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Abstract. We study metric measure spaces that have quantitative topological control, as well
as a weak form of di�erentiable structure. In particular, let X be a pointwise doubling metric
measure space. Let U be a Borel subset on which the blowups of X are topological planes. We
show that U can admit at most 2 independent Alberti representations. Furthermore, if U admits
2 Alberti representations, then the restriction of the measure to U is 2-recti�able. This is a partial
answer to the case n = 2 of a question of the second author and Schioppa.
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1. Introduction

In the last two decades, there has been tremendous progress in developing notions of di�erentia-
bility in the context of metric measure spaces. One strand of this work, beginning with Cheeger [12],
focuses on PI spaces � metric measure spaces that are doubling and support a Poincaré inequality
in the sense of [25] � and, more generally, Lipschitz di�erentiability spaces � those equipped with
a di�erentiable structure in the form of a certain measurable (co)tangent bundle. Other strands
focus on di�erentiability via the presence of independent 1-recti�able structures, as in the work
of Bate-Alberti-Csornyei-Preiss [1, 2, 4], or the existence of independent derivations mimicking the
functional analytic properties of partial derivatives, as in the work of Weaver [45].

By now, the di�erent de�nitions of Cheeger, Weaver, and Bate-Alberti-Csornyei-Preiss have been
shown to be closely related [4, 38, 39], and a variety of applications of di�erentiability have been
given, e.g., in geometric group theory, in embedding theory, and in Sobolev and geometric function
theory.

Date: August 7, 2019.
2010 Mathematics Subject Classi�cation. Primary: 30L99; Secondary: 53C23, 28A75.
B.K. was supported by a Simons Fellowship, a Simons collaboration grant, and NSF grants DMS-1405899, DMS-

1406394. G.C.D. was partially supported by the National Science Foundation under Grants No. DMS-1664369 and
DMS-1758709.

1



2 GUY C. DAVID AND BRUCE KLEINER

Nonetheless, some issues are still not well understood, in particular the relation between analytical
structure and quantitative topology. A particularly intriguing question along this line is, loosely
speaking: What kind of di�erentiable structure can live on a topological manifold? To make this
precise using a condition from quantitative topology, we impose one of the following on our metric
space X:

(a) X is linearly contractible, i.e., for some λ > 0, each ball B(x, r) is contractible in the ball
B(x, λr).

(b) X is a self-similar topological n-manifold, or more generally, all blowups (pointed Gromov-
Hausdor� limits of rescalings) of X are topological n-manifolds.

Both of these are widely used strengthenings of the qualitative hypothesis that X is a manifold;
condition (a) was used heavily by Semmes [41].

One may then ask (see [32] for discussion of this and other related questions):

Question 1.1. Let (X, d, µ) be a PI space and assume X is a topological n-manifold satisfying (a)
or (b) above. What can be said about the dimension of the di�erentiable structure, the Hausdor�
dimension, or the structure of blow-ups of (X, d, µ)?

Note that the only known examples of PI spaces as above are sub-Riemannian manifolds or
variations on them; in particular, in all known examples, blowups at generic points are bilipschitz
homeomorphic to Carnot groups.

A special case of our main result gives some restrictions in the 2-dimensional case:

Theorem 1.2. Suppose (X, d, µ) is a PI space, and all blowups of X are homeomorphic to R2.
Then the tangent bundle has dimension at most 2, and if U ⊂ X is a Borel set on which the tangent
bundle has dimension 2, then µ|U is 2-recti�able.

We point out that apart from the above theorem, Question 1.1 is wide open. In the n = 2 case,
we do not know if the PI space X could have a 1-dimensional tangent bundle, while in the n ≥ 3
case we know of no nontrivial restriction on either the Hausdor� dimension or the dimension of the
di�erentiable structure. For instance, when n = 3, it is not known if X could be Ahlfors 100-regular,
or if it could have a tangent bundle of dimension 100 or dimension 1.

We now state our main theorem. Before doing so, we remark that it generalizes the special case
stated above in a few ways. For one, we do not require that X is a PI space, or even the weaker
condition that X is a Lipschitz di�erentiability space, but just that the measure µ on X supports at
least two independent Alberti representations. (Alberti representations are certain decompositions
of µ as superpositions of measures supported on one-dimensional curve fragments, which we de�ne
precisely below. They were introduced in metric measure spaces by Bate [4], building on work
of Alberti [1] and Alberti-Csörnyei-Preiss [2].) For another, we do not require that X itself is a
topological plane, but only that its blowups are.

Theorem 1.3. Let (X, d, µ) be a pointwise doubling metric measure space. Let U ⊂ X be a Borel
subset such that, for µ-a.e. x ∈ U , each blowup of X at x is homeomorphic to R2.

If µ|U has n φ-independent Alberti representations for some Lipschitz φ : X → Rn, then n ≤ 2,
and equality holds only if µ|U is 2-recti�able.

Recall that a measure µ on a metric space X is called m-recti�able if there are countably many
compact sets Ei ⊂ Rm and Lipschitz mappings gi : Ei → X such that µ(X \ ∪gi(Ei)) = 0. All the
remaining terminology used in Theorem 1.3 will be de�ned in Section 2.

In Theorem 1.3, one may replace the assumption that there exist n φ-independent Alberti rep-
resentations with the assumption that there exist n linearly independent Weaver derivations. (See
[45] or [24, Section 13], for an explanation of Weaver derivations.) Up to decomposing U , these



RECTIFIABILITY OF PLANES AND ALBERTI REPRESENTATIONS 3

assumptions are equivalent by the work of Schioppa, in particular by Theorem 3.24 and Corollary
3.93 of [39].

By the work of Bate [4], Theorem 1.3 also applies if the assumption that there exist n φ-
independent Alberti representations is replaced by the assumption that X is a Lipschitz di�er-
entiability space and U is an n-dimensional chart in X. (See [4] and [12] for more about Lipschitz
di�erentiability spaces.)

Remark 1.4. On its own, m-recti�ability of a measure µ, as de�ned above, does not imply that µ
is absolutely continuous with respect to m-dimensional Hausdor� measure (see [22]). Nonetheless,
it follows from [2] and [4, Corollary 6.10] that under the assumption of equality in Theorem 1.3,
the measure µ must be absolutely continuous with respect to two-dimensional Hausdor� measure.
(That a similar implication works also in higher dimensions follows from the recent work [20, 21]
or, alternatively, from an announced result of Csörnyei-Jones.) Note that in Theorem 1.3 we do
not assume that two-dimensional Hausdor� measure is σ-�nite on X, or indeed anything about the
Hausdor� dimension of X.

One speci�c application of Theorem 1.3 is when the space X itself is a linearly locally contractible
(LLC) topological surface. This �ts neatly into the theme, described above, about the interaction
between analysis and (quantitative) topology. (See De�nitions 2.2 and 2.3 for the meanings of
�porous� and �LLC�.)

Corollary 1.5. Let X be a metrically doubling, LLC, topological surface. Let µ be a pointwise
doubling measure on X such that all porous sets in X have µ-measure zero, and let U be a Borel
subset of X.

If µ|U has n φ-independent Alberti representations for some Lipschitz φ : X → Rn, then n ≤ 2,
and equality holds only if µ|U is 2-recti�able.

Recti�ability and related prior work. One can view Theorem 1.3 as providing a su�cient
condition for a measure µ on a metric space X to be recti�able. For measures de�ned on subsets
of Euclidean space, there is a huge literature of such results, most famously the work of Preiss [35]
which applies under density assumptions on µ. There is also a program to understand the more
quantitative notion of uniform recti�ability for measures on Euclidean space, which often entails
assumptions of quantitative topology [15,17].

In the case of abstract metric measure spaces, there are fewer known su�cient conditions for
recti�ability. Closer to our present setting, Bate and Li [5] also make a connection between the
existence of Alberti representations in a metric measure space and the recti�ability of that space.
They assume nothing about the topology ofX but rather impose density assumptions on the measure
µ. More speci�cally, Theorem 1.2 of [5] shows the following: Suppose (X, d, µ) is a metric measure
space such that µ has positive and �nite upper and lower n-dimensional densities almost everywhere.
Then µ is n-recti�able if and only if it admits a measurable decomposition into sets Ui such that
each µ|Ui supports n independent Alberti representations.

Theorem 1.3 above says that, under certain quantitative topological assumptions on a space
(X, d, µ) supporting two independent Alberti representations, one can conclude 2-recti�ability of
the measure µ without any a priori density assumptions and, in particular, without any assumption
on the Hausdor� dimension of the space.

With strong assumptions on both the measure µ and the quantitative topology of X, much
more can be said. For example, in [41], Semmes shows that an Ahlfors n-regular, linearly locally
contractible n-manifold must be a PI space, and in [19], it is shown that such manifolds are locally
uniformly n-recti�able.
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Specializing further to the the 2-dimensional case, in [9] it is shown that one can even achieve
global parametrizations: an Ahlfors 2-regular, linearly locally contractible 2-sphere X is quasisym-
metrically equivalent to the standard 2-sphere. This result implies both that X is a PI space and
that 2-dimensional Hausdor� measure on X is 2-recti�able. Related parametrization results for
other topological surfaces appear in [46,47].

Remarks on the proof of Theorem 1.3. Let us brie�y discuss the proof that equality n = 2
in Theorem 1.3 implies 2-recti�ability, which is the more di�cult part of the theorem. The proof
consists of three main ingredients.

In the �rst ingredient, we use the fact that generic blowups of φ are certain �model mappings�,
namely, Lipschitz quotient mappings from doubling, linearly contractible planes to R2 (Proposition
3.2). (For the de�nitions of these terms, see Sections 2 and 3.)

Thus, up to decomposing U , we may assume there is a scale r0 > 0 such that at almost every
point in U , φ is uniformly close to these model mappings, in the Gromov-Hausdor� sense, at scales
below r0 (Lemma 7.1). By decomposing further, we may also assume that the model mappings have
uniform constants and that µ is essentially a doubling measure on U , in particular, that porous
subsets of U have measure zero.

For the second ingredient, we study the geometry of the model mappings. The study of Lipschitz
quotient mappings of the plane initiated in [8,28] already shows that the model mappings are discrete
and open, i.e., are branched coverings (Propositions 3.4 and 3.5). More quantitatively, we prove by
a compactness argument that each model mapping is bilipschitz on a sub-ball of quantitative size
in every ball of its domain (Proposition 6.2).

The �nal ingredient in the proof is the following stability property of the model mappings: If two
model mappings are su�ciently close in the Gromov-Hausdor� sense and one is bilipschitz on a ball
of radius R, then the other is bi-Lipschitz on a ball of radius cR, for some controlled constant c > 0
(Lemma 5.4). This means that if φ is close to a bilipschitz model mapping at some point and scale,
then this property persists under further magni�cation at this point (Lemma 7.2).

Combining these three ingredients shows that the set of points in U at which φ|U is not locally
bilipschitz is in fact porous (or rather, σ-porous) in U , and hence has measure zero.

