I) is such that Z̃(I)
[., i] ≡ Z̃[, i] if β̂ββ j,C [i] = 0, and Z̃(I)

[., i] ≡ 0 if β̂ββ j,C [i] ̸= 0. Analogously to Z̃(C) in
the first stage, using such matrix Z̃(I) guarantees that β̂ββ j,C ⊥ β̂ββ j,I .

3. If it is the second iteration (or higher): denote β̂ββ j = β̂ββ j,C + β̂ββ j,I as the full estimate for current iteration, and β̂ββ
pr
j

— full estimate from previous iteration; stop the algorithm if ∥β̂ββ j − β̂ββ
pr
j ∥

2
2 < 10−4. Otherwise, go back to the first

stage, using β̂ββ j,I calculated during second stage.

The described two-stage iterative approach performs the alternate convex search method, which would lead to a local
optimizer of a biconvex function f (βββ j,C ,βββ j,I ) for fixed values of tuning parameters λG

j and λS
j . The specific values for λG

j
and λS

j , in their turn, can be selected via heuristic approach of running the aforementioned two-stage algorithm for a few
iterations, but adding a tuning parameter selection step to each of the two stages as follows:

1. First stage (continued): Calculate the solution path of λG
j values for optimization task (10) as in Yuan and Lin

(2006). Pick the tuning parameter value λ̂G
j that minimizes the Bayesian Information Criterion (BIC)

BIC(λj) = n log(∥D̂
−

1
2

σ̂2 ([X̃j − Z̃β̂ββ j,I ] − Z̃β̂ββ j,C (λ
G
j ))∥

2
2) + log(n) dfλGj , (12)

where n = K (T −D+ 1), β̂ββ j,C (λG
j ) — estimate of βββ j,C corresponding to value λG

j of the solution path, dfλGj — degrees

of freedom for estimate β̂ββ j,C (λG
j ), calculated as in Breheny and Huang (2009).

2. Second stage (continued): Obtain a solution path of λS
j values for optimization task (11) as in Tibshirani et al.

(2011), and, similarly to the first stage, pick the tuning parameter value λ̂G
j that minimizes the BIC. Degrees of

freedom dfλSj in this case are calculated as the number of non-zero elements in the estimate β̂ββ j,I (λS
j ).

We implement this extended version of a two-stage approach for the first few iterations (in the numerical work
presented, we used it for the first five iterations) in order to obtain a good data-driven choice of tuning parameter values
λ̂G
j and λ̂S

j . Then, setting λG
j ≡ λ̂G

j and λS
j ≡ λ̂S

j for optimization tasks (9)–(11), we simply execute the original version
of the two-stage algorithm, which is guaranteed to converge to a local minimum of f (βββ j,C ,βββ j,I ). To improve our chances
of landing in a global minimum, we could potentially look at multiple different initialization values for estimate β̂ββ j,I at
step 0 of our two-stage approach, which could serve as an interesting topic for future work (see related work in Lin et al.
(2016)).

3. Performance evaluation

We focus our evaluation studies on VAR models of order D = 1 in order to assess the performance of the proposed
joint estimation procedure, rather than focusing on model order selection:

X (k)
t = A(k)X (k)

t−1 + ϵ
(k)
t , ϵ

(k)
t ∼ N(0, σ 2

(k)Ip), t = 1, . . . , T , k = 1, . . . , K . (13)

The employed performance metrics are presented next, where Â = (âi,j)p×p denotes the transition matrix estimate,
and A = (ai,j)p×p — the matrix of true values:
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Table 1
Two-stage procedure performance for increasing subject group size K .
K FP (Com) FN (Com) MC (Com) NFD (Com) FP (Ind) FN (Ind) MC (Ind) NFD (Ind)

p = 20 T = 80

10 0.06(0.02) 0.05(0.08) 0.89(0.06) 0.5(0.18) 0(0) 0.92(0.07) 0.19(0.08) 0.98(0.02)
20 0.03(0.02) 0.06(0.08) 0.92(0.06) 0.51(0.19) 0(0) 0.65(0.06) 0.46(0.05) 0.89(0.02)
50 0.01(0.01) 0.06(0.1) 0.94(0.08) 0.51(0.21) 0(0) 0.43(0.11) 0.63(0.08) 0.8(0.05)

