
Articles
https://doi.org/10.1038/s41567-019-0484-x

1Department of Physics, Boston University, Boston, MA, USA. 2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,  
Chinese Academy of Sciences, Beijing, China. *e-mail: sandvik@bu.edu

Theoretical studies of exotic quantum states of matter and the 
phase transitions between them can provide new perspec-
tives on many-body physics and stimulate experimental 

investigations. A prominent example is the quantum phase transi-
tion between antiferromagnetic (AFM) and spontaneously dimer-
ized valence-bond solid (VBS) ground states in two-dimensional 
(2D) spin S = 1/2 magnets1,2. Here the theory of deconfined quan-
tum critical points (DQCPs) suggests that the Landau–Ginzburg–
Wilson (LGW) paradigm for phase transitions is inapplicable, as 
a consequence of quasiparticle fractionalization3,4. Over the past 
decade, likely DQCPs have been identified in lattice models, using 
‘designer Hamiltonians’ constructed for their amenability to large-
scale quantum Monte Carlo (QMC) simulations of the AFM–VBS 
transition5–16. Recently, a potential experimental realization of this 
type of DQCP was reported in the quasi-2D Shastry–Sutherland 
(SS) compound SrCu2(BO3)2 under pressure17. Although the SS 
model18 (Fig. 1a) is difficult to study numerically due to its geometri-
cal frustration (which causes sign problems in QMC simulations), a 
specific type of VBS—a two-fold degenerate plaquette-singlet solid 
(PSS) located between AFM and bond-singlet phases—was demon-
strated convincingly by tensor-network calculations19. It has been 
suggested17 that the AFM–PSS transition in SrCu2(BO3)2 may be a 
DQCP. It is not immediately clear, however, if the two-fold degen-
erate PSS can support spinon deconfinement in the same way as a 
four-fold degenerate VBS. QMC studies of rectangular lattices with 
two-fold degenerate VBS states point to a first-order transition13,  
as was also found in the SS model19.

Here we study a QMC sign-free model that mimics the SS 
compound, sharing the same kinds of AFM and PSS ground 
states. The model [Fig. 1b], is a new member in the ‘J-Q’ family5, 
with Heisenberg exchange J supplemented by four-spin interac-
tions Q that weaken and eventually destroy the AFM order. Our 
QMC simulations demonstrate an unconventional discontinu-
ous AFM–PSS transition with emergent O(4) symmetry of the 
coexistence state.

Non-LGW critical points with emergent symmetries have been 
extensively investigated recently20–30. In the case discussed here, 
the transition is first-order, in the sense that the order parameters 
exhibit clear discontinuities. However, conventional coexistence 
of phases separated by an energy barrier is not observed. Using 
order-parameter distributions, we show that the phase coexistence 
at the transition takes the form of an O(4) symmetric vector aris-
ing out of the O(3) AFM and scalar (Z2) PSS order parameters, 
even though there is no microscopic symmetry relating the two 
different order parameters in this way. The emergent order param-
eter can be arbitrarily O(4) rotated at constant energy. In further 
support of this striking scenario, we demonstrate a characteristic 
logarithmic form of the PSS ordering temperature versus the tun-
ing parameter, as expected for a 2D uniaxially deformed O(N ≥ 3) 
quantum system31,32.

Ground states
Our Hamiltonian can be defined using singlet projection operators 
Pij = (1/4 − Si · Sj):
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where all indicated site pairs comprise nearest neighbours on a peri-
odic square lattice with L2 sites and □′ denotes the 2 × 2 Q-plaquettes 
in Fig. 1b. For g = J/Q → ∞, this chequerboard J–Q (CBJQ) model 
reduces to the usual AFM Heisenberg model, and for g → 0 we will 
demonstrate a two-fold degenerate PSS. The model does not have 
any phase corresponding to the large-J′/J bond-singlet state of the 
SS model. However, for the AFM–PSS transition we can invoke 
symmetries and universality to propose that the two models, as well 
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CBJQ model: 
ground-state projection in the basis of valence bonds33 and the 
stochastic series expansion (SSE) method34. Both techniques 
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deliver results without any approximations other than statistical 
errors. The projector method is used for T = 0 spin-rotationally 
averaged quantities, while the SSE method is more efficient  
for Sz-basis observables when the temperature is scaled  
as T ∝ 1/L, as appropriate for finite-size scaling at a quantum 
phase transition with dynamic exponent z = 1 and also for a first-
order transition. Both QMC techniques are further described in 
the Methods.