Structure of the paper. The outline of the paper is as follows. Section 2 contains notation
and preliminary de�nitions. Section 3 contains the de�nition and properties of Lipschitz quotient
mappings. Section 4 contains some preliminary de�nitions related to Gromov-Hausdor� convergence
of metric spaces, and Sections 5 and 6 contain some further quantitative topological facts about
Lipschitz quotient mappings on planes. In Section 7 we prove Theorem 1.3 and Corollary 1.5, and
in Section 8 we provide some relevant examples where the results fail under relaxed assumptions.
Section A is an appendix which shows that a space whose blowups are all planes actually satis�es
a more quantitative condition on its blowups. This used in the proof of Theorem 1.3, but its proof
is a modi�cation of fairly standard ideas in the literature and so is relegated until the end.

2. Notation and preliminaries

Throughout this paper, we consider only complete, separable metric spaces and locally �nite
Borel regular measures.

2.1. Metric space notions. We write

B(x, r) = BX(x, r) = {y ∈ X : d(y, x) < r}

for the open ball in a metric space X, and we write

B(x, r) = BX(x, r) = {y ∈ X : d(y, x) ≤ r},
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which need not be the closure of B(x, r). We also consider closed annuli, which we write as

A(x, r,R) = {y ∈ X : r ≤ d(y, x) ≤ R}

A metric space is called proper if B(x, r) is compact in X for each x ∈ X and r > 0.
Given a metric space (X, d) and λ > 0, we will write λX for the metric space (X,λd).

De�nition 2.1. A metric space X is called metrically doubling if there is a constant D ≥ 0 such
that each ball in X can be covered by at most D balls of half the radius. If we wish to emphasize
the constant D, we will call X metrically D-doubling.

If X is complete and metrically doubling, then it is proper.

De�nition 2.2. Let X be a metric space and S ⊂ X a subset. We say that S is porous if, for all
x ∈ S, there is a constant η > 0 and a sequence xn → x in X such that

B(xn, ηd(xn, x)) ∩ S = ∅.

We now introduce some terms from quantitative topology, including the term linearly locally
contractible used in Corollary 1.5.

De�nition 2.3. Let X be a metric space.
• We call X linearly locally contractible (LLC) if there is a radius r0 > 0 and a constant
A ≥ 1 such that each metric ball B(x, r) ⊂ X with r < r0 is contractible inside B(x,Ar).
If one can take r0 = ∞, we call the space linearly contractible (LC), or A-LC if we wish to
emphasize the constant.

• We call X annularly linearly connected if there is a constant λ ≥ 1 such that, for all p ∈ X
and r ∈ (0, diam (X)], any two points x, y ∈ A(p, r, 2r) can be joined by a continuum in
A(p, r/λ, 2λr). We abbreviate this condition as ALC, or λ-ALC to emphasize the constant.

We will make use of the following relationship between the above two notions, which is a minor
modi�cation of facts found in the literature.

Lemma 2.4. If a complete, metrically doubling space X is annularly linearly connected with constant
λ and homeomorphic to R2, then X is linearly contractible, with constant A = A(λ) depending only
on λ.

Proof. Lemma 5.2 of [30] shows that X must satisfy two conditions known as �LLC1� and �LLC2�,
with constants depending only on λ. The argument in Lemma 2.5 of [9] then shows that X must
be linearly contractible with constant depending only on λ. (Note that, since X is homeomorphic
to R2, there is no need to restrict to a bounded subset as in the proof of that lemma.) �

We will use the notion of simultaneous pointed Gromov-Hausdor� convergence of spaces and
functions. Namely, we will consider triples (X, p, φ), where X is a metric space, p ∈ X is a base
point, and φ : X → Rk is a Lipschitz function. This type of convergence is explained in detail in a
number of places. See, for example, Chapter 8 of [16], [29], [18], or [13].

If (Xn, pn) is a sequence of metrically D-doubling spaces, then it has a subsequence which con-
verges in the pointed Gromov-Hausdor� sense to a metrically D-doubling space. If furthermore
fn : Xn → Rk are all L-Lipschitz functions, for some �xed L, then {(Xn, pn, fn)} has a subsequence
converging to a triple (X, p, f) for which f is L-Lipschitz.

De�nition 2.5. Let X be a metric space, p ∈ X a point, and {λk} is a sequence of positive real
numbers tending to zero. If the sequence {︁(︁

λ−1
k X, p

)︁}︁
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converges in the pointed Gromov-Hausdor� sense to a space (X̂, p̂), then (X̂, p̂) is called a blowup
of X at p.

Let φ : X → R2 be a Lipschitz function. If the sequence{︁(︁
λ−1
k X, p, λ−1

k (φ− φ(p))
)︁}︁

converges to a triple (X̂, p̂, φ̂), then (X̂, p̂, φ̂) is called a blowup of (X, p, φ). In this case (X̂, p̂) will
be a blowup of (X, p).

By our previous remarks, a metrically doubling space admits blowups at each of its points, as
does a metrically doubling space together with a Lipschitz function. For the de�nition of blowups
at almost every point of a pointwise doubling metric measure space, as used in Theorem 1.3, see
Remark 2.11.

2.2. Metric measure space notions. Recall our standing assumption that our metric measure
spaces are complete, separable, and Borel regular.

If (X, d, µ) is a metric measure space and U ⊂ X is a measurable subset, then we write µ|U for
the measure de�ned by

µ|U (E) = µ(E ∩ U).

The de�nition of �metrically doubling� for metric spaces has already appeared; now we introduce
the related concept for metric measure spaces.

De�nition 2.6. A metric measure space (X, d, µ) is called doubling if there is a constant C ≥ 0
such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)

for all x ∈ X and r > 0.

If a metric measure space is doubling, then the underlying metric space is metrically doubling (see
[23]). Of course, a metrically doubling space may carry a speci�c measure µ which is not doubling.

De�nition 2.7. A metric measure space (X, d, µ) is called pointwise doubling at x ∈ X if

lim sup
r↘0

µ(B(x, 2r))

µ(B(x, r))
<∞.

We call (X, d, µ) pointwise doubling if it is pointwise doubling at µ-a.e. x ∈ X.

De�nition 2.8. We say that (X, d, µ) is (C,R)-uniformly pointwise doubling at x ∈ X if

(2.1) µ(B(x, r)) ≤ Cµ(B(x, r/2)) for all r < R.

If, for some C ≥ 1 and R > 0, the space (X, d, µ) is (C,R)-uniformly pointwise doubling at µ-a.e.
x ∈ X, we call (X, d, µ) uniformly pointwise doubling.

A subset A ⊂ X is called (C,R)-uniformly pointwise doubling if µ is (C,R)-uniformly pointwise
doubling at x for all x ∈ A. (Note that we ask that (2.1) holds for balls in X centered at points of
A, not that (A, d, µ) is uniformly pointwise doubling at all x ∈ A.)

We note that the Lebesgue density theorem applies to pointwise doubling measures; see Section
3.4 of [26]. From this it follows immediately that if (X, d, µ) is pointwise doubling and U ⊂ X is
Borel, then (U, d, µ|U ) is pointwise doubling.
Remark 2.9. If µ is a doubling measure on X, then every porous set in X has µ-measure zero.
However, it is not true that every porous set in a pointwise doubling metric measure space (X, d, µ)
must have measure zero. (For example, take R2 equipped with the measure µ which is the restriction
of H1 to a single line.) However, the following fact is immediate from the Lebesgue density theorem:
If A ⊂ X is a uniformly pointwise doubling subset, and S ⊂ A is porous as a subset of the metric
space (A, d), then S has measure zero.
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The following facts about pointwise doubling spaces combine Lemmas 2.2 and 2.3 of [6] (see also
[7] and [4]).

Lemma 2.10. Let (X, d, µ) be a complete, pointwise doubling metric measure space. Then there
exists a countable collection {Ai} of closed subsets of X, along with constants Ci > 1 and Ri > 0,
with the following properties:

(i) µ(X \ ∪iAi) = 0,
(ii) each Ai is metrically doubling, and
(iii) each Ai is (Ci, Ri)-uniformly pointwise doubling.

Remark 2.11. If (X, d, µ) is pointwise doubling (but not necessarily metrically doubling), then for
µ-a.e. x ∈ X, we can de�ne the blowups of X at x as follows: decompose X into closed sets Ai as
in Lemma 2.10 and, de�ne the blowups of X at x ∈ Ai to be the blowups of Ai at x, which are
well-de�ned as Ai is metrically doubling. For µ-a.e. x ∈ X, this choice is independent of the choice
of decomposition of X (see [6], Section 9).

When we speak of the blowups of a pointwise doubling metric measure space (X, d, µ), as in
Theorem 1.3, this is what we mean. Observe that the blowups of a pointwise doubling space are
metrically doubling metric spaces.

Note that if (X, d, µ) is metrically doubling and pointwise doubling, the blowups of X in this
sense may not coincide with the blowups of X in the metric sense. For example, if X is R2 equipped
with the measure µ which is the restriction of H1 to a single line, then (X, d, µ) is both metrically
and pointwise doubling. However the blowups of X, in the sense of this remark, are lines almost
everywhere.

If µ has the additional property that it assigns measure zero to porous subsets of X, then the
two notions of blowup agree µ-almost everywhere. (See Remark 7.2 in [13].)

2.3. Alberti representations. We will not really need any properties of Alberti representations
other than Proposition 3.2 below. However, for background we give the relevant de�nitions. For
more on Alberti representations, we refer the reader to [4], as well as [39], [13], and [5].

If X is a metric space, let Γ(X) denote the set of all bilipschitz functions

γ : K → X

where K is a non-empty compact subset of R. We write Dom γ for the domain K of γ and Im γ
for the image of γ in X.

If γ ∈ Γ(X), then the graph of γ is the compact set

{(t, x) ∈ R×X : t ∈ K, γ(t) = x}.

We endow Γ(X) with the metric d which sets d(γ, γ′) equal to the Hausdor� distance in R × X
between the graphs of γ and γ′.

De�nition 2.12. Let(X, d, µ) be a metric measure space, P a Borel probability measure on Γ(X),
and, for each γ ∈ Γ(X), let νγ a Borel measure on X that is absolutely continuous with respect to
H1|Im γ .

For a measurable set A ⊂ X, we say that A = (P, {νγ}) is an Alberti representation of µ|A if, for
each Borel set Y ⊂ A,

• the map γ ↦→ νγ(Y ) is Borel measurable, and
• we have

µ(Y ) =

∫︂
Γ(X)

νγ(Y )dP(γ).
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To specify the directions of Alberti representations, we de�ne a cone in Rn as folows: Given
w ∈ Sn−1 and θ ∈ (0, 1), let

C(w, θ) = {v ∈ Rn : v · w ≥ (1− θ)∥v∥}.
A collection C1, . . . , Cm of cones in Rn are independent if any choice of non-zero vectors v1 ∈
C1, . . . , vm ∈ Cm form a linearly independent set.

Suppose (X, d, µ) is a metric measure space with Alberti representation (P, {νγ}). Let φ : X → Rn

be Lipschitz and let C ⊂ Rn be a cone. We say that the Alberti representation (P, {νγ}) is in the
φ-direction of the cone C if

(φ ◦ γ)′(t) ∈ C \ {0}
for P-a.e. γ ∈ Γ(X) and a.e. t ∈ Dom γ.

Finally, if φ : X → Rn is Lipschitz, we say that a collection A1, . . . ,Am of Alberti representations
is φ-independent if there are independent cones C1, . . . , Cm in Rn such that each Ai is in the φ-
direction of Ci.

