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Abstract—Schedule randomization is one of the recently in-
troduced security defenses against schedule-based attacks, i.e.,
attacks whose success depends on a particular ordering between
the execution window of an attacker and a victim task within
the system. It falls into the category of information hiding (as
opposed to deterministic isolation-based defenses) and is designed
to reduce the attacker’s ability to infer the future schedule. This
paper aims to investigate the limitations and vulnerabilities of
schedule randomization-based defenses in real-time systems. We
first provide definitions, categorization, and examples of schedule-
based attacks, and then discuss the challenges of employing
schedule randomization in real-time systems. Further, we provide
a preliminary security test to determine whether a certain
timing relation between the attacker and victim tasks will never
happen in systems scheduled by a fixed-priority scheduling
algorithm. Finally, we compare fixed-priority scheduling against
schedule-randomization techniques in terms of the success rate
of various schedule-based attacks for both synthetic and real-
world applications. Our results show that, in many cases, schedule
randomization either has no security benefits or can even increase
the success rate of the attacker depending on the priority relation
between the attacker and victim tasks.

I. INTRODUCTION

Real-time systems are often designed to be predictable to sim-

plify the worst-case execution time (WCET) and schedulability

analyses, and to enforce deterministic runtime behaviors. This

timing predictability, however, can be exploited by attackers

to either directly influence a system’s behavior and/or steal

information, some of which can be used to increase the accuracy

of future attacks [1]–[3]. Such an exploitation is called a

schedule-based attack, where the success of the attack depends

on a particular ordering between the execution window of the

attacker and its targeted task [1]–[5]. For example, a cache-

timing attack becomes more efficient and accurate if the attacker

executes right before and after the execution window of its

target [1,2]. Similarly, in the domain of cyber-physical systems

(CPS) security, the success of a large number of attacks that

focus on compromising data integrity (e.g., to deceive the

control task, degrade the performance of the system, or damage

the environment) depends on the execution window of the

attacker and the time at which the system interacts with its

physical environment. For example, bias-injection attacks [6],

zero-dynamics attack, [6]–[11], and replay attacks [12] affect

the output of the controller and hence must be performed after

the targeted task completes, while false-data injection attacks

[13]–[17] must execute before the targeted task accesses its

input data.

Related work. There exist several defenses against schedule-

based attacks among which schedule randomization is the

main focus [1,3,5]. The goal of schedule randomization is to

diversify the schedule frequently enough so that it becomes

harder for the attacker to successfully guess when the targeted

task is going to be executed. For example, Yoon et al. [1]

introduced an online schedule randomization technique called

TaskShuffler that schedules a randomly chosen task from the

ready queue at each scheduling point. In order to guarantee

deadlines, the authors first derived the slack of each task

according to a fixed-priority scheduling policy, and then, at

runtime, the scheduler steals these slacks in order to execute

a randomly chosen (and potentially lower-priority) task. In

contrast, Krüger et al. [3] used fine-grained slot-level slacks to

provide more choices for the scheduler to select a random task

at runtime. The slot-shifting algorithm [18] was leveraged for

this purpose. Krüger et al. [3] also suggested an offline solution

that is based on pre-storing a set of randomly generated offline

schedules. Then, at runtime, the system non-deterministically

selects among these schedules after each hyperperiod.

Randomization falls into the category of information hiding,

where the security defense is based on hiding crucial/critical

information from the attacker by means of probabilistic pseudo-

isolation (instead of a strong deterministic isolation) [19]. It

has been primarily used in address-space layout randomization

(ASLR) for user- and kernel-space memory protection [20]–[23]

to defend the system against memory-corruption attacks such as

buffer overflows [24], format string exploits [25], double-free

attacks [26], etc. It is also used in control-flow randomization

[27] as a defense against code-reuse attacks.

It has been shown, however, that defenses that are based

on randomization (information hiding) can be broken easily

and efficiently, regardless of the size of the hidden objects

or the randomization entropy (i.e., the degree of uncertainty

in the random variables). For example, various types of

ASLR have been successfully brocken by leveraging allocation

oracles [28] and memory-disclosure vulnerabilities such as

cache side channels [29]–[31]. Trilla et al. [32] showed

that cache randomization solutions do not protect against

side-channel attacks in time-critical systems. The following

surveys introduce a large number of successful and efficient



penetrations to randomization-based defenses: [19,28,33] (for

ASLR) and [30,34,35] (for control-flow randomization). Similar

to this body of work, this paper discusses the limitations of

schedule randomization-based defenses for real-time systems

and evaluates their effectiveness against various types of

schedule-based attacks.

This paper. Following the work on schedule-based attacks

[1]–[3,36], we assume that the attacker has taken advantage of

the existing vulnerabilities in an untrusted task (e.g., a third-

party or an open source application) to hijack a task (called the

attacker task) in order to steal information from or to influence

the performance of another task (called the victim).

The paper starts with the system and threat model (Sec. II),

followed by definition, categorization, and examples of

schedule-based attacks in the context of uniprocessor real-time

systems (Sec. III). We then discuss the pitfalls and limitations

of schedule randomization methods as a security defense in

real-time systems (Sec. IV). We show that the existing schedule

randomization techniques may even increase the success rate

of certain types of attacks since they are oblivious to the

potential attacks and system vulnerabilities. For example, a

false-data injection attack may not be possible when the system

is scheduled using a fixed-priority scheduling policy if the

victim has a higher priority than other untrusted tasks. however,

schedule randomization may considerably increase the chance

that the attacker can manipulate the sampled data stored in an

I/O device buffer before the victim task accesses the data.

To provide a better understanding of security vulnerabilities

of the fixed-priority scheduling against schedule-based attacks,

we provide a preliminary security test that determines whether a

certain attack (i.e., a certain timing relation between two tasks)

can happen in the system (Sec. V). Finally, we evaluate the

existing schedule randomization methods and the proposed

security test against various types of attacks and priority

relations between the attacker and the victim tasks (Sec. VI).

