1904.05522v1 [cs.DC] 11 Apr 2019

arxiv

Timely-Throughput Optimal Coded Computing over Cloud
Networks

Chien-Sheng Yang
University of Southern California
chienshy@usc.edu

Ramtin Pedarsani
University of California, Santa
Barbara

A. Salman Avestimehr
University of Southern California
avestimehr@ee.usc.edu

ramtin@ece.ucsb.edu

ABSTRACT

In modern distributed computing systems, unpredictable and un-
reliable infrastructures result in high variability of computing re-
sources. Meanwhile, there is significantly increasing demand for
timely and event-driven services with deadline constraints. Moti-
vated by measurements over Amazon EC2 clusters, we consider
a two-state Markov model for variability of computing speed in
cloud networks. In this model, each worker can be either in a good
state or a bad state in terms of the computation speed, and the tran-
sition between these states is modeled as a Markov chain which is
unknown to the scheduler. We then consider a Coded Computing
framework, in which the data is possibly encoded and stored at
the worker nodes in order to provide robustness against nodes
that may be in a bad state. With timely computation requests sub-
mitted to the system with computation deadlines, our goal is to
design the optimal computation-load allocation scheme and the
optimal data encoding scheme that maximize the timely compu-
tation throughput (i.e, the average number of computation tasks
that are accomplished before their deadline). Our main result is the
development of a dynamic computation strategy called Lagrange
Estimate-and-Allocate (LEA) strategy, which achieves the optimal
timely computation throughput. It is shown that compared to the
static allocation strategy, LEA increases the timely computation
throughput by 1.4x ~ 17.5X in various scenarios via simulations
and by 1.27X ~ 6.5X in experiments over Amazon EC2 clusters.

1 INTRODUCTION

Large-scale distributed computing systems can substantially suffer
from unpredictable and unreliable computing infrastructure which
can result in high variability of computing resources, i.e., speed of
the computing resources vary over time. The speed variation has
several causes including hardware failure, co-location of computa-
tion tasks, communication bottlenecks, etc. [1, 31] This variability
is further amplified in computing clusters, such as Amazon EC2,
due to the utilization of credit-based computing policy, in which
the most commonly used T2 and T3 instances can operate signifi-
cantly above a baseline level of CPU performance (approximately
10 times faster as shown in Fig. 1) by consuming CPU credits that
are allocated periodically to the nodes. At the same time, there is
a significant increase in utilizing the cloud for event-driven and
time-sensitive computations (e.g., IoT applications and cognitive
services), in which the users increasingly demand timely services
with deadline constraints, i.e., computations of requests have to be
finished within specified deadlines.

Our goal in this paper is to study the problem of computation
allocation over cloud networks with particular focus on variability
of computing resources and timely computation tasks. From the

measurements of nodes’ computation speeds over Amazon EC2
clusters, shown in Fig. 1, we observe that when a node is slow (fast),
it is more likely that it continues to be slow (fast) in the following
rounds of computation, which implies temporal correlation of com-
putation speeds. Thus, to capture this phenomenon, we consider
a two-state Markov model for variability of computing speed in
cloud networks. In this model, each worker can be either in a good
state or a bad state in terms of the computation speed, and the tran-
sition between these states is modeled as a Markov chain which is
unknown to the scheduler.

Furthermore, we consider a Coded Computing framework, in
which the data is possibly encoded and stored at the worker nodes
in order to provide robustness against nodes that may be in a
bad state. The key idea of coded computing is to encode the data
and design each worker’s computation task such that the fastest
responses of any k workers out of total of n workers suffice to
complete the distributed computation, similar to classical coding
theory where receiving any k symbols out of n transmitted symbols
enables the receiver to decode the sent message.

We consider a dynamic computation model, where a sequence
of functions needs to be computed over the (encoded) data that
is distributedly stored at the nodes. More precisely, in an online
manner, timely computation requests with given deadlines are
submitted to the system, i.e., each computation has to be finished
within the given deadline. Our goal is then to design the optimal
computation-load allocation strategy and the optimal data encoding
scheme that maximize the timely computation throughput (i.e, the
average number of computation tasks that are accomplished before
their deadline).!

