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Symmetry-enhanced discontinuous phase
transition in a two-dimensional quantum magnet

Bowen Zhao', Phillip Weinberg' and Anders W. Sandvik ©2*

In a quantum phase transition, the ground state and low-temperature properties of a system change drastically as some param-
eter controlling zero-point quantum fluctuations is tuned to a critical value. Like classical phase transitions driven by thermal
fluctuations, a ground-state transition can be discontinuous (first order) or continuous. Theoretical studies have suggested
exotic continuous transitions where a system develops higher symmetries than those of the underlying Hamiltonian. Here, we
demonstrate an unconventional discontinuous transition between two ordered ground states of a quantum magnet, with an
emergent symmetry of its coexistence state. We present a Monte Carlo study of a two-dimensional S =1/2 spin system host-
ing an antiferromagnetic state and a plaquette-singlet solid state of the kind recently detected in SrCu,(BO,),. We show that
the O(3) symmetric antiferromagnetic order and the scalar plaquette-singlet solid order form an O(4) vector at the transition.
Unlike conventional first-order transitions, there are no energy barriers between the two coexisting phases, as the 0(4) order
parameter can be rotated at constant energy. Away from the transition, the 0(4) surface is uniaxially deformed by the control

parameter (a coupling ratio). This phenomenon may be observable in SrCu,(BO,),.

phase transitions between them can provide new perspec-

tives on many-body physics and stimulate experimental
investigations. A prominent example is the quantum phase transi-
tion between antiferromagnetic (AFM) and spontaneously dimer-
ized valence-bond solid (VBS) ground states in two-dimensional
(2D) spin S=1/2 magnets'’. Here the theory of deconfined quan-
tum critical points (DQCPs) suggests that the Landau-Ginzburg-
Wilson (LGW) paradigm for phase transitions is inapplicable, as
a consequence of quasiparticle fractionalization®*. Over the past
decade, likely DQCPs have been identified in lattice models, using
‘designer Hamiltonians’ constructed for their amenability to large-
scale quantum Monte Carlo (QMC) simulations of the AFM-VBS
transition®'°. Recently, a potential experimental realization of this
type of DQCP was reported in the quasi-2D Shastry-Sutherland
(SS) compound SrCu,(BO,), under pressure’’. Although the SS
model" (Fig. 1a) is difficult to study numerically due to its geometri-
cal frustration (which causes sign problems in QMC simulations), a
specific type of VBS—a two-fold degenerate plaquette-singlet solid
(PSS) located between AFM and bond-singlet phases—was demon-
strated convincingly by tensor-network calculations”. It has been
suggested'” that the AFM-PSS transition in SrCu,(BO;), may be a
DQCEP. It is not immediately clear, however, if the two-fold degen-
erate PSS can support spinon deconfinement in the same way as a
four-fold degenerate VBS. QMC studies of rectangular lattices with
two-fold degenerate VBS states point to a first-order transition,
as was also found in the SS model®.

Here we study a QMC sign-free model that mimics the SS
compound, sharing the same kinds of AFM and PSS ground
states. The model [Fig. 1b], is a new member in the J-Q’ family?,
with Heisenberg exchange J supplemented by four-spin interac-
tions Q that weaken and eventually destroy the AFM order. Our
QMC simulations demonstrate an unconventional discontinu-
ous AFM-PSS transition with emergent O(4) symmetry of the
coexistence state.

| heoretical studies of exotic quantum states of matter and the

Non-LGW critical points with emergent symmetries have been
extensively investigated recently”*’. In the case discussed here,
the transition is first-order, in the sense that the order parameters
exhibit clear discontinuities. However, conventional coexistence
of phases separated by an energy barrier is not observed. Using
order-parameter distributions, we show that the phase coexistence
at the transition takes the form of an O(4) symmetric vector aris-
ing out of the O(3) AFM and scalar (Z,) PSS order parameters,
even though there is no microscopic symmetry relating the two
different order parameters in this way. The emergent order param-
eter can be arbitrarily O(4) rotated at constant energy. In further
support of this striking scenario, we demonstrate a characteristic
logarithmic form of the PSS ordering temperature versus the tun-
ing parameter, as expected for a 2D uniaxially deformed O(N> 3)