To demonstrate a PSS ground state we first study a conventional 
dimer order parameter

∑ μ μ ŷ= − ⋅ + ̂ ̂ = ̂μ
μD

L
xS r S r1 ( 1) ( ) ( ), , (2)

r

r
2

where r = (rx, ry). In a VBS, ≠ =D D0, 0x y  for x-oriented bond 
order and x ↔ y for the y orientation. Because a singlet plaquette 
can be regarded as a resonance between horizontal and vertical 
bond pairs, a two-fold degenerate PSS (with higher singlet density 
on even or odd rows in in Fig. 1) should have ∣ ∣ = ∣ ∣ ≠D D 0x y .  
On a finite lattice the symmetry is not broken, and the system 
fluctuates between the two states. We use the projector method to 
generate the probability distribution P(Dx, Dy). While strictly not 
a quantum mechanical observable, this distribution nevertheless 
properly reflects the fluctuations and symmetries of the system. 
Results on either side of the AFM–PSS transition (the location of 
which will be determined below) are shown in Fig. 2. We see the 
two-fold symmetry of a PSS, instead of the four-fold symmetry of 
the columnar VBS9,35.

In the original J–Q model with Q terms on all plaquettes, 
the AFM–VBS transition appears to be continuous16 and, in 
accord with the DQCP theory, an emergent U(1) symmetry of 
its microscopically Z4 invariant VBS order parameter has been 
confirmed5,7,35. The proposed field theory description with spi-
nons coupled to an U(1) gauge field3,4 therefore seems viable. 
Unusual finite-size scaling behaviours not contained within the 
theory (but not contradicted by it) have also been observed10,15,16 
(and interpreted by some as a weak first-order transition7,8,11). An 
interesting proposal is that the O(3) symmetry of the AFM and 
the emergent U(1) symmetry of the VBS may combine into an 
SO(5) symmetry exactly at the critical point20,36. In a spin-planar 
J–Q model, it has instead been demonstrated that the U(1) AFM 
order parameter and the emergent U(1) VBS symmetry combine 
into a emergent O(4) symmetry26. In yet another example, it was 
proposed that a system with O(3) AFM order and Z2 Kekule VBS 
state exhibits a DQCP with emergent SO(4) symmetry27. The 
O(3) and Z2 symmetries apply also to the CBJQ model, and we 
therefore pay attention to a potential O(4) or SO(4) symmetry 
(and we cannot distinguish between these, as we only test for the 
rotational symmetry).

Finite-size scaling
To analyse the AFM–PSS transition we perform SSE calculations 
at T = 1/L and use order parameters defined solely with the Sz spin 
components:

∑ ∑ϕ θ= = Πm
L

S m
L
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z

p
z

r q
2 2

where z and p mark the AFM and PSS order parameters, respec-
tively. In mz, r runs over all L2 lattice sites and ϕ(r) = ±1 is the  
staggered AFM sign. In mp, we have defined an operator

Π ŷ ŷ= + ̂ + + ̂+S S x S S xq q q q q( ) ( ) ( ) ( ) ( ) (4)z z z z z

for detecting plaquette modulation, and the index q runs over the 
lower-left corners of the Q plaquettes in Fig. 1. The signs θ(q) = ±1 
correspond to even or odd plaquette rows.