3. Lipschitz quotient mappings

Lipschitz quotient mappings were �rst introduced in [8] in the context of Banach spaces.

De�nition 3.1. Let X and Y be metric spaces. A mapping F : X → Y is called a Lipschitz
quotient (LQ) mapping if there is a constant L ≥ 1 such that

(3.1) B(F (x), r/L) ⊆ F (B(x, r)) ⊆ B(F (x), Lr)

for all x ∈ X and all r > 0.
If we wish to emphasize the constant L, we will call such a map an L-LQ map.

The second inclusion in (3.1) simply says that an L-LQ mapping is L-Lipschitz.
The way Lipschitz quotient mappings enter the proof of Theorem 1.3 is via the following result.

It was proven (in slightly di�erent language) in [39, 40], Theorem 5.56 (see equation (5.96) in that
paper) and (for doubling measures) in [18], Corollary 5.1. A signi�cantly stronger version of this
result in the setting of Lipschitz di�erentiability spaces can be found in [13], Theorem 1.11. All
three of these results yield the following proposition with only minor changes.

Proposition 3.2. Let (X, d, µ) be a metric measure space with µ pointwise doubling. Suppose that,
for some Lipschitz function φ : X → Rn, µ has n φ-independent Alberti representations. Then for

almost every x ∈ X, there is a constant L ≥ 1 such that for every blowup (X̂, x̂, φ̂) of (X,x, φ), the

mapping φ̂ is a Lipschitz quotient map of X̂ onto Rn with constant L.
The constant L depends on x but not on the sequence of scales de�ning the blowup.

In the remainder of this section, we collect some basic properties of Lipschitz quotient mappings
that will be used below.

The following path lifting lemma is one of the main tools used in [8] (Lemma 4.4) and [28] (Lemma
2.2). We repeat it here in our context, along with its brief proof.

Lemma 3.3. Let X be a proper metric space. Let F : X → Y be L-LQ, and let γ : [0, T ] → Y be
a 1-Lipschitz curve with γ(0) = F (x). Then there is a L-Lipschitz curve γ̃ : [0, T ] → X such that
γ̃(0) = x and F ◦ γ̃ = γ.

Proof. Fix m ∈ N. We de�ne

γ̃m :

(︃
1

m
Z ∩ [0, T ]

)︃
→ X

as follows.
Set γ̃m(0) = x. By induction, assume that γ̃m(k/m) has been de�ned and F (γ̃(k/m)) = γ(k/m).
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We know that

F (B(γ̃m(k/m), L/m)) ⊇ B(γ(k/m), 1/m) ∋ γ((k + 1)/m).

Here the �rst inclusion follows from the fact that F is a L-LQ mapping and that X is proper, while
the second inclusion follows from the fact that γ is 1-Lipschitz.

We therefore de�ne γ̃m(k/m) to be any point of B(γ̃m(k/m), L/m) that maps onto γ((k+1)/m)
under F .

It follows that γ̃m is L-Lipschitz for each m ∈ N. By a standard Arzelà-Ascoli type argument, a
sub-sequence of {γ̃m}converges as m→ ∞ to a curve γ̃ as desired. �

The following result is from Proposition 4.3 of [8], or alternatively from the identical Proposition
2.1 of [28]. These results are not stated in this form, but rather are stated only for mappings from
R2 to R2. However the proof works exactly the same way in the more general setting below, using
Lemma 3.3. Recall that a discrete mapping f is one for which each point preimage f−1(p) is discrete.

Proposition 3.4 ([8] Proposition 4.3, [28] Proposition 2.1). For each L ≥ 1 and D ≥ 1, there is a
constant N = N(L,D) with the following property:

Let X be a proper, metrically D-doubling topological plane, and let f : X → R2 be a L-LQ
mapping. Then f is discrete, and furthermore

#f−1(p) ≤ N

for all p ∈ R2.

Proof. A reading of the (identical) proofs of Proposition 4.3 of [8] and Proposition 2.1 of [28] shows
that the only requirement on the domain of the mapping is that it is a doubling topological plane.

With this remark in mind, what those proofs directly show is the following statement: If X
is a proper, metrically D-doubling topological plane and f : X → R2 is an L-LQ mapping, then
#(f−1(p) ∩ B(x, 1)) is uniformly bounded (for all p ∈ R2 and x ∈ f−1(p) ∈ X) by a constant
depending only on L and D. To achieve the conclusion of Proposition 3.4, one need only rescale
and apply this result, for each λ > 0, to the L-LQ mappings x ↦→ λf(x), considered as mappings on
the metrically D-doubling topological plane λX. �

We remark that, to our knowledge, it is open whether a result like Proposition 3.4 holds for
Lipschitz quotient mappings from Rn to Rn, for n ≥ 3.

Proposition 3.4 will tell us that our blowup mappings are discrete open mappings between topo-
logical planes. The following result of �ernavskii-Väisäla is then relevant.

Proposition 3.5 ([44], Theorem 5.4). Let f :M → N be a continuous, discrete, and open mapping
between topological n-manifolds. Then f is a local homeomorphism o� of a closed branch set Bf

such that
dimBf ≤ n− 2 and dim f(Bf ) ≤ n− 2,

where dim denotes the topological dimension.

Remark 3.6. In the statement of Proposition 3.5, since f is discrete and open and the branch set
Bf is closed, the inequality dim f(Bf ) ≤ n− 2 follows from [14], Lemma 2.1.

As Proposition 3.5 will allow us to �nd locations where our blowup mappings are injective LQ
mappings, we now analyze those locations further. Recall that a metric space is called geodesic if
every two points can be joined by a curve whose length is equal to the distance between the points.

Lemma 3.7. Let X be a proper metric space and let Y be a geodesic metric space. Let F : X → Y
be L-LQ, and suppose that F is injective on B(x, r) for some x ∈ X, r > 0.

Then F is L-bilipschitz on B(x, r/(1 + 2L2)).
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Proof. As an L-LQ mapping, F is automatically L-Lipschitz. Consider distinct points p, q ∈
B(x, r/(1 + 2L2)). Let T = d(F (p), F (q)) ≤ Lr

1+2L2 .
Let γ : [0, T ] → Y parametrize by arc length a geodesic from F (p) to F (q). Then by Lemma 3.3

there is a L-Lipschitz curve γ̃ : [0, T ] → X such that γ̃(0) = p and F ◦ γ̃ = γ.
Since γ̃ is L-Lipschitz, we have that

diam (γ̃) ≤ LT ≤ L2r

1 + 2L2

and therefore

d(γ̃(T ), x) ≤ r

1 + 2L2
+

L2r

1 + 2L2
< r.

Therefore γ̃(T ) ∈ B(x, r) and F (γ̃(T )) = γ(T ) = F (q). Since F is injective on B(x, r), it follows
that

γ̃(T ) = q

and so
d(p, q) = d(γ̃(0), γ̃(T )) ≤ LT ≤ Ld(F (p), F (q)).

�

4. Convergence and closeness

We introduced the notions of Gromov-Hausdor� convergence and blowups in Section 2. Closely
related to this type of convergence are the following notions of closeness between spaces.

De�nition 4.1. LetM and N be metric spaces and �x η > 0. We call a (not necessarily continuous)
mapping f :M → N an η-isometry if

|dN (f(x), f(y))− dM (x, y)| ≤ η for all x, y ∈M.

In other contexts, such mappings are also sometimes called (1, η)-quasi-isometric embeddings or
(1, η)-Hausdor� approximations.

De�nition 4.2. Let (M,p) and (N, q) be pointed metric spaces and let t > 0, ϵ ∈ (0, 1/10). We
will say that (M,p) and (N, q) are ϵ-close at scale t if there exist ϵt-isometries

(4.1) f : B(p, t/ϵ) → N and g : B(q, t/ϵ) →M

such that d(f(p), q) ≤ ϵt, d(g(q), p) ≤ ϵt, and furthermore

(4.2) d(f(g(y)), y) ≤ ϵt and d(g(f(x)), x) ≤ ϵt

for all y ∈ B(q, t/2ϵ) and x ∈ B(p, t/2ϵ).
If φ :M → Rk and ψ : N → Rk are Lipschitz, we will say that the triples (M,p, φ) and (N, q, ψ)

are ϵ-close at scale t if the above holds and in addition

|φ ◦ g − ψ| ≤ ϵt, |ψ ◦ f − φ| ≤ ϵt

everywhere on B(q, t/ϵ) and B(p, t/ϵ), respectively.

Remark 4.3. If (Xn, pn, φn) is a sequence of triples converging in the pointed Gromov-Hausdor�
sense to (X, p, φ), then for all R, ϵ > 0, there exists N ∈ N such that (Xn, pn, φn) is ϵ-close to
(X, p, φ) at scale R, for all n ≥ N . See, for example, Lemmas 8.11 and 8.19 of [16] or De�nition
8.1.1 of [11]

We collect some other simple observations about closeness below.

Lemma 4.4. Let (M,p, φ) and (N, q, ψ) be ϵ-close at scale t, with mappings f and g as in De�nition
4.2. Fix λ ∈ (0, 1/2].
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(a) If B(x, λt) ⊆ B(p, t), then (M,x, φ) and (N, f(x), ψ) are ϵ
λ -close at scale λt.

(b) If in addition (N, q, ψ) and (N ′, q′, ψ′) are δ-close at scale t, then (M,p, φ) and (N ′, q′, ψ′) are
2(ϵ+ δ)-close at scale t.

Proof. For (a), we simply use the same mappings f and g that are provided by the fact that
(M,p, φ) and (N, q, ψ) are ϵ-close at scale t. We now consider these as mappings between (M,x, φ)
and (N, f(x), ψ). The only aspect of De�nition 4.2 that is not immediately obvious is the fact that
f and g are de�ned on B(x, (λt)/(ϵ/λ)) and B(f(x), (λt)/(ϵ/λ)), respectively. This follows from the
triangle inequality and the assumptions that ϵ ≤ 1/10, λ ≤ 1/2.

For (b), one may compose the relevant ϵ-isometries, and check that the resulting maps satisfy
De�nition 4.2 using the triangle inequality and the assumptions that ϵ, δ ≤ 1/10. �

It is convenient for topological arguments to have a continuous version of closeness.

De�nition 4.5. Let M and N be metric spaces and �x η > 0. We say that continuous maps
f, g : M → N between metric spaces are η-homotopic if they are homotopic by a homotopy H :
M × [0, 1] → N such that

dN (f(x), H(x, t)) ≤ η

for all x ∈M and t ∈ [0, 1].

De�nition 4.6. Let (M,p) and (N, q) be pointed metric spaces and let t > 0, ϵ ∈ (0, 1/2). We will
say that (M,p) and (N, q) are continuously ϵ-close at scale t if there exist continuous ϵt-isometries

f : B(p, t/ϵ) → N and g : B(q, t/ϵ) →M

such that
d(f(p), q) ≤ ϵt and d(g(q), p) ≤ ϵt,

and
g ◦ f |B(p,t/ϵ)

is ϵt-homotopic to the inclusion B(p, t/ϵ) →M , and similarly for f ◦ g.
If φ :M → Rk and ψ : N → Rk are Lipschitz, we will say that the triples (M,p, φ) and (N, q, ψ)

are continuously ϵ-close at scale t if the above holds and in addition

|φ ◦ g − ψ| ≤ ϵt, |ψ ◦ f − φ| ≤ ϵt

where de�ned.

