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Persistent and Robust Execution of MAPF
Schedules in Warehouses

Wolfgang Honig

Abstract—Multi-agent path finding (MAPF) is a well-studied
problem in artificial intelligence that can be solved quickly in
practice when using simplified agent assumptions. However,
real-world applications, such as warehouse automation, require
physical robots to function over long time horizons without
collisions. We present an execution framework that can use
existing single-shot MAPF planners and ensures robust execution
in the presence of unknown or time-varying higher-order dynamic
limits, unforeseen robot slow-downs, and unpredictable obstacle
appearances. Our framework also naturally enables the overlap
of re-planning and execution for persistent operation and requires
little communication between robots and the centralized planner.
We demonstrate our approach in warehouse simulations and in
a mixed reality experiment using differential drive robots. We
believe that our solution closes the gap between recent research in
the artificial intelligence community and real-world applications.

Index Terms—Path planning for multiple mobile robots
or agents, planning, scheduling and coordination, multi-robot
systems, collision avoidance, factory automation.

I. INTRODUCTION

HE Multi-Agent Path Finding (MAPF) problem is a well-
T studied problem in Artificial Intelligence, where collision-
free paths for many agents need to be computed given the current
state of the agents as well as a representation of the environment.
Practical applications include computer games, traffic manage-
ment, airport scheduling, and warehouse automation [1]. Cur-
rent state of the art algorithms can compute bounded suboptimal
solutions for hundreds of robots within minutes. However, exe-
cuting such plans on physical robot teams remains challenging,
because most efficient MAPF formulations make unrealistic
simplifying assumptions. In this section, we will discuss these
shortcomings as they pertain to a challenging industrial ware-
house planning problem [2].
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Fig. 1. An example of the warehouse domain with 32 shelves, 12 robots, and
two stations (transparent squares on the right). A task requires any robot to
pick up a particular shelf, bring it to a specified station, and return the shelf to
another location. The objective is to keep the stations utilized with as few robots
as possible.

Consider the example domain in Fig. 1, where robots are
tasked with delivering shelves to pack stations. At each station,
a human worker picks one or more items from each delivered
shelf. Upon completion, the robot then returns the shelf to a
storage location in the warehouse. Most MAPF formulations
make two significant assumptions that cannot be ignored on real
robots. First, they assume that robots can act synchronously, ex-
ecuting exactly one action per timestep. In practice, warehouse
robots are subject to at least second-order dynamic constraints;
for example, moving 3m forward continuously without stopping
will be faster than stopping each meter of movement (a typical
action in MAPF planners) due to finite acceleration constraints.
Additionally, exact execution times may vary due to unforeseen
necessary slow-downs or control inaccuracies. Second, MAPF
formulations assume that the planning problem is single-shot,
i.e., robots move from their current position to a goal and re-
main there. In real world applications, the planning problem
is likely persistent and evolving (also sometimes referred to as
life-long [3]). For example, robots have to move shelves con-
tinuously in the warehouse scenario, because new orders arrive
regularly.

Our approach addresses these shortcomings by introducing an
execution framework that is agnostic of the underlying MAPF
solver. We first introduce the Action Dependency Graph (ADG).
The ADG is a graph that captures the action-precedence rela-
tionships of a MAPF solution and can be used to enforce these
relationships on real robots with higher-order dynamics. Sec-
ond, we show that this data structure enables efficient and per-
sistent performance where (re-)planning and execution occur
simultaneously, avoiding robot idle time during planning. We
demonstrate our approach in simulation and in a mixed reality
experiment with physical differential drive robots.
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II. RELATED WORK

Multi-agent path finding (MAPF) is an NP-hard [4] problem
that is frequently formulated as follows. Given an unweighted
undirected graph of the environment and a set of agents with
start and goal locations, determine a collision-free path for each
agent. Agents initially reside at their start location and must
eventually reach their goal location. At each timestep, an agent
may either wait at its current vertex or traverse an edge. Existing
solvers are search-based [5], reduction-based [1], [6], or rule-
based [7], [8].

