RECTIFIABILITY OF PLANES AND ALBERTI REPRESENTATIONS

GUY C. DAVID AND BRUCE KLEINER

ABsTrRACT. We study metric measure spaces that have quantitative topological control, as well
as a weak form of differentiable structure. In particular, let X be a pointwise doubling metric
measure space. Let U be a Borel subset on which the blowups of X are topological planes. We
show that U can admit at most 2 independent Alberti representations. Furthermore, if U admits
2 Alberti representations, then the restriction of the measure to U is 2-rectifiable. This is a partial
answer to the case n = 2 of a question of the second author and Schioppa.

CONTENTS
(L.__Introductionl 1
[2.  Notation and preliminaries| 4
3. Lipschitz quotient mappings 8
4. Convergence and closeness] 10
[5.  Topological lemmas| 13
[6.  Compactness results| 16
[7. Proof of Theorem [1.3|and Corollary |1.9| 17
8. Examples| 21
Appendix A.  Blowups and annular linear connectivity| 22
[References 25

1. INTRODUCTION

In the last two decades, there has been tremendous progress in developing notions of differentia-
bility in the context of metric measure spaces. One strand of this work, beginning with Cheeger ,
focuses on PI spaces — metric measure spaces that are doubling and support a Poincaré inequality
in the sense of — and, more generally, Lipschitz differentiability spaces — those equipped with
a differentiable structure in the form of a certain measurable (co)tangent bundle. Other strands
focus on differentiability via the presence of independent 1-rectifiable structures, as in the work
of Bate-Alberti-Csornyei-Preiss [1,[2,[4], or the existence of independent derivations mimicking the
functional analytic properties of partial derivatives, as in the work of Weaver [45].

By now, the different definitions of Cheeger, Weaver, and Bate-Alberti-Csornyei-Preiss have been
shown to be closely related , and a variety of applications of differentiability have been
given, e.g., in geometric group theory, in embedding theory, and in Sobolev and geometric function
theory.
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Nonetheless, some issues are still not well understood, in particular the relation between analytical
structure and quantitative topology. A particularly intriguing question along this line is, loosely
speaking: What kind of differentiable structure can live on a topological manifold? To make this
precise using a condition from quantitative topology, we impose one of the following on our metric
space X:

(a) X is linearly contractible, i.e., for some A > 0, each ball B(z,r) is contractible in the ball
B(z, Ar).

(b) X is a self-similar topological n-manifold, or more generally, all blowups (pointed Gromov-
Hausdorff limits of rescalings) of X are topological n-manifolds.

Both of these are widely used strengthenings of the qualitative hypothesis that X is a manifold;
condition (fa) was used heavily by Semmes [41].
One may then ask (see [32] for discussion of this and other related questions):

Question 1.1. Let (X,d, u) be a PI space and assume X is a topological n-manifold satisfying @
or (]ED above. What can be said about the dimension of the differentiable structure, the Hausdorff
dimension, or the structure of blow-ups of (X, d, p)?

Note that the only known examples of PI spaces as above are sub-Riemannian manifolds or
variations on them; in particular, in all known examples, blowups at generic points are bilipschitz
homeomorphic to Carnot groups.

A special case of our main result gives some restrictions in the 2-dimensional case:

Theorem 1.2. Suppose (X, d, u) is a PI space, and all blowups of X are homeomorphic to R?.
Then the tangent bundle has dimension at most 2, and if U C X is a Borel set on which the tangent
bundle has dimension 2, then ply is 2-rectifiable.

We point out that apart from the above theorem, Question [I.1]is wide open. In the n = 2 case,
we do not know if the PI space X could have a 1-dimensional tangent bundle, while in the n > 3
case we know of no nontrivial restriction on either the Hausdorff dimension or the dimension of the
differentiable structure. For instance, when n = 3, it is not known if X could be Ahlfors 100-regular,
or if it could have a tangent bundle of dimension 100 or dimension 1.

We now state our main theorem. Before doing so, we remark that it generalizes the special case
stated above in a few ways. For one, we do not require that X is a PI space, or even the weaker
condition that X is a Lipschitz differentiability space, but just that the measure p on X supports at
least two independent Alberti representations. (Alberti representations are certain decompositions
of p as superpositions of measures supported on one-dimensional curve fragments, which we define
precisely below. They were introduced in metric measure spaces by Bate [4], building on work
of Alberti 1] and Alberti-Cstrnyei-Preiss [2].) For another, we do not require that X itself is a
topological plane, but only that its blowups are.

Theorem 1.3. Let (X,d, 1) be a pointwise doubling metric measure space. Let U C X be a Borel
subset such that, for p-a.e. x € U, each blowup of X at x is homeomorphic to R2.

If ply has n ¢-independent Alberti representations for some Lipschitz ¢: X — R™, then n < 2,
and equality holds only if u|y is 2-rectifiable.

Recall that a measure p on a metric space X is called m-rectifiable if there are countably many
compact sets F; C R™ and Lipschitz mappings g; : E; — X such that u(X \ Ug;(E;)) = 0. All the
remaining terminology used in Theorem [I.3| will be defined in Section

In Theorem [1.3] one may replace the assumption that there exist n ¢-independent Alberti rep-
resentations with the assumption that there exist n linearly independent Weaver derivations. (See
[45] or [24, Section 13], for an explanation of Weaver derivations.) Up to decomposing U, these
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assumptions are equivalent by the work of Schioppa, in particular by Theorem 3.24 and Corollary
3.93 of [39].

By the work of Bate [4], Theorem also applies if the assumption that there exist n ¢-
independent Alberti representations is replaced by the assumption that X is a Lipschitz differ-
entiability space and U is an n-dimensional chart in X. (See [4] and [12] for more about Lipschitz
differentiability spaces.)

Remark 1.4. On its own, m-rectifiability of a measure u, as defined above, does not imply that p
is absolutely continuous with respect to m-dimensional Hausdorff measure (see [22]). Nonetheless,
it follows from |2| and [4, Corollary 6.10] that under the assumption of equality in Theorem [1.3]
the measure p must be absolutely continuous with respect to two-dimensional Hausdorff measure.
(That a similar implication works also in higher dimensions follows from the recent work [20}21]
or, alternatively, from an announced result of Csornyei-Jones.) Note that in Theorem n we do
not assume that two-dimensional Hausdorff measure is o-finite on X, or indeed anything about the
Hausdorff dimension of X.

One specific application of Theorem [I.3]is when the space X itself is a linearly locally contractible
(LLC) topological surface. This fits neatly into the theme, described above, about the interaction
between analysis and (quantitative) topology. (See Definitions and for the meanings of
“porous” and “LLC”.)

Corollary 1.5. Let X be a metrically doubling, LLC, topological surface. Let p be a pointwise
doubling measure on X such that all porous sets in X have p-measure zero, and let U be a Borel
subset of X.

If plu has n ¢-independent Alberti representations for some Lipschitz ¢: X — R™, then n < 2,
and equality holds only if |y is 2-rectifiable.

Rectifiability and related prior work. One can view Theorem as providing a sufficient
condition for a measure p on a metric space X to be rectifiable. For measures defined on subsets
of Euclidean space, there is a huge literature of such results, most famously the work of Preiss [35]
which applies under density assumptions on u. There is also a program to understand the more
quantitative notion of uniform rectifiability for measures on Euclidean space, which often entails
assumptions of quantitative topology [15,[17].

In the case of abstract metric measure spaces, there are fewer known sufficient conditions for
rectifiability. Closer to our present setting, Bate and Li [5] also make a connection between the
existence of Alberti representations in a metric measure space and the rectifiability of that space.
They assume nothing about the topology of X but rather impose density assumptions on the measure
. More specifically, Theorem 1.2 of 5] shows the following: Suppose (X, d, 1) is a metric measure
space such that p has positive and finite upper and lower n-dimensional densities almost everywhere.
Then p is n-rectifiable if and only if it admits a measurable decomposition into sets U; such that
each p|y, supports n independent Alberti representations.

Theorem above says that, under certain quantitative topological assumptions on a space
(X,d, 1) supporting two independent Alberti representations, one can conclude 2-rectifiability of
the measure p without any a priori density assumptions and, in particular, without any assumption
on the Hausdorff dimension of the space.

With strong assumptions on both the measure p and the quantitative topology of X, much
more can be said. For example, in [41], Semmes shows that an Ahlfors n-regular, linearly locally
contractible n-manifold must be a PI space, and in [19], it is shown that such manifolds are locally
uniformly n-rectifiable.
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Specializing further to the the 2-dimensional case, in [9] it is shown that one can even achieve
global parametrizations: an Ahlfors 2-regular, linearly locally contractible 2-sphere X is quasisym-
metrically equivalent to the standard 2-sphere. This result implies both that X is a PI space and
that 2-dimensional Hausdorff measure on X is 2-rectifiable. Related parametrization results for
other topological surfaces appear in [46}47].

Remarks on the proof of Theorem Let us briefly discuss the proof that equality n = 2
in Theorem [I.3] implies 2-rectifiability, which is the more difficult part of the theorem. The proof
consists of three main ingredients.