II. SYSTEM AND ADVERSARY MODELS

To provide a better understanding of the vulnerabilities of

schedule randomization techniques and fixed-priority sche-

duling, we developed system and threat models inspired by

the adversary case studies of [2] and the schedule-based attack

scenario of [5]. As [2,5] do not provide a detailed system

model, we sought to specify the least complex, common system

configuration and weakest attacker that could realistically

enable the attacks described therein (i.e., timing-based side-

channels and actuation attacks), in addition to like threats (e.g.,

false-data injection) stemming from the underlying system

configuration that are common to CPS [37]. We will use this

attack model as a basis to provide a preliminary security test

for fixed-priority scheduling (in Sec. V) and to evaluate the

effectiveness of schedule randomization techniques (in Sec. VI).

System model. We consider a general system that is capable

of receiving external inputs and performing computations over

those inputs to arrive at a decision that results in an output that

is acted upon by an external agent. Additionally, the system

may make use of sensitive information during the reception

and/or transmission of inputs/outputs. The system makes use of

peripherals to obtain inputs and produce outputs. An instance of

our general system would be a real-time system for industrial

process monitoring; e.g., the Tennessee Eastman chemical

process [38]. In these systems individual tasks are responsible

for obtaining and filtering data from sensors about the state

of the process (reception of external inputs), determining the

proper response to meet process objectives (computations over

inputs), and issuance of commands to actuators to control the

process (action taken by external agent).

Specifically, we envision a system wherein: (i) a dedicated

peripheral (e.g., an analog-to-digital converter) is interfaced

with process monitor sensors (e.g., fluid level sensors) and

periodically reports the values of the sensors, which are

then filtered by an input task, using for example a moving

average filter or Kalman filter, to remove noise; (ii) the

resulting filtered data is written to a memory location and

then retrieved by a control task to determine appropriate

actuation commands according to some control logic; and (iii)

the actuation command is written to an output buffer, possibly

by the control task, of a peripheral interfaced to an actuator

(e.g., a pulse-width modulation peripheral that controls a servo

on a valve). We allow that communication between the system

and sensors/actuators could be digital and encrypted; thus, the

tasks associated with acquiring/producing input/output data

may use sensitive information (i.e., an encryption key).

Critically, a shared memory model is assumed that allows

tasks to read and write to (data) memory locations that are

used by all tasks. For example, a task that is responsible for

relaying sensor information to a display terminal could read

and write to the memory location(s) associated with filtered

sensor data.

More generally, since the paper is focused on the limitations

of schedule randomization methods, we follow the same real-

time system model used in [1,3,5]. The system consists of n
periodic tasks τ = {τ1, . . . , τn} scheduled upon a uni-processor

platform. Each task τi is identified by a WCET, denoted by Ci,

and a period Ti. The deadline of each task is equal to its period.

We assume that the best-case execution time (BCET) of a task

is an arbitrary non-zero value that is smaller than Ci. Tasks are

indexed according to their periods so that T1 ≤ T2 ≤ . . . ≤ Tn.

A hyperperiod H is the least-common multiple of the periods.

The utilization of a task τi is denoted by ui = Ci/Ti and the

total system utilization is U =
∑

n

i=1
ui. Similar to [1,3], we

assume that tasks do not have precedence constraints.

To ensure that attacks must happen with stringent timing

accuracy, we assume a logical execution time (LET) paradigm;

e.g., Berkley’s Giotto architecture1 [39,40] which is a time-

triggered language and architecture for designing hard real-time

control systems. The LET approach has a wide applicability in

the automotive industry as it allows separation of the platform-

independent concerns such as software functionality and I/O

timing from platform-dependent concerns such as software

1 https://ptolemy.berkeley.edu/projects/embedded/giotto/



scheduling and execution [41]. In particular, in Giotto and its

successors [42,43], the system interacts with the I/O devices

only at certain time instances such as task releases. This

enables a jitter-free sampling and actuation and hence improves

system’s predictability. Giotto has been used in applications

such as an autonomously flying model helicopter [44,45] and

electronic throttle controllers [39,40] to mention a few.

Adversary model. We consider an adversary that has com-

promised a single task on the system and is in control

of/able to modify the control flow of the task (i.e., during the

execution window of the task under control, the attacker can

run arbitrary code). We assume that the attacker cannot change

the scheduling parameters of her/his task or the parameters

of other tasks, hence, the attacker task must wait until being

scheduled by the scheduling policy. We consider an attacker

who can only observe the execution windows of the task under

its control, and that is unaware of the scheduling policy being

used. In Sec. III we define such an attacker as a WEAKEST

and DEFENSE UNAWARE attacker.

With respect to the system model, an attacker can have

one of three goals: (i) modify data at a memory location

before it is read by another task (ANTERIOR attack); (ii)

modify data at a memory location after it has been written by

another attack (POSTERIOR attack); or (iii) access data at a

memory location both before and after a task modifies data

at the location (PINCER attack). We define the ANTERIOR,

POSTERIOR, and PINCER attacks formally in Section III. An

example of an ANTERIOR attack would be a false-data injection

attack [13,14,16,17] against the sensing task described above,

while an ANTERIOR attack could take the form of a zero-

dynamics actuation attack [10] against the control task above.

Certain cache-style attacks [46] can be seen as instances of

the PINCER attack and could be useful in recovering sensitive

information that the task would not otherwise have access

to. For example, assume that an encryption key is kept in

inaccessible memory until needed by a task (as per above).

The PINCER attack could be used by the attacker to write to

the temporary location before the key is written there and then

query the same location after it is removed to infer key bits.

Our ANTERIOR attack is successful so long as it is performed

anytime after the arrival of the victim task, where the sampled

data becomes available and before the start time of the

victim task, where it reads the data from the memory. Our

POSTERIOR attack is successful as long as it is carried out after

the victim’s completion and before the actuation command is

transmitted to the actuator (which happens synchronously at the

victim task’s deadline) or the physical plant has the opportunity

to respond to the command. Our PINCER attack is successful

if the attacker is successful in landing both the ANTERIOR and

POSTERIOR attacks on the same job of the victim task. Namely,

it must be executed between the release and start time of the

victim task as well as between the completion and deadline

of the victim task. For the rest of the paper, we will make the

pessimistic, i.e., weakest, assumption that an opportunity for

an attack always results in a successful attack.