Some work introduces more realism to the common MAPF
formulation. Execution robustness can be improved by avoiding
k— delay conflicts, which guarantees collision-free operation if
robots are delayed up to k timesteps [9]. Another formulation
considers delay probabilities [10], where robots might stay at
their current location with a given probability when tasked with
a move action. In both cases, robustness is increased, but, unlike
our work, newly appearing obstacles are not considered. More
realistic robot collision models can be considered when us-
ing MAPF with generalized conflicts (MAPF/C), which allows
planning on roadmaps rather than grids [11]. Another gener-
alization introduces edge weights and capacity limits [12]. In
both cases, the generalization enables a wider range of robot
and environment types, but does not improve persistence or
robustness.

A post-processing step called MAPF-POST can be used to
execute MAPF schedules on robots with varying velocity con-
straints [13]. MAPF-POST leverages that precedence relations
of a schedule can be extracted in polynomial time. A simple tem-
poral network is constructed based on the precedence relation
and is updated continuously in an attempt to avoid re-planning.
Our approach is based on the same key insight, but we use the
precedence relation on actions rather than states. Our approach
is more robust than MAPF-POST, because it requires less com-
munication (robots only need to communicate when an action
is finished instead of broadcasting their position continuously)
and has stronger guarantees on collision-free operation (robots
can have arbitrary dynamic limits). We also demonstrate persis-
tence, which was not demonstrated with MAPF-POST.

RMTRACK uses a similar idea for robustness, but does so as
control law, rather than a post-processing step [14]. Robust plan-
execution policies use the key idea of MAPF-POST at runtime,
similar to our work, by sending messages whenever an agent en-
ters a new state (Fully Synchronized Policy), or only for some
important state changes (Minimal Communication Policy) [10].
Unlike our work, RMTRACK and robust plan-execution poli-
cies only consider delaying disturbances, while our approach
addresses persistence and newly appearing obstacles as well.

MAPF formulations can be used for persistent planning of
delivery tasks [3]. However, that work assumes perfect execu-
tion. In contrast, our work focuses on robust execution on real
robots and allows us to efficiently and safely overlap planning
and execution.

One of the key ideas of our approach, using the partial order
of a schedule to deal with robustness, has been applied in op-
erations research before [15]. We extend this approach to work
in multi-robot settings, provide persistence, and show how to
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construct such a partial order schedule in polynomial time from
an existing MAPF schedule.

Robust execution is related to cooperative obstacle avoid-
ance, but the objective is to stay as close as possible to the
pre-planned schedule. In contrast, existing obstacle avoidance
techniques such as reciprocal velocity obstacles [16], buffered
Voronoi cells [17], and safety barrier certificates [18] do not
consider the complete pre-planned schedule. By staying close
to the pre-planned schedule, robust execution reduces the risk
that a collision occurs in the future. Robust trajectory execu-
tion [19] considers pre-planned trajectories, but requires signif-
icantly more computation than our approach.

III. PROBLEM DESCRIPTION

We now formulate our persistent warehouse problem. Con-
sider the map of a warehouse as a four-connected grid. Each
cell in the map can either contain an obstacle, contain a station,
be free space, or be a shelf-storage location. Shelf-storage cells
may or may not contain a shelf at any given time, but they may
not be traversed other than to attach or detach a shelf. There
are P shelves with known locations either in one of the shelf-
storage cells in the map or on top of a robot. There are R robots
with known locations and orientations, as well as S stations
at fixed known locations. A task requires a shelf to be carried
to a particular station, yield there for a given estimated time,
then return to a given shelf-storage location. We assume that
the map fulfills the well-known infrastructure requirement [20]
when considering potential shelf locations as only valid start and
stop locations. This requirement ensures that robots are never
obstructed from moving, even if other robots are stationary at
potential shelf locations. This assumption allows our approach
to provide completeness and liveness guarantees even in a per-
sistent setting. We focus on a two-tiered objective function. The
primary objective is to maximize the utilization of all stations
(i.e., minimizing the human worker idle time), and the secondary
objective is to minimize the number of required robots.

