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INVERTING THE LOCAL GEODESIC RAY TRANSFORM OF HIGHER RANK
TENSORS

MAARTEN V. DE HOOP *, GUNTHER UHLMANN f AND JIAN ZHAT %

Abstract. Consider a Riemannian manifold in dimension n > 3 with strictly convex boundary. We prove the
local invertibility, up to potential fields, of the geodesic ray transform on tensor fields of rank four near a boundary
point. This problem is closely related with elastic gP-wave tomography. Under the condition that the manifold can
be foliated with a continuous family of strictly convex hypersurfaces, the local invertibility implies a global result.
One can straightforwardedly adapt the proof to show similar results for tensor fields of arbitrary rank.

1. Introduction. We let M C R3 be a bounded domain with smooth boundary OM and

r = (z1,2% 2°%) be the Cartesian coordinates. The system of equations describing elastic waves

reads
(1.1) pdtu = div(Ce(u)).

Here, u denotes the displacement vector and

e b (2502)

the linear strain tensor which is the symmetric part of Vu. Furthermore, C = (Cjjki) = (Cijri(x))
is the stiffness tensor and p = p(z) is the density of mass.
The stiffness tensor is assumed to have the symmetries

Cijrr = Cjirt = Chaij-

The operator div(Ce(+)) is elliptic if we additionally assume that there exists a § > 0 such that for
any 3 x 3 real-valued symmetric matrix (e;;),

3 3
2
E Cijki€ij€rl > 0 E Eijr

i,4,k =1 ij=1
If the stiffness tensor C is isotropic, we have
(1.2) Cijrt = AN0ij0p + p(inbji + 6adjn),
where A, pu are called the Lamé parameters. For isotropic elasticity there are two different wave-
speeds, namely, P-wave (longitudinal wave) speed cp = \/@ and S-wave (transverse wave) speed
cs = \/% . Then we can consider M as a manifold with metric cl_gzds2 or cgzds2. Correspondingly,

we can view P waves traveling along geodesics in Riemannian manifold (M, c}zdsz), and S waves
traveling along geodesics in (M, cg>ds?).
If there is an anisotropic perturbation a;j; around isotropy, that is,

Cijkt = N0ij0 + 1(0ik 051 + 011051 ) + @ijki s

the perturbation in travel time of P-waves along a geodesic 7 gives the following quantity [2]:

Qi5kl .G k-
(1.3) /#WWJWledt.
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Here 7 is a geodesic in (M, cl§2d32). The same quantity has been derived by a different perturbation
analysis [14]. Equation (1.3) represents a geodesic ray transform of a 4-tensor b = “ZL in

pch
(M, cpds?).

Let (M, g) be a compact Riemannian manifold with boundary M. The geodesic ray transform
of a symmetric tensor field f of order m is given by

(1.4) L f(y) = / (1), 4™ (),

where, in local coordinates, (f,v™(t)) = fi.....;,, v -+ "™ and 7 runs over all geodesics with
endpoints on M. We note, here, that the tensor b in (1.3) is not fully symmetric. Thus, we introduce
f that is the symmetrization of b, and study the geodesic X-ray transform I,f. A general tensor
with symmetry (1.2) has 21 unknowns, while a symmetric 4-tensor has 15 unknowns. Therefore we
have already lost 6 components of C in the formulation of the problem.

It is known that potential vector fields, i.e., f = d®v with v a symmetric field of order m — 1
vanishing on M (m > 1), are in the kernel of I,,,. Here, d* is the symmetric part of the covariant
derivative V, which will be defined in (2.6). We say that I, is s-injective if I,, f = 0 implies f = d%v
with v|pps = 0. The s-injectivity of I,, has been extensively investigated, and we refer to [5, 19] for
detailed reviews.

Assuming that M is simple, when 9M is strictly convex and any two points in M are connected
by a unique minimizing geodesic smoothly depending on the endpoints, it has been proved that I,
is injective [8, 9], and I is s-injective [1]. In dimension two, the s-injectivity of I, for arbitrary m
is proved in [10]. In dimension three or higher, the s-injectivity of I,,,m > 2 is still open. When
(M, g) has negative sectional curvature [13], or under certain other curvature conditions [3, 12, 14],
the s-injectivity has been established. Without any curvature condition, it has been proved that
the problem is Fredholm [16] (modulo potential fields) with a finite-dimensional smooth kernel. For
analytic simple metrics, the uniqueness is proved using microlocal analytic continuation. With the
Fredholm property, the uniqueness can be extended to an open and dense set of simple metrics in
C*,k > 1, containing analytic simple metrics.

In [20], Uhlmann and Vasy proved that, if M is strictly convex at p € dM in dimension
three or higher, Iyf(v), for all geodesics localized in some suitable ) near p, determine f near
p. Furthermore, under some global convex “foliation condition”, it gives a global result via layer
stripping techniques. Then, Stefanov, Uhlmann and Vasy gave corresponding results for I; and I
[18]. The key point is to show the ellipticity (under a suitable gauge condition) of a different version
of the normal operator I} I,,, as a scattering pseudodifferential operator. The calculation for Iy, Is,
which is already massive, is not observed to have an easy extension to I,,, m > 3. In this paper, we
will prove parallel results for I for two main reasons: (1) it arises naturally from elastic ¢P-wave
tomography; (2) the scheme of calculation needs to be general enough so that one can easily adapt
the procedure to prove similar results for I,,, with arbitrary m.

For an open set O C M, ONOM # (), we call v an O-local geodesic if v is a geodesic contained
in O with endpoints in OM. We denote the set of O-local geodesics by M. Note that Mo is an
open subset of the set of all geodesics M. The introduction of M and Mo can be found in [20]. We
define the local geodesic ray transform of f as the collection (I, f)(7) along all geodesics v € Mo,
that is, as the restriction of the geodesic ray transform to M. We will restrict ourselves to the
problem (1.4) with m = 4 from now on.

