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a b s t r a c t 

Joint regularized modeling framework is presented for the estimation of multiple Granger 

causal networks. High-dimensional network Granger models focus on learning the corre- 

sponding causal effects amongst a large set of distinct time series. They are operationalized 

through the formalism of Vector Autoregressive Models (VAR). The latter represent a pop- 

ular class of time series models that has been widely used in applied econometrics and 

finance. In particular, the setting of the same set of variables being measured on differ- 

ent entities over time is considered (e.g. same set of economic indicators for multiple US 

states). Moreover, the covariance structure of the error term is assumed to exhibit low rank 

structure which can be recovered by a factor model. The framework allows to account for 

both sparsity and potential similarities between the related networks by introducing ap- 

propriate structural penalties on the transition matrices of the corresponding VAR models. 

An alternating directions method of multipliers (ADMM) algorithm is developed for solving 

the underlying joint estimation optimization problem. The performance of the joint esti- 

mation method is evaluated on synthetic data and illustrated on an application involving 

economic indicators for multiple US states 1 . 

© 2018 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

There has been a lot of recent interest in modeling and analysis of high-dimensional time series data. Application areas

include brain fMRI data ( Song et al., 2011 ), financial portfolio selection ( Fan et al., 2011 ), gene regulatory network inference

( Michailidis and d’Alché Buc, 2013 ), macroeconomic time series forecasting and structural analysis ( Ba ́nbura et al., 2010 ), just

to name a few. Their common characteristic is the large number of time series and their cross-relationships being analyzed

compared to the number of time points available, thus leading to a high-dimensional setting where the number of model

parameters exceeds the number of available time points (samples). 

In many cases, the temporal dynamics of the data under consideration can be captured through the framework of Granger

causality ( Granger, 1969; Dahlhaus and Eichler, 2003 ). Time series { X t } is said to Granger-cause time series { Y t } if past values

of { X t } can be used to better forecast future values of { Y t }. Extending it to the case of more than two time series introduces

a concept of network Granger causality , which can be represented through Vector Autoregressive models (VAR) ( Basu et al.,

2015b ). This class of models enables us to account for each time series’ own temporal dynamics, as well as temporal linear

cross-dependencies amongst them. 
∗ Corresponding author at: Department of Statistics, University of Florida, 7901 Cambridge St, Apt 22, Houston, TX, 77054, USA. 
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Another framework that focuses on the contemporaneous dependence (correlations) amongst a large number of time

series is that of Dynamic Factor Models (DFM) ( Stock and Watson, 2011 ). In this case, their correlation structure is capture

through a low-dimensional factor model, where the factors exhibit VAR dynamics. This model has been widely used in

macroeconomics ( Stock and Watson, 2016 ) and extensively studied from a theoretical viewpoint; see Bai et al. (2008) and

references therein. 

However, in presence of a large number of time series and relative few time points, it is necessary to incorporate regular-

izing sparsity assumptions to estimate the parameters of the VAR model as described in detail in Basu et al. (2015a) . This has

led to a novel body of work that examines both computational approaches and theoretical properties of sparse VAR models.

The DFM exhibits better scaling, since it allows the number of time series to be of the order of the time points available; for

a discussion on obtaining consistent estimates of the DFM parameters see Bai et al. (2008) . Hence, depending on whether

the focus of the analysis is on lead-lag temporal (VAR) or contemporaneous (DFM) relationships, the practitioner has access

to tools to carry out estimation of the parameters of the model of interest, even in high dimensional settings. 

However, in many applications, one has to deal with related sets of multivariate time series. As a motivating example,

consider the data analyzed in Section 6 . It considers a number of employment and economic indicator variables for four US

states that exhibit similarities regarding their economic infrastructure: Pennsylvania, Michigan, Ohio and Illinois. In partic-

ular, they share a strong manufacturing base, a fairly large agricultural sector, a strong presence in banking, education and

health services, and access to the Great Lakes waterways. At the same time, they also exhibit differences due to specific

conditions, like the developed financial industry in Chicago, or the strong and sustained presence of the coal, oil and gas

industries in Pennsylvania. Hence, it is desirable to account for potential similarities, while leaving room for estimation of in-

dividual features of each state. Within the DFM framework one could adapt the model posited in Hallin and Liška (2011) that

incorporates common factors and idiosyncratic components that would correspond to the time series of each state. However,

there is nothing analogous in the VAR setting. Thus, the main aspect of this paper is to introduce a modeling framework

that enables joint estimation of multiple related VAR models in order to borrow strength across them, instead of estimating

each model separately. The problem of joint estimation has received attention in the literature recently, primarily focusing

on the estimation of multiple graphical models. The approach leverages various penalties that encourage both sparsity and

similarity for parameters of multiple related models; see for example, the hierarchical penalty used in Guo et al. (2011) , the

group lasso penalty in Ma and Michailidis (2016) , or mixed norm penalties in Cai et al. (2015) . In our particular case, the

fused lasso penalty ( Tibshirani et al., 2011 ) is employed as it imposes similarity assumption across the VAR models while

leaving room for idiosyncratic relationships within each model. 

We consider p -variable stationary time series for K related entities (e.g. economies, households, etc.): { X t 
k 

=
(X t 

1 k 
, . . . , X t 

pk 
) ′ ∈ R 

p , t = 0 , . . . , T } , k = 1 , . . . , K. The corresponding VAR model of lag order D , denoted as VAR(D) , is given

by 

X 

t 
k = A 

1 
k X 

t−1 
k 

+ · · · + A 

D 
k X 

t−D 
k 

+ εt 
k , ε

t 
k ∼ N(0 , �k ) , t = D, . . . , T , k = 1 , . . . , K, (1)

where A 

d 
k 

= (a d 
k 
) i j ∈ R 

p×p is the transition matrix for entity k , d = 1 , . . . , D, k = 1 , . . . , K. Matrices { A 

d 
k 
, d = 1 , . . . , D } represent

a Granger causal network in the following sense: if a d 
k,i j 

� = 0 for at least one d = 1 , . . . , D, we say that variable j Granger-

causes variable i , implying that values of time series j are useful to better forecast future values of time series i , for entity

k . Meanwhile, εt 
k 

= (εt 
1 k 

, . . . , εt 
pk 

) ′ ∼ N(0 , �k ) , and the covariance matrix �k ∈ R 

p×p , �k � 0 , allows for additional contempo-

raneous dependence between the p variables under consideration within entity k . The standard assumption is that �k is

diagonal and thus no extra dependence is allowed ( Lütkepohl, 2005 ). In the high dimensional setting, ( Basu et al., 2015a;

Lin and Michailidis, 2017 ) allow for a general covariance matrix �k , assuming that it possesses a sparse inverse. Then, a

joint estimation procedure is introduced for obtaining sparse estimates of both (A k , �
−1 
k 

) . 