A. Robot Model

The proposed execution framework does not rely on a specific
robot movement model, however, differential drive robots are
used in our experiments. We assume each robot is circular with
diameter d, and each grid cell is large enough to contain at least
one robot. Each robot can turn-in-place by 90 degrees, move
forward to the next cell, attach to a shelf, detach from a shelf, and
yield at a station. We denote the set of actions as A = {0, O, T
, Attach, Detach, Yield}. Each robot is able to localize itself
in the warehouse and execute its actions autonomously using
an on-board controller. While a time estimate for each action is
known, the actual execution might differ. However, we assume
that a robot will not diverge significantly from its path spatially
and that it will eventually finish its action. Furthermore, a robot
can signal, in a timely manner, when it has finished an action.
A robot’s ability to accelerate can be significantly dampened by
carrying the heavy load of a shelf. To address this, each robot
has a command queue and can combine sequential actions in
its queue. For example, if three “move forward” actions are
in a robot’s command queue, the robot can accelerate, move
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three units, and decelerate in a smooth continuous motion. This
results in faster and smoother execution compared to one where
the robot must accelerate and decelerate for each move action.
Feedback signals for each individual edge traversed are still
reported.

B. Warehouse Planning Problem

We are given the map of the warehouse as an undirected
graph G = (Vg, Ep), where vertices correspond to locations
arranged in a grid and edges correspond to straight lines
between locations that can be traversed by the robot with-
out colliding with a static obstacle. A subset of the vertices
Vp ={vp1,...,v,r } C Vg is the set of P possible shelf stor-
age locations, arranged such that the well-known infrastructure
property is fulfilled if considering those locations as the only
endpoints. A different subset {v,1,...,v,s } C Vg describes
the location of the S stations. There are R < P robots, each
of which is initially located at a vertex in V. Furthermore,
there are P < P shelves, each of which is initially located at
a vertex in V (where it is possible that shelves and robots are
co-located). Shelves are assumed to be square with a side length
of d,.

Atask 77 € T is atuple (shelf’, station”, §,v,, ), describing
that shelf ¢ must be picked up by a single robot from its current
location, delivered to station k£ where it will approximately yield
for § seconds (during which a human can pick items from the
shelf), and returned to a possibly different location v,;. When
initially issued, a task is not bound to a robot and thus robots
can freely be assigned to any task. New tasks may be added to
T at any time.

Time is continuous and flows forward unabated; at each in-
stant a robot can either wait at its current vertex or begin ex-
ecuting one of its actions. Let loc(r,t) € R? be the location
of robot ' at time ¢ and loc(shelf’, ) € R? the location of
shelf’ at time t. Note that shelves are either at a shelf stor-
age location or on top of a robot. A robot can drive under
a shelf if it is currently not carrying another shelf. To avoid
collisions, we must ensure that: i) robots never collide with
each other, i.e., |[loc(r?,t) —loc(r?,t)|s > d,,i # j,Vt; and
ii) shelves never collide with each other, i.e., || loc(shelf’, ) —
loc(shelf’, ). > d,,i # j,Vt. Even if i) is enforced, ii) can
occur if a robot attempts to drive over a shelf location when it
still has a shelf attached.

Whenever a robot fulfills a task that brings a shelf to a station
and yields, the station is considered utilized during the yield’s
duration. We denote the total utilization duration of station k
from time O to time ¢ as dur(k,t). Our goal is to maximize
the average station utilization over the time interval [0, t], i.e.,
maxu(t) = 7= 22:1 dur(k,t). Typically, we are interested in
maximizing u(t) over a long time horizon, e.g., a work shift.

C. Persistent and Robust Execution

We consider an execution persistent if robots continue to
fulfill tasks and avoid unnecessary wait times. Unnecessary wait
times occur if robots cannot execute any action because they are
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waiting for the planner to finish; a formal definition is given in
Section V-A.

We consider an execution robust if no collision occurs even in
the event of varying execution times of robot actions. Such time
variations may arise due to varying dynamic limits, temporary
robot malfunction, or unforeseen obstacles (e.g., items that fell
from a shelf and are now blocking the robot’s path).

IV. APPROACH

First, we simplify the planning stage to operate in discrete
time and ignore higher-order dynamics, which allows us to use
existing single-shot MAPF planners. Second, we leverage an
action dependency graph (ADG) for robust continuous-time ex-
ecution. Third, we demonstrate how the ADG can be used for
persistent execution by overlapping execution and planning.