The following result is useful for connecting closeness and continuous closeness.

Lemma 4.7. Fix A,L ≥ 1. Then there is a constant Λ = Λ(A,L) ≥ 1 with the following property.
Let (M,p, φ) and (N, q, ψ) be triples such that (M,p) and (N, q) are pointed A-LC topological

planes, and φ, ψ are L-Lipschitz. If ϵ ∈ (0, (10Λ)−1) and t > 0, and if (M,p, φ) and (N, q, ψ) are
ϵ-close at scale t, then they are continuously Λϵ-close at scale t.

Proof. This follows from the general �induction on skeleta� arguments of [34] or [41, Section 5]. Here
we give a direct proof based on these methods, while making no attempt to optimize constants. The
idea is simply to triangulate M and N and use the linear contractibility to continuously extend the
coarse mappings f and g from De�nition 4.2 successively from the vertices of the triangulation to
the edges and then to the faces. To verify the homotopy inverse portion of De�nition 4.6, one does
a similar process on M × [0, 1] and N × [0, 1].

Let f : B(p, t/ϵ) → N and g : B(q, t/ϵ) →M be the mappings as in De�nition 4.2.
Fix a triangulation T of M such that each triangle T ∈ T has diameter at most ϵt. Let Tϵ be

the collection of triangles in T that intersect B(p, t/2ϵ).
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Let f0 be the restriction of f to the 0-skeleton of Tϵ. Note that if x and y are adjacent points in
the 0-skeleton of Tϵ, then d(f(x), f(y)) ≤ 3ϵt.

The A-LC property of N allows us to extend f0 to a continuous map f1 from the 1-skeleton of
Tϵ into N with the property that

diam (f1(∂T )) ≤ 9Aϵt for each T ∈ Tϵ.
A second application of the A-LC property of N allows us to extend f1 to a continuous map f2 from

∪T∈Tϵ
T ⊃ B(p, t/2ϵ).

into N , with the property that

(4.3) diam (f2(T )) ≤ 18A2ϵt for each T ∈ Tϵ.
It follows from (4.3) that the continuous map f2 satis�es

(4.4) d(f(x), f2(x)) ≤ 20A2ϵt for all x ∈ B(p, t/2ϵ).

By the same method, we can �nd a continuous map g2 : B(q, t/2ϵ) →M such that

(4.5) d(g(y), g2(y)) ≤ 20A2ϵt for all y ∈ B(q, t/2ϵ).

It then follows from (4.4) and (4.5), and the fact that φ and ψ are L-Lipschitz, that

|φ ◦ g2 − ψ| ≤ 21A2Lϵt and |ψ ◦ f2 − φ| ≤ 21A2Lϵt

where de�ned.
We now argue that

h = g2 ◦ f2|B(p,t/2ϵ)

is Cϵt-homotopic to the inclusion B(p, t/2ϵ) →M , for some C depending only on A. Of course, the
same argument will show that h̃ = f2 ◦ g2|B(q,t/2ϵ) is Cϵt-homotopic to the inclusion B(q, t/ϵ) → N .

Observe that a simple triangle inequality calculation using (4.4) and (4.5) and the properties of
f and g shows that

d(h(x), x) ≤ 42A2ϵt for all x ∈ B(p, t/2ϵ).

Recall the previously de�ned triangulation T in M and the collection Tϵ inside it. These yield
triangulations of M ×{0} and M ×{1}. We can then obtain a triangulation S of M × [0, 1] with no
additional vertices by simply triangulating each product T × [0, 1] for triangles T ∈ T . Note that,
under this construction, if S is a simplex of S that intersects B(p, t/2ϵ)× [0, 1], then

S ∩ (M × {0, 1}) ⊆

(︄ ⋃︂
T∈Tϵ

T

)︄
× {0, 1}.

Let Sϵ be the collection of simplices in S that intersect B(p, t/2ϵ)× [0, 1].
We de�ne a map H1 from the 1-skeleton S1

ϵ of Sϵ to M as follows: On edges of Sϵ in M × {0},
H1 agrees with the identity. On edges of Sϵ in M ×{1}, H1 agrees with h. On each remaining edge,
we extend H1 continuously from its values at the endpoints, using the A-LC property of M . Then
for each edge e of S1

ϵ between points x× a and y × b in S0
ϵ (x, y ∈M , a, b ∈ {0, 1}), we have

diam (H1(e)) ≤ 2Ad(H1(x), H1(y)) ≤ 84A3ϵt.

We have now de�ned H1 on the 1-skeleton of Sϵ. We now extend to a map H2 on the 2-skeleton of
Sϵ. For each face of Sϵ inM×{0}, de�ne H2 by the identity and for each face of Sϵ inM×{1},de�ne
H2 by h; note that this continuously extends H1. On each remaining face of Sϵ, we de�ne H2 as an
extension of H1 using the A-LC property of M . Since the image of each edge of Sϵ under H1 has
diameter at most 84A3ϵt, the image of each face of Sϵ under H2 has diameter at most 336A4ϵt.

Finally, we extend H2 to a map H on the union of simplices of Sϵ, again using the A-LC property
of M . The image of each simplex under H has diameter at most 1344A5ϵt.
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Since the union of simplices of Sϵ contains all of B(p, t/2ϵ)×[0, 1], a restriction of H is a homotopy
between h and the inclusion of B(p, t/2ϵ) into M .

In addition, since diam (H(S)) ≤ 1344A5ϵt for each simplex S of Sϵ, it follows that

d(H(x, t), x) ≤ 1344A5ϵt

for all (x, t) ∈ B(p, t/2ϵ)× [0, 1].
This proves that h = g2 ◦ f2|B(p,t/2ϵ) is 1344A5ϵt-homotopic to the inclusion map of B(p, t/2ϵ)

into M . The same argument proves the analogous statement for f2 ◦ g2|B(q,t/2ϵ)

Therefore, choosing Λ ≥ max(1344A5, 21A2L) completes the proof of the lemma. �

5. Topological lemmas

We �rst make the following simple observation about A-LC spaces.

Lemma 5.1. Let X be a proper A-LC space. Fix x ∈ X and r > 0. Then there is a connected open
set U and a connected compact set K such that

(5.1) B(x, r) ⊆ U ⊆ B(x, 2Ar)

and

(5.2) B(x, r) ⊆ K ⊆ B(x, 2Ar).

Proof. The existence of U satisfying (5.1) is shown in Lemma 2.11 of [19].
To �nd a continuumK as in (5.2), consider the homotopyH which contracts B(x, 2r) in B(x, 2Ar)

and set
K = H(B(x, r)× [0, 1]).

�

Now let X and Y be homeomorphic to Rn and let f : X → Y be a proper continuous mapping.
(Here proper means that f−1(K) is compact in X whenever K is compact in Y .) Then f extends
naturally to a continuous mapping between the one-point compacti�cations of X and Y , which are
homeomorphic to Sn.

For a domain D ⊂ X, and a point y ∈ Y \ f(∂D), we can therefore use µ(y,D, f) to denote
the local degree of f , as de�ned on p. 16 of [36]. That is, if f is a continuous map from a domain
D ⊂ X ⊂ Sn into Y ⊂ Sn and y /∈ f(∂D), then µ(y,D, f) is de�ned by considering the following
sequence of induced mappings on singular homology of pairs:

Hn(S
n) Hn(S

n, Sn \ (D ∩ f−1(y))) Hn(D,D \ f−1(y)) Hn(S
n, Sn \ {y}) Hn(S

n)
j∗

e∗

f∗

k∗

Here j, e, and k are inclusions. The homomorphism e∗ is an isomorphism by excision, and k∗
is an isomorphism because Sn \ {y} is homologically trivial. There is an integer µ such that the
homomorphism k−1

∗ f∗e
−1
∗ j∗ sends each α ∈ Hn(S

n) to a multiple µα ∈ Hn(S
n). This integer µ is

the local degree µ(y,D, f).
The following basic properties of the local degree can be found in Proposition 4.4 of [36].

(a) The function y → µ(y,D, f) is constant on each connected component of Y \ f(∂D).
(b) If f : D → f(D) is a homeomorphism, then µ(y,D, f) = ±1 for each y ∈ f(D).
(c) If y ∈ Y \ f(∂D) and f−1(y) ⊂ D1 ∪ · · · ∪ Dp, where Di are disjoint domains in D such that

y ∈ Y \ ∂Di for each i, then

µ(y,D, f) =

p∑︂
i=1

µ(y,Di, f).
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(d) If f and g are homotopic by a homotopy Ht, t ∈ [0, 1], and if y /∈ Ht(∂D) for all t ∈ [0, 1], then
µ(y, f,D) = µ(y, g,D).

For Lipschitz quotient maps, having local degree ±1 is enough to guarantee local injectivity in
the following sense.

Lemma 5.2. Let Z be metrically doubling and homeomorphic to R2, and let f : Z → R2 be an LQ
mapping. Let D be a domain in Z. Let y be a point in Rn \ f(∂D) such that |µ(y,D, f)| = 1.

Let U be the connected component of Rn\f(∂D) containing y, and let D′ be a connected component
of f−1(U) in D. Assume that f−1(y) ∩D ⊂ D′.

Then f is injective on D′.

Proof. As f : Z → R2 is an LQ mapping, it is continuous, open, and discrete (by Proposition
3.4). Furthermore, the Lipschitz quotient property and fact that #f−1(p) is �nite for each p (by
Proposition 3.4) implies that f is a proper mapping.

As noted in Remark 3.2 of [27], or on p. 18 of [36], Proposition 3.5 implies that f : Z → Rn is
either sense-preserving or sense-reversing. (This is because the branch set Bf , having topological
dimension at most n− 2, cannot separate D.) Without loss of generality, we may assume that f is
sense-preserving, i.e., that

µ(p, V, f) > 0

for every pre-compact domain V ⊆ X and every point p ∈ f(V ) \ f(∂V ).
Suppose that a point z ∈ U has pre-images x1, . . . , xk in D′. For each i = 1, 2, . . . , k, place small

disjoint domains Di in D′ such that xi ∈ Di and ∂Di avoids the �nite set f−1(z).
Then

1 = µ(y,D, f) = µ(y,D′, f) = µ(z,D′, f) =

k∑︂
i=1

µ(z,Di, f).

Here the �rst equation is by assumption, the second and fourth are from property (c) of local
degree, and the third follows from property (a), since y and z are in the same connected component
of Rn \ f(∂D′).

Since µ(z,Di, f) > 0 for each i, we must have that k = 1. This shows that f |D′ is injective. �

Lemma 5.3. Let X and Y be A-LC and homeomorphic to Rn. Let t > 0 and 0 < ϵ < 1/100A2.
Suppose that (X, pX) and (Y, pY ) are continuously ϵ-close at scale t, with mappings f, g as in

De�nition 4.6. Let DX and DY be domains in X and Y , respectively, and �x t′ > ϵt.
Suppose also that KX ⊂ DX and KY ⊂ DY are compact connected sets such that

(5.3) B(pX , 10At
′) ⊂ KX ⊂ B(pX , 5t) ⊂ DX ⊂ B(pX , 10At)

and

(5.4) B(pY , t
′) ⊂ KY ⊂ B(pY , 2At

′) ⊂ B(pY , 11At) ⊂ DY ⊂ B(pX , 22A
2t).