First, we consider M as a strictly convex domain in a Riemannian manifold (M, g) (without
boundary), with boundary defining function p, such that p > 0 on M. As in [20, 18], we first study
the invertibility of I, in a neighborhood of a point p € OM of the form {Z > —c}, ¢ > 0. Here & is
a function with Z(p) = 0, dz(p) = —dp(p). We denote Q = Q. ={x > 0,p >0}, z =2, =T +c.
Using the local geodesic ray transform with 2-local geodesics, we have the local injectivity result

THEOREM 1.1. With Q = Q. as above, there is co > 0 such that for c € (0,cp), if f € L*(Q) is
a symmetric 4-tensor. then f =u + d%v, where v € HL (Q\ {x = 0}), while u € L?, (Q\ {z = 0})

loc



Local geodesic ray transform of higher rank tensors 3

can be stably determined from Iy f restricted to Q-local geodesics in the following sense. There is
a continuous map If — u, where for s > 0, f € H*(Q), the H*~ norm of u restricted to any
compact subset of Q\ {x = 0} is controlled by the H® norm of I,f restricted to the set of Q-local
geodesics.

Replacing Q. ={Z > —c} "M by Q- ={7>2 > —c+7} N M, ¢ can be taken uniform in T
for T in a compact set on which the strict concavity assumption on level sets of & holds.

The Sobolev spaces H L. will be defined in Section 3. As in [18, 20], the above theorem can
be applied to obtain the following global result. Now, assume Z is a globally defined function with
level sets X; = {Z = t} strictly concave (viewed from Z71(0,t)) for t € (—=T,0], with & < 0 on the
manifold M with boundary. Assume further that o = OM and M \ Use(_7,0%: has measure 0 or
has an empty interior. Will say such an M satisfies the foliation condition.

THEOREM 1.2. Suppose M is compact. The geodesic ray transform is injective and stable
modulo potentials on the restriction of symmetric 4-tensors f to Z=1((—=T,0]) in the following sense.
For all 7 > =T there is v € H} (&'((7,0])) such that f —d%v € L} (=" ((7,0])) can be stably
recovered from I, f. Here for stability we assume that s > 0, f is in an H®-space, the norm on I f
is an H*-norm, while the norm for v is an H*~'-norm.

The foliation condition can be satisfied even in the presence of caustics. A Riemannian manifold
(M, c=2(|z|)ds?) satisfying the Herglotz [4] and Wiechert and Zoeppritz [21] condition %ﬁ >0
satisfies the foliation condition. The Euclidean spheres |z| = r form a strictly convex foliation.
With the PREM (Preliminary Reference Earth Model) model for Earth, this condition is a realistic
one. We note here that it does not exclude the existence of conjugate points. More discussion on
the foliation condition can be found in [11] and the references therein.

2. Pseudodifferential property. In 2, we can use local coordinates (z,y), with = introduced
above. We are interested in geodesics “almost tangent” to level sets of .
Let 74,400 be a geodesic in M such that

FYI,y-,Ayw(O) = (xvy)a ;Yx,y,)\.,w((n = (A,W),

with (z,y,\,w) € RxR" 1 xR xS" 2. We need that for x > 0 and X sufficiently small the geodesic
Yoy aw(t) stays in > 0 as long as it is in M. Thus for 2 = 0, A can only be 0. This is guaranteed
if || < C1v/z, for sufficiently small C;. For convenience, we use a smaller range |\ < Coz. We
take x to be a smooth, even, non-negative function with compact support (to be specified).

We denote

(2.1) (Lf)(@,y, A w) = /R<f(711y1>\7w(t))7;Y;l,y,)\,w(t»dt'

We note here that we are only interested in f supported in M, whence the above integration is
actually along the segment of v, 4 A0 in M. On u(z,y, A\, w), we define

(Lyu)(z,y) = x / XA/ z)u(x, y, A\, w)gse(Ady + wdy) @ gse(Ady + wdy)
® Gsc(A0y + wdy) @ gse(ADy + wiy)dAdw.

(2.2)

We will carry out the calculation on X = {z > 0}. Here, u is a (locally defined in the support of x)
function on the space of geodesics parametrized by (z,y, A\,w), and gs. maps vectors to covectors;
gsc is the scattering metric of the form

(2.3) gse = x~1da® + 72h,

where h(z,y) is a standard 2-cotensor on X.

As in [18], we will show that L4I,, conjugated by an exponential weight, is in Melrose’s scattering
pseudodifferential algebra (cf. [6] for an introduction). The ellipticity of the scattering pseudodif-
ferential operator will be the main subject of this section. In local coordinates (x,y!, -, y"~ 1)

)
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the scattering tangent bundle *“T'X, has a local basis 0., 20,1, ,20,n-1, and the dual bundle
*“I"* X correspondingly has a local basis %7 d‘Tulv T A" wWe adopt the notation ¥™!(X) for the

scattering pseudodifferential algebra introduced in [18].1We also use the notation *“I'X, **I™* X and
Sym”*T*X defined there in the following analogue of [18, Proposition 3.1]

PROPOSITION 2.1. On symmetric 4-tensors, the operator Ng = e~/ LI,e"/*  lies in
U H0(X; Sym* T X, Sym**°T* X)),
for F > 0.
Proof. This proposition is analogous to . Use the map introduced in [20],
y VIVR YT / -z oy -y
FJr :SM x [0,00] - [M X M;dlag]a F+($7y, Avwvt) = (Iayv |y - y|7 ﬁv ﬁ)v
Yy -y Yy -y

where (2/,9') = Yoy x.w(t). Here [M x M;diag] is the blow-up of M at the diagonal (z,y) = («',y).
Similarly, we can also define T'_ in which (—o0, 0] takes the place of [0, 00).
We write

(”Yz,y-,hw (t)a '.Yx,yyA-,w (t)) = (Xz,y-,hw(t)v Yz,y-,hw (t), Az,y-,hw(t)v eryyA,w (t))a

in coordinates (x,y, A\, w) for lifted geodesic Vs 4 1w (t). We use the coordinates,

o —x I
Ty Yy
x

T

z,y, X =

as in [20], and obtain the Schwartz kernel of Ng on symmetric 4-tensors (with ¥ = %)

Y
(2.4)
X—a(x,y,x|Y|,ﬂ,Y)|Y|2 ~ X ~
K (,y, X,Y) =y e P/0HeXy i + Ay (w,y,wIYL M,Y)
T Y Y]
d h(9,)1*
[xl(A o F;l)gc—f +(Qol'3h) (xy) [27 (A o TN 2?0, + (2 0 F;l)xay,]“
X .
Y|, (:cy - |Y|,Y> .
Y]
0
‘We denote

V:T™"M — T M
being the connection defined componentwise as

ViU, oo Gy = Wjy e sk

(2.5) b

m

— 4. . q . . . .