31,32

quantum system-

Ground states
Our Hamiltonian can be defined using singlet projection operators
P,=(1/4=S,-S):

H=-] 2 B=Q 3, (BP+EiPy) 1)
(i)

ijkley

where all indicated site pairs comprise nearest neighbours on a peri-
odic square lattice with L* sites and []' denotes the 2 X 2 Q-plaquettes
in Fig. 1b. For g=J/Q— oo, this chequerboard J-Q (CBJQ) model
reduces to the usual AFM Heisenberg model, and for g— 0 we will
demonstrate a two-fold degenerate PSS. The model does not have
any phase corresponding to the large-J'/] bond-singlet state of the
SS model. However, for the AFM-PSS transition we can invoke
symmetries and universality to propose that the two models, as well
as SrCu,(BO,),, contain the same physics.

We use two different QMC methods to study the CBJQ model:
ground-state projection in the basis of valence bonds™ and the
stochastic series expansion (SSE) method™. Both techniques

'Department of Physics, Boston University, Boston, MA, USA. 2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,

Chinese Academy of Sciences, Beijing, China. *e-mail: sandvik@bu.edu

678

NATURE PHYSICS | VOL 15 | JULY 2019 | 678-682 | www.nature.com/naturephysics


mailto:sandvik@bu.edu
http://orcid.org/0000-0002-5638-4619
http://www.nature.com/naturephysics

NATURE PHYSICS ARTICLES

Fig. 1| Quantum spin models discussed in this work. a, In the SS model,
nearest-neighbour Heisenberg interactions J compete with next-nearest-
neighbour couplings (diagonal lines). b, In the CBJQ model, the J' terms
are replaced by the four-spin Q terms in equation (1).

deliver results without any approximations other than statistical
errors. The projector method is used for T=0 spin-rotationally
averaged quantities, while the SSE method is more efficient
for S°-basis observables when the temperature is scaled
as T 1/L, as appropriate for finite-size scaling at a quantum
phase transition with dynamic exponent z=1 and also for a first-
order transition. Both QMC techniques are further described in
the Methods.

To demonstrate a PSS ground state we first study a conventional
dimer order parameter

(—1)"S(r) - S(r + i),

22

A=x3y (2)

where r=(r,, ). In a VBS, (D, ) #£0, < = for x-oriented bond
order and x <y for the y orientation. Bécause a singlet plaquette
can be regarded as a resonance between horizontal and vertical
bond pairs, a two-fold degenerate PSS (with higher singlet density
on even or odd rows in in Fig. 1) should have |<D >| = |<D >| #0.
On a finite lattice the symmetry is not broken, and the system
fluctuates between the two states. We use the projector method to
generate the probability distribution P(D,, D,). While strictly not
a quantum mechanical observable, this distribution nevertheless
properly reflects the fluctuations and symmetries of the system.
Results on either side of the AFM-PSS transition (the location of
which will be determined below) are shown in Fig. 2. We see the
two-fold symmetry of a PSS, instead of the four-fold symmetry of
the columnar VBS**.

In the original J-Q model with Q terms on all plaquettes,
the AFM-VBS transition appears to be continuous'® and, in
accord with the DQCP theory, an emergent U(1) symmetry of
its microscopically Z, invariant VBS order parameter has been
confirmed®**. The proposed field theory description with spi-
nons coupled to an U(1) gauge field** therefore seems viable.
Unusual finite-size scaling behaviours not contained within the
theory (but not contradicted by it) have also been observed'*!>'¢
(and interpreted by some as a weak first-order transition”*'"). An
interesting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into an
SO(5) symmetry exactly at the critical point*>*. In a spin-planar
J-Q model, it has instead been demonstrated that the U(1) AFM
order parameter and the emergent U(1) VBS symmetry combine
into a emergent O(4) symmetry®. In yet another example, it was
proposed that a system with O(3) AFM order and Z, Kekule VBS
state exhibits a DQCP with emergent SO(4) symmetry”. The
O(3) and Z, symmetries apply also to the CBJQ model, and we
therefore pay attention to a potential O(4) or SO(4) symmetry
(and we cannot distinguish between these, as we only test for the
rotational symmetry).
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Fig. 2 | Demonstration of a two-fold degenerate PSS state.
The distribution P(D,, D,) in the ground state of the CBJQ model is

xr “y

shown at g=0.20 (PSS phase) and g=0.24 (AFM phase). The results

were obtained in projector QMC simulations on L =96 lattices.