Then the induced mapping

f∗ : Hn(DX , DX \KX) → Hn(DY , DY \KY )

is surjective.

Proof. The mapping g ◦ f |DX
is ϵt-homotopic to the inclusion of DX into X. We consider X as

embedded in its one-point compacti�action Sn. Hence, the mapping

(g|DY
)∗ ◦ (f |DX

)∗ : Hn(DX , DX \KX) → Hn(DY , DY \KY ) → Hn(S
n, Sn \ {pX})

is the same map as the one induced by inclusion. That map is an isomorphism, by excision and
duality ([43], 4.6.5 and 6.2.17).

Since all the groups are isomorphic to Z, the �rst map must be surjective. �
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Lemma 5.4. Fix A,L ≥ 1. Let X and Y be A-LC topological planes, and let φX : X → R2,
φY : Y → R2 be L-LQ mappings. Let t > 0 and 0 < ϵ < 1/100A3L3.

Suppose that (X, pX , φX) and (Y, pY , φY ) are continuously ϵ-close at scale t. In addition, suppose
that φY is L-bilipschitz on B(pY , 22A

2t).

Then φX is L-bilipschitz on B
(︂
pX ,

t
2AL2(1+2L2)

)︂
.

Proof. Let y = φX(pX) and let DY be a domain that contains B(pY , 11At) and is contained in
B(pY , 22A

2t) ⊂ B(pY , t/ϵ). This exists by Lemma 5.1 and our choice of ϵ.
Because φY is L-LQ and ϵ < 1/100AL, we see that

φY (DY ) ⊇ B(φY (pY ), 10t/L) ⊃ B(φY (pY ), 10Lϵt) ∋ y.

Let z = φ−1
Y (y) ∩DY , which is a single point because φY is bilipschitz on DY .

Let DX be a domain containing B(pX , 5t) and contained in B(pX , 10At) ⊂ B(pX , t/ϵ).
Let t′ = 5L2ϵt. The following facts follow easily from our assumptions and the triangle inequality:

z ∈ B(pY , t
′) and f−1(z) ⊂ B(pX , t

′).

Hence (using Lemma 5.1) we can �nd compact connected sets KX and KY such that

f−1(z) ⊂ B(pX , 10At
′) ⊂ KX ⊂ DX

and
B(pY , t

′) ⊂ KY ⊂ B(pY , 2At
′) ⊂ DY .

Observe that z ∈ KY , so y ∈ φY (KY ).
Now consider the commutative diagram below.

H2(S
2)

H2(S
2, S2 \KX) H2(DX , DX \KX) H2(DY , DY \KY ) H2(S

2, S2 \ φY (KY ))

H2(S
2, S2 \ f−1(z)) H2(DX , DX \ f−1(z)) H2(DY , DY \ {z}) H2(S

2, S2 \ {y})

H2(S
2)

j∗

(i1)∗

e∗

f∗

(i2)∗

(φY )∗

(i3)∗ (i4)∗

e∗

f∗ (φY )∗

k∗

In this diagram, the homomorphisms are all induced by inclusion, except those labeled f∗ and f∗,
which are induced by f , and those labeled (φY )∗ and (φY )∗, which are induced by φY . The homo-
morphisms e∗, e∗, and k∗ are isomorphisms, as in the de�nition of local degree. The homomorphisms
j∗ and (i4)∗ are surjective, by duality ([43], 6.2.17).

Following this diagram from top left to bottom right along the third row gives the local degree
µ(φY ◦ f, y,DX). Following from top left to bottom right along the second row shows that the
overall map is surjective. (We use Lemma 5.3 for f∗ in the second row.) Hence

|µ(y,DX , φY ◦ f)| = 1.

Now, we know that supDX
|φY ◦ f − φX | ≤ ϵt. It follows that

(5.5) dist(y, φX(∂DX)) ≥ 1

L
t > 10ϵt.
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Indeed, if q ∈ ∂DX , then d(q, pX) ≥ 5t, so d(f(q), f(pX)) ≥ 5t− ϵt, and so

d(y, φX(q)) = d(φX(pX), φX(q)) ≥ d(φY (f(pY )), φY (f(q)))− 2ϵt ≥ L−1(5− ϵ)t− 2ϵt ≥ 1

L
t,

which proves (5.5).
Hence, the homotopy invariance of local degree implies that

|µ(y,DX , φX)| = 1.

We now aim to apply Lemma 5.2. Let U be the connected component of R2\φX(∂DX) containing
y, and let D′

X be the connected component of DX ∩ φ−1
X (U) containing pX . Equation (5.5) implies

that U contains B(y, 1
L t). Hence, since φX is L-Lipschitz, DX ∩ φ−1

X (U) contains B(pX , t/L
2). It

then follows from Lemma 5.1 that the connected component D′
X contains B(pX , t/2AL

2).
Another simple argument shows that

φ−1
X (y) ∩DX ⊂ B(pX , 10L

2ϵt) ⊂ B(pX , t/2AL
2) ⊂ D′

X .

An application of Lemma 5.2 shows that φX is injective on D′
X , hence on B(pX , t/2AL

2). Ap-
plying Lemma 3.7 shows that φX is therefore L-bilipschitz on B(pX , t/2AL

2(1 + 2L2)). �

6. Compactness results

We will make use of the following completeness property of A-LC topological planes and L-LQ
mappings

Lemma 6.1. Fix constants L,D,A ≥ 1. Let

{(Xn, pn, fn : X → R2)} → (X, p, f : X → R2)}

be a sequence converging in the pointed Gromov-Hausdor� sense. Suppose that each Xn is an A-
LC, metrically D-doubling, topological plane, and that each fn is L-LQ. Then X is a metrically
D-doubling topological plane and f is an L-LQ mapping.

Furthermore, X is A′-LC for some A′ depending only on A and D, and if each Xn is λ-ALC for
some �xed λ ≥ 1, then X is λ-ALC.

Proof. The following parts of the lemma are standard and simple to prove from the de�nitions: X
is D-doubling, f is L-LQ, and if Xn are all λ-ALC then X is λ-ALC.

That X is A′-LC for some A′ depending only on A and D appears in Lemma 2.12 of [19].
It remains only to show that X is a topological plane. This follows from, e.g., Proposition 2.19 of

[19] (note that Ahlfors regularity is not really required in that result, only metric doubling). Indeed,
that result shows that X is a linearly contractible (hence simply connected) homology 2-manifold.
We then note that all homology 2-manifolds are topological 2-manifolds ([10], Theorem V.16.32),
and that the plane is the only simply connected non-compact 2-manifold. �

We now use some compactness arguments to show that Lipschitz quotient mappings are quanti-
tatively bilipschitz on balls of de�nite size.

Proposition 6.2. For each L,D,A ≥ 1, there is a constant s0 = s0(L,D,A) with the following
property:

Let X be a metrically D-doubling, A-LC, topological plane, and let f : X → R2 be a L-LQ
mapping. Then in each ball B(p, r) in X, there is a ball B(q, s0r) ⊆ B(p, r) such that f is L-
bilipschitz on B(q, s0r).

The proof requires the following preliminary lemma.
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Lemma 6.3. Let {(Xn, pn, fn : Xn → R2)} be a sequence with each Xn metrically D-doubling,
A-LC, and homeomorphic to R2 and each fn L-LQ. Suppose that this sequence converges in the
pointed Gromov-Hausdor� sense to a triple (X, p, f : X → R2). Then there exists s0 > 0 such that
for all n su�ciently large, fn is L-bilipschitz on a ball of radius s0 in Bn(pn, 1).

Proof. First of all, we observe by Lemma 6.1 that the space X is an A′-LC, metrically D doubling,
topological plane, (with A′ = A′(A,D) ≥ A) and that the limit function f is L-LQ. Hence, f is
discrete by Proposition 3.4. By Proposition 3.5, f is a homeomorphism on some sub-ball in B(x, 1),
and so by Lemma 3.7, f is L-bilipschitz on some ball B(p′, s) ⊂ BX(p, 1).

We now claim that, for some s0 > 0 and all n su�ciently large, the mapping fn is bilipschitz on
a ball B(p′n, s0) ⊂ Bn(pn, 1). This will yield a contradiction.

Fix δ = (2000A′L)−4s. If n is su�ciently large, then (Xn, pn, fn) and (X, p, f) are δ-close at scale
1. Hence, by Lemma 4.4, there are points p′n ∈ Xn such that the triples (Xn, p

′
n, fn) and (X, p′, f)

are 20A′δ
s -close at scale t = s/20A′.

Fix n large as above. Then (Xn, p
′
n, fn) and (X, p′, f) are ϵ-close at scale t (where ϵ = 20A′δ

s <

1/100A′L4), and f is L-bilipschitz on B(p′, s) ⊇ B(p′, 20A′t).
Thus, by Lemma 5.4, fn is L-bilipschitz on B(p′n, t/2A

′L2(1+2L2)) = B(p′n, s0). This completes
the proof. �

Proof of Proposition 6.2. We argue by contradiction. If the Proposition fails, then for some con-
stants D, A, L, there is a sequence

{(Xn, pn, fn)}
of metrically D-doubling, A-LC, L-LQ topological planes and radii rn > 0 such that fn fails to be
L-bilipschitz on each ball B(p′n, rn/n) ⊂ B(pn, rn).

Consider the sequence

(6.1)
{︁
(r−1

n Xn, pn, gn)
}︁
,

where gn(x) = r−1
n fn(x).

The spaces r−1
n Xn are still metricallyD-doubling, A-LC topological planes, and the mappings gn :

r−1
n Xn → R2 are L-LQ. Furthermore, the map gn fails to be L-bilipschitz on each ball B(p′n, 1/n) ⊂
B(pn, 1) ⊂ 1

rn
Xn.

Consider a convergent subsequence of the sequence in (6.1). By Lemma 6.3, we see that there
is a constant s0 > 0 such that, for arbitrarily large values of n ∈ N, gn is L-bilipschitz on a ball of
radius s0 in B(pn, 1). This is a contradiction. �

7. Proof of Theorem 1.3 and Corollary 1.5

Proof of Theorem 1.3. Fix a metric measure space (X, d, µ), a Borel set U ⊂ X, and a Lipschitz
function φ : X → Rn as in the assumptions of Theorem 1.3. When proving Theorem 1.3, we may
assume without loss of generality that U is closed, metrically doubling, and uniformly pointwise
doubling. This assumption is justi�ed by Lemma 2.10. By the de�nition of blowups for pointwise
doubling spaces (see Remark 2.11), this means that, for a.e. x ∈ U , blowups of X at x are the same
as blowups of U at x.