= 8Iku]1;"';]m E ]‘—‘k,jpujlx"'x]p717Q7Jp+1;"'7Jm7
p=1

where T' is the Christoffel symbol with respect to the metric g. For w € T™M, we define its
symmetrization as

S T"M — S™M
u— f,
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with

1
f(vlu' te 7Um) = ﬁ Zu(vo(l)u' te 7U0’(m))7

where o runs over all permutation group of (1,---,m), and v; € C*(T'M), j=1,---

,m.

We define the symmetric differential d* € S™M — S™'M to be

(2.6)

d® = .7V.

and note that d* is different from the exterior differential d defined on the bundle of k-forms A*¥ M.
We also define dif = e F/rdseF/* and denote its adjoint with respect to the scattering metric g

(not g) as d§.

For convenience of calculation, we will use the basis

de dx dx
22 7 oa? T a2
dr dr dy dr dy dx dy dx
x2 " x2 T x’ 22 x o 2?2’ x a2
de dy dy dy dx dy dy dy
290 _-®— —OF®—— 0
x x x r x x
d d d
dy dy dy
x x x
for 3-tensors, and the basis
dr dxr dzr dz
2P
de dx dr dy der dr dy dx dex dy dz
20 E®E® mP ¥ 05 S8
x x x x oz x r x x r x
de dx d d de d de d de d d
do g do o dy oy do o dy do o dy de o dy o dy
x x x x oz x x w x x
dy dr dr dy dy dzr dy dzx
z 2 z2 oz x 22 x o a%
d d de d d d d de d de d
dy g dy g do g dy dy dy o dy do - dy o de o dy
x r x x x r x x
d d d d
dy ody o dy o dy
x x x x
for 4-tensors. For symmetric 3-tensors, we use the basis
dx dx dz dx dx dy dz dy
-2 D5 3 Os 5 2><$_2®s$_2 s T 2X_2®s?®s_u
for symmetric 4-tensors, we use the basis
dz dz dx dx dz dz dx dy
@ o G By X Gy gy B O
dx d d d
1xF o, Yo, Yo, L,
x x x x

dx
?7
dx
x_gv
dr dy der dz dzx
2 T PO
dx
Fa
dy dy dz dx
x x o a? o z?’
dy dr dy dy _dy
92 — —® N
x x x x
d d d d
Y o, Lo, L,
x x x x
dz dx d d
@ 5@ e,
d d d d
Yo, Yo, Yo,
x x x x

In the above, ® denotes the symmetric product, for example, a @, b = .%(a ® b).
LEMMA 2.2. On symmetric 4-tensors, dgsg € Diff20(X; Sym**¢T* X, Sym**T* X)) has princi-
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pal symbol
§+iF 0 0 0 i ,
—iF :
39 %(£+1F) 0 0 £ 01 . iniF) 6<CLLS’ ) é(t?b >
D(x,y,&m) = | @ Ln®s  L(E+iF) 0 I G
b 5 P 0 0 (E—iF)
0 b INDs Z(ﬁ + iF) 0 0 0 iR
0 0 Cb 77®s
€12 + F2 (& +1iF)ey 6(€ 4 iF)(a”, ) 0 0
1E—iFm®  F (@) + 1 (1€ +F?) Dag D1 0
= (€ —iF)a® @iy + 3(6 — iF)n®s D33 D34 D35
0 (€ —iFp Dy Daa Dus
0 0 Ds3 D54 Dss
with

_ 3 b 3 . s
Doz = 217®<a )+ 4(§-i-lF)L77
@24=(§+1F)®<bb7'>7

1 1
§(W®)Ln + §(|§|2 +F?),

2 b 1 . s
@34:§W®<ba'>+§(§+lF)®Lm

D35 = %(5 +iF)® (),

@33 = 66Lb<(1b, > +

3 .
Dys = bbL; + Z({ — iF)n®s,
4 3
Dag = b, ) + 4(77®)L + 7068 + 7,
1 b . s
945: 177®<C 7'>+Z(§+1F)®Ln7
D3 = (f —iF)¢,

D54 = e + (&£ — iF)n®q,

1
955 = §Cb<cb7 > + n ®s L’r]-

b

The quantities a’, b, ¢’ are defined in the proof

Proof. we denote

dx dx dx dx dx dy’
f :fmmwx_z Qs :E_2 Qs ? +3 X fmmylﬁ Rs ? Rs
dx dy? dy? dy? dy’ dy”
T3 X oy 77 O T @5 = T fyrgoyr =7 O T O

By calculation

(V)azze = 2 °0n foan + Oz™"),

(vf):c:myl =z ayifmmc + O( 6)7

(Vaayic = &0 frgyi + O(z7°),
(Vaayiys = T Oys famy + 2 %ar(
(Vayiyia = 00 fayiys + O(@™),
(Vi ayiyiys = 20y fayiys + 2 01 (fawy) + O(z™7),
(V)yiyiyra = & 20 fyiyayr + Oz ™)

(V)yiyiyeyt = 7201 fyiyaye + 27 er(

mmm) + O(LL'_5),

3

fayy) + 0(5573)-
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Here a1,b1,c¢1 come from the contributions of Christoffel symbol I' in equation (2.5). Then, we
derive
dz dx dx

= R Dy —
z2 2 2

d
de :x2awfmmm_:§ Qs

x

1 3 5 dx dx dx dy?
#0000y ) G5 00 0 G 0

1 1 b dx dx dy? dy’
(27) +6 % (§Symy(xauﬂ fmmyl) + §$281fmy1yﬂ +a (fmmm)) ZE_Q Qs ZE_Q Qs 7 Rs —

’ L b de  dyt  dyd  dyF
+4 x <Zsymy($aykfmww) + 1:1728mfu1y7uk +b (fmcy)) F s 7 R 7 Rs 7

dy? dy? dy* dy!
+ (Symy(:v(?nyyzijk) + Cb(fmyy)) % ®s % Rs % ®s Ty + lo.t..