p = 30 T = 120

10 0.06(0.01) 0(0) 0.94(0) 0.35(0.04) 0(0) 0.95(0.03) 0.15(0.04) 0.99(0.01)
20 0.02(0) 0(0) 0.98(0) 0.3(0.01) 0(0) 0.51(0.04) 0.56(0.03) 0.83(0.02)
50 0.01(0) 0(0) 0.99(0) 0.3(0.07) 0(0) 0.18(0.02) 0.83(0.02) 0.66(0.01)

p = 40 T = 150

10 0.06(0.01) 0(0) 0.94(0.01) 0.39(0.1) 0(0) 0.96(0.04) 0.12(0.07) 0.99(0.01)
20 0.02(0.01) 0(0) 0.97(0) 0.34(0.11) 0(0) 0.5(0.09) 0.57(0.07) 0.83(0.04)
50 0.01(0) 0(0) 0.99(0) 0.29(0.1) 0(0) 0.19(0.04) 0.82(0.04) 0.64(0.01)

Note: Triplets of rows correspond to the same setting in terms of p and T . E.g. rows 3–5 correspond to
the case of p = 20, T = 80, rows 7–9 correspond to setting p = 30, T = 120, etc. Means and standard
deviations are shown for performance metrics discussed at the top of Section 3, with 50 replicates per
each setting.

• False Positive (FP) and True Negative (TN) rates:

FP =

∑
1≤i,j≤p I(ai,j = 0, âi,j ̸= 0)∑

1≤i,j≤p I(ai,j = 0)
, TN = 1 − FP .

• False Negative (FN) and True Positive (TP) rates:

FN =

∑
1≤i,j≤p I(ai,j ̸= 0, âi,j = 0)∑

1≤i,j≤p I(ai,j ̸= 0)
, TP = 1 − FN.

• Matthews Correlation Coefficient (MC, geometric mean of FP and FN):

MC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

• Normalized Frobenius Difference (NFD):

NFD =
∥Â − A∥F

∥A∥F
=

√∑
1≤i,j≤p(âi,j − ai,j)2√∑

1≤i,j≤p a
2
i,j

.

The first three measures – FP, FN, MC – describe how well the matrix structure (the positioning of non-zero elements) is
estimated, which is our priority in this work. Low values of FP, FN (near 0) and high values of MC (near 1) are indicative
of a good performance. In the meantime, NFD evaluates how well the matrix element magnitudes are estimated. Lower
values of NFD (closer to 0) correspond to better performance. When only evaluating the performance of the two-stage
estimation algorithm introduced in Section 2, all four measures are calculated for both the common component estimates
Â(k)
C and individual component estimates Â(k)

I , k = 1, . . . , K . Meanwhile, when comparing this two-stage approach to the
other state-of-the-art methods, due to the fact that those other methods do not implement a breakdown into common and
individual components, we calculate the four measures just for the full matrix estimates Â(k)

= Â(k)
C + Â(k)

I , k = 1, . . . , K .
The design of the simulation studies is as follows: matrices {A(k)

= A(k)
C + A(k)

I , k = 1, . . . , K } are generated with
spectral radius of 0.4, with non-zero effects having magnitude of at least 0.2. This would guarantee stationarity of the
generated time series, separate noise from the signal, and replicate to a large extent features of the fMRI data presented
in Section 4 (no estimated effects had magnitude larger than 0.4). The resulting time series data are generated by adding
independent N(0, 1) errors and setting the signal-to-noise ratio at one (as in the ADHD study of Section 4). Multiple
settings are considered by varying the number of time series p per subject, and number of subjects K in a group. All the
diagonals are generated to be non-zero, while the edge density of elements in the common component is set to 5% (of
off-diagonal elements) for p = 20, and 2% for p = 30, 40. The edge density for the individual component is set to 2%–3%
(of the total number of matrix elements), implying a moderate level of heterogeneity. A threshold of 0.02 is applied to
the elements of the resulting estimates to eliminate noisy entries. Finally, the metrics are obtained by averaging over 50
replicates.