We �rst prove that n ≤ 2, the �rst half of Theorem 1.3. By Proposition 3.2, there is a point x ∈ U

and a blowup (X̂, x̂, φ̂) of (X,x, φ) which is a metrically doubling topological plane and such that
φ̂ is a Lipschitz quotient map onto Rn. Suppose n > 2. If π : Rn → R2 is the projection onto the
�rst two coordinates, then π ◦ φ̂ is a Lipschitz quotient mapping from X̂ onto R2. By Propositions
3.4 and 3.5, π ◦ φ̂ is a homeomorphism on some ball B(x̂, t) ⊂ X̂. It is therefore impossible for
φ̂(B(x̂, t)) to contain a ball in Rn, which contradicts the fact that φ̂ is a Lipschitz quotient map
onto Rn. Therefore, n ≤ 2.
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We now assume n = 2 and proceed to show that in this case µ|U is 2-recti�able. This will
complete the proof of Theorem 1.3.

By assumption, at µ-a.e. point x ∈ U , each blowup of X is a topological plane. By Proposition
A.1 in the appendix, it follows that for µ-a.e. x ∈ U , there is a constant λ(x) such that each blowup
of X at x is λ(x)-ALC.

Thus, after our reductions, we have that, for µ-a.e. x ∈ U , each blowup (X̂, x̂, φ̂) of (X,x, φ) at
x has the following properties:

(i) X̂ is a metrically D-doubling, λ(x)-ALC topological plane.
(ii) φ̂ : X̂ → R2 is a Lipschitz quotient map.
Fix constants L, λ ≥ 1. Let A = A(λ) as provided by Lemma 2.4. Let ϵ = ϵ(L,D,A) =(︂

s0
1000ALΛ(1+2L2)

)︂5
, where s0 = s0(L,D,A) is as in Proposition 6.2 and Λ = Λ(A,L) is as in Lemma

4.7. Fix r0 > 0 and de�ne Y = YL,λ,r0 ⊂ U by

Y = {x ∈ U : for all r ∈ (0, r0), there is a(7.1)

λ-ALC, D-doubling, L-LQ plane (W,w,ψ) such that

(r−1U, x, r−1(φ− φ(x))) and (W,w,ψ) are ϵ-close at scale 1}

For each �xed L, λ ≥ 1 and r0 > 0, it follows from Lemma 6.1 that the above set Y is closed in
U , hence in X.

We can write U , up to an exceptional subset of measure zero, as a countable union of sets Y
as above, by varying L, λ ∈ N and r0 ∈ {1, 1/2, 1/3, . . . }. This follows from the rephrasing of
Gromov-Hausdor� convergence in terms of closeness given in Remark 4.3.

To prove Theorem 1.3, it therefore su�ces to show that µ|Y is 2-recti�able.
We �rst make the following simple rescaling observation.

Lemma 7.1. For each x ∈ Y and 0 < r < r0, there is an A-LC, L-LQ plane (X̂, x̂, φ̂) such that

(U, x, φ) and (X̂, x̂, φ̂) are ϵ-close at scale r.

Proof. Given x ∈ Y and r < r0, let (W,w,ψ) be as provided by the de�nition of Y . Note that W is
λ-ALC and hence A-LC by our choice of A = A(λ) from Lemma 2.4. The rescaled and translated
triple

(X̂, x̂, φ̂) := (rW,w, rψ + φ(x))

is then the desired one. �

Lemma 7.2. Let q ∈ Y be a point and let r ∈ (0, r0). Let (X̂, q̂, φ̂) be an A-LC, L-LQ topological

plane such that (U, q, φ) and (X̂, q̂, φ̂) are 10
s0
ϵ-close at scale r.

Suppose further that φ̂ is L-bilipschitz on B(q̂, r).
Then φ is 2L-bilipschitz on B(q, r/20) ∩ Y .

Proof. Let s1 = 1
100A2L2(1+2L2) and let ϵ′ = 100s−1

0 AL2(1 + 2L2)ϵ ∈ (0, 1/10).
We will �rst prove the following claim.

Claim 7.3. For any x ∈ B(q, r/20) ∩ Y and k ≥ 0, there is an A-LC, L-LQ plane (X̃, x̃, φ̃) such

that (U, x, φ) is ϵ′-close to (X̃, x̃, φ̃) at scale sk1r/10 and such that φ̃ is L-bilipschitz on B(x̃, sk1r/5).

Proof of Claim 7.3. The proof is by induction on k ≥ 0.
If k = 0, we set (X̃, x̃, φ̃) to be the triple (X̂, x̂, φ̂), where x̂ ∈ B(q̂, r/10) ⊂ X̂ is chosen so that

(U, x, φ) and (X̂, x̂, φ̂) are 100
s0
ϵ close at scale r/10. (Here we use Lemma 4.4.) Since φ̂ is L-bilipschitz

on B(x̂, r/5) ⊂ B(q̂, r), and since 100
s0
ϵ < ϵ′, we have proven the claim if k = 0.
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Now suppose k > 0. Let (X̃, x̃, φ̃) be an A-LC, L-LQ triple such that (U, x, φ) and (X̃, x̃, φ̃) are
ϵ-close at scale 4AL2(1 + 2L2)sk1r/10. (Such a triple is provided by Lemma 7.1 and the fact that
x ∈ Y .)

By induction, we also have an A-LC, L-LQ plane (Z̃, z̃, ψ̃) such that (U, x, φ) is ϵ′-close to (Z̃, z̃, ψ̃)
at scale sk−1

1 r/10 and such that ψ̃ is L-bilipschitz on B(z̃, sk−1
1 r/5).

Applying Lemma 4.4, this means that (U, x, φ) is ϵ′

4AL2(1+2L2)s1
-close to (Z̃, z̃, ψ̃) at the new scale

4AL2(1 + 2L2)sk1r/10.
By another use of Lemma 4.4, we also have that (X̃, x̃, φ̃) and (Z̃, z̃, ψ̃) are 2(ϵ+ ϵ′

4AL2(1+2L2)s1
)-

close at scale 8AL2(1 + 2L2)sk1r/10.
By Lemma 4.7, they are therefore continuously 2Λ(ϵ+ ϵ′

8AL2(1+2L2)s1
)-close at scale

t = 4AL2(1 + 2L2)sk1r/10.

Observe that t < sk−1
1 r/10 by our choice of s1.

By our choice of ϵ and ϵ′, we have

2Λ(ϵ+
ϵ′

8AL2(1 + 2L2)s1
) < 1/100A3L3.

So, to recap, (X̃, x̃, φ̃) and (Z̃, z̃, ψ̃) are continuously δ-close at scale t (for δ < 1
100A3L3 ). Furthermore

ψ̃ is L-bilipschitz on B(z̃, sk−1
1 r/5) ⊃ B(z̃, 22A2t) in Z̃.

Therefore, Lemma 5.4 implies that φ̃ is L-bilipschitz on

B

(︃
x̃,

t

2AL2(1 + 2L2)

)︃
= B(x̃, sk1r/5).

Now, the fact that (U, x, φ) and (X̃, x̃, φ̃) are ϵ-close at scale 4AL2(1 + 2L2)sk1r/10 implies that
they are 4AL2(1 + 2L2)ϵ-close at scale sk1r/10. Since 4AL

2(1 + 2L2)ϵ < ϵ′, this completes the proof
of Claim 7.3.

�

With Claim 7.3 proven, Lemma 7.2 now follows: Let x, y be any points of Y ∩B(q, r/20). Choose
k ≥ 0 such that

sk+1
1 r/10 ≤ d(x, y) < sk1r/10.

By Claim 7.3, (U, x, φ) is ϵ′-close to a triple (X̃, x̃, φ̃) at scale sk1r/10, for which φ̃ is L-bilipschitz
on B(x̃, sk1r/5).

It follows that

|φ(x)− φ(y)| ≥ L−1(d(x, y)− 2ϵ′sk1r/10)− 2ϵ′sk1r/10

≥ (L−1 − 2L−1ϵ′(s1)
−1 − 2ϵ′(s1)

−1)d(x, y)

≥ (2L)−1d(x, y).

�

We now make one further decomposition of Y . Since U is (C,R)-uniformly pointwise doubling,
for some C ≥ 1 and R > 0, there is a constant C ′ = C ′(C,A(λ), L) ≥ 1 such that if q ∈ U , r < R
and

B(q, s0r) ⊆ B(p, r),

then

(7.2) µ(B(p, r)) ≤ C ′µ(B(q, s0r/10)),

where s0 = s0(L,D,A) is the constant from Proposition 6.2 which was already �xed.
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For r1 ∈ (0, r0), let

(7.3) Wr1 =

{︃
p ∈ Y :

µ(Y ∩B(p, r))

µ(B(p, r))
≥ 1− (2C ′)−1 for all r ∈ (0, r1)

}︃
.

By the Lebesgue density theorem, µ-a.e. point of Y is in Wr1 for some choice of r1 ∈ (0, r0) ∩
{1, 1/2, 1/3, . . . }.

Fix r1 ∈ (0, r0) and let W = Wr1 ⊂ Y . We will show that φ is bilipschitz on a W -neighborhood
of each point of W .

Lemma 7.4. There is a constant s2 > 0 (depending only on D, A(λ), and L) with the following
property:

Let p be a point of W and �x r < r1/2. Then there is a point q ∈ Y and a ball B(q, s2r) ⊂ B(p, r)
such that φ|B(q,s2r)∩Y is 2L-bilipschitz.

Proof. By Lemma 7.1, there is an A-LC, L-LQ topological plane (X̂, p̂, φ̂) such that (U, p, φ) and
(X̂, p̂, φ̂) are ϵ-close at scale r.

By Proposition 6.2, there is a ball B(q̂, s0r/2) ⊆ B(p̂, r/2) on which φ̂ is L-bilipschitz.
It follows from Lemma 4.4 that, for some q0 ∈ U , B(q0, s0r/2) ⊂ B(p, r) and in addition

(X̂, q̂, φ̂) and (U, q0, φ) are
2

s0
ϵ-close at scale s0r/2.

Since r < r1 and p ∈ W , there must be a point q ∈ Y ∩ B(q0, s0r/10). It follows from Lemma
4.4 that there is a point q̂0 ∈ B(q̂, s0r/5) such that

(X̂, q̂0, φ̂) and (U, q, φ) are
10

s0
ϵ-close at scale s0r/10.

We know that φ̂ is L-bilipschitz on B(q̂, s0r/2) ⊇ B(q̂0, s0r/10).
Therefore, by Lemma 7.2, φ is 2L-bilipschitz on B(q, s0r/200) ∩ Y . This completes the proof.

�

The proof of Theorem 1.3 is now completed as follows. For each of the countably many choices
of L, λ ∈ N and r0 ∈ {1, 1/2, 1/3, . . . }, we obtain a closed set Y = YL,λ,r0 ⊂ U as in (7.1). For each
further choice of r1 ∈ {1, 1/2, 1/3, . . . }, we obtain a set W = WL,λ,r0,r1 ⊆ Y . The union of these
sets W over all countably many choices of parameters covers µ-almost all of U .

Consider the following relatively open subset W ′ ⊂W :

W ′ = {p ∈W ⊂ Y : φ is bilipschitz on B(p, t) ∩ Y for some t > 0}.
By Lemma 7.4, the set W \W ′ is porous in Y , hence porous in U . Because U is uniformly pointwise
doubling, it follows that the set W \W ′ has µ-measure zero. (See Remark 2.9.) Then

W ′ ⊆
⋃︂
j∈N

{p ∈W ′ : φ|B(p,1/j)∩Y is bilipschitz}

⊆
⋃︂
j∈N

⋃︂
i∈N

(︂
B(pji , 1/j) ∩ Y

)︂
,

where {pji}∞i=1 is any countable dense subset of the set

{p ∈W ′ : φ|B(p,1/j)∩Y is bilipschitz}.