A. Single-Shot MAPF Formulation

We define the state s of a robot to be a tu-
ple s = (location, heading, task, stage), where location €
Vg is the current location of the robot, heading €
{South, North, East, West} is its current heading, task €
{None} UT the currently assigned task, and stage €
{Idle,Shel f Attached, Yielded} keeps track of the task
progress. The possible state transitions can now be defined
based on the available robot actions (see Section III-A). For
example, the Attach action can only be executed if the shelf
and robot are co-located and its execution will change the stage
variable in the robot’s state from Idle to Shel f Attached. This
state-action model can be used in single-shot MAPF solving
frameworks with a few modifications.

In Conflict-Based Search (CBS) [21], a conflict occurs if two
robots are at the same location at the same timestep (vertex con-
flict) or if two robots traverse the same edge at the same timestep
(edge conflict). The conflict resolution of CBS is almost iden-
tical in the larger warehouse state space, but we consider an
additional conflict if a robot that is carrying a shelf attempts
to occupy a potential shelf location. We use ECBS-TA [22], a
variant of Conflict-Based Search that can compute a bounded
suboptimal solution to simultaneously assign tasks and find ac-
tion sequences. ECBS-TA takes an assignment matrix as input
and thus also works with cases where some robots already have
a task assigned (for example, because they already picked up a
shelf), while other robots are idle.

CBS is not the only algorithm that can be used for MAPF
in this setting. The well-known infrastructure property also al-
lows us to apply prioritized planning with completeness guar-
antees [20]. In this case, an algorithm such as SIPP [23] can be
used, but requires separating the state from the location. Specif-
ically, all safe intervals are defined for locations only, while
actions chosen change the whole state (including the location).
In the prioritized planning case, task assignment is done greed-
ily, in the order in which agents are planning their actions.

Other existing single-shot MAPF solvers, such as reduction-
based solvers [1], might also be used. However, solver-specific
changes are required, similar to the changes presented for CBS
and SIPP. In particular, additional constraints need to be added
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to avoid the case that a robot that is carrying a shelf occupies
a potential shelf location. The task assignment can be done
independently (as in SIPP) or integrated in the MAPF solver (as
in ECBS-TA).

Independent of the MAPF solver used, the input of a single-
shot planner is the current state of all robots (s' s%). Let
the output of a planner be a sequence of n’ tuples for each robot
it ' = (15, 0k, sh,91),. ., (s, 81 b, )], where i de-
notes the kth action that should be executed starting at timestep
t; and that changes the robot’s location from s, to g. A MAPF
planner computes outputs that are collision-free with respect to
the criteria in Section III, when considering ¢ at fixed timesteps.

An example is shown in Fig. 2 a. The current state of the
three robots is ((D,W,T* SA),(B,W,T? SA), (A, E,
T9,SA)). A valid MAPF plan is: p* = [(0,Y, D, D), (1,1,D
), (2,0,C,C)], p*=1(0 OBB)QL&DMZKD,
D),(3.1,D,F), and p*=|[(1,1,4,B),(2.0,B,B), (3,
1.B,D)].

B. Action Dependency Graph: Basics

We make use of the idea that a multi-agent plan implicitly
encodes dependencies between robots, for example, defining
which robot should move first through a narrow passage way.
Such dependencies can be extracted in polynomial time in a
post-processing step, similar to MAPF-POST [13]. In MAPF-
POST, the dependencies are created between states and a simple
temporal network is used to create a smooth schedule with
guaranteed safety distances between robots. In our approach,
we define the dependencies on the robots’ actions instead.

1) Construction: We create an action dependency graph
(ADG) Gapa = (VADGagADG_) where p). € Vapg and pj,
refers to the kth tuple in plan p’. Edges in the ADG represent
inter-action dependencies. If (pk ; pk,) € 5 ADG» then a robot is
only allowed to start executing ay, after aj, has been completed.
The ADG construction is a two-step process. First, we create
all vertices based on all pi, and connect subsequent actions for
robot ¢ with so-called Type 1 edges. Second, we find dependen-
cies between different robots, indicating temporal precedences
between actions (so-called Type 2 edges). The ADG construc-
tion pseudo code is shown in Algorithm 1. The construction is
accomplished in O(R*T?), where T' = max; n’. An example
ADG is shown in Fig. 2 b.