In this work due to the similarity of the K entities under study, we assume that �k exhibits a low rank structure, stem-

ming from a factor model formulation of the error process { εt 
k 
, t = 1 , . . . , T } . This assumption implies that the relationships

between the covariation of the p error processes within entity k can be explained by a smaller number L k of common under-

lying factors. Such factor models are widely used in econometric and finance applications, such as forecasting bond yields

( Diebold and Li, 2006 ), modeling interest rates ( Rudebusch, 2010 ), forecasting macroeconomic indicators ( Stock and Wat-

son, 2002 ). While past work focused on observed time series, we use the factor model on the error processes themselves.

To avoid identifiability issues for the parameters of the VAR model given in 1 as discussed in Deistler et al. (2011) and

Anderson et al. (2012) we further assume sparsity in the covariance matrix of the idiosyncratic component in the factor

model posited for �k . 

Hence, the main contributions of this work are the introduction of the joint modeling framework for estimating mul-

tiple related network Granger causal models, including the development of an alternating direction method of multipliers

(ADMM) algorithm to implement appropriate penalties, and the incorporation of factor models to estimate the error covari-

ances for each of those VAR models. The remainder of the paper is organized as follows: in Section 2 the detailed modeling

framework is introduced along with the objective function that enables us to estimate the model parameters. Section 3 pro-

vides details on the the estimation procedure, such as the algorithm for error covariance estimation, the employed ADMM

algorithm for implementing generalized sparse fused optimization, and tuning parameter selection. Sections 4 and 5 de-

scribe the results of applying our joint modeling approach to synthetic and real data, respectively, and how they compare

to the alternative separate estimation procedure. Finally, some concluding remarks are drawn in Section 6 . 
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2. Joint model estimation problem formulation 

We develop the joint estimation procedure over K related VAR models comprising of the same set of p variables and

sampled over the same T time points. The VAR ( D ) model for a single entity was first described in (1) in Section 1 . Let X t 
k 

=
(X t 

1 k 
, . . . , X t 

pk 
) � denote the vector containing the data for p time series at time t = 0 , · · · , T for entity k = 1 , · · · , K, and let

εt 
k 

= (εt 
1 k 

, . . . , εt 
pk 

) ′ be the corresponding error term for time t . Further, { A 

d 
k 
, d = 1 , . . . , D } denotes the set of all D transition

matrices for the k th VAR ( D ) model, and �k is the covariance matrix of the error term. We assume that { A 

d 
k 
, d = 1 , . . . , D } are

sparse in order to accommodate high-dimensional scaling, and that the error covariance matrix is low rank, whose structure

is dictated by an L k -rank factor model. Finally, all K models are assumed to be stable, namely that det (A k (z)) � = 0 on the

unit circle { z ∈ C : | z| = 1 } , where A k (z) = I p −
∑ D 

t=1 A 

t 
k 
z t ; for a discussion see Basu et al. (2015a) . 

It is well known that a VAR model can be expressed in regression form as (see Lütkepohl, 2005 , with a detailed descrip-

tion also given in Appendix A.1 ): 

W k = Z k βk + εk , εk ∼ N(O, ˜ �k ) , k = 1 , . . . , K, (2)

where βk ∈ R 

Dp 2 corresponds to the vector contained all elements of all the p × p transition matrices { A 

d 
k 
, d = 1 , . . . , D } ap-

propriately arranged. In case of a known error covariance matrix ˜ �k the optimization criterion for obtaining sparse estimates

of βk is given by the standard lasso formulation ( Tibshirani, 1996 ): 

min 

βk 

|| ̃  �−1 / 2 

k 
(W k − Z k βk ) || 2 2 + λk 

1 | βk | 1 , k = 1 , . . . , K. (3)

Note that a larger value of the tuning parameter λk 
1 

leads to sparser Granger causal effects. There are a number of available

algorithms in the literature for solving (3) , including a cyclic coordinate descent type algorithm ( Friedman et al., 2010 ).

Further, the consistency of the lasso estimates of βk under high dimensional scaling is established in Basu et al. (2015a) . 

Next, we present the joint model formulation for K entities. First, we write all K VAR models in a compact form as 

X 

t = A 

1 X 

t−1 + · · · + A 

D X 

t−D + εεεt−D , εεεt−D ∼ N( O , ���) , t = D, .., T , (4)

where X 

t = (X t 
1 
, . . . , X t 

K 
) � ∈ R 

K p , A 

d ∈ R 

K p×K p - block-diagonal matrix with k th block equal to A 

d 
k 
, d = 1 , . . . , D ; εεεt−D =

(εt−D 
1 

, . . . , εt−D 
K 

) � ∈ R 

K p , ��� ∈ R 

K p×K p - block-diagonal matrix with k th block equal to �k ∈ R 

p×p , k = 1 , . . . , K; O 

p ∈ R 

K p×K p

denotes a zero-matrix. 

We also assume that there exist similarities between the transition matrices A k , in addition to being sparse. Note that

while sparsity implies a relatively low number of active Granger causal effects, similarity further implies that there are

shared such effects across the K models. The operationalization of this sharing effect will be accomplished through an ap-

propriate penalty term. 

Analogously to the single VAR model, we can transition from (4) to the following standard regression formulation (for

details on W 

W W , Z Z Z , εεε and 

˜ ��� refer to Appendix A.1 ): 

W = Z βββ + εεε, εεε ∼ N( O , ˜ ���) , (5) 

where βββ = (β1 , β2 , . . . , βK ) 
′ ∈ R 

K(Dp 2 ) , with βk ∈ R 

Dp 2 denoting the vector containing the elements of all the p × p transition

matrices { A 

d 
k 
, d = 1 , . . . , D } . We posit the following generalized sparse fused lasso optimization criterion that achieves joint

estimation of K network Granger causal models: 

min 

βββ
|| ̃  ���

−1 / 2 
( W − Z βββ) || 2 2 + λ1 

K ∑ 

k =1 

| βk | 1 + λ2 

∑ 

k>m 

| βk − βm 

| 1 . (6) 

The above formulation has a regularization term comprising of two components: the first is the standard lasso one, regulated

by the tuning parameter λ1 that controls the sparsity level of the K transition matrices A k ; the second corresponds to fused

lasso penalty that encourages similarities between the corresponding elements of the K transition matrices and is regulated

by the tuning parameter λ2 . Note that in the absence of the fused lasso term, optimization criterion (6) reduces to estimating

separately the parameters of the K models. 

Note that the fused lasso has been used in penalized regression settings before ( Tibshirani et al., 2011 ). However, the

focus was on a single regression model and the objective was to encourage joint sparsity across variables that exhibit a

natural ordering (e.g. adjacent frequencies in mass spectrometry applications). On the other hand, we use the fused lasso in

a novel way to achieve joint sparsity across the parameters of K VAR models. 

Solving (6) is a more involved problem, vis-a-vis the separate sparse estimation procedure, due to the fused lasso penalty

term. Next, we outline the key steps of the estimation procedure. 

• Step 1. Given the low-rank structure, we first estimate the error covariance matrices ˆ �k , k = 1 , . . . , K, to use as plug-in

estimates in (6) . Additional details are given in Section 3.1 and Appendix A.2 . 