Given that our joint estimation procedure was developed with the goal of borrowing strength across multiple subjects,
its efficiency is best observed when gradually increasing the number K of related subjects. On simulation settings for
the case of increasing time series length T , see results in the supplement. In Table 1, we demonstrate the impact
on performance when the number K of jointly estimated subjects grows from 10 up to 50. With an increase in the
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Table 2
Comparative simulation study across four methods: regular lasso (LASSO), sparse group lasso
(SGL), group bridge (GB) and our two-stage approach (2ST).
Setting Method FP FN MC NFD

LASSO 0.02(0.02) 0.42(0.42) 0.61(0.33) 0.71(0.21)
K = 20 SGL 0.3(0.05) 0.05(0.08) 0.68(0.04) 0.55(0.11)
p = 20, T = 80. GB 0.03(0.01) 0.13(0.09) 0.85(0.07) 0.5(0.16)

2ST 0.02(0.01) 0.14(0.08) 0.85(0.06) 0.62(0.16)

LASSO 0.01(0) 0.11(0.18) 0.9(0.15) 0.49(0.14)
K = 20, SGL 0.2(0.03) 0.02(0.04) 0.79(0.02) 0.45(0.08)
p = 40, T = 150. GB 0.02(0) 0.03(0.02) 0.95(0.02) 0.32(0.08)

2ST 0.02(0.01) 0.03(0.01) 0.95(0.01) 0.49(0.08)

LASSO 0.02(0.02) 0.43(0.41) 0.61(0.32) 0.71(0.21)
K = 50, SGL 0.36(0.05) 0.04(0.05) 0.64(0.04) 0.55(0.11)
p = 20, T = 80. GB 0.03(0.01) 0.17(0.13) 0.81(0.1) 0.54(0.18)

2ST 0.01(0.01) 0.13(0.1) 0.87(0.08) 0.61(0.17)

LASSO 0.01(0) 0.08(0.17) 0.92(0.14) 0.47(0.13)
K = 50, SGL 0.23(0.03) 0.02(0.02) 0.76(0.01) 0.45(0.05)
p = 40, T = 150. GB 0.03(0) 0.05(0.02) 0.92(0.02) 0.35(0.08)

2ST 0.01(0) 0.02(0) 0.97(0) 0.42(0.07)

Note: Each of four rows corresponds to four methods applied to the same setting. E.g. rows 2–5
correspond to setting p = 20, T = 80, K = 20, rows 6–9 correspond to setting p = 40, T =

150, K = 20, etc. Means and standard deviations are shown for performance metrics discussed
at the top of Section 3, with 50 replicates per each setting.

number of subjects per group, we see a clear improvement in the estimation of the common component structure
(FP decreasing and MC increasing in each setting), which also leads to better estimates for the individual effects (FN
increasing and MC decreasing, as well). This aspect stems from the identifiability constraint imposed on the common
and individual components: each false positive in the common component may correspond to a misplaced true positive
from individual component, directly causing a false negative therein. Therefore, less false positives when estimating the
common component lead to less false negatives for the individual component estimates. Nonetheless, the FN numbers
for the individual component do not get very close to zero. This is a direct result of enforcing the assumption from (8)
on individual components being very sparse. Relaxing that assumption, albeit decreasing FN, would lead to an increase
in FP for individual components, which, by the identifiability assumption employed, leads to missing true group-level
effects (see supplement for extra simulation results confirming this claim). Given that we prioritize correctly detecting
the group-level effects and would only like to account for the most critical subject-specific effects, it is preferable to have
FN in individual components, as opposed to FN in the common component. Additionally, it may potentially stem from
initializing the individual components with a zero-vector in the two-stage approach, which leads to a local minimum
of the joint function (9). On the other hand, when looking at how well the overall estimate Â = ÂC + ÂI does with
respect to the true matrix A, one may notice that both FP and FN get close to 0 for certain settings (see Table 2 where we
compare our two-stage approach with three competing methods). As it pertains to the algorithm convergence properties,
after completing tuning parameter selection iterations, the algorithm converges for each setting with an average of 2–3
iterations needed across 50 replicates.

To evaluate the performance of the proposed joint modeling approach compared to other established regularized
estimation methods, we proceed with a comparative simulation study that includes:

• A regular Lasso approach (Tibshirani, 1996), which uses only a sparse penalty norm ∥βββ∥1 =
∑

l |βl| to obtain sparse
estimates for each subject separately, without accounting for grouping aspects.