We will primarily analyse the Binder cumulants
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shown in Fig. 3a, where the coefficients are chosen such that, for 
L → ∞, Uz → 1, Up → 0 in the AFM phase while Uz → 0, Up → 1 in 
the PSS. If there is a single transition, we can use the crossing point 
at which Uz(g, L) = Up(g, L) to define a finite-size transition point. 
We also study the more commonly used crossing points of curves 
for two different system sizes, L/2 and L, locating the g value where 
Uz(g, L/2) = Uz(g, L) or Up(g, L/2) = Up(g, L). The three definitions 
should flow to the same gc when L → ∞.

From the slopes of the cumulants we can extract the correlation-
length exponents νz and νp (refs. 16,37):
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where gc(L) is the relevant (L/2, L) cross point. The derivatives can 
be evaluated directly in the QMC simulations.

The analysis is presented and explained in Fig. 3. We find 
gc = 0.2175 ± 0.0001 from the cross point estimators in Fig. 3b. Most 
notably, in Fig. 3c the order parameters at their respective Binder 
crossing points do not vanish as L → ∞. This coexistence of AFM 
and PSS order is a conventional indicator of a first-order transition. 
The exponents 1/νz and 1/νp provide further useful information: at 
a classical first-order transition, 1/ν → d in d dimensions, and in 
a 2 + 1-dimensional quantum system we might expect 1/νz,p → 3. 

J

a b

QJ′ J

Fig. 1 | Quantum spin models discussed in this work. a, In the SS model, 
nearest-neighbour Heisenberg interactions J compete with next-nearest-
neighbour couplings (diagonal lines). b, In the CBJQ model, the J′ terms 
are replaced by the four-spin Q terms in equation (1).

g = 0.20
PSS

g = 0.24
AFM

Fig. 2 | Demonstration of a two-fold degenerate PSS state.  
The distribution P(Dx, Dy) in the ground state of the CBJQ model is  
shown at g = 0.20 (PSS phase) and g = 0.24 (AFM phase). The results  
were obtained in projector QMC simulations on L = 96 lattices.
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The even larger values seen in Fig. 3d indicate a particular type of 
discontinuous transition, as we explain in the following.

Emergent O(4) symmetry
Due to the energy barrier separating coexisting phases at a con-
ventional first-order transition, the squared order parameter fol-
lows a bimodal distribution, causing a divergent negative peak in 
the Binder cumulant38,39. Such peaks are present at the first-order 
transition in a J–Q model with a staggered Z4 VBS40, but are absent 
in Fig. 3a. This lack of negative cumulant peaks leads us to consider 
a scenario for coexisting order parameters without energy barriers 
in the CBJQ model.

A well-known case illustrating our proposal is the 3D 
XXZ-deformed Heisenberg O(3) model, with bond energies 

σ σ σ σ Δσ σ= − + −H ( )ij i
x

j
x

i
y

j
y

i
z

j
z between classical spins σi, σj. As 

shown in the Supplementary Information, in its ordered phase the 

XXZ model behaves very similarly to the CBJQ model if we make 
an analogy between the planar (x–y) magnetization and the AFM 
order parameter on the one hand and the Ising (z) magnetization 
and the PSS order parameter on the other hand. Going from Δ < 1 to 
Δ > 1 the magnetization flips from the x–y plane to the z axis. At the 
O(3) point (Δ = 1) there are clearly no free-energy barriers between 
the x–y and z phases; the magnetization can be continuously rotated 
from the x–y plane to the z axis at constant energy.

The CBJQ model does not have any explicit higher symmetry 
point, but our results suggest that the O(3) AFM and the Z2 PSS 
combine to form an emergent O(4) symmetry at gc. In the transition 
region the system can then be described by an effective deformed 
quantum O(4) model (XXXZ model), where the control parameter 
g = J/Q tunes the order parameter from the O(3) phase through the 
O(4) point into the Z2 phase. In the thermodynamic limit, the O(4) 
symmetry is spontaneously broken at gc, and the PSS and AFM 
orders can coexist in the same spatial region, unlike the phase sepa-
ration characterizing conventional coexistence.