In the first ingredient, we use the fact that generic blowups of ¢ are certain “model mappings”,
namely, Lipschitz quotient mappings from doubling, linearly contractible planes to R? (Proposition
B-2). (For the definitions of these terms, see Sections [2 and [3])

Thus, up to decomposing U, we may assume there is a scale ry > 0 such that at almost every
point in U, ¢ is uniformly close to these model mappings, in the Gromov-Hausdorff sense, at scales
below rg (Lemma. By decomposing further, we may also assume that the model mappings have
uniform constants and that p is essentially a doubling measure on U, in particular, that porous
subsets of U have measure zero.

For the second ingredient, we study the geometry of the model mappings. The study of Lipschitz
quotient mappings of the plane initiated in [8}[28] already shows that the model mappings are discrete
and open, i.e., are branched coverings (Propositions and . More quantitatively, we prove by
a compactness argument that each model mapping is bilipschitz on a sub-ball of quantitative size
in every ball of its domain (Proposition [6.2).

The final ingredient in the proof is the following stability property of the model mappings: If two
model mappings are sufficiently close in the Gromov-Hausdorff sense and one is bilipschitz on a ball
of radius R, then the other is bi-Lipschitz on a ball of radius ¢R, for some controlled constant ¢ > 0
(Lemma . This means that if ¢ is close to a bilipschitz model mapping at some point and scale,
then this property persists under further magnification at this point (Lemma [7.2)).

Combining these three ingredients shows that the set of points in U at which ¢|y is not locally
bilipschitz is in fact porous (or rather, o-porous) in U, and hence has measure zero.

Structure of the paper. The outline of the paper is as follows. Section [2] contains notation
and preliminary definitions. Section [3] contains the definition and properties of Lipschitz quotient
mappings. Section[dcontains some preliminary definitions related to Gromov-Hausdorff convergence
of metric spaces, and Sections [f] and [6] contain some further quantitative topological facts about
Lipschitz quotient mappings on planes. In Section [7] we prove Theorem [I.3] and Corollary and
in Section [§] we provide some relevant examples where the results fail under relaxed assumptions.
Section [A]is an appendix which shows that a space whose blowups are all planes actually satisfies
a more quantitative condition on its blowups. This used in the proof of Theorem but its proof
is a modification of fairly standard ideas in the literature and so is relegated until the end.

2. NOTATION AND PRELIMINARIES

Throughout this paper, we consider only complete, separable metric spaces and locally finite
Borel regular measures.

2.1. Metric space notions. We write
B(z,r) = Bx(z,r) ={y € X : d(y,z) <r}
for the open ball in a metric space X, and we write

B(z,r) = Bx(w,r) ={y € X :d(y,z) <1},
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which need not be the closure of B(x,r). We also consider closed annuli, which we write as
Az, R)={y € X :r <d(y,z) < R}

A metric space is called proper if B(x,r) is compact in X for each 2 € X and r > 0.
Given a metric space (X, d) and A > 0, we will write AX for the metric space (X, Ad).

Definition 2.1. A metric space X is called metrically doubling if there is a constant D > 0 such
that each ball in X can be covered by at most D balls of half the radius. If we wish to emphasize
the constant D, we will call X metrically D-doubling.

If X is complete and metrically doubling, then it is proper.

Definition 2.2. Let X be a metric space and S C X a subset. We say that S is porous if, for all
x € 5, there is a constant 7 > 0 and a sequence x,, — x in X such that

B(xn,nd(x,,x)) NS = 0.

We now introduce some terms from quantitative topology, including the term linearly locally
contractible used in Corollary

Definition 2.3. Let X be a metric space.

o We call X linearly locally contractible (LLC) if there is a radius 7o > 0 and a constant
A > 1 such that each metric ball B(z,r) C X with r < rg is contractible inside B(z, Ar).
If one can take ro = oo, we call the space linearly contractible (LC), or A-LC if we wish to
emphasize the constant.

o We call X annularly linearly connected if there is a constant A > 1 such that, for all p € X
and r € (0,diam (X)], any two points z,y € A(p,r,2r) can be joined by a continuum in
A(p,r/X, 2Xr). We abbreviate this condition as ALC, or A-ALC to emphasize the constant.

We will make use of the following relationship between the above two notions, which is a minor
modification of facts found in the literature.

Lemma 2.4. If a complete, metrically doubling space X is annularly linearly connected with constant
A and homeomorphic to R?, then X is linearly contractible, with constant A = A()\) depending only
on A.

Proof. Lemma 5.2 of [30] shows that X must satisfy two conditions known as “LLC;” and “LLC5”,
with constants depending only on A. The argument in Lemma 2.5 of [9] then shows that X must
be linearly contractible with constant depending only on A. (Note that, since X is homeomorphic
to R?, there is no need to restrict to a bounded subset as in the proof of that lemma.) ([

We will use the notion of simultaneous pointed Gromov-Hausdorff convergence of spaces and
functions. Namely, we will consider triples (X, p,¢), where X is a metric space, p € X is a base
point, and ¢ : X — R” is a Lipschitz function. This type of convergence is explained in detail in a
number of places. See, for example, Chapter 8 of [16], [29], [18], or [13].

If (X,,,pn) is a sequence of metrically D-doubling spaces, then it has a subsequence which con-
verges in the pointed Gromov-Hausdorff sense to a metrically D-doubling space. If furthermore
fn @ X, — R¥ are all L-Lipschitz functions, for some fixed L, then {(X,,,p,, f»)} has a subsequence
converging to a triple (X, p, f) for which f is L-Lipschitz.

Definition 2.5. Let X be a metric space, p € X a point, and {\;} is a sequence of positive real
numbers tending to zero. If the sequence

{0 Xop)}
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converges in the pointed Gromov-Hausdorff sense to a space (X , D), then (X ,D) is called a blowup
of X at p.
Let ¢ : X — R2 be a Lipschitz function. If the sequence

{O X, p A (6 —0(p)) }

converges to a triple (X,;b, g?)), then (X,;b, (}5) is called a blowup of (X, p, ). In this case (X,j)) will
be a blowup of (X, p).

By our previous remarks, a metrically doubling space admits blowups at each of its points, as
does a metrically doubling space together with a Lipschitz function. For the definition of blowups
at almost every point of a pointwise doubling metric measure space, as used in Theorem [I.3] see

Remark 2.111

2.2. Metric measure space notions. Recall our standing assumption that our metric measure
spaces are complete, separable, and Borel regular.
If (X,d,p) is a metric measure space and U C X is a measurable subset, then we write u|y for
the measure defined by
ulu(E) = p(EAU).
The definition of “metrically doubling” for metric spaces has already appeared; now we introduce
the related concept for metric measure spaces.

Definition 2.6. A metric measure space (X,d,u) is called doubling if there is a constant C' > 0
such that

u(B(,2r)) < Cu(B(x,r)
for all x € X and r > 0.

If a metric measure space is doubling, then the underlying metric space is metrically doubling (see
[23]). Of course, a metrically doubling space may carry a specific measure p which is not doubling.

Definition 2.7. A metric measure space (X, d, ) is called pointwise doubling at x € X if
lim sup wBx,2r))
~o  H(B(z,T))
We call (X,d, 1) pointwise doubling if it is pointwise doubling at p-a.e. x € X.
Definition 2.8. We say that (X, d, p) is (C, R)-uniformly pointwise doubling at x € X if
(2.1) w(B(z,r)) < Cu(B(z,1/2)) for all r < R.

If, for some C' > 1 and R > 0, the space (X, d, i) is (C, R)-uniformly pointwise doubling at p-a.e.
xz € X, we call (X,d, ) uniformly pointwise doubling.

A subset A C X is called (C, R)-uniformly pointwise doubling if p is (C, R)-uniformly pointwise
doubling at = for all 2 € A. (Note that we ask that holds for balls in X centered at points of
A, not that (A,d, p) is uniformly pointwise doubling at all x € A.)

We note that the Lebesgue density theorem applies to pointwise doubling measures; see Section
3.4 of |26]. From this it follows immediately that if (X, d, u) is pointwise doubling and U C X is
Borel, then (U, d, p|v) is pointwise doubling.

Remark 2.9. If y is a doubling measure on X, then every porous set in X has u-measure zero.
However, it is not true that every porous set in a pointwise doubling metric measure space (X, d, p)
must have measure zero. (For example, take R? equipped with the measure . which is the restriction
of H! to a single line.) However, the following fact is immediate from the Lebesgue density theorem:
If A C X is a uniformly pointwise doubling subset, and S C A is porous as a subset of the metric
space (A, d), then S has measure zero.
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The following facts about pointwise doubling spaces combine Lemmas 2.2 and 2.3 of [6] (see also
[7] and [4]).

Lemma 2.10. Let (X,d, ) be a complete, pointwise doubling metric measure space. Then there
exists a countable collection {A;} of closed subsets of X, along with constants C; > 1 and R; > 0,
with the following properties:

(i) (X \U;id;) =0,

(i1) each A; is metrically doubling, and

(iii) each A; is (C;, R;)-uniformly pointwise doubling.

Remark 2.11. If (X, d, n) is pointwise doubling (but not necessarily metrically doubling), then for
p-a.e. x € X, we can define the blowups of X at x as follows: decompose X into closed sets A; as
in Lemma and, define the blowups of X at x € A; to be the blowups of A4; at x, which are
well-defined as A; is metrically doubling. For p-a.e. x € X, this choice is independent of the choice
of decomposition of X (see [6], Section 9).