Not all standard MAPF plans can be executed robustly and
collision-free with an arbitrary robot model. For example, con-
sider four robots that move in a 2 x 2 grid in a circular motion.
While a planner such as CBS would produce a plan, there is no

Algorithm 1: Action Dependency Graph Construction.

Input: Plan p° for each robot.
Result: Gapa
1 /* create vertices and Type 1 edges */
2 for i <~ 1 to R do
3 | Add vertex p¢ to Vapc
P pi 4
for k + 2 to n* do
Add vertex p} t0 Vapc
Add edge (p,p},) to Eapc
p < Py,

w N & A

~N
[

9 /* create Type 2 edges */
10 for i < 1 to R do
1 | for k + 1 to n’ do

12 for i/ < 1 to R do

13 if ¢ # ¢’ then

14 for k' < 1 to n' do

15 if s = g, and t} < t7, then
16 Add edge (pj.,p} ) to Eapc
17 Lbreak

safe way for robots to execute such a plan because it requires
precise synchronous execution, a property that our robots do not
have. Such an unsafe state transition is easily detectable as cycle
in the constructed ADG. We can also avoid such cycles during
planning, for example by disallowing that a robot moves out
of a cell in the perpendicular direction of another robot mov-
ing into that cell. In the CBS framework this translates to an
additional edge conflict, while in SIPP the computation of the
earliest arrival time can be adjusted accordingly.

2) Execution: At execution time, we keep track of the com-
pletion status of each vertex (action) in V4 p¢ . Each vertex can
either be staged, enqueued, or finished. We only enqueue actions
into a robot’s command queue if i) the previous vertex (that is
connected by an incoming Type 1 edge) is already enqueued or
finished, and ii) all vertices associated with incoming Type 2
edges are finished. We mark a vertex as finished once the robot
notifies the execution monitor of the successful execution of the
associated action.

This approach guarantees that a robot will only move into a
location after the previous robot has completely moved out of
that location. While this implies coarser safety distances than
MAPF-POST (the safety distance is a single cell), it requires less



HONIG et al.: PERSISTENT AND ROBUST EXECUTION OF MAPF SCHEDULES IN WAREHOUSES

communication at runtime and works with arbitrary dynamic
limits. In particular, we only need to track finished actions rather
than the current position of all robots at all times.

If a robot detects an unforeseen obstacle in its path, the robot
stops autonomously, empties its command queue, and notifies
the planner of the new obstacle and the aborted command queue.
New actions will be enqueued, once the planner has finished re-
planning.

Consider the example in Fig. 2 ¢ and colored vertices in
Fig. 2 b. Robot 1 finished two actions and has one more action
in its command queue, robot 2 finished its turning action and
has three more actions in its command queue, and robot 3 has
no action in its queue. Robot 3 cannot enqueue its next move
action, until robot 2 finishes its move action first.

C. Lifelong Planning

A typical approach for dynamic scenarios is to continuously
re-plan with a finite time horizon, as for example in model
predictive control. However, this requires fast planning and state
estimation. The coupling of robots in multi-robot systems makes
planning typically too slow for this kind of re-planning. Another
method is to plan for the next goal, once one goal is reached [3].
While this can work in decentralized settings, it does not work
for a centralized planner because it neglects the finite runtime
of the planner and would cause all robots to stall while a new
plan is computed. Thus, it is desirable to overlap planning and
execution, such that there is no delay when re-planning occurs.

Our approach is based on action dependency graphs. We de-
tect cases when re-planning is required: either if a robot senses
an obstacle on its current path or if at least one robot has an
estimated fixed duration of execution remaining in the ADG. In
order to overlap planning and execution, we need to find a set
of committed vertices in V4 p that defines the actions that the
robots will execute before switching to the new plan. We use the
term commit cut as the set of the last actions, one for each robot,
that is a subset of the committed vertices. We allow continued
execution of the old plan up until the commit cut. In parallel,
we re-plan by constructing the start state for our single-shot
MAPF planner from the final state that would be reached after
the commit cut. If desired, re-planning can use the old plan as
seed to find a new solution quicker.