In the above, Sym,, is defined as

1
Sym,, (vys ... yhm) = m! Z Uyho) . yhotm) -
[eg

It follows that d® has principal symbol

¢ 0 0 0

e 3 0 0

b1 1
a 5"’]@5 55 0
0 VYoo 3w, i
0 0 ¢ R,
The term n®; in the (32)-block has (iji’)-entry (corresponding to the (ij) entry of the symmetric
2-tensor on Y and the i’ entry of the 1-tensor)

1
5 (nidji’ +nj Oiir )

The term n®; in the (43)-block has (ijki’j")-entry (corresponding to the (ijk) entry of the symmetric
3-tensor and the i'j’ entry of the 2-tensor)

1

6(771'53'1'/51@3" + mékiléjj/ + 77j5ii’5kj’ + Uj(ski/(Sjj/ + nkéii/zijj/ + 77k5ji/5ij/)-

The term n®, in the (54)-block has (ijkli’j'k’)-entry (corresponding to the (ijkl) entry of the
symmetric 4-tensor and the ¢'j'k’ entry of the 3-tensor)

1
2 (Z Ni0jr(o(1))Okr((2)) Oir(a(3)) T Z 1j0ir(0(1)) Ok ((2)) Otr (o (3))
+ D i (o(1) O (o(2)Dir (@) + D Mbir(o(1)) i (0(2)) Okr((3)))-
Here, o runs over all permutations of (123), and 7(1) =i/, 7(2) = j/,7(3) = .
We note that a” maps a 0-tensor (smooth function) to a symmetric 2-tensor, b’ maps a symmetric

I-tensor to a symmetric 3-tensor, ¢ maps a symmetric 2-tensor to a symmetric 4-tensor. They are
symmetrizations of a, b, ¢ respectively. Then the symbol of di = e F/zdsef/ is given by

£+iF 0 0 0
e 3(E+iF) 0 0
a Qs A(E+iF) 0

0 b %nfas (€ +1iF)

0 0 & N&s
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We use the inner product

1
4 x1Id
(2.8) M(4) = 6 x Id
4 x1Id
Id
on symmetric 4-tensors, and
1
3x1d
(2.9) M(3) = 3% 1d
Id

on symmetric 3-tensors. If A maps a symmetric mi-tensor to a symmetric mo-tensor, we call B the
(ma, my)-adjoint of A if

<Bya I>M(m1) = <y7A'r>M(m2)
It is easy to check that
B = M(my) "A*M(my).

If m; = mg = m, we call A is (m,m)-self-adjoint if B = A.
It follows that ¢¢ has a symbol given by the (3,4)-adjoint of that of dg,

£ —iF Ly 6(a’,-) 0 0
0 (¢£—iF) I 20, 0
0 0 (€ —iF) P (&,
0 0 0 (E—iF) ¢

)

=
W=
»

n

Remaining tedious calculations complete the proof. O

LEMMA 2.3. On symmetric 4-tensors, N is elliptic at fiber infinity in *“T*X when restricted
to the kernel of the principal symbol of 6.

Proof. With the notation,

X — o)y
Y]

- Y
9 Y:_

S = :
Y]

by (2.4), the Schwartz kernel of N at the scattering front face = = 0 is given by

d . dyl? . 4
(2.10) e”w|wwwﬂ&§+ynf]U3+mwmﬁmmdﬂ@@ﬂ
On a symmetric 4-tensor of the form
dz dx dx dz dz dz dz dy
dx dz dy dy dx dy dy dy

dy ~dy dy dy
vy e e B
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we have

“ 4
(S + 20|V |)(220,) + V- (20,)] f
=(S + 20|V )* fazanw + 4(S + 20|V ) (Y, fanay) +6(S +2a|Y)2(Y @Y, frryy)
FAS+2aY )Y @Y @Y, fayyy) + (Y @Y @Y @Y, fyyyy)-
On a scalar a,
dz . dy]? ,dx dz dx dx 3¢ dw dx dz dy
[5_2”'?] 0= a5 75 G g O 3 O g TGSV 5 @t O 75 G

. oodr_do_dy _ d oo oodr oy dy  dy
605V 07 S o, e, 2o, Lrdstevel - Se, Yo, Lo,
x x X x

o dy dy oy dy
faVeYVeveY. y®s—y®s—y®s—.

s —
T

Thus, under the basis of symmetric 4-tensors, we have

_ 4 A .
S— +Y- y] [(S +2a|Y|)(2%0,) + Y - (ar(?y)}
51 (S + 2a|Y])* ’
S3Y 4(S + 2a|Y|)3(Y, >
= S’Y @Y ® 6(S + 2afY])? <Y®Y D)
SY @YY (S+2a|Y|)<Y®Y®Y )
YRYRYeY <Y®Y®Y®Y )
The above matrix is (4, 4)-self-adjoint. In coordinates on the support of ¥,
we can rewrite the kernel as
54 (S +2a|Y])* g
S3Y 4(S + 2a|Y])3(Y, )
e FXY T (S) S%Y @Y ® 6(S+2a|Y)2(Y Y,
SYeY®Y 4SS+ 20YNY Y ®Y, )
YYeY®Y YReYeYeY,.)

The principal symbol associated with K defined in (2.4) is the (X, Y')-Fourier transform of

5t 8 ’
) [53% 483(Y, )
X(8)|y| Y @Y ® 652(Y @Y, )
SY oY ®Y 45Y oY ®Y,)
YeYQYeY YoYeYeY,:)

with S = % The equatorial sphere is

(2.12) S+ n=0.
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Following the discussion around (3.8) in [20], we need to integrate

g4 5t !
) sy 4SSV )
(2.13) x(S) S’y @Y ® 65%(Y @Y, ")
SYeY oY 1SV @Y @Y, )
VoveYeY YeYeYaY,)

on this sphere.
For a symmetric 4-tensor of the form (2.11) in the kernel of the principal symbol of 6¢, we have
by Lemma 2.2 that

Efaane + (0, fraay)
Efxazy + (M frzyy)
Efaayy + (0 fayyy)
Efayyy + (0, fyyyy) =
Moreover, f is in the kernel of (2.13) if and only if

HSY QY Y, fayyy) + (Y @Y QY @Y, fyyyy) = 0.