When we speak of the blowups of a pointwise doubling metric measure space (X,d, u), as in
Theorem this is what we mean. Observe that the blowups of a pointwise doubling space are
metrically doubling metric spaces.

Note that if (X,d, ) is metrically doubling and pointwise doubling, the blowups of X in this
sense may not coincide with the blowups of X in the metric sense. For example, if X is R? equipped
with the measure y which is the restriction of H! to a single line, then (X, d, u) is both metrically
and pointwise doubling. However the blowups of X, in the sense of this remark, are lines almost
everywhere.

If 1 has the additional property that it assigns measure zero to porous subsets of X, then the
two notions of blowup agree p-almost everywhere. (See Remark 7.2 in [13].)

2.3. Alberti representations. We will not really need any properties of Alberti representations
other than Proposition below. However, for background we give the relevant definitions. For
more on Alberti representations, we refer the reader to [4], as well as [39], [13], and [5].

If X is a metric space, let I'(X) denote the set of all bilipschitz functions

vy: K =X

where K is a non-empty compact subset of R. We write Dom v for the domain K of v and Im ~
for the image of v in X.
If v € T'(X), then the graph of v is the compact set

{(t,2) e Rx X : t € K,~y(t) = x}.

We endow I'(X) with the metric d which sets d(v,v') equal to the Hausdorff distance in R x X
between the graphs of v and ~'.

Definition 2.12. Let(X,d, 1) be a metric measure space, PP a Borel probability measure on I'(X),
and, for each v € I'(X), let v, a Borel measure on X that is absolutely continuous with respect to
Hl |Im v

For a measurable set A C X, we say that A = (P, {r,}) is an Alberti representation of |4 if, for
each Borel set Y C A,

e the map v +— v, (Y) is Borel measurable, and
e we have

un) = [ o OE0)
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To specify the directions of Alberti representations, we define a cone in R™ as folows: Given

w € S" 1 and 0 € (0,1), let

Cw,0)={veR":v-w>(1-0)|v|}.
A collection Ci,...,C,, of cones in R™ are independent if any choice of non-zero vectors vy €
Ci,...,vy € Cp, form a linearly independent set.

Suppose (X, d, i) is a metric measure space with Alberti representation (P, {vy}). Let ¢ : X — R"
be Lipschitz and let C' C R™ be a cone. We say that the Alberti representation (P, {r,}) is in the
¢-direction of the cone C' if

(¢o7)(t) € C\ {0}
for P-a.e. v € I'(X) and a.e. t € Dom ~.

Finally, if ¢ : X — R™ is Lipschitz, we say that a collection A, ..., A,, of Alberti representations
is ¢-independent if there are independent cones Cfi,...,C,, in R™ such that each A; is in the ¢-
direction of C;.

3. LIPSCHITZ QUOTIENT MAPPINGS
Lipschitz quotient mappings were first introduced in [§] in the context of Banach spaces.

Definition 3.1. Let X and Y be metric spaces. A mapping F' : X — Y is called a Lipschitz
quotient (LQ) mapping if there is a constant L > 1 such that

(3.1) B(F(z),r/L) C F(B(z,r)) € B(F(x), Lr)

for all x € X and all r > 0.
If we wish to emphasize the constant L, we will call such a map an L-LQ map.

The second inclusion in simply says that an L-LQ mapping is L-Lipschitz.

The way Lipschitz quotient mappings enter the proof of Theorem is via the following result.
It was proven (in slightly different language) in [39,/40], Theorem 5.56 (see equation (5.96) in that
paper) and (for doubling measures) in [18], Corollary 5.1. A significantly stronger version of this
result in the setting of Lipschitz differentiability spaces can be found in [13], Theorem 1.11. All
three of these results yield the following proposition with only minor changes.

Proposition 3.2. Let (X,d, 1) be a metric measure space with p pointwise doubling. Suppose that,
for some Lipschitz function ¢ : X — R™, u has n ¢-independent Alberti representations. Then for
almost every x € X, there is a constant L > 1 such that for every blowup (X,i“, éﬁ) of (X,z,¢), the
mapping q?’) is a Lipschitz quotient map ofX onto R™ with constant L.

The constant L depends on x but not on the sequence of scales defining the blowup.

In the remainder of this section, we collect some basic properties of Lipschitz quotient mappings
that will be used below.

The following path lifting lemma is one of the main tools used in [§] (Lemma 4.4) and [28] (Lemma
2.2). We repeat it here in our context, along with its brief proof.

Lemma 3.3. Let X be a proper metric space. Let F : X — Y be L-LQ, and let v : [0,T] = Y be
a 1-Lipschitz curve with v(0) = F(x). Then there is a L-Lipschitz curve 7 : [0,T] — X such that
4(0) =z and F o7 =1~.

Proof. Fix m € N. We define
1
Vo (Z N [O,T]) — X
m

as follows.
Set 4,,,(0) = . By induction, assume that 4,,(k/m) has been defined and F(¥(k/m)) = v(k/m).
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We know that

F(B(¥y,(k/m),L/m)) 2 B(y(k/m),1/m) > ~((k + 1)/m).
Here the first inclusion follows from the fact that F' is a L-LQ mapping and that X is proper, while
the second inclusion follows from the fact that ~ is 1-Lipschitz.
We therefore define 7,,(k/m) to be any point of B(%,,(k/m), L/m) that maps onto v((k+1)/m)
under F.
It follows that #,, is L-Lipschitz for each m € N. By a standard Arzela-Ascoli type argument, a
sub-sequence of {7,, }converges as m — oo to a curve ¥ as desired. O

The following result is from Proposition 4.3 of [8], or alternatively from the identical Proposition
2.1 of [28]. These results are not stated in this form, but rather are stated only for mappings from
R? to R?. However the proof works exactly the same way in the more general setting below, using
Lemma Recall that a discrete mapping f is one for which each point preimage f~!(p) is discrete.

Proposition 3.4 ([8] Proposition 4.3, |28] Proposition 2.1). For each L > 1 and D > 1, there is a
constant N = N (L, D) with the following property:

Let X be a proper, metrically D-doubling topological plane, and let f : X — R? be a L-LQ
mapping. Then f is discrete, and furthermore

#f7Hp) <N
for all p € R,

Proof. A reading of the (identical) proofs of Proposition 4.3 of [§] and Proposition 2.1 of [28] shows
that the only requirement on the domain of the mapping is that it is a doubling topological plane.

With this remark in mind, what those proofs directly show is the following statement: If X
is a proper, metrically D-doubling topological plane and f : X — R? is an L-LQ mapping, then
#(f~(p) N B(x,1)) is uniformly bounded (for all p € R? and = € f~!(p) € X) by a constant
depending only on L and D. To achieve the conclusion of Proposition [3.4] one need only rescale
and apply this result, for each A\ > 0, to the L-LQ mappings « — Af(x), considered as mappings on
the metrically D-doubling topological plane A\ X. ([

We remark that, to our knowledge, it is open whether a result like Proposition [3.4] holds for
Lipschitz quotient mappings from R™ to R", for n > 3.

Proposition will tell us that our blowup mappings are discrete open mappings between topo-
logical planes. The following result of Cernavskii-Viisila is then relevant.

Proposition 3.5 ([44], Theorem 5.4). Let f : M — N be a continuous, discrete, and open mapping
between topological n-manifolds. Then f is a local homeomorphism off of a closed branch set By
such that

dimBy <n—2 and dim f(By) <n—2,
where dim denotes the topological dimension.

Remark 3.6. In the statement of Proposition [3.5] since f is discrete and open and the branch set
By is closed, the inequality dim f(B;) < n — 2 follows from [14], Lemma 2.1.

As Proposition [3.5] will allow us to find locations where our blowup mappings are injective LQ
mappings, we now analyze those locations further. Recall that a metric space is called geodesic if
every two points can be joined by a curve whose length is equal to the distance between the points.

Lemma 3.7. Let X be a proper metric space and let Y be a geodesic metric space. Let F : X =Y
be L-LQ, and suppose that F is injective on B(x,r) for some x € X,r > 0.
Then F is L-bilipschitz on B(x,r/(1 + 2L?)).
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Proof. As an L-LQ mapping, F' is automatically L-Lipschitz. Consider distinct points p,q €
B(x,r/(1+2L?%). Let T = d(F(p), F(q)) < ﬁ

Let 7 : [0,T] — Y parametrize by arc length a geodesic from F'(p) to F'(¢). Then by Lemma
there is a L-Lipschitz curve 4 : [0, 7] — X such that 4(0) = p and F o5 = .

Since 4 is L-Lipschitz, we have that

L3r
di VN < LT <
iam (§) < < T2
and therefore
T L3r

S(T), ) < :
dO(T)2) < 5 T 1o <7

Therefore 4(T) € B(z,r) and F(3(T)) = v(T) = F(q). Since F is injective on B(z,r), it follows
that

and so

4. CONVERGENCE AND CLOSENESS

We introduced the notions of Gromov-Hausdorff convergence and blowups in Section [2| Closely
related to this type of convergence are the following notions of closeness between spaces.