III. SCHEDULE-BASED ATTACKS

While schedule-based attacks have gained a significant

amount of attention by the real-time systems community in

the past couple of years, there still lacks a clear definition for

what it means for an attack to be successful, e.g., the type of

timing relation between the execution windows of an attacker

task and a victim task that is considered to be harmful. For

example, an attacker, whose goal is to manipulate the output of

a control task by overriding the data in the I/O device buffer,

is successful only if it is scheduled after the victim task writes

the outputs in the buffer and before the I/O device pulls the

new data from the buffer.

A formal definition of an attack is a fundamental step for

designing a defense mechanism and proving its success. For

example, the attack just described can be provably avoided by

a schedule-based defense mechanism that does not allow any

untrusted task to be scheduled after the victim task and before

the I/O device pulls the data from the buffer.

Schedule-based attacks are attacks whose success depends

on a particular timing relation between the execution windows

of the attacker and victim tasks. Hereafter, we use victim to

refer to a task that is targeted by the attacker and attacker

task(s) to refer to the task(s) that are already hijacked by the

attacker. In order to hijack a task, we assume that the attacker

has already taken advantage of the existing vulnerabilities in

software provided by third-party vendors or open source codes

as in existing work [1]–[3,36]. In the rest of this section, we

formally define schedule-based attacks and characterize an

attacker’s ability and knowledge according to what has been

proposed in the state of the art. Depending on the desired timing

relation between the attacker’s and victim’s execution windows,

schedule-based attacks can be categorized into four groups:

POSTERIOR, ANTERIOR, PINCER, and CONCURRENT attacks.

Definition 1. A POSTERIOR attack is an attack that must be

performed after the victim task completes its execution.

Examples. In control security, a large number of attacks have

focused on manipulating the outputs of a control task before

it is applied to the physical plant [6]. These include bias-

injection attacks [6], zero-dynamics attack2 [6]–[11], replay

attacks [12], etc. For example, a zero-dynamics attack happens

when the attacker generates outputs that maliciously disguise

as the unstable zero dynamics of the plant [8]. Zero-dynamics

vulnerability is created when the widely used sample and

hold mechanism is employed to convert an analog sample

to a digital one [10], and hence, exists in a large number of

control systems. These attacks, however, are very hard (or in

many cases, provably, impossible) to detect [10]. The following

studies provide a categorization of detectable and undetectable

(stealthy) zero-dynamics attacks [7,10,47].

Chen et al. [2] provided an example of a POSTERIOR attack

in real-time embedded systems: a rover robot that is manually

controlled by a remote controller. Here, the wifi-receiver task

2 https://www.youtube.com/watch?v=rqE9lewmRTk shows a video of zero-
dynamics actuation attack [10].



is the victim and the goal of the attacker is to override the

commands that the wifi-receiver task writes to the I/O device

buffers before the data is pulled by the wheel controllers and

applied to the wheels3.

Schedule-based attacks usually have an event-based deadline,

i.e., a time frame during which they must happen or they are

ineffective otherwise. For example, the attacker mentioned

earlier must execute before the data produced by the victim

is used in any part of the system. Such timing constraint for

the attacker usually depends on the underlying software and

hardware platforms and varies from system to system.

Definition 2. An ANTERIOR attack is an attack that must be

performed before the execution of a victim task.

Examples. False-data injection attacks are a widely studied

class of ANTERIOR attacks that compromise data integrity by

manipulating the inputs of a control system [13,14]. Recently,

it has been shown that a large number of false-data injection

attacks can be theoretically stealthy [15]–[17]. This confirms

the importance of having a proactive defense against these

attacks in order to eliminate the attack before it can potentially

occur rather than having a passive defense that reacts towards

a detected attack, since many false-data injection attacks are

too difficult to detect. ANTERIOR attacks can also target

timing constraints of a real-time system [3], e.g., by creating

interference on shared system resources such as caches.

Definition 3. A PINCER attack is an attack that must be

performed before and after a victim task, e.g., to observe

(or pre-load) a side channel before the victim is executed and

probe it afterwards. The time interval between observing and

probing the side channel is called the attacker’s net.

Examples. Some examples of PINCER attack have been

proposed [1,2]. Chen et al. [2] designed a spyware whose

goal is to find the locations at which the system (a drone

in this case) takes high-resolution pictures. The attacker has

hijacked a task that can access GPS data, but which has no

access to the rest of the system except the cache. Since high-

resolution images can drastically change the state of the cache,

the attack is carried out by probing the cache before and after

the imaging task is executed in order to detect large cache

footprints. As soon as such a large footprint is detected, the

attacker stores the current GPS location4.

Definition 4. A CONCURRENT attack is an attack that must be

performed while the victim task is running. Depending on the

attacker’s goal, this can be equivalent with executing between

the execution windows of a job of the victim task.

Examples. A CONCURRENT attacker might have several goals,

for example, s/he might want to get the energy profile of various

parts of a victim task so that s/he can have a fine-grained

understanding of the functionalities performed by the task and

the order by which they happen. As demonstrated by Delimitrou

3 https://youtu.be/xVclU4rthOM shows a video of a POSTERIOR attack [2].
4 https://youtu.be/27zmJD0jMbM shows a video of a PINCER attack.

et al. [48] and Nathuji et al. [49], such an understanding allows

the attacker to maximize the interferences that s/he can cause on

shared system resources in order to reduce the performance or

quality of service of the victim task, or to cause a large timing

jitter (e.g., sampling and actuation jitters) for a victim task. In

safety-critical control tasks, these sampling and actuation jitters

reduce the quality of service to the extent that the system may

even become unstable [50].