Finite-size scaling

To analyse the AFM-PSS transition we perform SSE calculations
at T=1/L and use order parameters defined solely with the $* spin
components:

m,= ﬁ Y oS, m=2 ¥ 0@ (3)
N q

where z and p mark the AFM and PSS order parameters, respec-
tively. In m,, r runs over all L? lattice sites and ¢(r)==+1 is the
staggered AFM sign. In m,, we have defined an operator

1°(q) = $*(@)$*(q+X)S*(q +9)S*(q+ £ +7) (4)
for detecting plaquette modulation, and the index q runs over the
lower-left corners of the Q plaquettes in Fig. 1. The signs 6(q) =+1
correspond to even or odd plaquette rows.

We will primarily analyse the Binder cumulants
> ] ©)

shown in Fig. 3a, where the coefficients are chosen such that, for
L— o0, U,—~1, U,—~0 in the AFM phase while U,—0, U,— 1 in
the PSS. If there is a single transition, we can use the crossing point
at which U,(g, L)="U,(g, L) to define a finite-size transition point.
We also study the more commonly used crossing points of curves
for two different system sizes, L/2 and L, locating the g value where
UJ(g L12)=U/(g L) or Uyg, L/2)=U,(g, L). The three definitions
should flow to the same g, when L — .

From the slopes of the cumulants we can extract the correlation-
length exponents v, and v, (refs. '*¥):

3
U=2|1-
L)

2| 3m2)

(mp) , Uz=5 - (m))
3(m2)° 2

1 1 dU,(g,L)/dg
2 @) | dU(g.L/2)/dg ©)
zp zp g=gC(L)

where g (L) is the relevant (L/2, L) cross point. The derivatives can
be evaluated directly in the QMC simulations.

The analysis is presented and explained in Fig. 3. We find
£.=0.2175+0.0001 from the cross point estimators in Fig. 3b. Most
notably, in Fig. 3c the order parameters at their respective Binder
crossing points do not vanish as L — co. This coexistence of AFM
and PSS order is a conventional indicator of a first-order transition.
The exponents 1/, and 1/v, provide further useful information: at
a classical first-order transition, 1/v—d in d dimensions, and in
a 2+ 1-dimensional quantum system we might expect 1/v,,— 3.
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Fig. 3 | CBJQ results from SSE simulations. a, Spin (open symbols) and plaquette (filled symbols) cumulants versus g for L =24 (black), 48 (blue) and
96 (red). Interpolations within these and additional data sets underlie the analysis presented in the other panels. b, Crossing g values of U, and U,, shown
versus 1/L along with the (L/2, L) same-quantity crossing points from U, and U,. The fitted curves include a single power-law correction xL~* and give
9.=0.2175+0.0001 for L — 0. ¢, The squared order parameters at the (L/2, L) cumulant cross-points plotted versus 1/L together with polynomial fits.

d, Correlation-length exponents (equation (6)) and line fits. Small system sizes were excluded from all fits until acceptable agreement with the functional
forms were obtained. Error bars represent one standard deviation of the QMC-computed mean values.

g=0.21600
PSS
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Fig. 4 | Direct evidence for emergent O(4) symmetry. a, One quadrant
of the sampled* distribution of two components of an R=10(4) vector
with Gaussian length fluctuations of standard deviation 6=0, 0.1, 0.2.
b, Distribution P(m,, m,) for the L =96 CBJQ model at three g values.
The x and y axes represent the AFM m, order parameter and the PSS
order parameter m,, respectively.

The even larger values seen in Fig. 3d indicate a particular type of
discontinuous transition, as we explain in the following.