One significant challenge in this problem is the joint design of
(1) a data encoding scheme to provide robustness against straggling
workers; and (2) an adaptive computation load allocation strategy
for the workers based on the history of previous computation times.
In particular, due to the fact that the state of the computing nodes
and the transition probabilities of the Markov model are unknown
to the scheduler. We note that to find the optimal computation
strategy, one has to solve a complex optimization which in general
requires searching over all possible load allocations, even if the
transition probabilities of Markov model are known to the master.
Thus, it is not clear how one allocates the computation loads effi-
ciently and what computation strategy is optimal, especially for
the network with unknown Markov model.

As the main contributions of the paper, we propose a dynamic
computation strategy called Lagrange Estimate-and-Allocate (LEA)

1Our metric of timely computation throughput is motivated by timely throughput
metric, introduced in [13], which measures the average number of packets that are
delivered by their deadline in a communication network.

Relative Speed

Figure 1: Empirical measurement of speed variation of a
credit-based t2.micro instance in Amazon EC2 in which we
keep assigning computation (e.g., a matrix multiplication)
to the instance and measure the finish times: A two-state
Markov model.

strategy, and show that it achieves the optimal timely computa-
tion throughput. Utilizing Lagrange coding scheme for data en-
coding [29], the LEA strategy estimates the transition probabilities
by observing the past events at each time step, and then assigns
computation loads based on the estimated probabilities. Moreover,
we also show that finding the optimal load assignment using LEA
can be done efficiently instead of searching over all possible load
allocations which is computationally infeasible to implement.

To prove the optimality of LEA strategy, we first focus on finding
the optimal timely-throughput by maximizing the success proba-
bility of each round when the transition probabilities are known
to master. For any fixed load assignment, we show that using La-
grange coding scheme proposed in [29] has the highest success
probability of each round. Then, we show that the success proba-
bility using LEA converges to the optimal success probability. By
the Strong Law of Large Numbers (SLLN), Ergodic theorem and
a coupling argument, we finally prove that timely computation
throughput achieved by the LEA strategy is equal to the optimal
timely computation throughput, i.e., LEA is optimal.

In addition to proving the optimality of LEA, we carry out nu-
merical studies and experiments over Amazon EC2 clusters. We
compare the proposed LEA strategy with a static load allocation
strategy for the benchmark. In our numerical analysis, compared
to the static computation strategy, the LEA strategy increases the
timely computation throughput by 1.38x ~ 17.5X. In experiments
over Amazon EC2 clusters, the LEA strategy increases the timely
computation throughput by 1.27X ~ 6.5%.

1.1 Related Prior Work

We divide the literature review to two main lines of work: schedul-
ing and load balancing over cloud networks, and coded computing
in distributed systems.

Task Scheduling: Task scheduling problem has been widely
studied in the literature, which can be divided into two main cat-
egories: static scheduling and dynamic scheduling. In the static
or offline scheduling problem, jobs are present at the beginning,
and the goal is to allocate tasks to servers such that a performance
metric such as average computation delay is minimized. In most
cases, the static scheduling problem is computationally hard, and

various heuristics, approximation and stochastic approaches are
proposed (see e.g. [15, 27, 32]).

In the dynamic or online scheduling problem, jobs arrive to
the network according to a stochastic process, and get scheduled
dynamically over time. In many works in the literature, the tasks
have dedicated servers for processing, and the goal is to establish
stability conditions for the network [3]. Given the stability results,
the next natural goal is to compute the expected completion times
of jobs or delay distributions. However, few analytical results are
available for characterizing the delay performance, except for the
simplest models. When the tasks do not have dedicated servers,
one aims to find a throughput-optimal scheduling policy (see e.g.
[11]), i.e. a policy that stabilizes the network, whenever it can be
stabilized. For example, Max-Weight scheduling, proposed in [6, 26],
is known to be throughput-optimal for wireless networks, flexible
queueing networks [10, 21, 22], data centers networks [20] and
dispersed computing networks [28]. Moreover, there have been
many works which focus on task scheduling problem with deadline
constraints over cloud networks (see e.g. [2, 12]).