In the rest of this section, we introduce some essential

properties of a schedule-based attacker that must be clarified

when defining an attack model.

Attacker’s prior knowledge. Yoon et al. and Krüger et al.

[1,3] assumed that the attacker has full knowledge of the

task set including tasks’ worst-case execution times (WCET)

and periods. Generally speaking, according to Kerckhoff’s

principle [51], the attacker can access any information about

the system’s parameters, architecture, and defense mechanism

being used, e.g., by acquiring and then reverse engineering

an instance of the system being attacked. Hence, we define

a DEFENSE AWARE attacker as an attacker who knows the

online schedule randomization method being used as well as

the offline schedules that are stored in memory.

However, the security defenses proposed by Yoon et al.

and Krüger et al. [1,3] are crucially based on hiding the

randomization method and the offline schedules. We call such

attacker a DEFENSE UNAWARE attacker5.

Attacker’s abilities to infer schedule-related information at

runtime. Some existing work [1,3] assumes that the attacker

can take control of some tasks in the system, hence, the attacker

is an insider. These work, however, do not provide a clear and

uniform description of the attacker abilities to infer schedule-

related information. For example, Yoon et al. [1] state that

”We do not make any specific assumptions on the attackers

ability to infer task schedule and to pinpoint the victim task(s).

The attacker may even have an ability to deduce the exact

schedule”. Our interpretation from this explanation is that the

attacker knows what has been scheduled in the past, but does

not know what will be scheduled in the future (and that is

why it makes sense to have an online randomization solution).

We call such attacker a STRONG attacker and assume that

it can observe the contents of the ready queue and knows

the remaining execution budget of the tasks. In practice, any

operating system that does not provide memory separation,

such as the OSEK family, can easily reveal such information

to the attacker (e.g., see Fig. 2 in Sec. IV).

Krüger et al. [3] assume that the attacker cannot access kernel

memory space. However, since the attacker is in the system, it

can at least observe its own execution windows. Depending on

how many tasks are in the control of the attacker, we consider

two other attacker types: the WEAKEST and WEAK attackers.

The WEAKEST attacker is in control of only one task in the

system and can only observe its own execution windows. The

WEAK attacker controls multiple tasks in the system, but can

5 We believe that hiding the architecture from the attacker by removing the
possibility of reverse engineering is not a realistic way to achieve security.
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Fig. 2. The RTOS design space covers a spectrum of solutions for providing
isolation between tasks in space (memory) and time (processing).

cache footprint. This, for example, happen in the scenario of

the PINCER attacker in [2].

Isolation may prevent attacks easily and efficiently. A basic

premise of schedule-based attacks is that an attacker knows

when a specific victim task will execute. This knowledge may

be prevented simply by providing strong temporal and spatial

isolation between the attacker and the victim. As shown in

Fig. 2, different RTOS designs provide a spectrum of isolation

from weak isolation, which is trivial to overcome by an

adversary, to strong isolation that requires compromising the

kernel to violate. Spatial isolation, i.e., memory protection and

access control, can prevent direct attacks on data by precluding

access to I/O buffers or sensitive controller registers except to

tasks that require such access as suggested by the principle of

least privilege. All but the simplest single-process RTOS are

capable of enforcing sufficiently strong enough spatial isolation

to effect such access control.

That is, the types of attacks schedule randomization is meant

to guard against largely concern preventing an adversary in

control of one task from accessing (i.e., reading and/or writing)

another task’s data within a given time window (see Sec. II).

Traditional techniques to prevent unauthorized access to data,

i.e., memory isolation, have been eschewed in limited resource

real-time systems due to overhead concerns [52]. Increasingly,

however, 32-bit microcontrollers come equipped with integrated

memory protection units (MPU) [53,54] with low enough

overhead to be used in real-time applications [55]–[57].

The MPU integrated with ARM Cortex-M3 and higher

microcontrollers6, for example, can accomodate memory iso-

lation for real-time tasks [58]. Specifically, in ARM parlance

memory can be assigned to a region by the MPU, which

controls how that memory is (or is not) accessed [59]. Memory

isolation could be achieved for tasks by defining a region

to cover all memory locations associated with task data and

deny all access by default (the memory locations are assumed

to be contiguous, for ease of exposition). Upon switching

tasks the memory associated with the new task would be

assigned a new region that allowed for read and/or write access

(Fig. 3). The total number of instructions necessary to load the

address of a task’s memory and update the MPU is somewhat

implementation specific but can be accomplished in as few as

thirteen instructions [60].

Therefore, with respect to spatial isolation, schedule ran-

domization should only be considered as potentially applicable

6Though the MPU is optional for this device family, it is extremely popular.

Fig. 3. Memory isolation for real-time systems using an MPU [59]: Region 0,
an access policy, encompasses all tasks’ data and disallows all access. Before
execution of a task, its data is switched to Region 3 by the MPU, which allows
read/write access; i.e., each task’s memory is unlocked before execution and
locked after execution. The settings of Region 3 take precedence over Region
0 so the MPU only needs to adjust a single access policy (Region).

for systems in which it is impossible to organize task data

to accomodate the MPU or the system lacks an integrated

MPU (typically 8- or 16-bit microcontrollers). It should be

noted that opensource cores for 8-bit microcontrollers have

been supplemented with efficient MPU-like capabilities [61].

Side-channel attacks may still be feasible despite spatial

isolation, but strong temporal isolation can reduce the effective-

ness of side-channels because the attacker has limited windows

of opportunity to observe the side-channel information. The

strongest temporal isolation occurs naturally with an RTOS

that uses a separation kernel, e.g., hypervisor solutions such

as PikeOS or avionics RTOSs with ARINC-653 partitions

like Deos or VxWorks653. Increasingly, safety-critical RTOS

adopt the separation kernel partitioning scheduler approach

to improve fault tolerance. Partitions are scheduled by the

kernel, typically from a static scheduling table or with static

time slices, and each partition schedules its own tasks. Often,

the scheduler inside a partition is a fixed-priority preemptive

scheduler, but other scheduling algorithms are possible to use

internally to the partition.