Suppose a symmetric 4-tensor f satisfies (2.14) and (2.15) for (S,Y") such that (2.12) holds. We
will consider two cases, £ =0 and £ # 0.
Case 1: £ #0. If n = 0, we have directly form (2.14) that

)

)

(2.14)

0
0
0
0.
(2.15)

fmmmz 7fwwwy7 fﬂﬂﬂﬂyyv fmﬂﬂ/
all vanish. Then from (2.15), we have

<Y®?®Y®?afyyyy>:0'

Therefore, fyyyy = 0, since VY eYeY spans the space of all symmetric 4-tensors with = 0.
If n # 0, we calculate successively,

f:ﬂyyy = _<gvfyyyy>v

<Y®y®i/ufwyw> < ®Y®Y®vayyyy>v
fmyy - _<gvfzyyy> <7§7 gafyyyy>

VOV, fra) = (GO @V O, fyy),
fmmmy - _<g; fmmyy> - _<g & g oy ga fyyyy>7
Vs framg) =~ © 5 © £ OV fuym),
fmmmm:_<gufmmmy> <§®§®§®§7f1ﬂﬂﬂl>

With S = —T’?, (2.15) gives

~ 4 N 3 N 2
Yy nongn Y nl nmono oy (X} 1000y ey
<< ¢ > §®§®€®§+4< >€®€®§®Y+6< ¢ ) g®§®Y®Y
(2.16)
&
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Now we take Y = en+ (1 — 62)1/2YJ', where Y is a unit vector orthogonal to 7, and substituting
it into (2.16), we find that

In|®  4nl® 6]t | 4l R
<64<§_8+ g ta T t)nenenen

6 4 2
3 3 .
463(1 62)1/2 <|77| 7] |77| 1> RARHR YL

¢ e
4 2 2 R R
(2.17) +66%(1— )<|Z—L+ ?2' +1>ﬁ<§@ﬁ®Yl®YL
+ 4e(1 — €2)%/2 (@2 +1>n®YL®YL®YL

(=@ @ V@Y, fy) = 0.
Taking € = 0 in (2.17), we have
YrteovtevteYt, fu,,) =0
Since Y2 @ V1L @Y1 @V spans ntent@nt®@nt, we conclude that f,,,, is orthogonal to every

element of n* ® n* ® nt @n*. Taking 1st, 2nd, 3rd and 4th order derivatives of (2.17) at € = 0, it
follows that f,,, is orthogonal to

respectively. We then finally conclude that f,,,, vanishes, and then the whole tensor f vanishes by
(2.14).
Case 2: € =0 (and so n # 0). Now (2.12) is equivalent to - Y = 0, and (2.14) reduces to

M faaay
fmmyy
fxyyy
ﬁ fUUUU

>
1
o o o o

( )
( )
(2.18) o >
( )=

We differentiate (2.15) with respect to S up to four times, evaluated at S = 0, and find that

fmmmm - Oa
<Ya fmcmy> =0,

)
<Y®Y®?vf:ﬂyyy> =0,
<Y®?®Y®Y=fyyyy> =

Combining the identities in (2.18) and (2.19), we conclude that f = 0. O

LEMMA 2.4. There exists Fg > 0 such that on symmetric 4-tensors Ng is elliptic at a finite set
of points in *“T*X when restricted to the kernel of the principal symbol of 6¢ for any F > Fq.

Proof. Taking x(s) = e=5/2v(Y) | g0 x(-) = cﬁe‘”|'|2/2. We get the X-Fourier transform of
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the Schwartz kernel at the front face 2 = 0:

FxK (0,5, Y], V)

Y|
DA (=Do + 2a|Y|)* T
' ' ) —-D3Y 4(=Dy + 22|V ])3(Y, )
=|Y ]2 e iRV DY oY | ®| 6(-Ds+22Y]2(Y @Y, X((=€ =iF)[Y])
DY @Y ®Y 4(=Do +22YNY @Y @Y, ")
YRYeVYeY Yeyeyey,,)
DA (=Do + 2a|Y )4 T
i ~D3Y 4(=Do +22Y (Y, ) s
:Cﬁ|y|27ne1a(§+1F)\Y| D?;Y ®Af/ ) ® 6(—Da+2&|y\)?(?@?,;> e*l/(f"rlF) Y| /2'
DY @Y QY 4(=Do +2YNY @Y @Y, ")
VeoyYeYey Yeyeyey,:)

Here D, denotes the differentiation of the argument of xy. Then we compute the Y-Fourier transform,
which in polar coordinates takes the form,

oo ~
/ / e—i\Y|Y-n|Y|2—neia(5+iF)|Y\2
San 0
D4

. (~Do + 20|V |)* ’
—-D3Y 4(—=Dy + 2a|Y)3(Y, )
D2V ®Y @ |  6(-Do+22Y2(Y®Y,-) eV EHRIY /2y n=2q |y Y.
DY QY QY 4(—Do +2a|Y )Y QY @Y,
YRYQYeY Yovyevyevy,)

‘We denote
(&, Y) = v(Y)(€ +iF)? — 2ia(€ +iF).

By explicitly evaluating the derivates, the above integral yields

(e + iRyt (iv(€ + iF) + 2a)* Y|4 T
oo X BU3(¢ +iF)3|Y]PY 4(iv(€ 4 iF) 4+ 2a)3|Y[3(Y, )
/ / eIV |22 iRy 2y oY | @ | 6w +iF) + 2002V (Y ® Y, )
sn—2Jo wE+iIRY|Y @YY 4(iv(€ +iF) + 20)|Y (Y @Y ® Y, )
Yeovevey YeyeveVv,.)

xe *YI/2q|y|aY.

We extend the integral in [Y| to R, replacing it by a variable ¢, and using that the integrand is
invariant under the joint change of variables { - —t and Y — —Y. This gives

14 (€ + iF) 4t (iv(€ + iF) + 2a)4¢4 T
o B3 (& +iF)33Y 4(iv (€ +iF) 4 20)313 (Y, )
/ / eTY 22 iRy oV | @ 6(iv(€ +iF) + 20)2t2(Y @ V', -)
Sn=2J—co (E+iIFY QY QY A(iv(E +iF) + 22y Y ® Y, )
Yeovyevyey Yeyeyey,)

xe~ 1 2qtdY .

Now the ¢ integral is a Fourier transform evaluated at —Y - 7, under which multiplication by ¢
becomes Df’-n' We also note that the Fourier transform of e~#€Y)*/2 ig a constant multiple of

(2.20) b€, V)12~ (Tm)?/(26(6Y)).
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Thus we are left with