In order to ensure a valid transition between the old and the
new plan, we need to find the commit cut in the old plan, such
that the old committed plan is consistent with its dependencies.
We compute the commit cut in four steps, see Algorithm 2: First,
we define a desired set of vertices we want to commit to, one
for each robot. These vertices should be chosen such that the
remaining execution time to finish those actions is larger than the
expected planning time. Such a measure might require domain
specific tuning, which is encapsulated in the helper function
ComputeDesiredSet, see line 1. In Fig. 3 we chose the
desired set to be the actions that will be finished in three MAPF
schedule timesteps. Second, we compute the reverse graph of
Gapa, where the direction of all edges is reversed, see line 2.
Third, we find the reachable set of vertices by executing an
exhaustive search on the reverse graph of G4 p¢ starting with
the set of desired vertices, see lines 3 — 5. The reachable set of
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Algorithm 2: Compute Commit Cut.
Input: QADG ]
Result: commit cut ¢ € Vapg fori=1,..., R
1 {d',...,d%} + ComputeDesiredSet(Gapc)
2 Ghpa < Vapa, €4 pe) where
Erpe = 1w, )| (0,0) € Eapc)
reachable <+ ()
q + Queue({d", ... d"})
while ¢ not empty do
pi « Dequeue(q)
reachable < reachable U {p}.}
for (pj,, u) € £ pg do
if u ¢ reachable then
LEnqueue(q7 u)

R CH S B N R

—
=)

—

1 for j < 1to R do
12 Lcj + arg maxy{pL|p, € reachable \i = j}

vertices is a superset of the desired vertices and defines the set of
committed vertices. Fourth, we find the latest occurring action
for each robot in the set of committed vertices, which defines
the robot’s commit cut, see lines 11 — 12.

We use the robots’ states after the commit cut as starting point
for our single-shot MAPF planner, with one small adjustment:
we synchronize the time, using the maximum of all timesteps
t] of the commit cut vertices. This ensures that there will be
no dependencies from the new plan to the old plan. The new
plan can be added to the ADG, and dependencies computed
according to Algorithm 1. Dependencies may exist from the
old plan to the new plan, but the construction of our commit
cut disallows dependencies from the new plan to the old plan.
Finally, finished vertices can be safely deleted, to keep memory
usage small. An example of our approach is shown in Fig. 3.

V. EVALUATION

We implement our approach in C++, using our ECBS-TA im-
plementation [22] and boost graph for our ADG data structure.
In our experiments, we demonstrate persistence and robustness
in simulation and mixed reality. Our method also provides a
significant performance gain over a baseline implementation.
A video of our experiments is provided in the supplemental
material.

A. Simulation

We evaluate our approach in simulation using
HARMONIES!, a simulator developed at Amazon Robotics
specifically for quantifying academic results in warehouse-like
environments. HARMONIES implements the robot model as
discussed in Section III-A, where robots have acceleration
limits (which are not modeled in most MAPF planners,
including ours). The simulator runs on Amazon Web Services,
executes actions in real-time, and provides a RESTful APIL.

'High-fidelity Autonomous-agent Research in Motion-planning and
Organization over a Network at Industrial Exhibited Scale; For more infor-
mation contact harmonies @amazon.com.
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of staged actions over all 50 agents. This line never drops to zero after the initial
plan was found, indicating that re-planning and execution always overlapped.

Simulator client applications can enqueue actions and receive
errors/statistics during the execution, including the number of
occurred collisions and the station utilization u(t). Our client
was executed on a laptop (i7-4600U 2.1GHz and 12GB RAM).

We evaluate persistence by counting the number of staged
actions in the ADG per robot at a fixed time interval of 0.5s.
The unnecessary wait time for a robot is the cumulative time
while the robot had no actions staged; the total unnecessary wait
time is the sum of all per-robot wait times. We test our approach
on the “small_1" scenario in HARMONIES (50 robots, 600
shelves, 8 stations). We use ECBS-TA with a bounded subop-
timal factor of 2; trigger re-planning if there are fewer than 10
actions in a robot’s queue; and use a lookahead of 10 actions
for the selection of the desired set of commit cut vertices. These
settings were found empirically to be sufficiently large to over-
lap re-planning and execution, see Fig. 4. Re-planning takes on
average 15s and is thus a significant factor when minimizing
wait times. In our experiment, there was no unnecessary wait
time and we achieved a station utilization of u(500) = 0.24.
We also evaluated robustness by measuring the number of re-
ported collisions from the HARMONIES simulator, which for
our experiments was zero.