To test more explicitly for emergent O(4) symmetry, we use the 
projector QMC method and now define the PSS order parameter 
with the rotationally invariant operator

Π = ⋅ + ^ + ^ ⋅ + ^ + ^

+ ⋅ + ^ + ^ ⋅ + ^+ ^
x y y x

y x x y
q S q S q S q S q
S q S q S q S q

( ) [ ( ) ( )][ ( ) ( )]
[ ( ) ( )][ ( ) ( )]

(7)

in place of Πz(q) in equation (3). For the AFM phase, we still use 
mz in equation (3). In a state with both AFM and PSS order, the 
commutator [mz, mp] ∝ L−2, and we can safely use the c numbers 
corresponding to mz and mp from a given transition graph33 to accu-
mulate the distribution P(mz, mp). For the putative O(4) symmetry 
to be manifest, we further normalize mz and mp by factors involving 
mz

2  and mp
2  (see Supplementary Information).

For points uniformly distributed on an O(4) sphere of radius R, 
projection onto two components results in a uniform distribution 
within a circle of radius R. In a finite quantum system we also expect 
fluctuations of R and therefore compare our CBJQ results with dis-
tributions obtained from an O(4) sphere with mean radius R = 1 and 
different standard deviations σ. Examples are shown Fig. 4. At the 
AFM–PSS transition, the CBJQ distribution is rotation symmetric 
with radial profile similar to O(4) sampling with σ ≈ 0.15. Inside the 
phases the distributions are shifted as expected; deep in the PSS we 
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Fig. 3 | CBJQ results from SSE simulations. a, Spin (open symbols) and plaquette (filled symbols) cumulants versus g for L = 24 (black), 48 (blue) and 
96 (red). Interpolations within these and additional data sets underlie the analysis presented in the other panels. b, Crossing g values of Uz and Up, shown 
versus 1/L along with the (L/2, L) same-quantity crossing points from Uz and Up. The fitted curves include a single power-law correction ∝L−ω and give 
gc = 0.2175 ± 0.0001 for L → ∞. c, The squared order parameters at the (L/2, L) cumulant cross-points plotted versus 1/L together with polynomial fits.  
d, Correlation-length exponents (equation (6)) and line fits. Small system sizes were excluded from all fits until acceptable agreement with the functional 
forms were obtained. Error bars represent one standard deviation of the QMC-computed mean values.

g = 0.21600
PSS

g = 0.21755
O(4)

g = 0.21900
AFM

σ = 0.000
a

b

σ = 0.100 σ = 0.200

Fig. 4 | Direct evidence for emergent O(4) symmetry. a, One quadrant  
of the sampled49 distribution of two components of an R = 1 O(4) vector 
with Gaussian length fluctuations of standard deviation σ = 0, 0.1, 0.2.  
b, Distribution P(mz, mp) for the L = 96 CBJQ model at three g values.  
The x and y axes represent the AFM mz order parameter and the PSS  
order parameter mp, respectively.
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should eventually, for L → ∞, obtain a point on the y axis, and in the 
AFM state a line on the x axis. Quantitative tests of the symmetry 
are presented in the Supplementary Information. As expected for an 
emergent symmetry, we find O(4) violations for small system sizes 
(L = 8, 16), but no detectable deviations at gc for the largest systems 
(up to L = 96).

The O(4) symmetry explains why 1/νz,p > 3 in Fig. 3b. The 
dynamic exponent of the Anderson–Goldstone rotor states asso-
ciated with the O(N ≥ 2) order is z = 2, and the exponents should 
therefore tend to d + z = 4 when L → ∞ at T = 0. The deviations may 
be due to scaling corrections and T > 0 effects when T ∝ 1/L (instead 
of 1/L2). As we show in the Supplementary Information, quantita-
tive measures of the emergent O(4) symmetry in our T = 0 calcula-
tions exhibit 1/L4 scaling of the size of the g window in which the 
symmetry is emergent.