• Step 2. Solve (6) using an ADMM algorithm, introduced in Section 3.2, to obtain the transition matrix estimates ˆ A k .
Selecting the tuning parameters λ1 and λ2 is discussed in Section 3.3 . 
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3. Estimation procedure 

We discuss next the key elements in our joint estimation procedure. 

3.1. Factor covariance matrix estimation 

While the transition matrices { A 

d 
k 
, d = 1 , . . . , D, k = 1 , · · · , K} in (1) capture the cross-temporal effects of the p variables

in a VAR model, the error covariance �k ∈ R 

p×p captures their contemporaneous dependence. There have been numerous

assumptions made on this quantity in the literature: the simplest is that � = σ 2 I p , where I p ∈ R 

p×p denotes the identity

matrix of order p ( Lütkepohl, 2005 ), while Basu et al. (2015a) ; Lin and Michailidis (2017) examined the case of an arbitrary

� with a sparse inverse. As explained in the introductory section, given the focus on K related entities, we use a factor

modeling approach for �. 

Factor models are widely used for covariance estimation in finance and econometrics with the purpose of dimension

reduction ( Bernanke et al., 2004; Fama and French, 1993 ). Such models assume that the relationship between the p variables

under consideration can be explained by a small number L 	 p of common underlying factors, which gives rise to an L-factor

model . A very popular example in the literature is the Fama-French three-factor model for stock returns. It posits that their

associations can be modeled based on the following underlying factors: market risk, difference in stock returns between

big and small companies of that market, difference in stock returns between companies with high and low price-to-book

ratio. In our case, we assume that the relationship between the p error processes for the same entity k is driven by few

unobserved common factors. 

Specifically, the p -dimensional error processes { εt 
k 
, t = 1 , . . . , T } for the VAR model given in (1) is assumed to be gener-

ated from the following L -factor model: 

εt 
k = �k F 

t 
k + εk,U , εk,U ∼ N(0 , �k,U ) , cov (F t k ) = I L k , t = 0 , . . . , T , k = 1 , · · · , K (7)

where F t 
k 

∈ R 

L - L k × 1 vector of L k factor values at time t (not observed), �k ∈ R 

p×L k - p × L k matrix of factor loadings,

�k,U ∈ R 

p×p - p × p matrix with a sparse inverse (idiosyncratic component). This representation leads to 

Cov (εt 
k , ε

t 
k ) = �k = �k �

′ 
k + �k,U . (8)

It can be seen that instead of directly estimating p(p−1) 
2 elements for �k , we only have to estimate the p × L k elements

of the factor loading matrix �k of dimensions p × L k and those of a sparse (diagonal, in most cases) inverse of �k , U , which

approximately adds up to p(L k + 1) effective parameters. Considering that L k 	 p , this leads to a substantial dimension re-

duction. The following procedure, with selected key steps borrowed from the POET estimator ( Fan et al., 2013 ), will be used

to calculate the factor model estimates of the error covariance matrix �k separately for each entity k : 

Error covariance estimation procedure 

• Step 0. Initialize ˆ �k = I p . 

• Step 1. Plug �k = 

ˆ �k into optimization criterion (3) , solve the latter to get the sparse estimate ˆ β (the criterion for

selecting the sparsity tuning parameter will be described in Section 3.3 ). 

• Step 2. Obtain residuals ˆ εk = W − Z ̂  β and calculate their empirical covariance matrix ˆ �k εk 
. 

• Step 3 ∗. Perform an eigenvalue decomposition for ˆ �k,εk 
, identify ̂ L k large eigenvalues for ̂ L k -factor model. Construct the

estimate ˆ �k ∈ R 

p×̂ L k of �k from (8) with those eigenvalues and corresponding eigenvectors. 

• Step 4 ∗. Use ˆ �k,εk 
− ˆ �k ̂

 �
′ 
k 

as ’data’ to get the estimate ˆ �k,U of �k , U from (8) using a graphical lasso procedure from

Friedman et al. (2008) (which works well under our assumption of a sparse inverse of �k , U ). 

• Step 5. Calculate the factor model estimate: ˆ �k = 

ˆ �k ̂
 �
′ 
k 

+ 

ˆ �k,U . 

• Step 6. Return to Step 1 and repeat the whole procedure until Step 5 and stop (simulation studies showed that iterating

more than once does not produce significant improvement). 

∗ Note that further details for steps 3 and 4 are given in Appendix A.2 . 

Remark 1. We assume that each entity k has its own idiosyncratic error component εt 
k 

and thus we estimate its correspond-

ing factor structure separately. Another possibility that imposes a much stringent contemporaneous dependence structure is

to assume that all errors components share the same factor model; i.e. �k = � for all k = 1 , · · · , K. However, this is a strong

assumption that may fail to hold in many applications. An interesting intermediate alternative is to assume that �k ∼�� for

� � = k ; namely, assume that the loadings of the factor models are related, in an analogous manner to the posited assumption

on the transition matrices of the k entities. Nevertheless, it is an open issue the best way to operationalize this similarity

relationship and constitutes a topic of future work. 

3.2. Estimation of transition matrices 

To solve the optimization criterion (6) for an arbitrary choice of values ( λ1 , λ2 ), we introduce an alternating directions

method of multipliers (ADMM) algorithm ( Boyd et al., 2011 ). Criterion (6) can be rewritten in the following form: 

min 

βββ
|| C − D βββ|| 2 2 + λ1 | βββ| 1 + λ2 | L βββ| 1 , (9)
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where C = 

˜ ���
−1 / 2 

W , D = 

˜ ���
−1 / 2 

Z , L βββ ≡ (β1 − β2 , . . . , β1 − βK , β2 − β3 , . . . , βK−1 − βK ) 
′ ∈ R 

( K 2 ) p 
2 
. Subsequently, criterion (9) is

representable in the form of a constrained optimization task: {
min 

βββ, γγγ
f ( βββ) + g( γγγ ) , 

L βββ = γγγ , 
(10) 

where f ( βββ) = || C − D βββ|| 2 
2 

+ λ1 | βββ| 1 is a convex function of βββ ∈ R 

K p 2 and g( γγγ ) = λ2 | γγγ | 1 is a convex function of γγγ ∈ R 

( K 2 ) p 
2 
.