There is no valid security metric to evaluate schedule-

randomization defenses. While there exist several metrics

to measure information leakage [62,63], only one metric has so

far been used in real-time systems. Yoon et al. [1] introduced

schedule entropy to quantify schedule uncertainty against

schedule-based attacks. Schedule entropy is based on Shannon

entropy [64] in information theory, which describes the amount

of information (or uncertainty) in a random variable, or equiv-

alently, the uncertainty that a specific outcome actually occurs.

For a random variable X that can take values {x1, x2, . . . , xm},

Shannon entropy is H(X) = −
∑

m

i=1
P (xi) · log2(P (xi)),

where P (xi) is the probability that the random variable X
takes value xi. For example, the entropy of a random variable

that represents tossing an unbiased coin is 1, because we

have no information that helps us to guess the final outcome.

However, if the coin is biased and has 90% chance to be a

head, then the entropy reduces to 0.46 because now we have

more information about the outcome.

Yoon et al. [1] defined schedule entropy as the uncertainty in

the schedule of one hyperperiod. It is obtained from the joint





miss for τ1. The former happens if the only criteria for selecting

a random task is the priority-inversion budget calculated merely

based on the WCETs and periods because, then, the priority

inversion budget of τ1 becomes 0 at time 17 and, hence, no

other lower-priority task is allowed to be scheduled.

Incompatibility with isolation-based defenses. Since sched-

ule randomization is designed to break down the predictability

of a schedule, it significantly increases the cost of closing side

channels with methods such as flushing the cache after task’s

execution [36,65,66].

Limited to task sets with fixed parameters. Since schedule

randomization enforces priority inversions to tasks with urgent

deadlines, it requires that other tasks in the system, including

the hijacked ones, always behave well, i.e., assuming that

these tasks do not overrun their WCET and do not change their

period or deadline. Such assumptions hold only if the operating

system is able to support reservation-based scheduling and does

not allow user-level tasks to add new tasks/processes to the

system or change their activation frequency.

Incompatibility with sporadic tasks. A sporadic task may

release a job when there is no other task in the system. This

significantly reduces the space of possible choices that are

available for schedule randomization. If the attacker keeps

generating jobs as frequently as possible, then it will be able to

pinpoint its victim task as soon as it finds a situation where there

is no other pending task in the system. Hence, opportunistic

attackers and/or STRONG attackers can easily break through

the schedule randomization when the target task is sporadic.

V. A SECURITY TEST FOR FIXED-PRIORITY SCHEDULING

This section provides a preliminary security test for task

sets scheduled by the fixed-priority scheduling. The test allows

evaluating whether a given victim task τv ∈ τ can be attacked

by a potentially untrusted task τa ∈ τ . We design the test

particularly on the adversary model introduced in Sec. II.

The following lemmas provide a set of conditions for the

possibility (or impossibility) of ANTERIOR, POSTERIOR, and

PINCER attacks occurring in fixed-priority scheduling. Intuitive

proofs have been omitted.

Lemma 1. A lower-priority attacker task can never perform

an ANTERIOR attack on a higher-priority victim task.

Lemma 2. An ANTERIOR attack is always successful if the

attacker has a higher priority than the victim and its period

divides victim’s period.

Proof. Since the victim job is always released together with

a job of the attacker task and since the attacker has a higher

priority than the victim, it is always scheduled between the

release time and start time of the victim.

Lemma 3. Task τa always performs a successful PINCER or

POSTERIOR attack on any job of a victim task τv if τa has

a higher priority than τv, Ta divides Tv , and Rw
v
< Tv − Ta,

where Rw
v

is the worst-case response time (WCRT) of task τv .

Proof. Since τa is always released together with τv and since

τa has a higher priority than τv, at least one of its jobs is

always scheduled between the release time and start time of

task τv . Moreover, since Rw
v
< Tv − Ta, every job of task τv ,

that is released at time t, certainly completes before the release

of the latest job of τa that released at t+ (Tv − Ta) because

t + Rw
v

< t + Tv − Ta. Note that since the two periods are

harmonic, during the interval [t, t+Tv), exactly k = Tv

Ta

−1 jobs

of τa are released at time instants t, t+Ta, t+2·Ta, . . . , t+k·Ta.

In other words, the kth job of τa after time t is released at

t+(Tv −Ta). Since t+Rw
v
< t+Tv −Ta, at least one job of

τa will be scheduled after the completion of any job of τv and

before the deadline of τv . Thus, τa lands both ANTERIOR and

POSTERIOR and hence, PINCER attack on every job of τv .

Lemma 4. Task τa cannot perform a successful POSTERIOR or

PINCER attack on any job of task τv if τa has a higher priority

than τv, Ta divides Tv, and Rb
v
> Tv − Ta, where Rb

v
is the

best-case response time (BCRT) of τv .

Proof. Since the periods of the attacker and victim tasks are

harmonic, any job of τv is released together with a job of τa.

Similar to the proof of Lemma 3, assume that τv is released

at time t, hence, the job releases of τa from time t happen at

t, t+ Ta, t+ 2 · Ta, . . . , t+ k · Ta, where k = Tv

Ta

− 1. Hence,

the latest job of τa before time t+ Tv is released at Tv − Ta.

According to the assumption, Rb
v
> Tv−Ta, hence, Rb

v
+t >

Tv−Ta+ t, namely, the earliest completion time of the current

job of τv will be later than the release time of the kth job of

the attacker, i.e., at t+k ·Ta. Since τv has a lower priority than

the attacker, starting from time Tv − Ta, it cannot be executed

unless τa completes. Since its BCRT is larger than Tv − Ta,

its completion time must be larger than the completion time

of the kth job of τa. Hence, the attacker cannot execute after

the completion and before the deadline of τv . This means that

the attacker will not be successful in landing a POSTERIOR or

a PINCER attack on any job of τv .