Coded Computing: Coded computing is a recently developed
area that proposes to inject clever redundancy in the form of “coded”
data to tackle two major bottlenecks in distributed computing:
straggling servers and communication bandwidth [17, 19]. There
have been many works that following this line including those
that alleviate stragglers (e.g., [8, 24, 25, 30]), and those that tackle
communication bandwidth (e.g., [18, 23]). More recently coded
computing has also been utilized to address security and privacy
challenges in distributed computing (e.g., [4, 5, 29]).

So far, research in coded computing has focused on develop-
ing frameworks for one round of computation instead of consid-
ering network dynamics for analyzing long-run performance of
distributed computing systems. In this paper, considering the dy-
namics of the network, we make substantial progress by combining
the ideas of coded computing with dynamic computation load allo-
cation over cloud networks, and developing Lagrange Estimate-and
Allocate strategy that can adaptively assign computation loads
to workers and essentially learn the unknown network dynamics.
Furthermore, we consider the metric "timely computation through-
put” which denotes the average number of successful completions
instead of the metric "timely throughput" which usually denotes
the average number of packets delivered successfully in network
scenarios (see e.g., [16]).

2 SYSTEM MODEL
2.1 Computation Model

We consider a distributed computing problem, in which computa-
tion requests are submitted to a distributed computing system in
an online manner, and the computation is carried out in the system.
In particular, there is a fixed deadline for each computation round,
i.e., each computation has to be finished within the given deadline.

As shown in Fig. 2, the considered system is composed of a
master node and n worker nodes. There is also a dataset X which
is divided to X1, X3, ..., X. Specifically, each X is an element in
a vector space V over a field F. In each round m (or time slot in a
discrete-time system), a computation request with a function f,
is submitted to the system, where the function f,, is an arbitrary

Deadline d

A B |
fm : worker 1 X, ...,

B

P — (]
L_.___lﬁ """""""" ik =
workor 2 X7+1, A

1
]
master |
|
1

Input Fun(lion fm

Figure 2: Overview of dynamic load allocation over a coded
computing framework with timely computation requests.
In each round m, the goal is to compute the evaluations
f(X1),..., f(Xg) by the deadline d using n workers.

multivariate polynomial with vector coefficients having degree
deg(f). We denote by d the deadline of each computation request
which is smaller than or equal to the duration of each round. In
such distributed computing system, we are interested in computing
the evaluations fr(X1), fm(X2),. .., fm(Xk) in each round m by
the deadline d.

Prior to the computation, the master first encodes the dataset
X1, X2, ..., X} to)N(l,)N(z, . ,an via a set of nr encoding functions
g = (91,92, - - - » gnr), where encoded data Xy 2 go(X1,...,Xy) is
determined by the encoding function g, : V — U. Each worker
i stores r encoded data chunks)2(,-_1)”1, X(i—1)r42 » -+ ,Xir lo-
cally. In each round m, each worker evaluates certain subset of
fmXizyre1)s fmX(i—1)r+2)s - - - fm(Xir) determined by the mas-
ter.

Given a function f, in round m, the master assigns the com-

putations to each worker. More specifically, we define b =
(Cm,1,€m, 25 - - -»€m,n) to be the load allocation vector, in which
{m,i denotes the number of polynomial or function evaluations
computed by worker i in round m. Each worker i computes ¢, ;
evaluations of function f;, over the stored data without specified
order, and returns all the results back to the master upon the com-
pletion of all assigned computations. The master node aggregates
the results from the worker nodes until it receives a decodable set of
computations and recovers f;,(X1), fm(X2), . . ., fm(Xx). We say a
set of computations is decodable if the evaluations f,,(X1), fim(X2),

., fm(Xy) can be obtained by computing decoding functions over
received results. In each round, the goal of the master is to receive
a decodable set of computations within the given deadline d.

Let us illustrate the model through a simple example.