Emergent O(4) symmetry

Due to the energy barrier separating coexisting phases at a con-
ventional first-order transition, the squared order parameter fol-
lows a bimodal distribution, causing a divergent negative peak in
the Binder cumulant®™*. Such peaks are present at the first-order
transition in a J-Q model with a staggered Z, VBS", but are absent
in Fig. 3a. This lack of negative cumulant peaks leads us to consider
a scenario for coexisting order parameters without energy barriers
in the CBJQ model.

A well-known case illustrating our proposal is the 3D
XXZ-deformed Heisenberg O(3) model, with bond energies
Hy= —(Gixaj‘ +0/06? )—Ao-fo-jz between classical spins o, o, As
shown in the Suppiementary Information, in its ordered phase the

680

XXZ model behaves very similarly to the CBJQ model if we make
an analogy between the planar (x-y) magnetization and the AFM
order parameter on the one hand and the Ising (z) magnetization
and the PSS order parameter on the other hand. Going from A <1 to
A > 1 the magnetization flips from the x-y plane to the z axis. At the
O(3) point (A =1) there are clearly no free-energy barriers between
the x-y and z phases; the magnetization can be continuously rotated
from the x-y plane to the z axis at constant energy.

The CBJQ model does not have any explicit higher symmetry
point, but our results suggest that the O(3) AFM and the Z, PSS
combine to form an emergent O(4) symmetry at g. In the transition
region the system can then be described by an effective deformed
quantum O(4) model (XXXZ model), where the control parameter
g=J/Q tunes the order parameter from the O(3) phase through the
O(4) point into the Z, phase. In the thermodynamic limit, the O(4)
symmetry is spontaneously broken at g, and the PSS and AFM
orders can coexist in the same spatial region, unlike the phase sepa-
ration characterizing conventional coexistence.

To test more explicitly for emergent O(4) symmetry, we use the
projector QMC method and now define the PSS order parameter
with the rotationally invariant operator

T1(q) =[S(q) - S(q+X)1[S(q+7)-S(q+7 +%)]

7

+[S(q) - S(q+MI[S(q+%) - S(q+%+7)] 7
in place of IT*(q) in equation (3). For the AFM phase, we still use
m, in equation (3). In a state with both AFM and PSS order, the
commutator [m,, m,] L™, and we can safely use the ¢ numbers
corresponding to m, and m, from a given transition graph™ to accu-
mulate the distribution P(m,, m,). For the putative O(4) symmetry
to be manifest, we further normalize m, and m, by factors involving
(m?)and <m;> (see Supplementary Information).

For points uniformly distributed on an O(4) sphere of radius R,
projection onto two components results in a uniform distribution
within a circle of radius R. In a finite quantum system we also expect
fluctuations of R and therefore compare our CBJQ results with dis-
tributions obtained from an O(4) sphere with mean radius R=1and
different standard deviations . Examples are shown Fig. 4. At the
AFM-PSS transition, the CBJQ distribution is rotation symmetric
with radial profile similar to O(4) sampling with 6~ 0.15. Inside the
phases the distributions are shifted as expected; deep in the PSS we
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Fig. 5 | Inverse PSS critical temperature versus the shifted coupling
6=g.—g. The red line is a fit to the expected log form and the black
curve shows the conventional Ising form as a contrast. Inset: examples of
T. extrapolations using the form T.=al=*(1+ cL=9), with fitting parameters
a, b, cand d. Error bars represent one standard deviation of the sampled
mean values.

should eventually, for L — o0, obtain a point on the y axis, and in the
AFM state a line on the x axis. Quantitative tests of the symmetry
are presented in the Supplementary Information. As expected for an
emergent symmetry, we find O(4) violations for small system sizes
(L=38, 16), but no detectable deviations at g, for the largest systems
(up to L=96).

The O(4) symmetry explains why 1/v,,>3 in Fig. 3b. The
dynamic exponent of the Anderson-Goldstone rotor states asso-
ciated with the O(N>2) order is z=2, and the exponents should
therefore tend to d+z=4 when L — oo at T=0. The deviations may
be due to scaling corrections and T> 0 effects when T« 1/L (instead
of 1/L?*). As we show in the Supplementary Information, quantita-
tive measures of the emergent O(4) symmetry in our T=0 calcula-
tions exhibit 1/L* scaling of the size of the g window in which the
symmetry is emergent.