This shows that W ′ is covered by countably many Borel sets B(pji , 1/j) ∩ Y on which φ is
bilipschitz. Since µ(W \W ′) = 0, it follows that µ|W is 2-recti�able. Writing U , up to measure zero,
as a countable union of sets W as above, we have shown that µ|U is 2-recti�able. This completes
the proof of Theorem 1.3. �
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Proof of Corollary 1.5. We can now establish Corollary 1.5 as follows. Since X is metrically dou-
bling, µ is pointwise doubling, and µ assigns measure zero to porous sets in X, we see that the
blowups of U and the blowups of X coincide at almost every point of U . (See Remark 2.11.) As in
the proof of Lemma 6.1, every blowup of X is a topological plane. Hence, by Theorem 1.3, n ≤ 2.

If n = 2, then µ|U is 2-recti�able, again by Theorem 1.3. �

Remark 7.5. It is straightforward to see that the same broad outline, much simpli�ed, can be used
to show the 1-dimensional analog of Theorem 1.3: Let (X, d, µ) be a pointwise doubling space and
U ⊂ X be a Borel subset such that, for µ-a.e. x ∈ U , each blowup of X at x is homeomorphic to
R. If µ|U has n φ-independent Alberti representations for φ : X → Rn Lipschitz, then n ≤ 1, with
equality only if µ|U is 1-recti�able.

Indeed, in this case, the blowups of the mapping φ at generic points are globally bilipschitz
(moreover, a�ne), and the analog of Lemma 7.1 essentially yields 1-recti�ability.

8. Examples

We �rst note a simple example which shows that recti�ability does not follow from simply as-
suming that (X, d, µ) is a doubling, LLC, topological surface, even if it supports a single Alberti
representation.

Example 8.1. Let Y be the �snow�aked� metric space (R, | · |1/2), and let X = R × Y , equipped
with the metric

d((t, y), (t′, y′)) = |t− t′|+ |y − y′|1/2.
Then (X, d,H3) is a doubling metric measure space which is also an LLC topological surface. Fur-
thermore, the restriction of µ to every compact subset of X supports one Alberti representation,
simply given by Fubini's theorem in the R factor.

On the other hand, no Lipschitz map from a compact set in R2 can have an image of positive
H3-measure in any metric space, and so H3|U is not 2-recti�able for any U ⊂ X of positive measure.
Moreover, the space X is purely 2-unrecti�able, in the sense that H2(f(E)) = 0 for every compact
E ⊂ R2 and Lipschitz f : E → X.

For a related and more interesting example, see the appendix by Schul and Wenger in [42].
The next two examples show that, in the absence of a quantitative topological assumption, such

as LLC or having blowups that are topological planes, either part of Theorem 1.3 or Corollary 1.5
may fail, even if (X, d, µ) is a pointwise doubling topological surface supporting multiple Alberti
representations.

Example 8.2. Let C be a Jordan curve in the plane (homeomorphic to the circle) of positive two-
dimensional Lebesgue measure. In fact, by a construction of Sierpi«ski-Knopp (see [37], Section 8.3),
we can ensure that the restriction of Lebesgue measure L2 to C is Ahlfors 2-regular, i.e., satis�es

M−1r2 ≤ L2(C ∩B(x, r)) ≤Mr2

for some M ≥ 1, all x ∈ X, and all r ∈ (0, 1).
Let X = C×R in R3, which is a topological surface. Equip X with the restriction of the distance

| · | from R3 and with the restriction of 3-dimensional Lebesgue measure, which is doubling on X.
Then, as a positive measure set in R3, X is a Lipschitz di�erentiability space of dimension 3, in the
sense of [4]. In particular, there are Borel sets Ui ⊂ X and Lipschitz maps φi : X → R3 such that
µ(X \ Ui) = 0 and µ|Ui supports three φi-independent Alberti representations for each i (see [4],
Theorem 6.6.).

Thus, the upper bound n ≤ 2 on the number of independent Alberti representations in Theorem
1.3 may fail in the absence of the assumption on blowups, and the upper bound in Corollary 1.5
may fail in the absence of the LLC assumption.
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Example 8.3. Consider the same topological surface X in R3 as in the previous example, but now
consider R3 equipped with the Heisenberg group metric dH. Endow X with the restriction of dH
and the restriction of 3-dimensional Lebesgue measure, which is the same (up to constant factors)
as H4 in the Heisenberg group. The space (X, dH,H4) is pointwise doubling by the Lebesgue
density theorem in the Heisenberg group, and porous subsets of X, being also porous subsets of the
Heisenberg group, have H4-measure zero.

As a positive measure set in the Heisenberg group, (X, dH,H4) is also a Lipschitz di�erentiability
space with X itself a chart of dimension 2. Thus, as in the previous example, it admits a Borel
decomposition into Ui such that each µ|Ui

supports two φi-independent Alberti representations, for
some Lipschitz φi : X → R2.

However, no Lipschitz map from a compact set in R2 can have an image of positive H4-measure
in any metric space, and so H4|U cannot be 2-recti�able for any U ⊂ X of positive measure. (In
fact, as in Example 8.1, more is true here: (X, dH) is purely 2-unrecti�able, as a consequence of the
pure 2-unrecti�ability of the Heisenberg group ([3], Theorem 7.2).)

Thus, the conclusion of 2-recti�ability in the case of equality may fail in Theorem 1.3 in the
absence of the assumption on blowups, and in Corollary 1.5 in the absence of the LLC assumption.

Appendix A. Blowups and annular linear connectivity

Recall the notion of annular linear connectivity (ALC) from De�nition 2.3. The goal of this
appendix is to prove the following proposition, which allows a self-strengthening of the hypotheses
in Theorem 1.3.

We will use the notion of a cut point y in a connected space Y : a point such that Y \ {y} is
disconnected.

Proposition A.1. Let (X, d, µ) be complete and metrically doubling with µ pointwise doubling. Let
U ⊂ X be a Borel subset such that, for µ-a.e. x ∈ U , each blowup of X at x is connected and has
no cut points.

Then for µ-a.e. x ∈ U , there is a constant λ = λ(x) such that each blowup of X at x is λ-ALC.

In particular, Proposition A.1 applies when the blowups of X at almost every point of U are
homeomorphic to R2.

The following preliminary de�nition will be useful.

De�nition A.2. We call a metric space X linearly connected if there is a constant L ≥ 1 such that,
for all x, y ∈ X, there is a compact, connected set containing x and y of diameter at most Ld(x, y).

Lemma A.3. Let C be a collection of complete, metrically D-doubling metric spaces with the fol-
lowing property: For each sequence {rk} of positive real numbers and each sequence {(Xk, pk)} such
that Xk ∈ C, pk ∈ Xk, and {r−1

k Xk, pk} converges in the pointed Gromov-Hausdor� sense, the limit
is connected and has no cut points.

Then there is a constant λ such that all elements of C are λ-ALC.

Note that the hypotheses of Lemma A.3 include the assumption that each element of C is itself
is connected with no cut points.

We now explain how to prove Proposition A.1 given Lemma A.3.

Proof of Proposition A.1. We may assume, by Lemma 2.10 and Remark 2.11, that U is complete,
metrically D-doubling, and (C,R)-uniformly doubling, for constants D ≥ 1, C ≥ 1, R > 0. Then,
for a.e. x ∈ U , the blowups of X at x are the blowups of U at x.

For each x ∈ U , let Bx denote the collection of all pointed metric spaces (Z, p) that arise as
blowups of U at x. The collection Bx is closed under pointed Gromov-Hausdor� convergence.
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Theorem 1.1 of [33] shows that, for a.e. x ∈ U , if (Z, p) ∈ Bx and q ∈ Z, then (Z, q) ∈ Bx. (Note
that, although Theorem 1.1 of [33] is stated for doubling measures, the proof relies only on the
estimates provided by the fact that U is (C,R)-uniformly doubling. This was also noted in Section
9 of [6].)

Let Cx be the collection of (unpointed) metric spaces Z that arise as blowups of U at x. It follows
from the previous paragraph (and the fact that rescalings of blowups are blowups) that, for a.e.
x ∈ U , (r−1Z, p) is in Bx for all Z ∈ Cx, p ∈ Z, and r > 0.

Hence, any pointed Gromov-Hausdor� limit of rescaled pointed elements of Cx as in Lemma A.3
is an element of Bx. By our assumption on U , such a limit must be connected with no cut points.

Thus, for a.e. x ∈ U , the collection Cx satis�es the hypotheses of Lemma A.3. It follows that
there is a constant λ = λ(x) such that each element of Cx (in particular, each blowup of U at x) is
λ-ALC. This completes the proof of Proposition A.1. �

It remains to prove Lemma A.3. To do so, we will use the following Lemma, which is a minor
modi�cation of Proposition 5.4 of [31].

Lemma A.4. Let C be a collection of metric spaces satisfying the hypotheses of Proposition A.3.
Then there is a constant L ≥ 1 such that each element of C is linearly connected with constant L.

Proof. This is proven in Proposition 5.4 of [31], in the case where C has a single element X (in
which case the Gromov-Hausdor� limits of pointed rescalings of X are called �weak tangents� of X).
However, an identical proof works under our assumption that all elements of C are metrically D-
doubling, since the same compactness argument can be run. (Note that the boundedness assumption
in Proposition 5.4 of [31] is not needed here, because we allow arbitrary scalings in the hypotheses
of Proposition A.3.) �

Lemma A.5. Let X be an L-linearly connected metric space that has the following property, for
some µ ≥ 1:

For all p ∈ X and r ∈ (0,diam (X)], and for all x, y ∈ A(p, r, 2r), there is a �nite set

P = {x0, x1, . . . , xn} ⊂ A(p, r/µ, 2µr)

such that

(A.1) x0 = x and xn = y,

and

(A.2) d(xi, xi+1) ≤
1

2L
dist(P, p) for each i ∈ {0, . . . , n− 1}.

Then X is λ-ALC, where λ depends only on µ.

Proof. Consider any p ∈ X, r ∈ (0, diam (X)], and x, y ∈ A(p, r, 2r). Let P = {x0, . . . , xn} ⊂
A(p, r/µ, 2µr) satisfy (A.1) and (A.2).

For each i ∈ {0, . . . , n−1} we use the linear connectedness of X to join xi to xi+1 by a continuum
of diameter at most

Ld(xi, xi+1) ≤
1

2
dist(P, p).

The union of these continua forms a continuum joining x to y inside

A(p, r/2µ, 3µr),

which proves the lemma with λ = 2µ. �
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Proof of Lemma A.3. Let C be a collection of metric spaces satisfying the hypotheses of Lemma A.3.
By Lemma A.4, we immediately have a constant L ≥ 1 such that each X ∈ C is linearly connected
with constant L. Note that this immediately implies that any pointed Gromov-Hausdor� limit of
rescaled, pointed elements of C is also linearly connected.