Definition 4.1. Let M and N be metric spaces and fix n > 0. We call a (not necessarily continuous)
mapping f : M — N an n-isometry if
|dN(f($)7 f(y)) - dM(x7y)| <n for all T,y € M.

In other contexts, such mappings are also sometimes called (1, n)-quasi-isometric embeddings or
(1,n)-Hausdorff approximations.

Definition 4.2. Let (M,p) and (N, q) be pointed metric spaces and let ¢t > 0, ¢ € (0,1/10). We
will say that (M, p) and (N, q) are e-close at scale t if there exist et-isometries

(4.1) f:B(p,t/e) > N and g: B(q,t/e) > M
such that d(f(p),q) < et, d(g(q),p) < et, and furthermore
(4.2) d(f(9(y)),y) < et and d(g(f(2)),x) < et

for all y € B(q,t/2¢) and x € B(p,t/2e¢).
If : M — R¥ and ¢ : N — RF are Lipschitz, we will say that the triples (M, p, ¢) and (N, q,)
are e-close at scale t if the above holds and in addition
lpog—|<et[pof—¢[<et
everywhere on B(g,t/¢) and B(p,t/e), respectively.
Remark 4.3. If (X, pn, dn) is a sequence of triples converging in the pointed Gromov-Hausdorff
sense to (X,p, ®), then for all R,e > 0, there exists N € N such that (X,,pn, ¢n) is e-close to

(X,p, ) at scale R, for all n > N. See, for example, Lemmas 8.11 and 8.19 of [16] or Definition
8.1.1 of [11]

We collect some other simple observations about closeness below.

Lemma 4.4. Let (M,p,$) and (N, q,¢) be e-close at scale t, with mappings f and g as in Definition

Fiz X € (0,1/2].
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(a) If B(xz,At) C B(p,t), then (M,x,¢) and (N, f(x),v) are §-close at scale At.
(b) If in addition (N,q,v) and (N',q',¢') are §-close at scale t, then (M,p, ) and (N',q',¢’) are
2(e 4 6)-close at scale t.

Proof. For @, we simply use the same mappings f and g that are provided by the fact that
(M, p,¢) and (N, q,1) are e-close at scale t. We now consider these as mappings between (M, z, ¢)
and (N, f(x),). The only aspect of Definition that is not immediately obvious is the fact that
f and g are defined on B(x, (At)/(e/\)) and B(f(x), (A\t)/(e/N)), respectively. This follows from the
triangle inequality and the assumptions that e <1/10, A < 1/2.

For (]ED, one may compose the relevant e-isometries, and check that the resulting maps satisfy
Definition using the triangle inequality and the assumptions that ¢, < 1/10. O

It is convenient for topological arguments to have a continuous version of closeness.

Definition 4.5. Let M and N be metric spaces and fix n > 0. We say that continuous maps
f,9 : M — N between metric spaces are n-homotopic if they are homotopic by a homotopy H :
M x [0,1] = N such that

for all x € M and t € [0, 1].

Definition 4.6. Let (M, p) and (N, ¢) be pointed metric spaces and let ¢ > 0, € € (0,1/2). We will
say that (M, p) and (N, q) are continuously e-close at scale t if there exist continuous et-isometries

f:B(p,t/e) = N and g : B(q,t/e) > M

such that
d(f(p),q) < et and d(g(q),p) < €,
and
go flBwt/e
is et-homotopic to the inclusion B(p,t/e) — M, and similarly for f o g.

If p: M — R and v : N — R* are Lipschitz, we will say that the triples (M, p, ) and (N, q,)
are continuously e-close at scale t if the above holds and in addition

[pog—v| <et,|pof—o¢| <et

where defined.
The following result is useful for connecting closeness and continuous closeness.

Lemma 4.7. Fixz A,L > 1. Then there is a constant A = A(A, L) > 1 with the following property.

Let (M,p,¢) and (N,q,1) be triples such that (M,p) and (N,q) are pointed A-LC topological
planes, and ¢, are L-Lipschitz. If € € (0,(10A)~Y) and t > 0, and if (M,p,¢) and (N,q,) are
e-close at scale t, then they are continuously Ae-close at scale t.

Proof. This follows from the general “induction on skeleta” arguments of [34] or [41}, Section 5]. Here
we give a direct proof based on these methods, while making no attempt to optimize constants. The
idea is simply to triangulate M and N and use the linear contractibility to continuously extend the
coarse mappings f and g from Definition [4.2] successively from the vertices of the triangulation to
the edges and then to the faces. To verify the homotopy inverse portion of Definition [4.6] one does
a similar process on M x [0,1] and N x [0,1].

Let f: B(p,t/e) = N and g : B(q,t/e) — M be the mappings as in Definition

Fix a triangulation 7 of M such that each triangle T" € T has diameter at most et. Let 7. be
the collection of triangles in 7 that intersect B(p,t/2¢).
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Let fp be the restriction of f to the O-skeleton of 7;. Note that if  and y are adjacent points in
the 0-skeleton of T¢, then d(f(x), f(y)) < 3et.

The A-LC property of N allows us to extend fy to a continuous map f; from the 1-skeleton of
Te into N with the property that

diam (f1(0T)) < 9Aet for each T € 7.
A second application of the A-LC property of N allows us to extend f; to a continuous map fo from
Urer.T D B(p,t/2e€).
into N, with the property that

(4.3) diam (f5(T)) < 18A%¢t for each T € T..

It follows from that the continuous map f5 satisfies
(4.4) d(f(x), f2(z)) < 20A%t for all x € B(p,t/2e).

By the same method, we can find a continuous map go : B(q,t/2¢) — M such that
(4.5) d(g(y), g2(y)) < 20A%et for all y € B(q,t/2€).

It then follows from (4.4)) and (4.5)), and the fact that ¢ and ¢ are L-Lipschitz, that
|po gy — | <21A%Let and | o fo — ¢| < 21A%Let

where defined.
We now argue that
h = g2 0 falB(p,i/2¢)
is C'et-homotopic to the inclusion B(p,t/2¢) — M, for some C depending only on A. Of course, the
same argument will show that h=f 0 g2| B(q,t/2¢) is Cet-homotopic to the inclusion B(g,t/¢) — N.

Observe that a simple triangle inequality calculation using and and the properties of

f and g shows that
d(h(z),r) < 42A%t for all x € B(p,t/2¢).

Recall the previously defined triangulation 7 in M and the collection 7, inside it. These yield
triangulations of M x {0} and M x {1}. We can then obtain a triangulation S of M x [0, 1] with no
additional vertices by simply triangulating each product T x [0, 1] for triangles T' € 7. Note that,
under this construction, if S is a simplex of S that intersects B(p,t/2¢) x [0, 1], then

SN (M x{0,1}) C ( U T) x {0,1}.
TeT.

Let S. be the collection of simplices in S that intersect B(p,t/2¢) x [0,1].

We define a map H; from the 1-skeleton S} of S, to M as follows: On edges of S, in M x {0},
H, agrees with the identity. On edges of S, in M x {1}, H; agrees with h. On each remaining edge,
we extend H; continuously from its values at the endpoints, using the A-LC property of M. Then
for each edge e of S} between points z x a and y x b in S0 (z,y € M, a,b € {0,1}), we have

diam (Hy(e)) < 24d(Hy(x), H(y)) < 84A%¢t.

We have now defined H; on the 1-skeleton of S.. We now extend to a map Hs on the 2-skeleton of
S.. For each face of S¢ in M x {0}, define Hy by the identity and for each face of S¢ in M x {1},define
Hs by h; note that this continuously extends H;. On each remaining face of S¢, we define Hy as an
extension of H; using the A-LC property of M. Since the image of each edge of S, under H; has
diameter at most 84A43%¢t, the image of each face of S, under H, has diameter at most 336.A%et.

Finally, we extend Hs to a map H on the union of simplices of S, again using the A-LC property
of M. The image of each simplex under H has diameter at most 1344 A%¢t.
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Since the union of simplices of S, contains all of B(p,t/2¢)x [0, 1], a restriction of H is a homotopy
between h and the inclusion of B(p,t/2¢) into M.
In addition, since diam (H(S)) < 1344 A%¢t for each simplex S of S., it follows that

d(H(z,t),z) < 1344A5¢t

for all (x,t) € B(p,t/2¢) x [0,1].

This proves that h = g3 o fa|p(p.t/2¢) is 1344A°et-homotopic to the inclusion map of B(p,t/2e)
into M. The same argument proves the analogous statement for fa o ga|p(g,/2¢)

Therefore, choosing A > max(1344A5,21A2L) completes the proof of the lemma. (]

5. TOPOLOGICAL LEMMAS

We first make the following simple observation about A-LC spaces.

Lemma 5.1. Let X be a proper A-LC space. Fiz x € X and r > 0. Then there is a connected open
set U and a connected compact set K such that

(5.1) B(z,r) CU C B(x,2Ar)
and
(5.2) B(z,r) C K C B(z,2Ar).

Proof. The existence of U satisfying is shown in Lemma 2.11 of [19].
To find a continuum K as in (5.2)), consider the homotopy H which contracts B(x, 2r) in B(z,2Ar)
and set
K = H(B(z,r) x [0,1]).
]

Now let X and Y be homeomorphic to R™ and let f: X — Y be a proper continuous mapping.
(Here proper means that f~!(K) is compact in X whenever K is compact in Y.) Then f extends
naturally to a continuous mapping between the one-point compactifications of X and Y, which are
homeomorphic to S™.