• A Sparse Group Lasso (Simon et al., 2013), which adds a single-variable sparsity penalty term on top of a regular
group lasso from Yuan and Lin (2006), thereby allowing for sparsity on both the group and individual levels. Albeit
sounding similar to our proposed approach, the sparse group lasso does not employ a decomposition into common
and individual components. It instead applies both group- and individual-level sparsity penalties directly to the
original VAR transition matrix.

• A Group Bridge (Huang et al., 2009), which implements a bridge-type group-level penalty norm ∥βββ∥
γ

1 = (
∑

l |βl|)γ , 0

< γ < 1, instead of the classical Euclidean norm ∥βββ∥2 =

√∑
l β

2
l used in the original group lasso (Yuan and

Lin, 2006). Similarly to the sparse group lasso (Simon et al., 2013), it does not lead to a decomposition of the VAR
transition matrix into common and individual components.

Tuning parameter values for regular lasso and group bridge were selected via BIC, as we did for our two-stage approach.
Meanwhile, for sparse group lasso we used cross-validation due to the formula for degrees of freedom not being available.
Table 2 demonstrates the performance of all four methods – regular lasso, sparse group lasso, group bridge, two-stage
approach – when estimating the full VAR transition matrix A.
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In terms of structure estimation (FP, FN, MC), for the settings with K = 20 subjects, the group bridge method achieves
equivalent performance to our two-stage approach, while the other two methods lag considerably behind. Meanwhile,
when increasing the number of subjects to K = 50, we see that the proposed two-stage approach clearly outperforming all
competitors, since it borrows strength across many similar subjects. It reaches the highest MC values of 0.87 and 0.97 for
the K = 50, p = 20, T = 80 and K = 50, p = 40, T = 150 settings, respectively. On the other hand, in terms of element
magnitude estimation (measured via NFD), the group bridge algorithm exhibits an advantage over all remaining methods.
Nevertheless, in the setting of K = 50, p = 40, T = 150 our two-stage approach outperforms both the regular lasso and
sparse group lasso in NFD, on top of already providing the best quality of structure estimation among all methods.

4. Application to brain fMRI data for ADHD study

We analyze resting-state fMRI data from two groups: one of healthy controls, and one of patients exhibiting a certain
cognitive disorder. It is expected for subjects within both groups to have similar patterns in the lead–lag relationships
amongst their brain regions, while also displaying certain subject-specific effects. The idea of shared structure had been
used for fMRI data before (see Chu et al. (2015), Belilovsky et al. (2016)), but the focus was on contemporaneous
dependence between brain regions (functional connectivity). Our estimation procedure attempts to describe temporal
dynamics across those regions (effective connectivity).

Note that VAR modeling of the cross-region relationships within the brain has received attention in the literature
recently. Even though there has been work done on applying VAR models to estimate effective connectivity of the
brain (Friston et al., 2003; Goebel et al., 2003), various drawbacks have been pointed out for such an approach. For
example, a review paper on advances and pitfalls in resting-state fMRI analysis by Cole et al. (2010) emphasizes the
variations in hemodynamic delay across the regions, which may introduce bias into any attempt of estimating temporal
effects. Meanwhile, Ramsey et al. (2010) proceed to lay out six detailed reasons for caution when inferring temporal
causal effects from fMRI data, one of them being potential heterogeneity across different experimental sites and inability
to capture causal relations due to neural activity processes occurring more quickly than the sampling rate of fMRI
measurements. Nevertheless, our modeling approach alleviates some of the issues discussed above. First of all, the group
lasso directly addresses one of the drawbacks in Ramsey et al. (2010) by capturing the common abstract processing
structure, such as which regions of the brain influence which other regions, while also allowing for varying strengths of
those influences across the patients. As a reminder, it selects a particular relationship that is common for all the patients,
but the exact effect magnitude can differ across the board. We also proceed to select the studies with same repetition
times (TR) of fMRI measurements, otherwise risking to jointly estimate temporal effects of different lags. Additionally,
the individual component accounts for subject-specific influences, e.g. age or handedness. Lastly, in order to avoid the
experiments yielding different regions of interest (ROI) for different subjects, we make sure to use a standard unified
brain atlas for region assignment across all the patients.