An important consequence of O(4) symmetry should be a spe-
cific logarithmic (log) form of the critical PSS temperature Tc versus 
the distance δ = gc − g from the T = 0 transition point, δ∝ ∕−T Cln ( )c

1 ,  
as in an O(N ≥ 3) model with Ising deformation31,32. This form is 
very different from that expected close to an Ising quantum-critical 
point, where δ∝ νTc

3D, where ν3D is the 3D Ising correlation-length 
exponent. Neither form should apply at a conventional first-order 
transition extending from (gc, T = 0) to some T > 0. If the O(4) 
breaking perturbation is very weak, one should still expect the log 
form to hold down to some low temperature.

We computed Tc(g) for the PSS using the cumulant-crossing 
method with SSE data for L ≤ 160. We can reliably extrapolate Tc to 
the thermodynamic limit for g ≤ 0.216 (δ ≳ 0.0015), as shown in Fig. 5. 
The behaviour for δ ≲ 0.02 is very well described by the log form, lend-
ing strong indirect support to the emergent O(4) symmetry through 
an important physical observable in the thermodynamic limit.

Discussion
To exclude the CBJQ model being fine-tuned accidentally, we also 
confirmed the O(4) symmetry in a model with additional interac-
tions (see Supplementary Information). It is possible that the O(4) 
symmetry is present only up to some length scale above the largest 
system (L = 96) studied here, in which case energy barriers between 
the AFM and PSS states would eventually form for larger systems. 

Such approximate symmetries may be expected at certain weak first-
order transitions, either when the system is close to a fine-tuned 
point with the higher symmetry (although no convincing symme-
tries were observed in numerical studies41) or in the proximity of a 
quantum-critical point where the higher symmetry is emergent20,25,28. 
In the latter case, perturbations break the symmetry above some 
length scale ξ′ exceeding the correlation length ξ (ref. 25).

In the CBJQ model the observed discontinuities are rather 
strong. In Fig. 3c the magnitude of the O(4) vector in AFM units is 

= ⟨ ⟩ ≈ .∕m m4 0 12s z
2 1 2 , almost 25% of the maximum staggered mag-

netization 1/2. The discontinuous nature of the transition is appar-
ent even on small lattices, for example, the flow of 1/νz toward an 
anomalously large value in Fig. 3d. Thus, in the scenario of ref. 25 
we should have ξ ξ ξ≪ ≪ ′ ~ α+L 1 , with a large α in order to have the 
clear separation of length scales needed to account for our observa-
tions. Such behaviour had not been anticipated previously; rather, 
emergent symmetry on large length scales was cited as support for 
continuous non-LGW transitions20,27

In the alternative scenario of an asymptotically exact O(4) sym-
metry, the dominant symmetry-breaking field is tuned to zero at the 
AFM–PSS transition and higher-order O(4) violating perturbations 
would be absent or vanish upon renormalization, perhaps by an exten-
sion of the DQCP framework. Although emergent O(N) multicritical  
points arising from O(N − 1) and Z2 order parameters have been 
extensively discussed within the LGW framework42–45, the influence 
of the higher symmetry on associated first-order lines has not been 
addressed until recently in the weakly first-order DQCP context25.

The T > 0 Ising transition would be a good target for detect-
ing the still incompletely characterized PSS phase in SrCu2(BO3)2 
and its putative O(4) symmetry. In 2D we have demonstrated a log 
form of Tc (Fig. 5), which should hold down to some low tempera-
ture also in the presence of sufficiently weak interlayer couplings. 
Presumably the 3D T = 0 transition is a conventional first-order one, 
but an approximate higher symmetry may still persist.