As stated in Boyd et al. (2011) , for convex functions f and g oen can devise an ADMM algorithm that guarantees numerical

convergence to a local minimum for optimization task (10) . Such an algorithm breaks the initial minimization problem

(9) into a set of simpler convex optimization tasks, which take the form of the following update rules: ⎧ ⎪ ⎨ ⎪ ⎩ 

βββ(k +1) = argmin 

βββ

( f ( βββ) + 

ρ
2 
|| L βββ −γγγ (k ) + u 

u u 

(k ) || 2 2 ) , 

γγγ (k +1) = argmin 

γγγ
(g( γγγ ) + 

ρ
2 
|| L βββ(k +1) −γγγ + u 

u u 

(k ) || 2 2 ) , 

u 

u u 

(k +1) = u 

u u 

(k ) + L βββ(k +1) −γγγ (k +1) , 

(11) 

where ρ is the step-size term and u u u ∈ R 

( K 2 ) p 
2 

is the augmented update vector that keeps track of the constraint L βββ = γγγ
in (10) . While there is literature available on theoretically robust choices for ρ ( Ghadimi et al., 2015 ), we pick the value

heuristically after numerical experimentation (more on that given in the supplement). The first optimization task above

can be cast into the form of a standard lasso optimization problem by completing the square with respect to βββ and can

be efficiently solved with a cyclic coordinate descent algorithm ( Tibshirani et al., 2011 ). The second optimization task has a

closed-form solution given by γγγ (k +1) = s λ2 /ρ
(L βββ(k +1) + u u u (k ) ) , where s : R 

( K 2 ) p 
2 → R 

( K 2 ) p 
2 

corresponds to the soft thresholding

operator from Donoho (1995) . Convergence diagnostics of the proposed algorithm are provided in the supplement. 

3.3. Tuning parameter selection 

Next, we discuss strategies for selecting the values of the tuning parameters in (3) and (6) . Note that for the separate

estimation procedure, one simply has to pick the sparsity parameter for each model, which can be done either through

cross-validation or by using a heuristic AIC/BIC criterion, akin to similar strategies used in lasso regularized regression prob-

lems. 

In our numerical experimentation, for the separate estimation method we use a corrected Akaike Information Criterion

( AICc ) to pick the estimate from the full solution path for the standard lasso problem (3) . The criterion is given by 

AICc(λ1 ) = n log (|| W − Z ̂  βλ1 
|| 2 2 /n ) + 2 d λ1 

, (12)

where n - length of W , d λ1 
= 

l +(l +1)(l +2) 
(n −l−2) 

, l - number of non-zero elements in 

ˆ βλ1 
. 

For the joint estimation method, we first set λ2 ≡ 0 in criterion (6) and use the AICc criterion of the form (12) to pick

the sparsity parameter value ˆ λ1 . Subsequently, we set λ1 = ̂

 λ1 and perform a grid search for (6) using the following distinct

Bayesian Information Criterion ( BIC.dist ) to pick the value for the fused lasso parameter λ2 : 

BIC.dist(λ1 , λ2 ) = n log (|| W 

W W − Z Z Z ̂  βββλ1 ,λ2 
|| 2 2 /n ) + log (n ) d λ1 ,λ2 

, (13)

where n - length of W , d λ1 ,λ2 
corresponds to the number of distinct non-zero elements in 

ˆ βββλ1 ,λ2 
. 

4. Performance evaluation 

We assess the performance of the proposed joint VAR model on simulated data and compare it to that obtained from

implementing separate VAR models across the K entities introduced in ( Basu et al., 2015a ). The performance metrics em-

ployed are (i) false positive and false negative rates, as well as the Matthews correlation coefficient (a summary measure

of the latter two corresponding to their geometric mean), (ii) accuracy of the estimates of the transition matrices, captured

by the normalized Frobenius norm difference between the true transition matrices and their estimates, and (iii) one-step

mean forecasting error. The definitions of these quantities are given next (where ˆ A 

(k ) = ( ̂  a (k ) 
i, j 

) ∈ R 

p×p denotes the estimate

of A 

(k ) = (a (k ) 
i, j 

) ∈ R 

p×p , k = 1 , . . . , K): 

• Matthews correlation coefficient (MC) - geometric mean of false positive (FP) and false negative rates (FN). MC values

near 1.0 indicate better estimates of matrix support. 

MC = 

T P × T N − F P × F N √ 

(T P + F P )(T P + F N)(T N + F P )(T N + F N) 
, 

where 
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Fig. 1. Generated VAR(1) transition matrices for two entities for the case of A 1 ∼ A 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F P = 
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∑ 

1 ≤i< j≤p 

I(a (k ) 
i, j 

= 0 , ̂  a (k ) 
i, j 

� = 0) ∑ 

1 ≤i< j≤p 

I(a (k ) 
i, j 

= 0) 
, T N = 1 − F P 

F N = 

1 

K 

K ∑ 

k =1 

∑ 

1 ≤i< j≤p 

I(a (k ) 
i, j 

� = 0 , ̂  a (k ) 
i, j 

= 0) ∑ 

1 ≤i< j≤p 

I(a (k ) 
i, j 

� = 0) 
, T P = 1 − F N. 

• normalized Frobenius difference (NFD) in magnitudes of elements for the estimate and the true matrix. Smaller NFD

values point to better accuracy (||.|| 2 - classic L 2 -norm). 

NF D = 

1 

K 

∑ K 
k =1 || A k − ˆ A k || 2 2 ∑ K 

k =1 || A k || 2 2 

= 

K ∑ 

k =1 

∑ 

1 ≤i< j≤p 

(a (k ) 
i, j 

− ˆ a (k ) 
i, j 

) 2 

K ∑ 

k =1 

∑ 

1 ≤i< j≤p 

(a (k ) 
i, j 

) 2 
. 

• one-step mean squared forecast error (MSFE): after training the model on first T − 1 time points (out of T available), we

compare the forecasted values with the actual values for time point T . Lower values of MSFE indicate better forecasting

performance. Let Y = (Y 1 , . . . , Y K p ) 
′ ∈ R 

K p denote a vector of p observed values at time point T combined over K models,

ˆ Y = ( ̂  Y 1 , . . . , ̂  Y K p ) 
′ ∈ R 

K p - vector of p forecasted values at time point T combined over K models. Then, 

MSF E = 

K p ∑ 

i =1 

( ̂  Y i − Y i ) 
2 /K p. 

Next, we describe the data generation mechanism used in our numerical experiments. Here we focus on 1) VAR (1) model,

as the value D = 1 is the least demanding from a computational standpoint and we do not emphasize the issue of lag

selection in this work, 2) the K = 2 case, since all the key findings hold for larger values of K . We consider two versions

of the transition matrices: (i) identical A 1 and A 2 , where we expect that the joint procedure will leverage the implicit

larger sample size and provide better estimates than the separate procedure, and (ii) A 1 and A 2 are not identical, but share

common patterns as illustrated in Fig. 1 below. 

Further, the spectral radius (maximum absolute eigenvalue of the transition matrices A 

, 

k 
k = 1 , 2 that captures the degree

of temporal dependence across all time series; for more details see discussion in ( Basu et al., 2015a )) is set to 0.6 and 0.8

(the latter results given in Appendix A.3 ) and all diagonal elements are non-zero, which is commonly the case in many

economic applications. The number of time series considered per entity is p = 10 , 20, 30 and the density (percentage of

non-zero non-diagonal elements ) is set to 6, 3 and 2%, respectively. Finally, a measure of signal-to-noise ratio (SNR), defined

as max i, j | A i, j | /sd({ X t 
i 
, t = 1 , . . . , T } ) , is set to 2 throughout. 