For a domain D C X, and a point y € Y \ f(0D), we can therefore use u(y, D, f) to denote
the local degree of f, as defined on p. 16 of [36]. That is, if f is a continuous map from a domain
DcXcS"intoY C S" and y ¢ f(0D), then u(y, D, f) is defined by considering the following
sequence of induced mappings on singular homology of pairs:

Ho(S") 25 Ho(S", 5"\ (DN (1)) 4= Ha(D, D\ [ (1)) 25 Ha(S", 8™\ {y}) 4~ Hn(S")

Here j, e, and k are inclusions. The homomorphism e, is an isomorphism by excision, and k.
is an isomorphism because S™ \ {y} is homologically trivial. There is an integer p such that the
homomorphism k; ! f.e;1j. sends each a € H,(S™) to a multiple ua € H,(S™). This integer u is
the local degree u(y, D, f).

The following basic properties of the local degree can be found in Proposition 4.4 of [36].

(a) The function y — u(y, D, f) is constant on each connected component of Y\ f(0D).

(b) If f: D — f(D) is a homeomorphism, then u(y, D, f) = £1 for each y € f(D).

(¢c) Ify € Y\ f(0D) and f~(y) C Dy U---U D,, where D; are disjoint domains in D such that
y € Y\ 0D, for each i, then

p

wy, D, )= uly, Di, f).

i=1
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(d) If f and g are homotopic by a homotopy H;, t € [0,1], and if y ¢ H,(0D) for all ¢ € [0, 1], then
w(y, f, D) = ply, 9, D).

For Lipschitz quotient maps, having local degree £1 is enough to guarantee local injectivity in
the following sense.

Lemma 5.2. Let Z be metrically doubling and homeomorphic to R?, and let f : Z — R? be an LQ
mapping. Let D be a domain in Z. Let y be a point in R™ \ f(OD) such that |u(y, D, f)| = 1.

Let U be the connected component of R™\ f(0D) containing y, and let D' be a connected component
of f~Y(U) in D. Assume that f~1(y)N D C D'.

Then f is injective on D’.

Proof. As f : Z — R? is an LQ mapping, it is continuous, open, and discrete (by Proposition
3.4). Furthermore, the Lipschitz quotient property and fact that #f~*(p) is finite for each p (by
Proposition implies that f is a proper mapping.

As noted in Remark 3.2 of [27], or on p. 18 of [36], Proposition implies that f: Z — R™ is
either sense-preserving or sense-reversing. (This is because the branch set By, having topological
dimension at most n — 2, cannot separate D.) Without loss of generality, we may assume that f is
sense-preserving, i.e., that

w(p, V. f) >0
for every pre-compact domain V C X and every point p € f(V)\ f(0V).
Suppose that a point z € U has pre-images x1,...,x, in D’. For each i = 1,2,...,k, place small

disjoint domains D; in D’ such that x; € D; and dD; avoids the finite set f~1(2).
Then

k
1:#(yaDaf) :/j‘(valvf) :N’(’Z’D/af) :Z/u’(szzvf)
i=1

Here the first equation is by assumption, the second and fourth are from property of local
degree, and the third follows from property @), since y and z are in the same connected component
of R™\ f(0D’).

Since p(z, D;, f) > 0 for each 4, we must have that £k = 1. This shows that f|p/ is injective. O

Lemma 5.3. Let X and Y be A-LC and homeomorphic to R™. Let t >0 and 0 < ¢ < 1/100A42.
Suppose that (X,px) and (Y,py) are continuously e-close at scale t, with mappings f,g as in
Definition @ Let Dx and Dy be domains in X and Y, respectively, and fix t' > et.
Suppose also that Kx C Dx and Ky C Dy are compact connected sets such that

(5.3) B(px,10At') ¢ Kx C B(px,5t) C Dx C B(px,10At)
and
(5.4) B(py,t') C Ky C B(py,2At') C B(py,114t) C Dy C B(px,224%t).

Then the induced mapping
J«: Hy(Dx,Dx \ Kx) = H,(Dy, Dy \ Ky)
15 surjective.

Proof. The mapping g o f|p, is et-homotopic to the inclusion of Dx into X. We consider X as
embedded in its one-point compactifiaction S™. Hence, the mapping

(9lpy )« © (flpx )+ : Ho(Dx,Dx \ Kx) = Hy(Dy,Dy \ Ky) — H,(5", 5™\ {px})

is the same map as the one induced by inclusion. That map is an isomorphism, by excision and
duality ([43], 4.6.5 and 6.2.17).
Since all the groups are isomorphic to Z, the first map must be surjective. [
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Lemma 5.4. Fiz AL > 1. Let X and Y be A-LC topological planes, and let ¢x : X — R2,
by : Y — R? be L-LQ mappings. Lett >0 and 0 < e < 1/100A3L3.

Suppose that (X, px, dx) and (Y, py, ¢y) are continuously e-close at scale t. In addition, suppose
that ¢y is L-bilipschitz on B(py,22A%t).

Then ¢x s L-bilipschitz on B (px, m)
Proof. Let y = ¢x(px) and let Dy be a domain that contains B(py,11At) and is contained in

B(py,22A%) C B(py,t/e). This exists by Lemma [5.1] and our choice of e.
Because ¢y is L-LQ and € < 1/100AL, we see that

¢y (Dy) 2 B(¢y(py),10t/L) O B(¢y (py),10Let) > y.

Let z = qS{,l (y) N Dy, which is a single point because ¢y is bilipschitz on Dy.
Let Dx be a domain containing B(px, 5t) and contained in B(px, 10At) C B(px,t/e).
Let t' = 5L%et. The following facts follow easily from our assumptions and the triangle inequality:

z € B(py,t') and f~'(2) C B(px,t).
Hence (using Lemma we can find compact connected sets Kx and Ky such that
f~Y2) € B(px,10At") ¢ Kx C Dx
and
B(py,t') C Ky C B(py,2At") C Dy.
Observe that z € Ky, so y € ¢y (Ky).

Now consider the commutative diagram below.

H,(S?)

V- *

Hy(S%, 5%\ Kx) ¢=— Hay(Dx, Dx \ Kx) 2 Hy(Dy, Dy \ Ky)*5 Hy(52,57\ gy (Ky))

J,(il)* J{(iz)* J(is)* J{(M)*

Hy(52,5%\ f~1(2)) & Ha(Dx,Dx \ f(2)) 5 Ho(Dy, Dy \ {z}) % Hy (52,52 \ {y})

Hy(5?)

—~

In this diagram, the homomorphisms are all induced by inclusion, except those labeled f, and f,,
which are induced by f, and those labeled (¢y ). and (¢y )., which are induced by ¢y. The homo-
morphisms ey, €., and k, are isomorphisms, as in the definition of local degree. The homomorphisms
J. and (i4). are surjective, by duality (|43], 6.2.17).

Following this diagram from top left to bottom right along the third row gives the local degree
w(oy o f,y,Dx). Following from top left to bottom right along the second row shows that the
overall map is surjective. (We use Lemmafor £, in the second row.) Hence

l1(y, Dx, ¢y o f)| = 1.
Now, we know that supp—|¢y o f — ¢x| < et. It follows that

(5.5) dist(y, px (0Dx)) > %t > 10et.
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Indeed, if ¢ € 0Dy, then d(q,px) > 5t, so d(f(q), f(px)) > 5t — €t, and so

d(y, px(q)) = d(dx (px), dx(q)) = d(dy (f(py)), v (f(q))) — 2et > L™ (5 — €)t — 2et > %t
which proves (5.5).

Hence, the homotopy invariance of local degree implies that

We now aim to apply Lemma Let U be the connected component of R?\ ¢x (0Dx) containing
y, and let D’ be the connected component of Dx N qf))_(l(U) containing px. Equation implies
that U contains B(y, %t) Hence, since ¢x is L-Lipschitz, Dx N QS;(l(U) contains B(px,t/L?). Tt
then follows from Lemma that the connected component D’ contains B(px,t/2AL?).
Another simple argument shows that

#%'(y) N Dx C B(px,10L%t) C B(px,t/2AL*) C D.

An application of Lemma shows that ¢x is injective on D', hence on B(px,t/2AL?). Ap-
plying Lemma shows that ¢x is therefore L-bilipschitz on B(px,t/2AL*(1 + 2L?)). O

6. COMPACTNESS RESULTS

We will make use of the following completeness property of A-LC topological planes and L-LQ
mappings

Lemma 6.1. Fiz constants L, D, A > 1. Let
{(Xn,pn, f: X = R} = (X,p, f: X — R?)}

be a sequence converging in the pointed Gromov-Hausdorff sense. Suppose that each X, is an A-
LC, metrically D-doubling, topological plane, and that each f, is L-LQ. Then X is a metrically
D-doubling topological plane and f is an L-LQ mapping.

Furthermore, X is A'-LC for some A’ depending only on A and D, and if each X,, is \-ALC for
some fized A\ > 1, then X is »-ALC.

Proof. The following parts of the lemma are standard and simple to prove from the definitions: X
is D-doubling, f is L-LQ, and if X,, are all A-ALC then X is A-ALC.