An important consequence of O(4) symmetry should be a spe-
cific logarithmic (log) form of the critical PSS temperature T, versus
the distance § =g, — g from the T=0 transition point, T, xIn"'(C/5),
as in an O(N>3) model with Ising deformation®*>. This form is
very different from that expected close to an Ising quantum-critical
point, where T, «x §“*°, where v,y is the 3D Ising correlation-length
exponent. Neither form should apply at a conventional first-order
transition extending from (g, T=0) to some T>0. If the O(4)
breaking perturbation is very weak, one should still expect the log
form to hold down to some low temperature.

We computed T(g) for the PSS using the cumulant-crossing
method with SSE data for L <160. We can reliably extrapolate T, to
the thermodynamic limit for g<0.216 (62 0.0015), as shown in Fig. 5.
The behaviour for 5 $0.02 is very well described by the log form, lend-
ing strong indirect support to the emergent O(4) symmetry through
an important physical observable in the thermodynamic limit.

Discussion

To exclude the CBJQ model being fine-tuned accidentally, we also
confirmed the O(4) symmetry in a model with additional interac-
tions (see Supplementary Information). It is possible that the O(4)
symmetry is present only up to some length scale above the largest
system (L =96) studied here, in which case energy barriers between
the AFM and PSS states would eventually form for larger systems.
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Such approximate symmetries may be expected at certain weak first-
order transitions, either when the system is close to a fine-tuned
point with the higher symmetry (although no convincing symme-
tries were observed in numerical studies*') or in the proximity of a
quantum-critical point where the higher symmetry is emergent?**>.
In the latter case, perturbations break the symmetry above some
length scale &’ exceeding the correlation length & (ref. 7).

In the CBJQ model the observed discontinuities are rather
strong. In Fil%.2 3c the magnitude of the O(4) vector in AFM units is
m, = (4m?2) "~ 0.12, almost 25% of the maximum staggered mag-
netization 1/2. The discontinuous nature of the transition is appar-
ent even on small lattices, for example, the flow of 1/v, toward an
anomalously large value in Fig. 3d. Thus, in the scenario of ref.?
we should have & < L < £~ &', with a large @ in order to have the
clear separation of length scales needed to account for our observa-
tions. Such behaviour had not been anticipated previously; rather,
emergent symmetry on large length scales was cited as support for
continuous non-LGW transitions*>*

In the alternative scenario of an asymptotically exact O(4) sym-
metry, the dominant symmetry-breaking field is tuned to zero at the
AFM-PSS transition and higher-order O(4) violating perturbations
would be absent or vanish upon renormalization, perhaps by an exten-
sion of the DQCP framework. Although emergent O(N) multicritical
points arising from O(N—1) and Z, order parameters have been
extensively discussed within the LGW framework*~*, the influence
of the higher symmetry on associated first-order lines has not been
addressed until recently in the weakly first-order DQCP context™.

The T>0 Ising transition would be a good target for detect-
ing the still incompletely characterized PSS phase in SrCu,(BO,),
and its putative O(4) symmetry. In 2D we have demonstrated a log
form of T, (Fig. 5), which should hold down to some low tempera-
ture also in the presence of sufficiently weak interlayer couplings.
Presumably the 3D T'=0 transition is a conventional first-order one,
but an approximate higher symmetry may still persist.

The O(4) AFM-PSS transition is reminicent of the SO(5) theory
of high-T,. superconductivity*, where O(3) AFM and O(2) super-
conducting order parameters form the higher symmetry—a sce-
nario not confirmed experimentally. After completion of the present
work, an SO(5) analogue of the AFM-PSS was demonstrated in a
spin-1 J-Q model”, and an O(4) transition very similar to ours was
discussed in the context of a classical 3D loop model*.
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Methods

The numerical results for the CBJQ model were obtained by two related QMC
methods in which the operator e is Taylor expanded and the resulting powers H"
are expressed as all possible combinations (propagation paths) of the elementary
bond and plaquette operators H; of the Hamiltonian. Both methods are well
documented in the literature; the SSE method for the standard J-Q model is
discussed in detail in ref. *, for example, and the projector method is discussed
in the context of the S=1: Heisenberg model in ref. ** (and useful valence-bond
expressions for physical observables of interest are discussed in ref. ). Here, we
only give very brief overviews and provide specifics related to convergence and
the unbiased nature of the simulations.