Next, we describe the error covariance generating mechanism, that follows the approach discussed in Fan et al. (2011) .

The loadings matrix is given by �p×L = (b) i j , b i j ∼ N(0 , 1) , 1 ≤ i ≤ p, 1 ≤ j ≤ L . Further, we considered the following number
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Table 1 

Results of a simulation study comparing joint (J) and separate (S) estimation methods. 

Setting Method MSFE FP FN MC NFD 

p = 10 T = 30 

A 1 ≡ A 2 

S 

J 

0.25 (0.15) 

0.24 (0.14) 

0.12 (0.05) 

0.03 (0.02) 

0.09 (0.06) 

0.01 (0.03) 

0.79 (0.08) 

0.96 (0.03) 

0.64 (0.13) 

0.35 (0.08) 

p = 10 T = 30 

A 1 ∼ A 2 

S 

J 

0.25 (0.17) 

0.23 (0.14) 

0.11 (0.05) 

0.04 (0.03) 

0.09 (0.06) 

0.03 (0.03) 

0.8 (0.08) 

0.93 (0.04) 

0.59 (0.12) 

0.39 (0.07) 

p = 20 T = 40 

A 1 ≡ A 2 

S 

J 

0.37 (0.21) 

0.35 (0.2) 

0.04 (0.01) 

0.01 (0) 

0.04 (0.03) 

0 (0.01) 

0.92 (0.03) 

0.99 (0.01) 

0.48 (0.05) 

0.28 (0.05) 

p = 20 T = 40 

A 1 ∼ A 2 

S 

J 

0.36 (0.2) 

0.35 (0.19) 

0.04 (0.01) 

0.01 (0.01) 

0.06 (0.06) 

0.02 (0.03) 

0.9 (0.06) 

0.96 (0.03) 

0.46 (0.06) 

0.32 (0.06) 

p = 30 T = 50 

A 1 ≡ A 2 

S 

J 

0.46 (0.21) 

0.44 (0.21) 

0.02 (0) 

0 (0) 

0.02 (0.02) 

0 (0) 

0.96 (0.02) 

1 (0) 

0.47 (0.04) 

0.32 (0.04) 

p = 30 T = 50 

A 1 ∼ A 2 

S 

J 

0.51 (0.25) 

0.49 (0.24) 

0.02 (0) 

0 (0) 

0.05 (0.08) 

0.03 (0.03) 

0.94 (0.08) 

0.97 (0.03) 

0.42 (0.06) 

0.32 (0.06) 

Note: Pairs of rows correspond to the same setting (e.g. rows 1–2 correspond to p = 10 , T = 30 , A 1 ≡ A 2 , 

rows 3–4 correspond to p = 10 , T = 30 , A 1 ∼ A 2 etc). Means and standard deviations are shown for perfor- 

mance metrics discussed at the top of Section 4 , with 100 replicates per each setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of factors in different settings: L = 2 factors for settings with p = 10 , L = 3 for p = 20 , L = 4 for p = 30 , respectively. Finally,

�U is generated as a diagonal matrix, thus ensuring its positive definiteness, and a measure of signal-to-noise ratio, defined

as 

∑ 

λi ∈ eig(��′ ) 
λi ∑ 

λU 
i 

∈ eig(�U ) 

λU 
i 

, where eig denotes the eigenvalues of the corresponding matrix, is set to 2. Table 1 gives the results for

different settings with spectral radius set to 0.6; additional results can be found in Appendix A.3 . 

The superior performance of the joint approach in terms of overall accuracy can be easily seen by examining the

NFD column, which consistently shows a 25–40% improvement over separate method within each setting. Meanwhile,

the Matthews coefficient, false positive and false negative rates demonstrate that the joint approach estimates the pres-

ence/absence of Granger causal effects across all settings. As for the forecasting performance, the MSFE values appear to be

slightly smaller for the joint method overall, but generally comparable. The latter finding can be explained by the propen-

sity of the separate estimates to include more non-zero elements, which leads to overfitting, but also benefits forecasting.

In this setting, we are dealing with a sparse model, which the joint approach estimates accurately, while not compromising

the forecasting performance. When the spectral radius is 0.8, the broad patterns in overall accuracy (NFD) and estima-

tion of present/absent Granger causal effects hold, while the joint method also exhibits a clearer edge in forecasting (see

Table A.7 in Appendix A.3 ). This could be attributed to the decrease in effective sam ple size for the separate method due

to the presence of additional autocorrelation implied by a higher value for the spectral radius. On the other hand, the joint

method by borrowing information across related models compensates for this decrease. 

5. Applicationto economic indicators for multiple US states 

We illustrate the joint estimation method on time series data of various economic indicators from the following US

states: Pennsylvania (PA), Michigan (MI), Ohio (OH) and Illinois (IL). The joint modeling is appropriate due to their similarly

large industrial and manufacturing base; however, we also expect these four states to exhibit some differences, due to,

amongst other reasons, the presence of a strong financial industry in Chicago, IL and a diversified service sector in the

metropolitan Philadelphia, PA area. 

The data were obtained from the Federal Reserve Board of St. Louis website (FRED). For each state under consideration,

the data set contains seasonally-adjusted monthly time series for 18 economic indicators, spanning the period from Decem-

ber, 2009 to December, 2015, for a total of 70 time points. The period selected corresponds to the post-2008 financial crisis;

according to the National Bureau of Economic Research, June 2009 marks the end of the recession as a consequence of the

crisis. The variables under study reflect employment data (employee total, average hourly earnings, average weekly working

hours) for different sectors (Construction, Education/Health, Financial Activities, Manufacturing, Goods Producing) along with 

the total of non-farm employees, the leading index and the unemployment rate. The objective is to identify Granger causal

effects (cross-dependencies) that are common across all four states, as well as the state specific ones. A detailed description

of the variables is given in Table A.8 of Appendix A.4 . 

We considered different sets of variables in our modeling. The smallest model (Model I) only included the leading index,

the unemployment rate, total non-farm employment and employee totals for the five sectors, yielding a total of eight vari-

ables. Model IIa was augmented by including the average hourly earnings for the five sectors (13 variables in total), Model

IIb replaced the average hourly earnings with the average weekly hours, while Model III included both hourly earnings and

weekly hours indicators (18 variables in total). For obtaining both joint and separate estimates of the parameters of the

network Granger causality model we used the estimation procedure described in Section 3 . In the first step, we separately

used factor models for estimating the error covariance matrices for each of the four states, and the results can be seen in

Table 2 below. Model I yields a three factor model, while models IIa/b and III yield five and six factor models, respectively,
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Table 2 

Estimated number ˆ L of factors in L -factor model 

for error covariance of each state. 

Model setting p PA IL OH MI 

Model I 8 3 3 3 3 

Model IIa 13 5 5 5 5 

Model IIb 13 4 5 5 5 

Model III 18 5 6 6 6 

Table 3 

Forecasting errors for separate and joint estimates in the econometric time series 

study. 