That X is A’-LC for some A’ depending only on A and D appears in Lemma 2.12 of [19].

It remains only to show that X is a topological plane. This follows from, e.g., Proposition 2.19 of
[19] (note that Ahlfors regularity is not really required in that result, only metric doubling). Indeed,
that result shows that X is a linearly contractible (hence simply connected) homology 2-manifold.
We then note that all homology 2-manifolds are topological 2-manifolds ([10], Theorem V.16.32),
and that the plane is the only simply connected non-compact 2-manifold. O

We now use some compactness arguments to show that Lipschitz quotient mappings are quanti-
tatively bilipschitz on balls of definite size.

Proposition 6.2. For each L,D,A > 1, there is a constant sy = so(L, D, A) with the following
property:

Let X be a metrically D-doubling, A-LC, topological plane, and let f: X — R? be a L-LQ
mapping. Then in each ball B(p,r) in X, there is a ball B(q,sor) C B(p,r) such that f is L-
bilipschitz on B(q, sor).

The proof requires the following preliminary lemma.
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Lemma 6.3. Let {(X,,Dn, fn: Xn — R?)} be a sequence with each X,, metrically D-doubling,
A-LC, and homeomorphic to R? and each f, L-LQ. Suppose that this sequence converges in the
pointed Gromov-Hausdorff sense to a triple (X,p, f: X — R?). Then there exists so > 0 such that
for all n sufficiently large, f, is L-bilipschitz on a ball of radius sy in By (pn,1).

Proof. First of all, we observe by Lemma [6.1] that the space X is an A’-LC, metrically D doubling,
topological plane, (with A" = A’(A, D) > A) and that the limit function f is L-LQ. Hence, f is
discrete by Proposition By Proposition f is a homeomorphism on some sub-ball in B(z, 1),
and so by Lemma f is L-bilipschitz on some ball B(p’, s) C Bx(p,1).

We now claim that, for some sy > 0 and all n sufficiently large, the mapping f,, is bilipschitz on
a ball B(p!,, so) C Bp(pn,1). This will yield a contradiction.

Fix 0 = (20004’ L)~*s. If n is sufficiently large, then (X,,, p,, f») and (X, p, f) are d-close at scale
1. Hence, by Lemma there are points p!, € X,, such that the triples (X,,,p/, fn) and (X,p’, f)
are %—close at scale t = s/20A’.

Fix n large as above. Then (X,,p, fn) and (X,p’, f) are e-close at scale t (where € =
1/100A’L*), and f is L-bilipschitz on B(p',s) 2 B(p',20A't).

Thus, by Lemmal5.4] f, is L-bilipschitz on B(p{,,t/2A’L?(1+2L?)) = B(p),, s9). This completes
the proof. O

’
201546 <

Proof of Proposition[6.4 We argue by contradiction. If the Proposition fails, then for some con-
stants D, A, L, there is a sequence
{(Xnspns fn)}
of metrically D-doubling, A-LC, L-LQ topological planes and radii r,, > 0 such that f, fails to be
L-bilipschitz on each ball B(p!,,rn/n) C B(pn,Tn)-
Consider the sequence

(6.1) {7 X P gn) } 5

where g, (z) = 7, fu(2).

The spaces r,, 1 X,, are still metrically D-doubling, A-LC topological planes, and the mappings g,, :
r1X, — R? are L-LQ. Furthermore, the map g,, fails to be L-bilipschitz on each ball B(p/,,1/n) C
B(pn,1) C %Xn.

Consider a convergent subsequence of the sequence in . By Lemma [6.3] we see that there
is a constant sy > 0 such that, for arbitrarily large values of n € N, g, is L-bilipschitz on a ball of
radius sg in B(py, 1). This is a contradiction. O

7. PROOF OF THEOREM [[.3] AND COROLLARY

Proof of Theorem[I.3 Fix a metric measure space (X,d,u), a Borel set U C X, and a Lipschitz
function ¢ : X — R”™ as in the assumptions of Theorem When proving Theorem [1.3] we may
assume without loss of generality that U is closed, metrically doubling, and uniformly pointwise
doubling. This assumption is justified by Lemma 2.10] By the definition of blowups for pointwise
doubling spaces (see Remark, this means that, for a.e. « € U, blowups of X at x are the same
as blowups of U at x.

We first prove that n < 2, the first half of Theorem[I.3] By Proposition[3:2] there is a point 2 € U
and a blowup (X, #, @) of (X, z,$) which is a metrically doubling topological plane and such that
&5 is a Lipschitz quotient map onto R™. Suppose n > 2. If 7 : R® — R? is the projection onto the
first two coordinates, then 7 o (}) is a Lipschitz quotient mapping from X onto R2. By Propositions
and mTo qAﬁ is a homeomorphism on some ball B(z,t) C X. Tt is therefore impossible for
¢(B(&,t)) to contain a ball in R™, which contradicts the fact that  is a Lipschitz quotient map
onto R™. Therefore, n < 2.
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We now assume n = 2 and proceed to show that in this case u|y is 2-rectifiable. This will
complete the proof of Theorem [T.3]

By assumption, at p-a.e. point x € U, each blowup of X is a topological plane. By Proposition
in the appendix, it follows that for u-a.e. « € U, there is a constant A(z) such that each blowup
of X at x is A(z)-ALC.

Thus, after our reductions, we have that, for py-a.e. = € U, each blowup ()A(,g%7 (}5) of (X,z,¢) at
x has the following properties:

(i) X is a metrically D-doubling, A(z)-ALC topological plane.
(i) ¢ : X — R? is a Lipschitz quotient map.
Fix constants L,A > 1. Let A = A()\) as provided by Lemma Let ¢ = ¢(L,D,A) =

W)i where sg = sg(L, D, A) is as in Propositionand A =A(A,L)is as in Lemma
Fix ro > 0 and define Y =Y 5, C U by
(7.1) Y={xeU: forall re (0,r), thereis a

A-ALC, D-doubling, L-L.Q plane (W, w, ) such that

(r~*U,z,r "1 (¢ — ¢(x))) and (W, w, ) are e-close at scale 1}

For each fixed L, A > 1 and ry > 0, it follows from Lemma, that the above set Y is closed in
U, hence in X.

We can write U, up to an exceptional subset of measure zero, as a countable union of sets Y
as above, by varying L,\ € N and ro € {1,1/2,1/3,...}. This follows from the rephrasing of
Gromov-Hausdorff convergence in terms of closeness given in Remark

To prove Theorem it therefore suffices to show that uly is 2-rectifiable.

We first make the following simple rescaling observation.

Lemma 7.1. For each x € Y and 0 < r < rq, there is an A-LC, L-LQ plane (X, %, ) such that
(U,x,¢) and (X, &, ¢) are e-close at scale r.

Proof. Given z € Y and r < r¢, let (W, w, ) be as provided by the deﬁnition of Y. Note that W is
A-ALC and hence A-LC by our choice of A = A()) from Lemma [2:4] The rescaled and translated
triple

(X,2,0) = (rW,w,r¢ + ¢(x))
is then the desired one. ([l

Lemma 7.2. Let g €Y be a point and let v € (0,79). Let ()A(,@,éﬁ) be an A-LC, L-LQ topological
plane such that (U, q, ¢) and (X, q, é) are i—ge—close at scale r.

Suppose further that ¢ is L-bilipschitz on B(g,r).

Then ¢ is 2L-bilipschitz on B(q,7/20) NY.
Proof. Let s = WUHLZ) and let € = 100s; ' AL%(1 4+ 2L?)e € (0,1/10).

We will first prove the following claim.

Claim 7.3. For any x € B(q,r/QO) NY and k > 0, there is an A-LC, L-LQ plane (X, % ¢) such
that (U, z,¢) is € -close to (X, %, ¢) at scale s¥r/10 and such that ¢ is L-bilipschitz on B(&,s%r/5).

Proof of Claim[7.3 The proof is by induction on k > 0. R

If £k =0, we set (X i,¢) to be the triple (X, &, ), where & € B(§,7/10) C X is chosen so that
(U, z,¢) and (X, z, ¢) are 120¢ close at scale r/10. (Here we use Lemma4.4,) Since ¢ is L-bilipschitz
on B(z,r/5) C B(g,r), and since 18006 < €', we have proven the claim if k =0.
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Now suppose k > 0. Let (X, Z gb) be an A-LC, L-LQ triple such that (U,z, $) and (X, Z, c}S) are
e-close at scale 4AL%(1 + 2L2)skr/10. (Such a triple is provided by Lemma and the fact that
reY.)

By mductlon we also have an A-LC, L-LQ plane (Z, %, 1)) such that (U, z, ¢) is €-close to (Z, z, )
at scale s¥717/10 and such that ¢ is L-bilipschitz on B(Z,s¥ 1r/5).

Applying Lemma this means that (U, z, ¢) is
4AL?(1 4+ 2L2)skr /10.

By another use of Lemma we also have that (X, %, ¢) and (Z, %, 1) are 2(e + m)_
close at scale 8AL?(1 + 2L?)sjr/10.

By Lemma they are therefore continuously 2A(e + m)—close at scale

TATT( T2r7)s; -Close to (Z,%,1) at the new scale

t = 4AL*(1 + 2L%)syr/10.