Therefore, to show that all X ∈ C are uniformly ALC, we need only verify the existence of a
constant µ ≥ 1 such that each X ∈ C satis�es the hypotheses of Lemma A.5 with constant µ.

Suppose that there is no such constant µ. Then for all k ∈ N, there is a space Xk ∈ C, a point
pk ∈ Xk, a radius rk > 0, and points xk, yk ∈ A(pk, rk, 2rk), such that there is no �nite set

P = {z0 = xk, z1, . . . , zm−1, zm = yk},
contained in A(pk, 1k rk, 2krk) and satisfying

(A.3) d(zi, zi+1) ≤
1

2L
dist(P, pk) for all i ∈ {0,m− 1}

Consider the uniformly doubling sequence of pointed metric spaces {(Yk, pk) := (r−1
k X, pk)}.

Let (Y∞, p∞) be a pointed Gromov-Hausdor� limit of a subsequence of this sequence, which for
convenience we continue to label with the index k.

For all ϵ > 0, there exists K ∈ N such that, for all k ≥ K, there are ϵ-isometries

(A.4) fk : BYk

(︃
pk,

1

ϵ

)︃
→ Y∞ and gk : BY∞

(︃
p∞,

1

ϵ

)︃
→ Yk

such that

(A.5) dY∞(fk(gk(x)), x) ≤ ϵ for all x ∈ BY∞(p∞, 1/2ϵ)

and

(A.6) dY∞(fk(pk), p∞) ≤ ϵ and dYk
(gk(p∞), pk) ≤ ϵ.

For all k su�ciently large, the points fk(xk) and fk(yk) all lie in BY∞(p∞, 3). By passing to a
further subsequence if necessary, we may therefore also assume that fk(xk) and fk(yk) converge to
points x∞ and y∞, respectively, in B(p∞, 3) ∈ Y∞.

The space Y∞ is a pointed Gromov-Hausdor� limit of pointed rescalings of elements of C. Hence,
by assumption, it is connected with no cut points. Furthermore, as remarked at the beginning of this
proof, it is linearly connected. A simple connectedness argument then yields a compact connected
set C∞ ⊂ Y∞ \ {p∞} containing both x∞ and y∞. (Indeed, the set of y ∈ Y∞ \ {p∞} that can
be joined to x∞ by such a continuum is open in Y∞ \ {p∞}, as is its complement, by the linear
connectedness of Y∞.)

For some choice of 0 < r < 1 < R <∞, C∞ must lie in A(p∞, r, R). Let

ϵ = min(r/100L, 1/100R).

There is a �nite set P∞ = {x0∞, x1∞, . . . , xn∞} ⊆ C∞ such that x0∞ = x∞, xn∞ = y∞, and

d(xi∞, x
i+1
∞ ) ≤ ϵ for each i ∈ {0, . . . , n− 1}.

Choose k > 2ϵ−1 su�ciently large so that there are ϵ-isometries fk and gk as in (A.4), (A.5), and
(A.6). We can also assume that k is large enough so that

dY∞(fk(xk), x∞) ≤ ϵ and dY∞(fk(yk), y∞) ≤ ϵ.

Let Qk ⊂ Yk denote the set

Qk = {z0 = xk, z1 = gk(x
0
∞), z2 = gk(x

1
∞), . . . , zn = gk(x

n
∞), zn+1 = yk}.

Because gk is an ϵ-isometry into Yk = r−1
k Xk, and because of equation (A.5), we see that

dXk
(zi, zi+1) ≤ 3ϵrk for each i ∈ {0, . . . , n}.
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Furthermore,

distXk
(Qk, pk) ≥ rrk − 2ϵrk ≥ 1

2
rrk

and
Qk ⊂ BXk

(pk, (R+ 2ϵ)rk) ⊂ BXk
(pk, 2Rrk).

Thus, Qk = {z0 = xk, z1, . . . , zn+1 = yk} is contained in

AXk
(pk,

1

2
rrk, 2Rrk) ⊂ AXk

(pk,
1

k
rk, 2krk),

where this last inclusion follows from our assumption that

k ≥ 2ϵ−1 ≥ max{100/r, 100R}.

In addition,

dXk
(zi, zi+1) ≤ 3ϵrk ≤ 1

2L

1

2
rrk ≤ 1

2L
distXk

(Qk, pk) for each i ∈ {0, . . . , n}.

Hence, Qk is contained in A(pk, rk/k, 2krk) and satis�es (A.3). This is a contradiction. �

References

[1] G. Alberti, Rank one property for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh
Sect. A 123 (1993), no. 2, 239�274.

[2] G. Alberti, M. Csörnyei, and D. Preiss, Structure of null sets in the plane and applications, In: �European
Congress of Mathematics�, 2005, pp. 3�22.

[3] L. Ambrosio and B. Kirchheim, Recti�able sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3,
527�555.

[4] D. Bate, Structure of measures in Lipschitz di�erentiability spaces, J. Amer. Math. Soc. 28 (2015), no. 2, 421�
482.

[5] D. Bate and S. Li, Characterizations of recti�able metric measure spaces, Ann. Sci. Éc. Norm. Supér. (4) 50
(2017), no. 1, 1�37.

[6] D. Bate and S. Li, Di�erentiability and Poincaré-type inequalities in metric measure spaces (Preprint, 2016).
arXiv:1505.05793.

[7] D. Bate and G. Speight, Di�erentiability, porosity and doubling in metric measure spaces, Proc. Amer. Math.
Soc. 141 (2013), no. 3, 971�985.

[8] S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, A�ne approximation of Lipschitz

functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999), no. 6, 1092�1127.
[9] M. Bonk and B. Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math.

150 (2002), no. 1, 127�183.
[10] G. E. Bredon, �Sheaf theory�, Second edition, Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New

York, 1997.
[11] D. Burago, Y. Burago, and S. Ivanov, �A course in metric geometry�, Graduate Studies in Mathematics, vol. 33,

American Mathematical Society, Providence, RI, 2001.
[12] J. Cheeger, Di�erentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3,

428�517.
[13] J. Cheeger, B. Kleiner, and A. Schioppa, In�nitesimal Structure of Di�erentiability Spaces, and Metric Di�er-

entiation, Anal. Geom. Metr. Spaces 4 (2016), Art. 5.
[14] P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J 27 (1960), 527�536.
[15] G. David and S. Semmes, �Analysis of and on uniformly recti�able sets�, Mathematical Surveys and Monographs,

vol. 38, American Mathematical Society, Providence, RI, 1993.
[16] G. David and S. Semmes, �Fractured fractals and broken dreams�, Oxford Lecture Series in Mathematics and

its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997.
[17] G. David and S. Semmes, Uniform recti�ability and quasiminimizing sets of arbitrary codimension, Mem. Amer.

Math. Soc. 144 (2000), no. 687, viii+132.
[18] G. C. David, Tangents and recti�ability of Ahlfors regular Lipschitz di�erentiability spaces, Geom. Funct. Anal.

25 (2015), no. 2, 553�579.
[19] G. C. David, Bi-Lipschitz pieces between manifolds, Rev. Mat. Iberoam. 32 (2016), no. 1, 175�218.



26 GUY C. DAVID AND BRUCE KLEINER

[20] G. De Philippis, A. Marchese, and F. Rindler, On a conjecture of Cheeger, Measure theory in non-smooth spaces,
2017, pp. 145�155.

[21] G. De Philippis and F. Rindler, On the structure of A-free measures and applications, Ann. of Math. (2) 184
(2016), no. 3, 1017�1039.

[22] J. Garnett, R. Killip, and R. Schul, A doubling measure on Rd can charge a recti�able curve, Proc. Amer. Math.
Soc. 138 (2010), no. 5, 1673�1679.

[23] J. Heinonen, �Lectures on analysis on metric spaces�, Universitext, Springer-Verlag, New York, 2001.
[24] J. Heinonen, Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 2, 163�232.
[25] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181

(1998), no. 1, 1�61.
[26] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, �Sobolev spaces on metric measure spaces�, New

Mathematical Monographs, vol. 27, Cambridge University Press, Cambridge, 2015. An approach based on upper
gradients.

[27] J. Heinonen and S. Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113
(2002), no. 3, 465�529.

[28] W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Uniform quotient mappings of the plane,
Michigan Math. J. 47 (2000), no. 1, 15�31.

[29] S. Keith, A di�erentiable structure for metric measure spaces, Adv. Math. 183 (2004), no. 2, 271�315.
[30] K. Kinneberg, Discrete length-volume inequalities and lower volume bounds in metric spaces, Math. Z. 282

(2016), no. 3-4, 747�768.
[31] K. Kinneberg, Conformal dimension and boundaries of planar domains, Trans. Amer. Math. Soc. 369 (2017),

no. 9, 6511�6536.
[32] B. Kleiner and A. Schioppa, PI spaces with analytic dimension 1 and arbitrary topological dimension, Indiana

Univ. Math. J. 66 (2017), no. 2, 495�546.
[33] E. Le Donne, Metric spaces with unique tangents, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 2, 683�694.
[34] P. Petersen V, A �niteness theorem for metric spaces, J. Di�erential Geom. 31 (1990), no. 2, 387�395.
[35] D. Preiss, Geometry of measures in Rn: distribution, recti�ability, and densities, Ann. of Math. (2) 125 (1987),

no. 3, 537�643.
[36] S. Rickman, �Quasiregular mappings�, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Math-

ematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993.
[37] H. Sagan, �Space-�lling curves�, Universitext, Springer-Verlag, New York, 1994.
[38] A. Schioppa, On the relationship between derivations and measurable di�erentiable structures, Ann. Acad. Sci.

Fenn. Math. 39 (2014), no. 1, 275�304.
[39] A. Schioppa, Derivations and Alberti representations, Adv. Math. 293 (2016), 436�528.
[40] A. Schioppa, Derivations and Alberti representations (Preprint, 2013). arXiv:1311.2439.
[41] S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and

Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155�295.
[42] C. Sormani and S. Wenger, Weak convergence of currents and cancellation, Calc. Var. Partial Di�erential Equa-

tions 38 (2010), no. 1-2, 183�206. With an appendix by Raanan Schul and Wenger.
[43] E. H. Spanier, �Algebraic topology�, Springer-Verlag, New York-Berlin, 1981. Corrected reprint.
[44] J. Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I No. 392 (1966), 10.
[45] N. Weaver, Lipschitz algebras and derivations. II. Exterior di�erentiation, J. Funct. Anal. 178 (2000), no. 1,

64�112.
[46] K. Wildrick, Quasisymmetric parametrizations of two-dimensional metric planes, Proc. Lond. Math. Soc. (3)

97 (2008), no. 3, 783�812.
[47] K. Wildrick, Quasisymmetric structures on surfaces, Trans. Amer. Math. Soc. 362 (2010), no. 2, 623�659.

Department of Mathematical Sciences, Ball State University, Muncie, IN, 47306

E-mail address: gcdavid@bsu.edu

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

E-mail address: bkleiner@cims.nyu.edu


	1. Introduction
	2. Notation and preliminaries
	3. Lipschitz quotient mappings
	4. Convergence and closeness
	5. Topological lemmas
	6. Compactness results
	7. Proof of Theorem 1.3 and Corollary 1.5
	8. Examples
	Appendix A. Blowups and annular linear connectivity
	References