The BCRT and WCRT of a task for fixed-priority scheduling

can be calculated using various methods, such as Audsley’s

response-time analysis [67] or [68]. The correctness of Lem-

mas 3 and 4 does not depend on the accuracy of the method

used to calculate the BCRT and WCRT of the tasks as long

as the method is sound, i.e., the actual BCRT is larger than

or equal to (and the actual WCRT is smaller than or equal to)

what the response-time analysis method calculates.

Theorem 1. A task set τ is immune to an ANTERIOR attack

from the untrusted tasks τu ⊂ τ if Lemma 1 holds for any two

tasks τv ∈ τ \ τu and τa ∈ τu.

Theorem 2. A task set τ is immune to PINCER and POSTE-

RIOR attacks from the untrusted tasks τu ⊂ τ if Lemma 4

holds for any two tasks τv ∈ τ \ τu and τa ∈ τu.

Similarly, one can use Lemmas 2 and 3 to build a test

that determines whether an ANTERIOR (POSTERIOR) attack

certainly happens in the system.



VI. EMPIRICAL RESULTS

We conducted experiments to evaluate the success of existing

schedule randomization defenses against the schedule-based

attacks introduced in Sec. II. We considered a fixed-priority

scheduler (with rate-monotonic priorities) as a baseline and

compared it with three versions of TaskShuffler [1] with

randomization on tasks (TS1), on tasks and the idle task

(TS2), and a fine-grained randomization on tasks and idle

times (TS3). We have also implemented the online schedule

randomization proposed by Krüger et al. [3] which uses slot

shifting (SS). Unfortunately, it was too slow to provide us any

results for the Autosar-like task sets that we have generated in

the experiments since scheduling decisions must be made for

every time quantum. Hence, we limited the evaluation of SS

to a case study.

It is worth noting that this paper only partially evaluates

the schedule-randomization methods since currently there

is no sound and accepted way to measure the schedule

uncertainty. As mentioned in Sec. IV, the current schedule

entropy is optimistic and does not capture the attacker’s partial

observations. We believe that a thorough evaluation of schedule

randomization methods requires two further steps: first, an

actual case study with an actual schedule-based attack that

cannot be carried out without an accurate schedule inference,

and second, fundamental theories that allow quantifying the

uncertainty of schedule w.r.t. to a particular attack model. We

leave these steps as future work and focus on evaluating the

effect of schedule randomization on the attack success ratio

(ASR) for various schedule-based attacks. The ASR is measured

as the ratio of successful attacks (e.g., successful ANTERIOR)

to the number of jobs of the victim task. It also represents the

chance that a victim job is (positively) attacked.

Since the ASR depends on the timing properties of the

attacker and victim tasks, different attacker/victim assignment

scenarios result in different ASR. As a basis, we assume that

tasks are prioritized by the rate-monotonic priority ordering

and each task has a unique priority value (ties are broken

arbitrarily but consistently). Namely, assigning the attacker and

victim tasks is equivalent with assigning them to a priority

level. For example, v:HP a:LP means that the victim and

attacker are the highest- and lowest-priority tasks in the task set,

respectively. The horizontal axis of Fig.6-(g) to (i) shows our

scenarios for assigning the attacker and victim attacks, where

a denotes the attacker’s priority and v denotes the victim’s

priority. An attacker (victim) whose priority is denoted by

HP (or LP) has the highest (the lowest) priority in the task

set. Similarly, randomHP, randomMP, and randomLP mean

that the priority of the target task is chosen randomly from

{1, . . . , n

3
}, {n

3
+1, . . . , 2n

3
}, and { 2n

3
+1, . . . , n}, respectively,

where n is the total number of tasks in the task set. We then

used the attacker’s and victim’s priority on our security test.

A. Simulation Results

Task set generation. We conducted experiments by generat-

ing periodic task sets following the guidelines set forth by

Kramer et al. [69] from Automotive benchmark applications.

Specifically, for a given number of tasks n and utilization U ,

we sampled the (non-uniform) distribution of common periods

({1, 2, 5, 10, 20, 50, 100, 200, 1000}ms) reported by Kramer et

al. [69] to randomly draw a realistic period for each task. Then

we used the RandFixSum algorithm [70] to generate random

utilization ui for each task (with a total sum U ) to obtain Ci

by ui · Ti. We considered two experiments where we varied

U and n, respectively. For the first experiment (ExpU), we

considered n = 10 tasks and for the second experiment (ExpN),

we considered U to be between [0.1, 0.3]. Figs. 6 and 7 show

the results of these experiments, respectively. For each data

point in the diagrams, at most 1000 random task sets were

generated and each task set was executed for 10 hyperperiods.

The experiments were performed on a machine with 8-core

Xeon processor, 32GB of RAM, and a 1TB SSD.

Overall observations. Our results show that randomizing

the schedule does not eliminate ANTERIOR, POSTERIOR,

or PINCER attacks as shown in Fig. 6. In average, the

chance that ANTERIOR, POSTERIOR, and PINCER attacks

successfully affect a victim job despite using one of the

schedule randomization methods is about 38%, 60%, and 30%,

respectively (see Fig. 6-(a) to (c)). Moreover, these algorithms

do not perform noticeably better than the rate-monotonic

scheduler. Namely, in most cases, they either have no or a

very limited reduction in the attack success ratio. Furthermore,

as shown in Fig.6-(d) to (f), the TaskShuffler algorithm even

increases the ASR in comparison with RM scheduler. As we

discussed earlier, some attacks (e.g., ANTERIOR) are impossible

when RM is used and the victim has the highest priority.

In some other cases, e.g., v:LP, RM is totally vulnerable

against ANTERIOR, POSTERIOR, and PINCER attacks (shown

in Fig.6-(g) to (i)). However, even in these cases, the schedule-

randomization methods are either inefficient (e.g., against

POSTERIOR attacks shown in Fig.6-(h)) or do not considerably

reduce the attack’s success, e.g., against ANTERIOR and

PINCER attacks shown in Fig.6-(g) and (i).