4.1. The ADHD study setup

We consider the resting-state brain fMRI time series data from 20 ADHD patients and 20 controls obtained from
the ADHD-200 Global Competition that can be retrieved using the Python module nilearn. The subjects came from five
experimental sites, three of which (NYU Child Study Center, Peking University and Radboud University for NeuroIMAGE
study) shared a TR of 2.0 s, with the other two (Oregon Health and Science University, Kennedy Krieger Institute) having
a longer TR of 2.5 s. As our model aims at inferring temporal effects within the brain, we proceed to exclude the last two
studies from consideration in order to have consistent measurement repetition times across all subjects. That leaves us
with 12 ADHD subjects (all males; age mean ± SD = 13.85± 3.83) and 12 controls (all males; age mean ± SD = 13.72±
3.72), respectively. All sites reported a signal to noise ratio of one. The data pre-processing steps include corrections for
delay in slice acquisition and motion, filtering to remove high frequencies, data standardization and detrending (for more
details see Varoquaux and Craddock (2013)). As mentioned in the discussion above, we proceed to parcellate the brain into
39 regions according to the Multi-Subject Dictionary Learning atlas (MSDL), and subsequently follow the processing steps
outlined in Varoquaux and Craddock (2013). We summarize the signal over those regions via the mean of voxel time series,
weighted by gray matter probabilistic segmentation. Both the anatomical locations of the regions and resulting extracted
time series can be found in Figs. 1 and 2, with details on scientific names for each of those brain regions contained in
Table 3 of Appendix A.1. Moreover, Fig. 3 depicts autocorrelation plots corresponding to time series extracted for one of
the regions. The obvious spike at the first time lag of PACF (bottom right plot) serves as a strong AR(1) signature, which
is present for the vast majority of brain regions under consideration. This leads us to believe that a VAR(1) model would
be sufficient, which also motivated the design of the simulation studies presented in Section 3.

Considering the lack of literature on distributional characterization and asymptotical properties of estimates resulting
from the group lasso procedure, we employed stability selection to evaluate consistency of estimated temporal effects
between brain regions. The concept of stability selection was introduced in Meinshausen and Bühlmann (2010), with its
main idea being the use of bootstrap, and subsequent accumulation of the results over all bootstrapped samples for further
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Fig. 1. Brain regions according to MSDL atlas (see Table 3 for region names).

Fig. 2. Extracted time series for 39 brain regions for a single subject.

analysis. Subsampling leads to controlling the family-wise type I error rate in multiple testing for finite sample sizes,
which is considerably more important for high-dimensional problems than an asymptotic statement with the number of
observations tending to infinity. When dealing with time series data, one has to generate subsamples while retaining the
dependence structure among the observations. Time series block bootstrapping techniques (Härdle et al., 2003; Bühlmann
and Künsch, 1999) take care of this task, providing us with B = 100 estimates per each subject along the way. It allows
for evaluation of their stability and leads to a more reliable descriptive analysis of temporal relationships between the
brain regions.

4.2. ADHD study results

We ran the two-stage algorithm from Section 2.2 to jointly estimate temporal dependencies across brain regions for
patients of the same group, and focused our attention on common component estimates. Fig. 4 depicts resulting temporal
relationships between the brain regions in a form of a directed graph: 39 nodes on the left correspond to each brain
region’s blood-oxygen-level dependent signal (BOLD) at time t , 39 nodes on the right — at time t + 1. Each directed
edge from left to right node represents temporal effect consistently appearing in the common component estimate
across all bootstrapped samples for a patient group (ADHD or control). In particular, we calculated proportions of times
each temporal effect appeared in the common component estimate (out of total number of bootstrapped estimates) and
thresholded the results at 0.75, only showing the most consistent effects.