WA +iF)DL (v(€ +iF) + 20)' D}, r
) WA +IFIDY Y A(iv(§ +iF) +20)*(V, ) DY ,
P&, Y)"Y? 226 +iF)?D2 VoY | @ | 6lu(E+iF) +222(Y @, D2
gnoe (€ +iF)Dy Y OV @Y A(iv(€ +iF) + 20)(Y ®V ® YV, ) Dy,
VeveyeYy Yeyevyev,)
we—(Vm2/(26(6Y) qy .
v T
vIE iR (v(€ +iF) — 2ia)* (7’7)4L
s —v3(E+iF 3(‘;;")317 —4(v(€ +iF) — 2ie)3( 4,")3(177-)
:/Sn LOEY) / 2e+iPAEW Y [ O swE+iF) -2 (G12 (Y Y,
—v(E+iF)(HY @Y eY —4(w(€ +iF) — 2L (Y @ Y @ Y, )
YoveYey Yeoveyev,.)
e~ (V'm?/(20(6Y) qy
We note that
T
vi(E +iF)4 ( )4 (v(€ +iF) — 2ia)* (7’7)
A€ +IFP (LY —A(w(& +iF) — 2i0)} (L)Y, )
(2:21) V(€ + iF)2 A(’“) vov | ®]  sweE+ip) 202502 (veY,,)
E+iREHY oY ey —4(v (§+1F)—2la)(”¢")< RYRY,)
Y®Y®Y®Y Yeyevyaey,.)

is a multiple of a projection and is (4, 4)-self-adjoint. We let v = F~'a, with
v(€ +iF) — 2ia = v(§ —iF),
and
¢ = (& +iF)(v(§ +iF) — 2ia) = (£ + F?).

‘We then denote

¢y = v (¢ +iF) — 2ia) (%)4 =i - i|:)4(_77)47
3 = —v°(+iF) - Qia) (%)3 - —1/3(§ _ IF)S(%)g,
&y = 13(€ +iF) — 2ia) (%)2 =3¢ - iF)%%){
& = (e +iF) —2i0) () = (e i) (D),
¢ ¢
For a symmetric 4-tensor of the form (2.11) in the kernel of the principal symbol of 6¢, we have

by Lemma 2.2 that

(€ —iF) fozaz + (0, fmmmy> + 6< fmcyy> =0,
. b B
. (€ =) ooy + 0 Faays) + 40 Fa) = 0
(& = iF) frayy + (1, Faoyyy) + (", Fuyyn) =0,
(€ = iF) fayyy + (0, fyyyy) = 0.
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Moreover, f is in the kernel of (2.21) if and only if

(2.23) . U
+4G Y QY QY fayyy) + Y Y QY QY fyyyy) = 0.

We now take a semiclassical point of viewm setting h = F~! and rescaling

G=F' np=Fn

Using these semiclassical variables, we calculate, successively,

Jayyy = —(&F — i)71<77F7fyyyy>a

Yeyey, fayyy) = —(& =) e @ YRYeY, Fyyyy):

foayy = —(&F — i)71<77F7 foyyy) + O(h) = (& — i)72<77F & NFs fyyyy) + O(R),

Y QY fazyy) = (G — )2 F @MY @Y, fyyyy) + O(h),

Fowey = —(& = 1)1 fayy) +O(h) = —(& — 1) "> (nF @ 0 @ 1, fyyyy) + O(h),
<Y= fozay) = —(&F — i)_3<77F QD NF D NF @ Y, Fyyyy) + O(R),

froaw = —(& — 1) 0F, fazay) + O(h) = (& — 1) (nF @ 1 @ 1F @ F, Fyyyy)-

we observe that
¢ = (—1)/(E+1)7 (& —i)p), withp=Y-ne.
By calculation, and letting h — 0, we have by (2.22) that
(@ (G + 1) o +Y), fyyyy) =0.
If n =0, then
(Y @Y @YY, fyy) =0.

Since Y @ Y ® Y ® Y span the space of all symmetric 4-tensors, we conclude that f,,,, = 0 and
thus f = 0. . X .

If e # 0, we take Y = e + (1 — €2)1/2Y L, where Y+ is orthogonal to . Then by (2.22), we
have

9\ 4
<€4<1+§|2n:—|1> NF @ N @ 7 @ 7F
F

2 3
+463(1 — )12 <1+ ﬂ) fiF QN @NF @Y+

(2.24)

+ 4e(1 — €2)%/2 (1 + 5'?:' 1) FRYtevtevt
F

+1-Vrevtey?t ®YL,fyyyy> =0.

Similar to the proof of Lemma 2.3, we take derivatives of (2.24) up to order four at e = 0; it follows
that fy,yy is orthogonal to

ViVt eVvteYt, #eYleVleV!l, meoieYleYl,
@i @i @Y™, fiE @ i @ fF @ 7.
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Then, f =0.
We conclude that for sufficiently large F > 0, one has ellipticity at all finite points. O

With Lemma 2.3 and Lemma 2.4, we obtain the following proposition by similar arguments as
in the proof of [18, Proposition 3.3],

PROPOSITION 2.5. There exists Fo > 0 such that for F > Fo the following holds. Given Q, a
neighborhood of X N M = {x > 0,p > 0} in X; for a suitable choice of the cutoff x € C°(R) and
of M € U_20(X; Sym®s¢T* X, Sym®°T* X), the operator

Ap = Np + dgM6g, Np=e T/2LIef* dp = e F/2q5ef/,

is elliptic in W10(X; Sym*seT* X, Sym**T* X) in Q.

3. Proofs of the main results. We prove the injectivity of I, with the gauge condition
Offr = 0in Q = Q., where ff = e F/zf. Based on the discussion in [18, Section 4], we first need
to check the invertibility of A ;. Here Af , = d¢df is the ‘solenoidal Witten Laplacian’ which we
will show to be invertible with the desired boundary condition. The similar results for I; and I are
provided in Section 4 of [18].

LEMMA 3.1. There exists Fo > 0 such that for F > Fy the operator A%, = 0gdE is (joint) elliptic
mn lef (X Sym?s¢T* X, Sym3SCT*X) on symmetric 3-tensors. In fact, on symmetric 3-tensors

1 3
(3.1) S = ViV + SR + A+ R,

where R € xDiffic(X; Sym**¢T*X, Sym®*T*X), A € Diffic(X; Sym**¢T*X, Sym**T*X) and V¢ =
e P2 eF/E  with V gradient relative to gs. (not g), dp = e~ F/*deF/* the exterior derivative on sym-
metric 3-tensors, while O is its adjoint on symmetric 3-tensors.