Model setting S Rep Univariate AR(1) Separate Joint 

Model I 30 40 0.65 (0.26) 0.32 (0.19) 0.30 (0.18) 

Model IIa 40 30 0.92 (0.23) 0.42 (0.10) 0.44 (0.12) 

Model IIb 40 30 0.77 (0.27) 0.30 (0.15) 0.29 (0.14) 

Model III 50 20 0.75 (0.17) 0.37 (0.10) 0.37 (0.11) 

Note: Means and deviations of MSFE for one-step ahead forecasts of four consid- 

ered models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for most states. Therefore, we see a considerable dimension reduction in each case, with estimated number of factors ̂  L 	 p,

where p - number of variables in the model. 

Although our focus is on estimation and interpretation of Granger causal effects for the different states under consider-

ation, we nevertheless assess the forecasting performance of the separate and joint estimation methods, since it provides

a direct measure of comparison. To obtain multiple measurements of forecast errors we used the following rolling-window

strategy. We fix the window size to S months and use both methods to estimate the parameters of the respective models for

the period t = 1 , · · · , S and forecast the period S + 1 . Then, we shift the estimation period to t = 2 , · · · , S + 1 and forecast the

period S + 2 , and continue until the period t = T − S, · · · , T − 1 that provides forecasts for the period T = 70 . This approach

produces a sequence of T − S forecasts and their deviation from the true values, which allows us to obtain multiple mea-

surements of the one-step mean squared forecasting error (MSFE, introduced in Section 4 ) for both the separate and joint

estimation methods for all four models. The results for the four models, together with the window size S and the number of

forecasts, are depicted in the Table 3 below, while the univariate AR(1) model forecasts were used as the benchmark. It can

be seen that the performance of both estimation methods is very similar, with a marginal advantage for the joint approach,

but both outperforming the standard AR(1) model. Hence, building large size VAR models is beneficial as discussed in the

economics literature (see ( Bernanke et al., 2005; Ba ́nbura et al., 2010 ) and references therein). 

Next, we discuss the results obtained based on the two estimation methods. In order to overcome the lack of uncertainty

measures (which is still the case for most high-dimensional regularized models) for the obtained Granger causal effects es-

timates, we use a form of stability selection ( Meinshausen and Bühlmann, 2010 ) to obtain the more pertinent effects. Specif-

ically, we accumulate multiple estimates of the VAR model using both the separate and joint estimation methods based on

the rolling window strategy previously described. The resulting stability matrices for both approaches will indicate the pro-

portion of times a Granger causal effect shows up in T − W estimates for the corresponding state within the corresponding

model. In Figs. 2 and 3 , we provide these results for Model IIb for the four states. 

It can be seen that the joint estimation method provides sparser, but more stable estimates. For example, the separate

estimation procedure has many Granger causal effects with proportions ranging between 0.4–0.6, which points to the fact

that these effects are weaker. On the other hand, the joint method provides more consistent estimates, especially when

it comes to the autocorrelation coefficients (diagonal elements). Further, the separate estimates are very dense and hard

to interpret, while the joint method provides estimates with a more parsimonious structure, which improves our ability

to interpret the results. Setting a threshold of 0.5 for interpretation purposes, we see that the leading indicator index ex-

hibits a strong effect on a number of other variables including the unemployment rate, as well as various employee totals

and/or average hourly earnings. It should be noted that there is higher commonality between PA and IL, and OH and MI,

which can be interpreted as these two pairs of states having more similar economic fundamentals between them than with

members of the other pair. Other notable strong effects detected are as follows: for IL, goods producing employee total

impacts the unemployment rate, education/health employee total affects the non-farm employee total, hourly earnings in

construction Granger-cause the hourly earnings in goods producing. For OH, hourly earnings for goods producing impact that

of manufacturing, and hourly earnings for education/health affect that of finance. For MI, hourly earnings for construction

Granger-cause those for goods producing, while hourly earnings for manufacturing impact those for both goods producing

and construction. Appendix contains summary tables on both the effects shared among multiple states ( Table A.9 ), and those

that are state-specific ( Table A.10 ). 

In summary, the joint estimation method provides us with the following features shared across the states: (i) strong

estimates for the autocorrelation effects, (ii) hourly earnings in construction appear to impact future hourly earnings in
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Fig. 2. Proportion of detected Granger effects for Model IIb for the states of PA (top row) and IL (bottom row) for the separate (left) and joint (right) 

estimation methods. Variable names correspond to shortened descriptions in Table A.8 of Appendix A.4 . 

 

 

 

 

 

 

 

 

 

 

 

goods producing for three states (all but OH), (iii) employee total in education/health sector impacts employee total in non-

farm sector, (iv) the lead index has a temporal effect on hourly earnings in education/health sector for IL and OH (also

present in PA and MI, but not as strong). Another aspect is that for all the states there are moderate Granger-causal effects

from various economic indicators on the unemployment rate. On the other hand, the method also identifies some state

specific effects, summarized next. In PA the lead index Granger-causes employee total in finance, in IL hourly earnings in

education/health have an effect on employee total in non-farm, in OH hourly earnings in education/health impact finance

earnings, earnings in goods producing affect those in manufacturing, and the lead index impacts construction earnings.

Finally, in MI the hourly earnings in manufacturing appear to affect earnings in both goods producing and construction. 

6. Concluding remarks 

In this paper, we examined the problem of jointly estimating multiple related network Granger causal models, assuming

that the corresponding transition matrices are sparse. The latter would allow us to use the procedure when the number

of time series under consideration (and hence the number of parameetrs) exceeds the number of time points available.

Further, we assume that the error covariance matrix, that captures contemporaneous dependence between the time series,
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Fig. 3. Proportion of detected Granger effects for Model IIb for the states of OH (top row) and MI (bottom row) for the separate (left) and joint (right) 

estimation methods. Variable names correspond to shortened descriptions in Table A.8 of Appendix A.4 . 

 

 

 

 

 

 

 

 

is low-rank and can be efficiently approximated by a factor model - a common assumption in macroeconomic and financial

applications. Numerical results based on synthetic data show that the joint method, with effective tuning of the parameters

controlling the degree of both sparsity and similarity of the estimates across entities, clearly outperforms its counterparts

obtained from estimating a Granger causal model for each entity separately. Finally, we illustrate the merits of the proposed

modeling framework by jointly estimating key economic indicators of four US states, known to have similar economical

infrastructure. The joint approach led to more parsimonious results that were much easier to interpret in comparison with

the separate method, while maintaining good forecasting performance. 
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Appendix A 

A.1. Transition from VAR(D) to standard regression formulation 

Basu et al. (2015a) propose the following sequence of transformations to transition from (1) to (2) for a single entity

(dropping k from the notation): 

( 

(X 

T ) ′ 
. . . 