The O(4) AFM–PSS transition is reminicent of the SO(5) theory 
of high-Tc superconductivity46, where O(3) AFM and O(2) super-
conducting order parameters form the higher symmetry—a sce-
nario not confirmed experimentally. After completion of the present 
work, an SO(5) analogue of the AFM–PSS was demonstrated in a 
spin-1 J–Q model47, and an O(4) transition very similar to ours was 
discussed in the context of a classical 3D loop model48.
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Methods
The numerical results for the CBJQ model were obtained by two related QMC 
methods in which the operator e−βH is Taylor expanded and the resulting powers Hn 
are expressed as all possible combinations (propagation paths) of the elementary 
bond and plaquette operators Hi of the Hamiltonian. Both methods are well 
documented in the literature; the SSE method for the standard J–Q model is 
discussed in detail in ref. 34, for example, and the projector method is discussed 
in the context of the S = ½ Heisenberg model in ref. 33 (and useful valence-bond 
expressions for physical observables of interest are discussed in ref. 50). Here, we 
only give very brief overviews and provide specifics related to convergence and  
the unbiased nature of the simulations.

In the SSE method, which we here run at temperature T = β−1 = 1/L, paths 
contributing to the partition function Z = Tr{e−βH} are sampled in the standard 
basis where the spin components Sr

z are diagonal. The expansion order (power) 
n is also sampled as an integral part of this process, and the dominant powers 
are of order βN. This linear order in N and β also represents the scaling of the 
computational effort of carrying out one full sweep of Monte Carlo updates.  
The final results for a given system size are not affected by any approximations 
beyond statistical errors.

In the valence-bond-based projector method, the ground state is obtained by 
acting with e−βH, for β sufficiently large, on a trial state |ψt〉 expressed in the basis  
of valence bonds (thus restricting the sampling of paths to the singlet sector).  
The sampling is carried out in the space of paths contributing to the normalization 
〈ψt|e−2βH|ψt〉, with the spins compatible with the valence bonds in the trial state; 
that is, the sampling is done with the Sr

z spins as in SSE, but the operator expectation 
values are computed purely in the valence bond basis (which corresponds 
to summing over all possible spin paths contributing to a given sequence of 
operators). For the trial state, we use an amplitude-product state51 with bond 
amplitudes of the form h(r) = r−3, which produces a good variational state for a 2D 
system with AFM order. We ensured convergence to the ground state by comparing 
results for different values of the projection parameter β of the form β = aL. For the 
largest system sizes around the AFM–PSS transition point (where the convergence 
is the slowest), we see small differences between results with a = ½, 1, 2 and 4, 
but no statistically discernible differences between results with a = 4 and a = 8 up 

to the largest system sizes studied. Once sufficiently converged, the ground-state 
properties are exact to within statistical errors.

In practice, the technical differences between the SSE and projector methods are 
rather minor, amounting essentially to different boundary conditions in the time 
dimension—periodic boundaries for SSE and open boundaries ‘capped’ by the trial 
state expressed in the valence bond basis in the projector method. Therefore, the 
efficient loop updates as described for the J–Q model within the SSE method in ref. 34 
can be directly taken over into the projector approach. These loop updates are also 
very similar to those previously developed for the Heisenberg model33. The exclusion 
of half of the Q terms to go from the standard J–Q model to the CBJQ model is trivial. 
Both methods were tested against exact diagonalization results for small systems.

We studied the classical 3D Heisenberg model using standard Monte 
Carlo simulations. To deal with the anisotropy when Δ ≠ 1, we evolve the spin 
configurations using hybrid updates. These updates alternate between Metropolis 
sweeps of N = L3 single-spin updates and Wolff cluster updates, the latter of which 
act only on the component of the spins along the z axis52. The cluster updates can 
also be done on the x–y plane components of the spins; however, we did not see 
any noticeable difference in performance (and identical results are produced) 
between the two methods in the neighbourhood of the XY–Ising transition at 
Δ = 1. The program was tested against known benchmarks.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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