Observe that t < s¥77/10 by our choice of s;.

By our choice of € and €, we have

6/

S8AL2(1 + 2L2)s,

2A (€ + ) < 1/100A3L3.

So, to recap, (X, %, ¢) and (Z z,1)) are continuously d-close at scale ¢ (for § < yggasps)- Furthermore
¢ is L-bilipschitz on B(Z, s 'r/5) > B(z, 22A%t) in Z.
Therefore, Lemma implies that qS is L-bilipschitz on
t
B(# ————— | = B(&,s" .
<£L', 2AL2(1+2L2)> (1’,817"/5)

Now, the fact that (U,z,¢) and (X, &, ) are e-close at scale 4AL%(1 + 2L2)skr/10 implies that
they are 4AL%(1 4 2L?)e-close at scale sfr/10. Since 4AL?(1 +2L?)e < ¢, this completes the proof
of Claim [7.3]

(]

With Claim proven, Lemmanow follows: Let x,y be any points of YN B(q,r/20). Choose
k > 0 such that
shr/10 < d(z,y) < shr/10.

By Claim (U, z,$) is €-close to a triple (X, Z, (}5) at scale s¥r/10, for which 6 is L-bilipschitz
on B(%, s¥r/5).
It follows that

LY (d(x, ) —2¢'skr /10) — 2¢'s%r /10
> (L7 =207 (1) 7 = 2¢/(51) V) d(a, y)
(2L) " td(z, y).

v

O

We now make one further decomposition of Y. Since U is (C, R)-uniformly pointwise doubling,
for some C' > 1 and R > 0, there is a constant C/ = C'(C, A(\),L) > 1 such thatif e U, r < R
and

B(q, sor) C B(p,r),
then
(7.2) u(B(p,7)) < C'u(B(g, sor/10)),
where so = so(L, D, A) is the constant from Proposition which was already fixed.
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For r1 € (0, 7o), let

_ .Y N B(pr))
(7.8) W = {p Y B

By the Lebesgue density theorem, p-a.e. point of Y is in W, for some choice of r1 € (0,r9) N

{1,1/2,1/3,...}.
Fix r1 € (0,79) and let W = W,, C Y. We will show that ¢ is bilipschitz on a W-neighborhood
of each point of W.

>1—(2C") " for all r € (0,r1)} .

Lemma 7.4. There is a constant sa > 0 (depending only on D, A()), and L) with the following
property:

Let p be a point of W and fiz r < r1/2. Then there is a point ¢ € Y and a ball B(q, s2r) C B(p,r)
such that ¢|p(q,sor)ny 15 2L-bilipschitz.

Proof By Lemma . there is an A-LC, L-LQ topological plane (X,p, ¢) such that (U,p, $) and
(X,p, ) are e-close at scale 7.

By Proposition [6.2] there is a ball B(g, sor/2) C B(p,r/2) on which ¢ is L-bilipschitz.

It follows from Lemma [.4] that, for some qo € U, B(qo, sor/2) C B(p,r) and in addition

N N 2
(X,q,9) and (U, qo, ¢) are —e-close at scale sor/2.
50

Since r < r; and p € W, there must be a point ¢ € Y N B(qo, sor/10). It follows from Lemma
[4.4] that there is a point g, € B(q, sor/5) such that

- N 10
(X, 49, ¢) and (U, q, ¢) are S—e—close at scale sor/10.
0

We know that ¢ is L-bilipschitz on B(g, sor/2) 2 B(qq, sor/10).
Therefore, by Lemma ¢ is 2L-bilipschitz on B(g, sor/200) N'Y. This completes the proof.
O

The proof of Theorem [I.3]is now completed as follows. For each of the countably many choices
of L,A € Nand ro € {1,1/2,1/3,...}, we obtain a closed set Y =Y, ., C U as in (7.I). For each
further choice of 1 € {1,1/2,1/3,...}, we obtain a set W = Wy, » ro.-, C Y. The union of these
sets W over all countably many choices of parameters covers p-almost all of U.

Consider the following relatively open subset W' C W:

W'={pe W CY :¢is bilipschitz on B(p,t) NY for some t > 0}.

By Lemma |[7.4] the set W\ W’ is porous in Y, hence porous in U. Because U is uniformly pointwise
doubling, it follows that the set W \ W’ has y-measure zero. (See Remark [2.9}) Then

W' C U {p € W' : ¢|p(p,1/5)ny is bilipschitz}
jEN
C U U ( (pl,1/7) ﬂY)
jeENZeN
where {p/}22, is any countable dense subset of the set
{p ew’: (blB(p,l/j)ﬂY is bilipschitz}.

This shows that W’ is covered by countably many Borel sets B(pf ,1/7) N'Y on which ¢ is
bilipschitz. Since u(W\W’) = 0, it follows that p|w is 2-rectifiable. Writing U, up to measure zero,
as a countable union of sets W as above, we have shown that |y is 2-rectifiable. This completes
the proof of Theorem [I.3] O



RECTIFIABILITY OF PLANES AND ALBERTI REPRESENTATIONS 21

Proof of Corollary[1.5. We can now establish Corollary as follows. Since X is metrically dou-
bling, u is pointwise doubling, and p assigns measure zero to porous sets in X, we see that the
blowups of U and the blowups of X coincide at almost every point of U. (See Remark ) As in
the proof of Lemma [6.1] every blowup of X is a topological plane. Hence, by Theorem [1.3] n < 2.

If n =2, then u|y is 2-rectifiable, again by Theorem |

Remark 7.5. It is straightforward to see that the same broad outline, much simplified, can be used
to show the 1-dimensional analog of Theorem Let (X, d, 1) be a pointwise doubling space and
U C X be a Borel subset such that, for p-a.e. € U, each blowup of X at x is homeomorphic to
R. If |y has n ¢-independent Alberti representations for ¢ : X — R™ Lipschitz, then n < 1, with
equality only if u|y is 1-rectifiable.

Indeed, in this case, the blowups of the mapping ¢ at generic points are globally bilipschitz
(moreover, affine), and the analog of Lemma essentially yields 1-rectifiability.

8. EXAMPLES

We first note a simple example which shows that rectifiability does not follow from simply as-
suming that (X,d, u) is a doubling, LLC, topological surface, even if it supports a single Alberti
representation.

Example 8.1. Let Y be the “snowflaked” metric space (R, |-['/2?), and let X = R x Y, equipped
with the metric

d((t,y), (. y)) = [t = + 1y —o/|"/>.
Then (X, d, H?) is a doubling metric measure space which is also an LLC topological surface. Fur-
thermore, the restriction of p to every compact subset of X supports one Alberti representation,
simply given by Fubini’s theorem in the R factor.

On the other hand, no Lipschitz map from a compact set in R? can have an image of positive
H3-measure in any metric space, and so H3|;; is not 2-rectifiable for any U C X of positive measure.
Moreover, the space X is purely 2-unrectifiable, in the sense that H2(f(E)) = 0 for every compact
E C R? and Lipschitz f: E — X.

For a related and more interesting example, see the appendix by Schul and Wenger in [42].

The next two examples show that, in the absence of a quantitative topological assumption, such
as LLC or having blowups that are topological planes, either part of Theorem or Corollary
may fail, even if (X,d, u) is a pointwise doubling topological surface supporting multiple Alberti
representations.

Example 8.2. Let C be a Jordan curve in the plane (homeomorphic to the circle) of positive two-
dimensional Lebesgue measure. In fact, by a construction of Sierpinski-Knopp (see [37], Section 8.3),
we can ensure that the restriction of Lebesgue measure £2 to C is Ahlfors 2-regular, i.e., satisfies

M~r? < £*(Cn B(x,r)) < Mr?

for some M > 1, all z € X, and all » € (0,1).

Let X = C xR in R3, which is a topological surface. Equip X with the restriction of the distance
| - | from R3 and with the restriction of 3-dimensional Lebesgue measure, which is doubling on X.
Then, as a positive measure set in R3, X is a Lipschitz differentiability space of dimension 3, in the
sense of [4]. In particular, there are Borel sets U; C X and Lipschitz maps ¢; : X — R3 such that
(X \U;) = 0 and pu|y, supports three ¢;-independent Alberti representations for each i (see [4],
Theorem 6.6.).

Thus, the upper bound n < 2 on the number of independent Alberti representations in Theorem
[[-3] may fail in the absence of the assumption on blowups, and the upper bound in Corollary [I.5]
may fail in the absence of the LLC assumption.
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Example 8.3. Consider the same topological surface X in R? as in the previous example, but now
consider R? equipped with the Heisenberg group metric dg. Endow X with the restriction of dy
and the restriction of 3-dimensional Lebesgue measure, which is the same (up to constant factors)
as H* in the Heisenberg group. The space (X,dy,H*) is pointwise doubling by the Lebesgue
density theorem in the Heisenberg group, and porous subsets of X, being also porous subsets of the
Heisenberg group, have H*-measure zero.

As a positive measure set in the Heisenberg group, (X, dg, H*) is also a Lipschitz differentiability
space with X itself a chart of dimension 2. Thus, as in the previous example, it admits a Borel
decomposition into U; such that each u|y, supports two ¢;-independent Alberti representations, for
some Lipschitz ¢; : X — R2.