Proof. By calculation and Lemma 2.2, Af has symbol

E+F+ 1P 3(&+iF)e, 0 0
1€ —iFne (2 +F) + 3in®, ¢+ iF) n 0
0 3 (& —iF)n®; %(52 +F2) + Jun®s $(E+iF)
0 0 3(¢— 1F)n®s (€ +F?) + e,
6(a’,-)a"  3(a, >77®s 3(¢ +iF)(a’,-) 0
n lpa 3%, )0 O, s FHEFIF)P,)
(€ —iF)a’ Ly bb (e %( )77®S
0 (€ - lF)b e 0

Here, 1;1m®; at (2,2)-block has the (i, i5)-entry

(|77| Sir ity + Mt My )-

1;;n®s at (3,3)-block has (if, j1, 5, j;)-entry

1
& (0,053 + 0”6 33051 3y, + ey iy O35y, + i iy Ot gy + iy O gy, + My gy Oiiy)
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and ¢;1®; at (4,4)-block has (i1, 51, k1,75, ja, ky)-entry

(|77| (9igi5 Ot i3 Ony kg + 05 05, O kg, + Ot kg 955, O
U VP PIE WSS SISV VR RIS IVP MY
+ it Mit, (01 45 Ot kg, + 01 ks, Ot gy ) = it Mg (8161 Ot kg, =+ 0t kg Gt ks )
+ it ey, (8153 Ok ity + 0234 Onr g ) + Mg Mgy (O o Ot iy, + Ot iy O s )
1303 (Bt iy Otk + Otk Otk ) s g (B0, 053, + Bt 3103011
+ M1 Mg, (D 4y O kg, + Oir kg Ot ey ) + Mkt Mt (0751 Gt by + O ay, O 1)
+ 5113 (Gig kg, 0511, + Gig iy Oy g ))

We note that the gradient V maps a symmetric 3-tensor to a (not symmetric) 4-tensor.
We introduce some further notation. We let A be a matrix of blocks, with

Ak
representing
A
k — tuple.
A
Also, we write
Ak
representing
( A - A ) .

Then we use the basis for 4-tensors (not the symmetric ones) and symmetric 3-tensors, under which
the principal symbol of Vf relative to gs. (not g) is

5—'— 1F
”®
77 %3
( )
® X3

The number of rows is 16. Thus V¢ has principal symbol,
(&—iF ¢ )

&+ iF
ne

%( §—iF )—x3

(&—iF ¢« )
Then VEVE has symbol
& +F2 4P 0 0 0
0 E 4+ F2 +|n? 0 0
(82) 0 0 &2+ F2 + n)? 0

0 0 0 & +F +nf?
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Similar to our calculation in the proof of Lemma 2.2, we get the principal symbol of dfdf on
symmetric 3-tensors,

& +F? (€ +iF)e, 0 0
T(E—iFm® 2(E+F)+in®uy, 2(E+iF)e 0
0 %(5 —iF)n®s %(5 + Fz) + %77 Qs Ly %(5 + F)L%
0 0 (5 - iF)T/®s n Rs ln
0 0 3(€ +iF)(d, ") 0
N 0 0 n(d’, ) LE+iF) (e, )
(& —iF)d’ d’u, 3d°(d, ) @ (e, )
0 (€ +iF)e’ ey 1e”(e’, )

Here, n ® 1, at the (2, 2)-block has (i}, 5)-entry

i’ it

n ®s Ly at the (3,3)-block has (i, ji, 15, j5)-entry

1
1 iy i, O35, Mg Mg O g+ Mig My Oig iy + g 15 0y

and 1 ®g ¢, at the (4,4)-block has (i}, ji, k1, i5, j5, ky)-entry

1
18 (e, 550y, + Digas D) + iy, By ok, + D digng) + iy iy (B Oty + GO

+ 0510k (B iy O, Oigig Oy gy )+ My g (Gt O gy + Dy Oy ) 4 iy iy (i iy O, + 0y 50541 )
+ MMy (Oir gy Or bty + i ky Ot kg ) + Mk Mgy (O 41 Gt gy, + Oy, Ot gy )+ M1 My, (Vg kg O ar, + Gy iy 5j;k;))-

We note that the principal symbol of §£d§ is the same as the one of 1VEVE+3di6g, which is positive
definite with a lower bound i(§2 + F2 4+ |n]?). Suppose a’,b’,”,d’,d* have a common bound C,
then A has a bound C? + C|n| + OF + C¢ < C'(1 4+ € 1) + €(€2 + F2 + |n|?). Then we can choose
F > 0 large enough, and complete the proof. O

Let Q; be a domain in M with boundary 8Q; transversal to 9X. Let H™!(Q;) be the subspace
of H™!(X) consisting of distributions supported in Q;, and let H"!(£2;) be the space of restrictions
of elements of H!(X) to ;. Thus, H ()" = H™ ().

LEMMA 3.2. There exists Fo > 0 such that for F > Fq, the operator Ar s = 0gdg, considered as
a map HLO — (HLO)* = H M0, is invertible.

Proof. Since 6f is defined as the adjoint of df relative to the scattering metric, we have
ldgul2: = (dgu, diu) = (Ar,su,u)

(3'3) A —1 A 2 2
< e sullporollullgre < < IAe sully 1o+ el

By (3.1) and (3.2), we have
1 1

3.4 02dE = —=V*V
(3.4) FAF =7 +4

3 ~
ﬁ+1ﬁﬁ+A+R
where A € Diff! (X) with

[{(Au, w)| < Cllull grollull L2, + CF|lull7: ,

and R € 2Diff} (X). This follows by rewriting ViV using (3.2), which modifies R in (3.1). Thus,

we have

. 1 1 3. _
ldgull2e, = ZIVullZe +Flul?s + SI0ul3s + (Au,u) + (Ru,u).
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This gives us
(3.5) IVullzz, + Fllull7z, < ClldgullFs + Cllz"ull7z, + Cllull g0 llull 2, + CFllulZs -
Then for sufficiently large F,
(3.6) IVulZs, +FPllullfz, < ClldRulls + Clla'?ul?,
where C' is a constant depending on F, and thus
IVal2e + (1 - Cayu,u) < ClldzulZs .
Now suppose that €, is contained in {z < z¢}. If x¢ is sufficiently small, this gives

(3.7) IVl

2+ llullzz, < ClldRul| e -
If x¢ is larger, we can still have
[Vaullgz, +llullzz, < ClldRullzz, + Cllullz, ({21 <a<ao})

with 21 small, and thus have (3.7) by the standard Poincaré inequality (See [15, Equation (28)] for
one forms). Then, with (3.3), and choosing € > 0 small, we find that

||’u,||H51C0 < OHAESUHH;LO.

Therefore, we have proved the invertibility of Ag ;. O

Using Lemma 4.4 in [18], in parallel to the above lemmas, we obtain

LEMMA 3.3. There exists Fo > 0 such that for F > Fq, the operator Ar s = 0¢d§ on symmetric
3-tensors is invertible as a map Hslgf — HY" for allr € R.