B. Mixed Reality Experiment

We implement our approach in a mixed reality experi-
ment [24], which allows us to show robustness with respect
to newly appearing obstacles and unmodeled dynamics. We use
Gazebo as our virtual environment as well as our robotics sim-
ulator. Our custom Gazebo world plugin has three types of dif-
ferential drive robot models: i) simulated agents that do not use
the physics engine and move perfectly with a constant velocity;

ii) simulated robots that use a physics engine and are modeled
after the iRobot Create2 robots; and iii) physical iRobot Create2
robots. All three robot types have different (and in the discrete
planning problem, unmodeled) dynamics. Shelves and stations
are visualized only and not modeled using the physics engine
for all robots.

Our iRobot Create2 robots are equipped with one of ODROID
C1+ or ODROID XU4 single-board computers that run Ubuntu
16.04 with ROS Kinetic. Controller and command queues are
executed on-board the robots. State estimation is done using a
motion capture system. The robots communicate with the sim-
ulator using ROS services. These services are used to enqueue
new actions and to send notifications of successfully completed
actions.

In our experiment, we use a total of 12 robots: 6 physical
robots, 2 simulated robots, and 4 simulated agents. The robots
have different dynamics based on their type. For physical robots,
battery level also affects their dynamics. None of the dynamics
were explicitly modeled in our MAPF solver. During the run,
we introduce an unknown (virtual) obstacle, which robots can
detect in our mixed reality setting. Furthermore, we artificially
change the maximum speed of one of the robots during a time
period. No collisions occurred during our experiment, showing
that our approach is robust to varying and unforeseen dynamics.
We demonstrate persistence by executing our experiment for
several minutes such that each robot finished more than a single
task without any execution delays caused by re-planning. A
screenshot is shown in Fig. 1.

C. Baseline

We compare our approach to a simple baseline that, like our
approach, is an execution framework relying on existing MAPF
solvers. Our baseline approach executes the MAPF schedule
synchronously, that is, we only enqueue one action per timestep
per robot, and wait until all robots finished executing their cur-
rent action before enqueuing actions for the next timestep. This
baseline is comparable to the ALLSTOP strategy in previous
work [14]. If an unforeseen obstacle is detected, or at least one
robot finishes its current schedule, synchronous re-planning is
triggered. This baseline provides persistence and robustness like
our approach, but causes robots to spend a significant amount
of time waiting rather than executing actions.

We use the HARMONIES simulator on the same sce-
nario with the same settings as in Section V-A. Using the
baseline, the achieved station utilization is w(500) = 0.09
— over 2.5 times lower compared to our approach. The
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Fig.5. Station utilization of our approach compared to a baseline over time on

the “small_1"" scenario in HARMONIES. Bars represent the station utilization
for a time period, e.g., our approach reached a station utilization of 0.37 during
t € [100, 200], while the baseline reached a station utilization of 0.05 during
the same time. The dashed lines show the utilization after 500 seconds, i.e.,
u(500), for our approach and the baseline.

utilization of the baseline and our approach over time is shown in
Fig. 5.

VI. CONCLUSION

We present an execution framework that can be used to exe-
cute MAPF plans on physical robots persistently and robustly.
We demonstrate both properties in a mixed reality experiment
and in simulation. For persistence, we show that planning and
execution can be overlapped such that robots do not have to
wait until the planner finds a new solution. For robustness, we
test with unknown, time-varying dynamic limits as well as a
randomly appearing obstacle.

We believe that our approach closes the gap between re-
cent advances in multi-agent path finding algorithms from the
artificial intelligence community and practical applications in
robotics. Our approach can be used with existing MAPF plan-
ners with slight modification and requires little additional com-
putation to ensure persistent and robust execution. It also uses
significantly less communication than other existing execu-
tion frameworks, such as MAPF-POST. In the future, we hope
that our method will allow researchers and practitioners to ap-
ply and study MAPF planners in additional realistic persistent
applications.
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