(X 

D ) ′ 

) 

︸ ︷︷ ︸ 
˜ Y (T−D +1) ×p 

= 

⎛ ⎜ ⎜ ⎝ 

(X 

T −1 ) ′ . . . ( X 

T −D ) 
′ 

. . . . . . . . . 

(X 

D −1 ) ′ . . . (X 

0 ) 
′ ︸ ︷︷ ︸ 

X (T−D +1) ×Dp 

⎞ ⎟ ⎟ ⎠ 

( 

(A 

1 ) ′ 
. . . 

(A 

D ) ′ 

) 

︸ ︷︷ ︸ 
A (Dp) ×p 

+ 

( 

(εT ) ′ 
. . . 

(εD ) 
′ 

) 

︸ ︷︷ ︸ 
˜ ε(T−D +1) ×p 

, 

vec (Y ) = vec (X A ) + vec ( ̃  ε) = (I � X ) vec (A ) + vec ( ̃  ε) , 

and 

Y ︸︷︷︸ 
(T −D +1) p×1 

= Z ︸︷︷︸ 
(T −D +1) p×Dp 2 

β︸︷︷︸ 
Dp 2 ×1 

+ ˜ ε j , ︸︷︷︸ 
(T −D +1) p×1 

˜ ε j ∼ N(O, � � I T −D +1 ) . (.1) 

A.2. Details of theerror covariance estimation procedure 

Step 3 details. The largest eigenvalues retained were picked in the following manner: after calculating the average of all

eigenvalues for the empirical covariance matrix, any eigenvalue above that average was deemed as “large”. This approach

tends to overestimate the true number of factors by one, which is preferred to missing out on the important factors. Alter-

native procedures that were examined exhibit a higher proportion of instances estimating the number of underlying factors

correctly, but also have a considerably higher number of cases of underestimating them (method of sharp drop-off points)

or cases with too many factors included (total variance explained). Moreover, our approach demonstrates good performance

with respect to total variance explained, consistently accounting for about 70–90% of the variance, while picking the most

important factors only. The performance of the approach employed was tested extensively in multiple simulation settings

with 100 replicates for each setting. The number of factors L considered and numerical results are given in Table A.4 below.

Multiple settings are obtained by varying the signal-to-noise ratio (SNR, as defined in Section 4 ), the number of variables p

per entity, the number of time points T and that of factors L . We show that the technique is robust to increases in SNR. 

After identifying ̂  L large eigenvalues λ1 , . . . , λ̂ L , we set ˆ �p×̂ L = V p×̂ L × diag( 
√ 

λ1 , . . . , 
√ 

λ̂ L ) , where V p×̂ L = [ v 1 , . . . , v ̂ L ] , with

v i being the eigenvector corresponding to eigenvalue λi , i = 1 , . . . , ̂  L . 

Step 4 details. The graphical lasso procedure ( Friedman et al., 2008 ) takes an empirical covariance matrix as input and

outputs a sparse estimate for the inverse of that matrix. In our case, the input matrix corresponds to ˆ �ε − ˆ � ˆ �′ and the

output will be the sparse ˆ �−1 
U 

matrix. Then, we simply take inverse of ˆ �−1 
U 

as the estimate ˆ �U of �U . Tuning parameter

value for graphical lasso optimization criterion was set to log ( p )/ T as a conventional choice discussed in Janková et al. (2015) .
Table A.1 

Simulation study results for estimating the number of factors in an L -factor model. 

Setting ̂ L = L or L + 1 (%) ̂ L 
 L (%) ̂ L < L (%) 
∑ ̂ L 

i =1 λi / 
∑ p 

i =1 
λi 

SNR = 2 

p = 10, T = 30, L = 2 99 1 0 0.82 

p = 20, T = 40, L = 3 99 1 0 0.87 

p = 30, T = 50, L = 4 93 7 0 0.88 

SNR = 3 

p = 10, T = 30, L = 2 100 0 0 0.81 

p = 20, T = 40, L = 3 100 0 0 0.86 

p = 30, T = 50, L = 4 92 8 0 0.88 

Note: Percentage of estimates ̂  L that are (i) exactly correct or overestimating L by one, 

(ii) overestimating L by two or more, (iii) underestimating L . Last column–proportion of 

variance explained by ˆ L factors. 
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A.3. Additionalsimulation results 

We re-ran our simulation study for the same generated data, but addressing the issue of result sensitivity to the tuning

parameter selection. In particular, taking into account the estimates for full grid of λ1 and λ2 values (instead of just those

selected via criteria from Section 3.3 ), we calculated 

• the mean squared forecasting error (MSFE); 

• the cumulative area under the ROC curve (AUROC); 

• the mean normalized Frobenius norm (NFD). 

In the table below, we present the aforementioned metrics averaged across all replicates, alongside their standard devia-

tions. It can be seen that the joint method exhibits a small edge over the separate one in forecasting and structure estima-

tion (MSFE and AUROC, respectively), while completely dominating it in the evaluation of the effect magnitudes (NFD). 

Moreover, to judge the performance of our method in case of higher degree of dissimilarity, below we provide the results

for simulation settings with all the off-diagonal non-zero elements (6, 3, 2% for p = 10 , 20 and 30, respectively) being in

different positions for the two matrices. First table corresponds to the metrics for single selected estimates (according to

criteria from Section 3.3 ), while the second one describes the aggregate metrics across full grids of tuning parameter values.

Both the forecasting and structure estimation performance appear to be comparable for the two methods, with joint method

still coming out on top in effect magnitude estimation. 
Table A.2 

Results of a simulation study comparing joint (J) and separate (S) estimation 

methods in terms of forecasting (MSFE), area under the classification curve (AU- 

ROC) and Frobenius norm (Frob). 

Setting Method MSFE AUROC NFD 

p = 10 T = 30 

A 1 ≡ A 2 

S 

J 

0.36 (0.2) 

0.32 (0.19) 

0.93 (0.03) 

0.96 (0.02) 

0.98 (0.1) 

0.73 (0.06) 

p = 10 T = 30 

A 1 ∼ A 2 

S 

J 

0.4 (0.3) 

0.36 (0.28) 

0.93 (0.03) 

0.95 (0.02) 

1 (0.11) 

0.78 (0.08) 

p = 20 T = 40 

A 1 ≡ A 2 

S 

J 

0.4 (0.19) 

0.37 (0.16) 

0.95 (0.02) 

0.96 (0.01) 

1.06 (0.08) 

0.81 (0.05) 

p = 20 T = 40 

A 1 ∼ A 2 

S 

J 

0.41 (0.23) 

0.36 (0.19) 

0.96 (0.01) 

0.96 (0.01) 

1.11 (0.1) 

0.82 (0.05) 

p = 30 t = 50 

A 1 ≡ A 2 

S 

J 

0.44 (0.16) 

0.39 (0.15) 

0.96 (0.01) 

0.96 (0.01) 

1.1 (0.1) 

0.78 (0.04) 

p = 30 t = 50 

A 1 ∼ A 2 

S 

J 

0.46 (0.23) 

0.42 (0.23) 

0.96 (0.02) 

0.94 (0.02) 

1.15 (0.22) 

0.84 (0.06) 

Table A.3 

Results of a simulation study comparing joint (J) and separate (S) estimation 

methods for highly dissimilar matrices in terms of forecasting (MSFE), area un- 

der the classification curve (AUROC) and Frobenius norm (Frob). 