However, no Lipschitz map from a compact set in R? can have an image of positive H*-measure
in any metric space, and so H*|y cannot be 2-rectifiable for any U C X of positive measure. (In
fact, as in Example more is true here: (X, dy) is purely 2-unrectifiable, as a consequence of the
pure 2-unrectifiability of the Heisenberg group (|3|, Theorem 7.2).)

Thus, the conclusion of 2-rectifiability in the case of equality may fail in Theorem in the
absence of the assumption on blowups, and in Corollary in the absence of the LLC assumption.

APPENDIX A. BLOWUPS AND ANNULAR LINEAR CONNECTIVITY

Recall the notion of annular linear connectivity (ALC) from Definition The goal of this
appendix is to prove the following proposition, which allows a self-strengthening of the hypotheses
in Theorem [L3]

We will use the notion of a cut point y in a connected space Y: a point such that Y\ {y} is
disconnected.

Proposition A.1. Let (X,d, u) be complete and metrically doubling with pu pointwise doubling. Let
U C X be a Borel subset such that, for pu-a.e. x € U, each blowup of X at x is connected and has
no cut points.

Then for p-a.e. x € U, there is a constant A\ = A\(x) such that each blowup of X at x is \-ALC.

In particular, Proposition [A.T] applies when the blowups of X at almost every point of U are
homeomorphic to R2.
The following preliminary definition will be useful.

Definition A.2. We call a metric space X linearly connected if there is a constant L > 1 such that,
for all ,y € X, there is a compact, connected set containing = and y of diameter at most Ld(z,y).

Lemma A.3. Let C be a collection of complete, metrically D-doubling metric spaces with the fol-
lowing property: For each sequence {ry} of positive real numbers and each sequence {(Xy,pr)} such
that Xy, € C, px € Xk, and {r,;le,pk} converges in the pointed Gromov-Hausdorff sense, the limit
is connected and has no cut points.

Then there is a constant A such that all elements of C are \-ALC.

Note that the hypotheses of Lemma include the assumption that each element of C is itself
is connected with no cut points.
We now explain how to prove Proposition [A.1] given Lemma [A3]

Proof of Proposition[A.1, We may assume, by Lemma and Remark that U is complete,
metrically D-doubling, and (C, R)-uniformly doubling, for constants D > 1, C' > 1, R > 0. Then,
for a.e. x € U, the blowups of X at x are the blowups of U at x.

For each x € U, let B, denote the collection of all pointed metric spaces (Z,p) that arise as
blowups of U at x. The collection B, is closed under pointed Gromov-Hausdorff convergence.
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Theorem 1.1 of [33] shows that, for a.e. x € U, if (Z,p) € B, and ¢ € Z, then (Z,q) € B,. (Note
that, although Theorem 1.1 of [33] is stated for doubling measures, the proof relies only on the
estimates provided by the fact that U is (C, R)-uniformly doubling. This was also noted in Section
9 of [6].)

Let C, be the collection of (unpointed) metric spaces Z that arise as blowups of U at x. It follows
from the previous paragraph (and the fact that rescalings of blowups are blowups) that, for a.e.
xeU, (r~*Zp)isin B, forall Z €C,,p€ Z, and r > 0.

Hence, any pointed Gromov-Hausdorff limit of rescaled pointed elements of C, as in Lemma [A73)]
is an element of B,. By our assumption on U, such a limit must be connected with no cut points.

Thus, for a.e. = € U, the collection C, satisfies the hypotheses of Lemma, It follows that
there is a constant A = A(x) such that each element of C, (in particular, each blowup of U at z) is
A-ALC. This completes the proof of Proposition O

It remains to prove Lemma [A73] To do so, we will use the following Lemma, which is a minor
modification of Proposition 5.4 of [31].

Lemma A.4. Let C be a collection of metric spaces satisfying the hypotheses of Proposition [A-3
Then there is a constant L > 1 such that each element of C is linearly connected with constant L.

Proof. This is proven in Proposition 5.4 of [31], in the case where C has a single element X (in
which case the Gromov-Hausdorff limits of pointed rescalings of X are called “weak tangents” of X).
However, an identical proof works under our assumption that all elements of C are metrically D-
doubling, since the same compactness argument can be run. (Note that the boundedness assumption
in Proposition 5.4 of [31] is not needed here, because we allow arbitrary scalings in the hypotheses

of Proposition [A.3]) O

Lemma A.5. Let X be an L-linearly connected metric space that has the following property, for
some > 1:
For allp € X and r € (0,diam (X)], and for all z,y € A(p,r,2r), there is a finite set

P = {$0,1’1,...,$n} - A(p,T/M,QIU/I')

such that

(A1) x9 =2 and z, =y,

and

(A.2) d(xi,wip1) < %dist(P,p) for each i € {0,...,n —1}.

Then X is A»-ALC, where A depends only on p.

Proof. Consider any p € X, r € (0,diam (X)], and z,y € A(p,r,2r). Let P = {xg,...,xn} C
A(p,r/p, 2ur) satisfy (A.1) and (A.2).

For each i € {0,...,n—1} we use the linear connectedness of X to join z; to x; 41 by a continuum
of diameter at most

1
Ld(xi,xiﬂ) < idist(P,p).
The union of these continua forms a continuum joining x to y inside
A(p,r/2p, 3pr),

which proves the lemma with A = 2. (]
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Proof of Lemma[A-3 Let C be a collection of metric spaces satisfying the hypotheses of Lemma [A-3]
By Lemma [A4] we immediately have a constant L > 1 such that each X € C is linearly connected
with constant L. Note that this immediately implies that any pointed Gromov-Hausdorff limit of
rescaled, pointed elements of C is also linearly connected.

Therefore, to show that all X € C are uniformly ALC, we need only verify the existence of a
constant p > 1 such that each X € C satisfies the hypotheses of Lemma [A-5] with constant p.

Suppose that there is no such constant p. Then for all k& € N, there is a space X € C, a point
pr € Xk, a radius 1, > 0, and points zx, yr € A(pk, 'k, 27k ), such that there is no finite set

P={z0=ak,21, - - Zm—1,%m = Uk }

contained in A(py, 17k, 2kry) and satisfying
1
(A.3) d(z, zi41) < Edist(P,pk) for all i € {0,m — 1}

Consider the uniformly doubling sequence of pointed metric spaces {(Yi,pr) := (rk_lX yDk)}-
Let (Yo, ps) be a pointed Gromov-Hausdorff limit of a subsequence of this sequence, which for
convenience we continue to label with the index k.

For all € > 0, there exists K € N such that, for all k£ > K, there are e-isometries

1 1
(A.4) fr : By, (pk, ) — Yo and gi : By, ( 0 > — Y
€ €
such that
(A.5) dy (fr(gr(z)),z) < efor all z € By (poo, 1/2€)
and
(A.6) dy.. (fr(Pk), Poo) < € and dy, (9 (P ), Pr) < €.

For all k sufficiently large, the points fi(zx) and fi(yx) all lie in By (pso, 3). By passing to a
further subsequence if necessary, we may therefore also assume that f(zx) and fi(yx) converge to
points 7o, and Y, respectively, in B(poo, 3) € Yao.

The space Y, is a pointed Gromov-Hausdorff limit of pointed rescalings of elements of C. Hence,
by assumption, it is connected with no cut points. Furthermore, as remarked at the beginning of this
proof, it is linearly connected. A simple connectedness argument then yields a compact connected
set Coo C Yoo \ {Po} containing both x., and yo. (Indeed, the set of y € Y \ {pso} that can
be joined to zs by such a continuum is open in Y \ {pso}, as is its complement, by the linear
connectedness of Y..)

For some choice of 0 < r < 1 < R < 00, C, must lie in A(peo,7, R). Let

e = min(r/100L, 1/100R).

L., 2%} C Cy such that 29 =z, 20 = Yo, and

SR

d(zt,2'T1) < e for each i € {0,...,n —1}.

[elep) oo

Choose k > 2¢~1 sufficiently large so that there are e-isometries fi and g as in (A.4), (A.5), and
(A.6). We can also assume that k is large enough so that

dy.. (fr(zr), Too) < € and dy,_ (fx(Yr), Yoo) < €
Let Qi C Y} denote the set

There is a finite set Py, = {29 ,x

Qr = {70 = w1, 21 = gr(2), 22 = gr(20), -+ 20 = Gk (L), Znt1 = Yk}
Because gj, is an e-isometry into Y, = r,;le, and because of equation (A.5)), we see that

dx, (zi,2zi41) < 3ery, for each i € {0,...,n}.
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Furthermore,
distx, (Qk,pr) = rry — 2ery > %rrk
and
Qr C Bx, (pr, (R+ 2¢)ry) C Bx, (pk, 2Rry).
Thus, Qr = {z0 = Tk, 21, -, Zn+1 = Yi} i contained in

1 1
AXk (pk7 57"7”]@, 2R7’k) - AXk (pk> Er]m 2]{7%),

where this last inclusion follows from our assumption that

k> 2e! > max{100/r, 100R}.

In addition,

11 1
dx, (ziy zit1) < 3ery, < YL < ﬁdistxk(Qk,pk) for each i € {0,...,n}.
Hence, Qy, is contained in A(pg,rr/k,2kry) and satisfies (A.3). This is a contradiction. a
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