Fig. 4 depicts both the ADHD and control groups having strong autocorrelation effects for each brain region (blue
edges), which is to be expected. As it pertains to inter-regional temporal effects, we have a fair amount of those that are
present in both groups (red edges) and ones that are specific to a certain group (green edges). The magnitudes of detected
temporal effects were (mean ± SD) 0.23 ± 0.1 for autocorrelation effects, 0.07 ± 0.05 for inter-regional effects. Going
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Fig. 3. Autocorrelation plots for a single region time series: top — time series plot, bottom left — autocorrelation plot (ACF), bottom right — partial
autocorrelation plot (PACF).

from top to bottom, we start with auditory cortex network (top two regions) and witness left and right auditory cortex
influencing each other for controls, while only working in one direction for ADHD patients. As described in Serrallach
et al. (2016), a lot of studies have shown auditory problems for ADHD-diagnosed patients, which may be reflected in the
lack of communication within the auditory cortex network for their group in Fig. 4. The default mode network (DMN)
has been shown to experience irregularities for ADHD patients, which leads to disruptions in cognitive performance and
resulting lapses of attention (one of the main symptoms of the disease). In particular, Cortese et al. (2012) discovered
the patterns of hyperactivation, while Weissman et al. (2006) and Sato et al. (2012) pointed to deficits in its deactivation,
which reduces sensitivity to stimulus. Our results partly reflect those ideas by showing more activity in DMN for ADHD
group: on top of autocorrelation effects, it also contains a cross-region temporal effect of right DMN to medial prefrontal
cortex.

Both ventral attention networks, right (RVAN, from right dorsolateral prefrontal down to right inferior temporal cortex)
and left (LVAN, from left parietal down to left polar frontal lobe), demonstrate plenty of distinct activity patterns for two
groups. As mentioned in Cortese et al. (2012), in ADHD studies for children they found regions of hypoactivation as well as
hyperactivation in VAN. Hypoactive regions manifest ADHD-related deficits in detecting and adjusting to environmental
irregularities, while hyperactive ones underline distractability — one of the most crucial ADHD-symptoms. Meanwhile,
in dorsal attention network (DAN, left and right intraparietal sulcus) we see better communication for controls, which
reinforces results of Castellanos et al. (2008) and Tomasi and Volkow (2012), both pointing to abnormalities and lack of
interactions in DAN as one of characteristics for ADHD patients. Additionally, Sigi Hale et al. (2007) emphasize enhanced
intraparietal sulcus activation for controls compared to ADHD patients. As for the visual network (VN, primary visual
cortex, right and left occipital complex), it was shown to be a discriminative area when comparing ADHD and control
groups in Zhu et al. (2008), with Castellanos and Proal (2012) unveiling lower connectivity patterns in visual and occipital
cortexes of ADHD subjects. In our case, we witness considerably more activity for the controls with a temporal cross-effect
for right/left occipital complexes, and visual cortex influencing both of those regions as well.

Salience network (SN, dorsal/ventral anterior cingulate cortex and anterior insular cortex) for controls demonstrates
higher endogenous activity (ventral anterior cingulate cortex affecting the other two regions), while also being heavily
influenced by the cingulate insular network (CIN, cingulate, right and left insular cortex). According to Cortese et al.
(2012), this network plays crucial role in such executive processes as decision-making and processing information from
the external factors, deficiencies in which are very characteristic for ADHD. Additionally, Weissman et al. (2006) point to
association between attention lapses with reduced pre-stimulus activity in anterior cingulate regions, giving credence to
the lack of communication between those regions of the SN for ADHD group in our study (for controls, in the meantime,
also showing more communication and being influenced by members of CIN network). Left and right superior temporal
sulcus regions display temporal cross-effect between them for the control group, while only showing a left to right effect
for ADHD, reaffirming the results of Cortese et al. (2012) who claim hypoactivity in temporal regions for ADHD patients.
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Fig. 4. Directed graph of temporal effects for ADHD patients (top) and controls (bottom). Nodes on the left — brain regions at time t , right — at time
t + 1. Blue edge — region’s autocorrelation effect; red — inter-regional effect present for both patient groups; green — group-specific inter-regional
effect . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The last network demonstrating considerable activity is the aforementioned cingular insular network (CIN). Here, ADHD
patients show distinct influence of cingulate cortex region on the right insular cortex, which agrees with hypothesis
of cingulate cortex hyperactivation for ADHD subjects shown in Cortese et al. (2012). In the meantime, controls have a
temporal cross-effect between right and left insular cortexes, with both of the regions influencing the members of Salience
Network.

Regarding the idiosyncratic component estimates, that resulted from our two-stage procedure described in Section 2.2,
there happened to be no consistent subject-specific effects for either of the study participants (none were picked in more
than 20% of bootstrapped samples). This may be attributable in part to the lack of heterogeneity in our data set (all the
subjects being teenage boys), and the simulation study from Section 3 for a similar setting (p = 40, T = 150, K = 10)
showing propensity for false negatives in individual component estimates.