In the SSE method, which we here run at temperature T=$"'=1/L, paths
contributing to the partition function Z=Tr{e "} are sampled in the standard
basis where the spin components S are diagonal. The expansion order (power)

n is also sampled as an integral part of this process, and the dominant powers
are of order gN. This linear order in N and f also represents the scaling of the
computational effort of carrying out one full sweep of Monte Carlo updates.
The final results for a given system size are not affected by any approximations
beyond statistical errors.

In the valence-bond-based projector method, the ground state is obtained by
acting with e, for 8 sufficiently large, on a trial state |y;) expressed in the basis
of valence bonds (thus restricting the sampling of paths to the singlet sector).

The sampling is carried out in the space of paths contributing to the normalization
(yJe " |y), with the spins compatible with the valence bonds in the trial state;
that is, the sampling is done with the S spins as in SSE, but the operator expectation
values are computed purely in the valence bond basis (which corresponds

to summing over all possible spin paths contributing to a given sequence of
operators). For the trial state, we use an amplitude-product state* with bond
amplitudes of the form h(r) =r~3, which produces a good variational state for a 2D
system with AFM order. We ensured convergence to the ground state by comparing
results for different values of the projection parameter f of the form f=alL. For the
largest system sizes around the AFM-PSS transition point (where the convergence
is the slowest), we see small differences between results with a=1, 1, 2 and 4,

but no statistically discernible differences between results with a=4 and a=8 up

NATURE PHYSICS | www.nature.com/naturephysics

to the largest system sizes studied. Once sufficiently converged, the ground-state
properties are exact to within statistical errors.

In practice, the technical differences between the SSE and projector methods are
rather minor, amounting essentially to different boundary conditions in the time
dimension—periodic boundaries for SSE and open boundaries ‘capped’ by the trial
state expressed in the valence bond basis in the projector method. Therefore, the
efficient loop updates as described for the J-Q model within the SSE method in ref. **
can be directly taken over into the projector approach. These loop updates are also
very similar to those previously developed for the Heisenberg model™. The exclusion
of half of the Q terms to go from the standard J-Q model to the CBJQ model is trivial.
Both methods were tested against exact diagonalization results for small systems.

We studied the classical 3D Heisenberg model using standard Monte
Carlo simulations. To deal with the anisotropy when A # 1, we evolve the spin
configurations using hybrid updates. These updates alternate between Metropolis
sweeps of N=L? single-spin updates and Wolff cluster updates, the latter of which
act only on the component of the spins along the z axis™. The cluster updates can
also be done on the x-y plane components of the spins; however, we did not see
any noticeable difference in performance (and identical results are produced)
between the two methods in the neighbourhood of the XY-Ising transition at
A=1. The program was tested against known benchmarks.

Data availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding author upon reasonable request.

References

50. Beach, K. S. D. & Sandvik, A. W. Some formal results for the valence bond
basis. Nucl. Phys. B 750, 142-178 (2006).

51. Liang, S., Doucot, B. & Anderson, P. W. Some new variational resonating-
valence-bond-type wave functions for the spin-% antiferromagnetic
Heisenberg model on a square lattice. Phys. Rev. Lett. 61, 365-368 (1988).

52. Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett.
62, 361-364 (1989).


http://www.nature.com/naturephysics

	Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet

	Ground states

	Finite-size scaling

	Emergent O(4) symmetry

	Discussion

	Online content

	Acknowledgements

	Fig. 1 Quantum spin models discussed in this work.
	Fig. 2 Demonstration of a two-fold degenerate PSS state.
	Fig. 3 CBJQ results from SSE simulations.
	Fig. 4 Direct evidence for emergent O(4) symmetry.
	Fig. 5 Inverse PSS critical temperature versus the shifted coupling δ = gc − g.