The effect of utilization. We observed that in most of our

experiments, the task set utilization had only a limited effect

on the attack success ratio (e.g., in Fig. 6-(a) to (c)). However,

it did have a large impact on the v:HP a:LP scenario (as

shown in Fig. 6-(d) to (f)) because when the attacker’s task

has a higher utilization, it has a larger execution interval and

can be preempted more often. Consequently, its chance to be

scheduled before one of the victim’s jobs increases when a

schedule randomization method is applied.

The effect of priority assignment. As shown in Fig. 6-(g) to

(i), the relation between the attacker’s and victim’s priorities

(and periods) plays a key role in the attack success ratio. For

example, when the victim task has a lower priority than the

attacker (e.g., v:LP), victim’s jobs are more exposed to the

attacker’s jobs since the attacker has more jobs in a hyperperiod.

For instance, the chance that the victim’s job is affected by a

POSTERIOR attack reaches 100% for all scheduling policies

when the attacker is the highest-priority task (Fig. 6-(h)).





TABLE I
THE TASK SET USED AS A CASE STUDY FROM [36].

confident about 44% of the task sets. As shown in Fig. 6-(k),

our test identifies all task sets to be insecure (i.e., the victim

task in the task set can be successfully attacked by the attacker

task). Yet, the test is not too pessimistic since the actual results

from simulating RM schedules and counting the attacks is not

very different from the result of the test. The error is in average

about 5%. The error, however, is larger for PINCER attacks as

they are less frequent to happen.

Effect of varying the number of tasks. As it can be seen

in Figs. 6-(m)–(o), the ASR does not change much when the

number of tasks varies. This is due to the fact that the period set

used in the experiment is almost harmonic, hence, the number

of tasks does not play a significant role in changing jobs’

release pattern in a hyperperiod as they are usually released

together with the tasks with smaller periods.

B. Case Studies

We consider two case studies to represent both the small-

scale systems with only a few periodic tasks to a larger system

with 18 periodic tasks.

Case study 1 (avionics system). As the first case study for a

small scale embedded system, we used the electronic control

unit (ECU) of an unmanned aerial vehicle (UAV) system

introduced in [36]. The system is composed of 6 periodic

tasks. The ECU communicates with the sensor devices such

as the GPS as well as the actuators and the camera that are

embedded in the system. Table. I reports the parameters of the

tasks in the case study. More details can be found in [36].

Case study 2 (fire control system). Here, we consider a real-

world application that implements a land-based fire control

system that is used for target tracking. The application is

implemented with a mix of C and Ada tasks and executes on a

PowerPC platform. It is a multi-mode application that consists

of 18 periodic tasks, but only a subset of them may be active

in any given mode. The application also has 28 background

tasks and the system idle task.

Table II shows the task set characteristics. For the WCET

we report the largest measured CPU usage over all the periodic

jobs of that task. The data was collected with the application

running for 5 minutes. Tasks 8 and 18 were unused in the

mode of operation that this table was generated from. Task 1

handles all the discrete and analog inputs in bulk. The other

tasks at 10ms period are the control loops. The task with 16ms

period does graphics processing, and the longer periods are for

refreshing an LCD screen, human I/O, and logging activities.

Results. Figs. 7-(a)–(c) and (d)–(f) report the ASR of different

attacks for the two case studies. The first observation is that the

TABLE II
PERIODIC TASK SET OF FIRE CONTROL SYSTEM APPLICATION

Task 1 2 3 4 5 6
Period (ms) 10 16 500 10 100 20
WCET* (ms) 0.465 2.794 2.461 2.986 3.627 0.703
ACET (ms) 0.138 0.578 0.553 1.337 1.588 0.226

Task 7 8 9 10 11 12
Period (ms) 500 0 1000 200 100 1000
WCET* (ms) 1.162 0 0.497 0.919 1.414 0.643
ACET (ms) 0.566 0 0.143 0.262 0.261 0.187

Task 13 14 15 16 17 18
Period (ms) 200 10 200 500 10 0
WCET* (ms) 4.317 0.424 1.299 2.901 1.062 0
ACET (ms) 2.914 0.114 0.42 2.064 0.323 0

schedule randomization methods do not eliminate the attacks,

in particular, they almost have no effect on POSTERIOR attacks

when the victim has a lower priority (see Figs. 7-(b) and

(e)). However, they can slightly reduce the ASR in case of

ANTERIOR attacks, where the victim task has the lowest

priority, i.e., v:LP, in comparison to RM. The reason is that

randomization may allow the victim (which is a lower priority

task) to be executed after its release and before the attacker.

We observed that SS (slot shifting-based randomization) is

more vulnerable than TaskShuffler w.r.t. PINCER and POSTE-

RIOR attacks because it significantly increases the interleaving

between the tasks and hence increases the chance of an attacker

to be executed after the victim. However, on the other hand, it

is more successful to reduce ANTERIOR attacks in cases where

the victim is the lowest-priority task (Figs. 7-(a) and (d)).

Comparing the two case studies, we observe that when in

the first one the number of ANTERIOR attacks is generally

smaller than the second case study, in particular for v:HP,

a:randomHP and v:HP, a:randomMP. The reason is that in the

first case study, the period of other higher or medium priority

tasks is 42, which is not harmonic with 10, hence, the chance

that they are scheduled before the highest-priority task due to

schedule randomization is lower than the second case study,

where there are more harmonic period combinations among

high and medium priority tasks.

Average number of preemptions. Fig. 8-(a) compares the

average number of calls-to-scheduler for the two case studies.

The slot shifting-based schedule randomization has up to three

orders of magnitude more calls to the scheduler than the other

online policies. For example, in the first case study, RM, TS1,

and TS2 have 1.5, TS3 has 1.8, and SS has 4320 call-for-

scheduler per job.

As mentioned by Yoon et al. [1], TaskSuffler does increase

the average number of preemptions per job, however, this

increase is not too large for TS1 and TS2 as shown in Fig. 8-

(b) for ExpU. TS3, on the other hand, performs fine-grained

randomization and hence allows a task to be preempted more

often. That is why with the increase in the utilization, the

number of preemptions of TS3 increases.