5. Conclusion and future work

In this work, we present a joint estimation procedure for a setting with multiple related VAR models being pertur-
bations of a single underlying common VAR model. A strong motivating application is the analysis of brain fMRI time
series data for mental disorder studies with patients sharing the same mental status (disease or healthy control). The
final estimates are provided by a two-stage algorithm that breaks down the temporal signal into common and individual
components, uses all subjects to jointly estimate a common component via group lasso, and subtracts the common VAR
signal to estimate individual components via sparse lasso. The performance on simulated data is shown to be consistent
for common component across most of the settings, while individual component estimation gradually gets better with
increase in the number of subjects being jointly estimated. Proposed approach also showed superior performance in terms
of matrix structure estimation when compared to other state-of-the-art methods. Moreover, having explicitly defined the
concept of a common component, our two-stage estimation approach makes it much easier to capture and interpret the
group-level effects in the brain fMRI data study for ADHD and control patients, respectively.

The most significant extension would be developing a hypothesis testing framework for the joint estimation procedure
presented in Section 2. There is not enough literature on distributional properties of estimates resulting from group lasso
procedure, which is necessary for both testing the significance of temporal relationships in a single group, and comparing
strength of temporal relationships across different groups. One of the papers addressing the issues of group-level inference
for regularized estimation is Narayan et al. (2015), where it is being referred to as Population Post Selection Inference. It
outlines a testing procedure for group-level effects that accounts for uncertainties introduced by both the regularization
and inter-subject variability. Unfortunately, they do not use joint estimation approach and group lasso penalty, estimating
brain networks separately with regular lasso, and therefore not directly applying to our procedure. Other aspects in need
of further study include: the exploration of different initializations for individual component estimate to increase chances
of the presented two-stage iterative procedure converging to a global minimum; the evaluation of the joint estimation
procedure’s ability to deal with VAR models of various lag orders, along with developing a lag order selection method.
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Appendix

A.1. MSDL atlas annotation

In Table 3 you can see the full scientific names for brain regions included in Multi-Subject Dictionary Learning (MSDL)
atlas. The enumeration corresponds to the order in which regions show up in Fig. 1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2019.05.007.

File Supplement.pdf Contains details on binconvexity of optimization task (9) and extra simulation results.

https://doi.org/10.1016/j.csda.2019.05.007
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Table 3
MSDL atlas brain region names.
Region # Region name Region # Region name

1 L Auditory Cortex 21 Primary Visual Cortex
2 R Auditory Cortex 22 R Lat Occ Complex
3 Stria terminalis 23 Dorsal Ant Cing Cortex
4 L Default Mode Network 24 Ventral Ant Cing Cortex
5 Med Prefr Cortex 25 R Ant Insular Cortex
6 Fr Default Mode Network 26 L Sup Temp Sulcus
7 R Default Mode Network 27 R Sup Temp Sulcus
8 Occ Lobe 28 L Temp-Par Junction
9 Motor Cortex 29 Broca Area of Fr Lobe

10 R Dorso-Lat Prefr Cortex 30 Sup Fr
11 R Polar Fr Lobe 31 R Temp-Par Junction
12 R Par Lobe 32 Pars Opercularis
13 R Inf Temp Cortex 33 Cerebellum
14 Basal Ganglia 34 Dorsal Post Cing Cortex
15 L Par Lobe 35 L Insular Cortex
16 L Dorso-Lat 36 Cing Cortex
17 L Polar Fr Lobe 37 R Insular Cortex
18 L Intra-Par Sulcus 38 L Ant Intra-Par Sulcus
19 R Intra-Par Sulcus 39 R Ant Intra-Par Sulcus
20 L Lat Occ Complex

Note: The common abbreviations used are ‘L’ — left, ‘R’ — right, ‘Lat’ — lateral, ‘Ant’ —
anterior, ‘Fr’ — frontal, ‘Med’ — medial, ‘Post’ — posterior, ‘Sup’ — superior, ‘Inf’ — inferior,
‘Temp’ — temporal, ‘Par’ — parietal, ‘Occ’ — occipital, ‘Cing’ — cingulate.
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