LEMMA 3.4. Let Q; be a domain contained in X as above. For F >0 and r € R,

—T 38

AL, S C(ll=~"dpul

|

2y tllullz—rrz (0)))

for symmetric 3-tensors u € HL"(€);).

Proof. By the proof of Lemma 4.5 in [18], we only need to consider the case r = 0. Let Qj be
a domain in X with C'°° boundary, transversal to d.X, containing ;. We show that there exist a
continuous extension map E : HL2(€Q;) — HL2(Q;) such that

(38)  diBull g + 1Bul 2 g, < CUldRul iz oy + lullzz. o) € HLOQ)).
Once (3.8) is proved, by Lemma 3.1, with v = Fu, we have
IVellZs @) + 1012z (@) < CUIARIL; @) +1101Z: (a,)
< O(ldfullzz (o) + IV]1Z2 (oy))-
This finally gives
lull gro0q,) < C(HdlS:UH%gC(Qj) + ||U||%gc(szj))-

The only thing remaining is to construct E. By a partition of unity, this can be reduced to the
situation where locally X = R”, Q_J = M; see the proof of Lemma 4.5 in [18]. We only need to
analyze the extension of a symmetric 3-tensor on m to R™.

We let @,(a', z),) = (2', —qxy,) for z,, < 0 be a diffeomorphism from {z,, < 0} to {z, > 0}. For
fijrdz’ @ da? @ da* on {zg > 0}, we define F; to be the extension to R",

5
By (fijrda’ @ da? @ da®)(a',2n) = > Co®3(fijeda’ @ da’ @ dab), @, <0
qg=1
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and
By (fipda’ @ d2? @ da®) (2!, 2,) = fijpde’ @ d2? @ dz¥, z, >0,
with C, chosen so that E; : C1(R") — C1(R"). By calculation
@Zfijkdxi @ da! @ dz* = fin (2, —qrn)da’ @ dad @ dz¥, 0,4,k #n,
@Zfijndxi ®@de? @ da" = —qfijn(a, —qxy)dr’ @ da? @ da™, 4,5 #n,
* 7 n n __ 2 / 7 n n .
‘I)qundfb ®@dz" ®dz" =¢q fmn(x 7_qxn)dx ®@dz" @ dz", i 7£ n,
* n n n __ 3 ’ n n n
) frnnde" @ dz" @ d2" = —¢° frunn (2, —qr,)d2" ® dz" @ da”,

19

8l<I>Zfijkd:Ei @ de! @ dz® = 0, fi (2, —qrn)da’ @ do? @ da®, 0,4,k 1 # n,
8I<I>Zfijnd:1:i ®@de! @ da” = —q0, fijn (2, —qry)de' @ do? @ da™, 4,1 # n,
81‘I>mendxi ® dz" @ da" = ¢%O) finn (2, —qrn)dr' @ da™ @ da"™, 4,1 # n,

0Py frnndz™ @ do” ®@ da" = — @30 frnn (2, —qa,)dz™ @ d2™ @ dz", |

£0

8n<1>2fijkdxi @ da! @ da® = —qO, fiji (2, —qr,)da’ © d2? @ da®, i, 4,k #n,
3n<1>2fijndxi ® d2? @ dz" = ¢*0p fijn (2, —qr,)d2’ @ da? @ da”, 4,5 #n,

* 7 n n __ 3 7 n n .
8nq)qflnndz ®@dz" ®dz" = —¢q 8nfinn(x/a _qxn)dx ®@dz" ®dz", 1 7£ n,

* n n n __ 4 ’ n n n
On @ frannda" @ do" @ d2™ = ¢*0p frunn (2, —qz,)d2" @ d2™ @ da™.
The matching of the derivatives at x,, = 0, which gives the C' property, yields

Ci1+Co+Cs+Cy+C5 =1,

C1 + 203 + 3C5 +4C4 +5C5 = —1,

C1 440 +9C3 +16C, + 25C5 = 1,

Cy +8C3 4+ 27C3 + 64C, 4+ 125C5 = —1,
C1 + 1603 + 81C3 + 256C, + 625C5 = 1.

The linear system, with a Vandermonde matrix, is solvable. With the Cy,q = 1,2,
the linear system above, we obtain the property By : CL(R7) — CL(R™) and

[Evull g wny < Cllulla @y
With @7 acting on 4-tensors as usual, we have
d*dy = &7 d”,
and thus
[d*®gullp2n) < Cfldul|2grn).
Then
||dSE1u||L2(Rn) < CHdSUHLQ(Ri)

which completes the proof. O
Now we define

SEQJ. =1d - d[S:AE;(Sé,
PFij = d‘IS:QF,Q]w QEQ]- = Al:;éﬁ

-+, 0, satisfying
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In parallel to Corollaries 4.6, 4.7, 4.8 in [18], we have obtain for the Dirichlet Laplacian Af
COROLLARY 3.5. Let ¢ on C°(Q; \ 8int€2;). Then on symmetric 3-tensors, there exists Fo > 0
such that for any F > Fo, gbA;;(b cH B — Hslc’k is in W, 20(X).

COROLLARY 3.6. Let ¢ € C( \ Ome€Yy), x € C®(Qy) with disjoint support and with x
constant near 0y 2. Let F,Fo as in Corollary 3.5. Then the operator XA;;(b : Hszl*k(Qj) —

H1H(Q) in fact maps H'(X) — HEMSY) for all s, 1,k
Similarly, ¢AF_;X CHVR(Q)) — HLE(Q;) in fact maps HW*(Q4) — HE(X) for all s, 7, k.

COROLLARY 3.7. Let ¢ € C(Q; \ ), x € C®(Q;) with disjoint support and with
constant near Oing§;. Let F,Fo as in Corollary 3.5.

Then ¢Sr.0,¢ € WO(X), while xS0, : Hi (X) — a*L2,(0;) and ¢Sr.a,x : " L2,(;) —
HzN(X) for all s,r, k.

We also have properties in parallel to Lemmas 4.9 to 4.13, and then arrive at the main, local,
result

THEOREM 3.8. For Q = Q., ¢ > 0 small, there exists Fg > 0 large enough, such that for F > F,
the geodesic ray transform on symmetric 4-tensors f € e"/*L2 (Q) satisfying 6°(e=2F/*f) = 0, is
mjective.

The above local theorem leads to the global result, Theorem 1.2 similar to [18, Theorem 4.19].
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