Summary. Our results for the case studies confirm that: (i)

the slot shifting-based schedule randomization [3] significantly

increases the number of preemptions per job to more than 3

orders of magnitude in comparison with RM or TaskShuffler,
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[3] K. Krüger, M. Völp, and G. Fohler, “Vulnerability Analysis and
Mitigation of Directed Timing Inference Based Attacks on Time-
Triggered Systems ,” in Euromicro Conference on Real-Time Systems

(ECRTS), 2018, pp. 22:1–22:17.
[4] C.-Y. Chen, A. Ghassami, S. Mohan, N. Kiyavash, R. B. Bobba,

R. Pellizzoni, and M.-k. Yoon, “A Reconnaissance Attack Mechanism
for Fixed-Priority Real-Time Systems,” arXiv:1806.01814v1, Tech. Rep.,
2017.

[5] C.-Y. Chen, M. Hasan, A. Ghassami, S. Mohan, and N. Kiyavash,
“REORDER: Securing Dynamic-Priority Real-Time Systems Using
Schedule Obfuscation,” arXiv:1806.01393v1, Tech. Rep., 2018.

[6] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models
and scenarios for networked control systems,” in International Conference

on High Confidence Networked Systems(HiCoNS), 2012, pp. 55–64.
[7] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Revealing

stealthy attacks in control systems,” in Annual Allerton Conference on

Communication, Control, and Computing (Allerton), 2012, pp. 1806–
1813.

[8] G. Park, H. Shim, C. Lee, Y. Eun, and K. H. Johansson, “When adversary
encounters uncertain cyber-physical systems: Robust zero-dynamics
attack with disclosure resources,” in IEEE Conference on Decision and

Control (CDC), 2016, pp. 5085–5090.
[9] J. Kim, G. Park, H. Shim, and Y. Eun, “Zero-stealthy attack for sampled-

data control systems: The case of faster actuation than sensing,” in IEEE

Conference on Decision and Control (CDC), 2016, pp. 5956–5961.
[10] H. Jafarnejadsani, H. Lee, N. Hovakimyan, and P. Voulgaris, “Dual-

rate l1 adaptive controller for cyber-physical sampled-data systems,” in
IEEE Annual Conference on Decision and Control (CDC), 2017, pp.
6259–6264.

[11] J. Kim, G. Park, H. Shim, and Y. Eun, “A zero-stealthy attack for sampled-
data control systems via input redundancy,” arXiv:1801.03609v1, Tech.
Rep., 2018.

[12] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in
Annual Allerton Conference on Communication, Control, and Computing

(Allerton), 2009, pp. 911–918.
[13] R. S. Smith, “A decoupled feedback structure for covertly appropriating

networked control systems,” IFAC World Congress, vol. 44, no. 1, pp.
90–95, 2011.

[14] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure
control framework for resource-limited adversaries,” Automatica, vol. 51,
pp. 135–148, 2015.

[15] R. Zhang and P. Venkitasubramaniam, “Stealthy control signal attacks in
linear quadratic gaussian control systems: Detectability reward tradeoff,”
IEEE Transactions on Information Forensics and Security, vol. 12, no. 7,
pp. 1555–1570, 2017.

[16] F. Pasqualetti, F. Dörfler, and F. Bullo, “Cyber-physical attacks in power
networks: Models, fundamental limitations and monitor design,” in IEEE

Conference on Decision and Control and European Control Conference

(CDC), 2011, pp. 2195–2201.
[17] H. Sandberg and A. M. H. Teixeira, “From control system security indices

to attack identifiability,” in Science of Security for Cyber-Physical Systems

Workshop (SOSCYPS), 2016, pp. 1–6.

[18] G. Fohler, “Joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems,” in IEEE Real-Time

Systems Symposium (RTSS), 1995, pp. 152–161.

[19] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
European Conference on Computer Systems (EuroSys), 2017, pp. 437–
452.

[20] “Address space layout randomization (ASLR),” PaX Team, Tech. Rep.,
2003. [Online]. Available: http://pax.grsecurity.net/docs/aslr.txt

[21] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Obfuscation: an efficient
approach to combat a broad range of memory error exploits,” 2003, pp.
105–120.

[22] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (ASLP): Towards fine-grained randomization of commod-
ity software,” in Annual Computer Security Applications Conference

(ACSAC), 2006, pp. 339–348.

[23] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization,” in USENIX Security Symposium (USENIX Security), 2012, pp.
475–490.

[24] Aleph One, “Smashing the stack for fun and profit,” Phrack Magazine,
Tech. Rep., 1996. [Online]. Available: http://www-inst.eecs.berkeley.edu/
∼cs161/fa08/papers/stack smashing.pdf

[25] Scut. and PaX Team, “Exploiting format string vulnerabilities,” Tech.
Rep., 2001. [Online]. Available: http://julianor.tripod.com/teso-fs1-1.pdf.

[26] Anonymous, “Once upon a free(),” Phrack Magazine, 11(57), Tech.
Rep., 2001. [Online]. Available: http://hamsa.cs.northwestern.edu/media/
readings/free.pdf

[27] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical control flow integrity and randomization for binary
executables,” in IEEE Symposium on Security and Privacy (SP), 2013,
pp. 559–573.

[28] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking holes in information hiding,” in USENIX Security Symposium

(USENIX Security), 2016, pp. 121–138.

[29] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR,” in IEEE Symposium on Security and Privacy

(SP), 2013, pp. 191–205.

[30] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the point(er):
On the effectiveness of code pointer integrity,” in IEEE Symposium on

Security and Privacy (SP), 2015, pp. 781–796.

[31] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with intel TSX,” in ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2016, pp. 380–392.

[32] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache side-channel
attacks and time-predictability in high-performance critical real-time
systems,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference

(DAC). IEEE, 2018, pp. 1–6.
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