Setting Method MSFE AUROC Frob 

p = 10 t = 30 

A 1 � = A 2 

S 

J 

0.34 (0.18) 

0.31 (0.17) 

0.91 (0.05) 

0.91 (0.04) 

1.18 (0.34) 

0.86 (0.14) 

p = 20 t = 40 

A 1 � = A 2 

S 

J 

0.42 (0.24) 

0.4 (0.23) 

0.92 (0.06) 

0.9 (0.05) 

1.51 (0.6) 

1 (0.27) 

p = 30 t = 50 

A 1 � = A 2 

S 

J 

0.38 (0.17) 

0.36 (0.17) 

0.93 (0.06) 

0.91 (0.04) 

1.46 (0.57) 

0.95 (0.21) 

Table A.4 

Simulation study for joint (J) and separate (S) methods, spectral radius 0.8. 

Setting Method MSFE FP FN MC NFD 

p = 10 T = 30 

A 1 ≡ A 2 

S 

J 

0.45 (0.3) 

0.42 (0.28) 

0.13 (0.06) 

0.04 (0.03) 

0.02 (0.03) 

0 (0) 

0.85 (0.07) 

0.96 (0.03) 

0.5 (0.12) 

0.25 (0.05) 

p = 10 T = 30 

A 1 ∼ A 2 

S 

J 

0.48 (0.34) 

0.45 (0.31) 

0.12 (0.04) 

0.05 (0.04) 

0.02 (0.03) 

0.01 (0.02) 

0.87 (0.06) 

0.94 (0.04) 

0.44 (0.08) 

0.29 (0.07) 

p = 20 T = 40 

A 1 ≡ A 2 

S 

J 

0.66 (0.32) 

0.61 (0.3) 

0.04 (0.02) 

0.01 (0.01) 

0.01 (0.02) 

0 (0.01) 

0.95 (0.02) 

0.99 (0.01) 

0.38 (0.06) 

0.22 (0.04) 

p = 20 T = 40 

A 1 ∼ A 2 

S 

J 

0.7 (0.35) 

0.65 (0.32) 

0.04 (0.01) 

0.02 (0.01) 

0.01 (0.02) 

0.01 (0.01) 

0.95 (0.02) 

0.98 (0.01) 

0.36 (0.05) 

0.25 (0.04) 

p = 30 t = 50 

A 1 ≡ A 2 

S 

J 

0.92 (0.42) 

0.86 (0.4) 

0.02 (0.01) 

0 (0) 

0 (0.01) 

0 (0) 

0.98 (0.01) 

1 (0) 

0.36 (0.03) 

0.24 (0.02) 

p = 30 t = 50 

A 1 ∼ A 2 

S 

J 

0.96 (0.44) 

0.91 (0.42) 

0.02 (0) 

0.01 (0) 

0.01 (0.01) 

0 (0.01) 

0.98 (0.01) 

0.99 (0.01) 

0.32 (0.04) 

0.24 (0.03) 
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Table A.5 

Set of abbreviations used in FRED data set. 

Abbreviation ∗ Description Units 

ILCONS Employee Total: Construction in IL Thousands of Persons 

ILEDUH Employee Total: Education and Health in IL Thousands of Persons 

ILFIRE Employee Total: Financial Activities in IL Thousands of Persons 

ILMFG Employee Total: Manufacturing in IL Thousands of Persons 

ILNA Employee Total: Total Non-Farm in IL Thousands of Persons 

ILSLIND Leading Index for IL Percent 

ILUR Unemployment Rate in IL Percent 

SMS170 0 0 0 0 060 0 0 0 0 0 01 Employee Total: Goods Producing in IL Thousands of Persons 

SMU170 0 0 0 0 060 0 0 0 0 0 02SA WeeklyH: Goods Producing in IL Hours 

SMU170 0 0 0 0 060 0 0 0 0 0 03SA HEarn: Goods Producing in IL Dollars per Hour 

SMU170 0 0 0 020 0 0 0 0 0 0 02SA WeeklyH: Construction in IL Hours 

SMU170 0 0 0 020 0 0 0 0 0 0 03SA HEarn: Construction in IL Dollars per Hour 

SMU170 0 0 0 030 0 0 0 0 0 0 02SA WeeklyH: Manufacturing in IL Hours 

SMU170 0 0 0 030 0 0 0 0 0 0 03SA HEarn: Manufacturing in IL Dollars per Hour 

SMU170 0 0 0 0550 0 0 0 0 0 02SA WeeklyH: Financial Activities in IL Hours 

SMU170 0 0 0 0550 0 0 0 0 0 03SA HEarn: Financial Activities in IL Dollars per Hour 

SMU170 0 0 0 0650 0 0 0 0 0 02SA WeeklyH: Education and Health Services in IL Hours 

SMU170 0 0 0 0650 0 0 0 0 0 03SA HEarn: Education and Health Services in IL Dollars per Hour 

Note: WeeklyH - average weekly hours of all employees in respective sector (e.g. Construction), HEarn - 

average hourly earnings of all employees, IL - Illinois. 

 

 

 

 

Table A.7 below shows simulation results for spectral radius of 0.8, rest of the settings and notations are the same as

described in Section 4 . 

A.4. Description and abbreviations of variables extracted from the FRED website 

Below we provide variable abbreviations together with their description (for the state of Illinois) for the data from

Section 5 . 
∗ There might be some inconsistencies in abbreviations across the states. 

A.5. Summary tables for shared and state-specific effects. 

Below follows the table summarizing numbers of effects shared by multiple states, alongside with some select examples

of those effects. 

On the other hand, the table below describes the effects that were specific to certain states. Ohio showed the largest

number of distinguished temporal effects (8), while the other three states had a few of their own as well. 
Table A.6 

Numbers and examples of effects shared by multiple states. 

Shared by # of effects Examples of effects 

All four states 3 Lead Index → UnempR, Lead Index → Edu/Health Total, .. 

At least three states 6 GProd Total → UnempR, Constr HEarn → GProd HEarn, .. 

At least two states 11 Constr HEarn → UnempR, Manuf Total → Lead Ind, .. 

Table A.7 

Numbers and examples of effects specific to a particular state. 

State # of effects Examples of effects 

PA 2 Total Nonfarm → GProd Total, Lead Ind → Finance Total, .. 

IL 3 Constr Total → GProd Total, Manuf HEarn → Total Nonfarm, .. 

OH 8 GProd HEarn → Manuf HEarn, Lead Ind → Finance HEarn,.. 

MI 4 Constr Total → Edu/Health HEarn, Manuf HEarn → GProd HEarn, .. 
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