Example. In each round m, we consider a problem of evaluating
a linear function f,(X;) = Xjwm, over n = 3 workers, where the
input dataset X is divided to X, X3 and w;, is the input vector.
One possible coding scheme is to encode X; and X3 to X1 = X1,
X5 = Xy and X3 = X; + X». Each worker i stores r = 1 encoded data
chunk X;. If the load allocation vector Em =(1,1,1) is used by the
master, then each worker i computes X;wm and sends the result
back the master upon its completion. The set {(X1Wm, X3Wm} is

one of decodable sets since the master can obtain X;w Wi and Xowp,
by computing X;wy, = X1Wm and Xowm = Xzwm — X1Wm.

We note that the considered computation model naturally ap-
pears in many gradient computing problems. For example, in linear
regression problems, we want to compute fy,(X;) = XjT(X iWm — 1)

which is the gradient of the quadratic loss function %(X]Tﬁzm - 9)?

with respect to the weight vector Wy, in round m.

2.2 Network Model

Motivated by the measurements over Amazon EC2 clusters, shown
in Fig. 1, we assume that each worker has two different states for
computing, good state and bad state. We denote yi4 as the comput-
ing speed (evaluations per second) in the good state, and denote
Hp as the computing speed in the bad state. We assume that the
computing speeds y; and yi, are known to the master. Note that
given a worker’s state, its computation time (per evaluation) is
deterministic. We denote pi, ; as computing speed of worker i in
round m. And, we denote iy, = (fim,1, Hm,2, - - - » im,n) @S comput-
ing speed vector in round m. For each worker i, we model the state
transitions as a stationary Markov process S;i[1],S;[2],...,. The
transition matrix for worker i is defined as follows:

P; = . Py—’g,i 1 _pg—>g,i (1)

—Pb—b,i Pb—b,i

where py—4,; is the transition probability of worker i going to
the good state from the good state, and p;_,, ; is the transition
probability of worker i going to the bad state from the bad state. We
assume that the Markov processes of different workers are mutually
independent. Prior to the computation, we assume the initial state
of worker i is given by the stationary distribution of Markov chain
(Si[1], Si[2], . ..). We assume that the transition probabilities and
current state of each worker are unknown to the master before the
master assigns the computations to each worker.

2.3 Problem Formulation

Given the computation deadline d, we denote Ny,,(d) as an indicator
representing whether the computation is finished by deadline d,
i.e., Nju(d) = 1 if the computation is finished by time d in round
m, and Ny, (d) = 0 otherwise. We denote n = (g, {Zm}‘r’;’:l) as the
computation strategy. Also, we denote the set of all computation
strategies as I".

Definition 2.1 (Timely Computation Throughput). Given the com-
putation deadline d, using computation strategy 7, the timely com-
putation throughput, denoted by R(d,), is defined as follows:

M N.(d
Zm_lM (). @

Based on the above definitions, our problem is now formulated
as the following.

R = jim,

PROBLEM STATEMENT. Consider a distributed computing system
consisting of computation and network models as defined in Subsec-
tions 2.1 and 2.2. Our goal is to find an optimal computation strategy
achieving optimal timely computation throughput, denoted by R*(d)
which is defined as follows:

R*(d) = sup R(d,) 3)
ner

3 LAGRANGE ESTIMATE-AND-ALLOCATE
(LEA) STRATEGY

In this section, we propose a dynamic computation strategy called
Lagrange Estimate-and-Allocate (LEA) strategy, which is composed
of Lagrange coding scheme for data encoding and Estimate-and-
Allocate (EA) algorithm for allocating loads to the workers adap-
tively by observing the history of computation times. In each round,
the EA algorithm first assigns computation loads by maximizing
the estimated success probability based on the estimated transi-
tion probabilities of the underlying Markov chain (and based on
that the previous state of the workers). After receiving the results,
the EA algorithm updates the estimated transition probabilities by
observing the computation times in the past events.

3.1 Data Encoding in LEA

For data encoding, we leverage a linear coding scheme called La-
grange coding scheme which is proposed in [29]. We start with an
illustrative example.

We first consider the scenario where nr > k deg(f) — 1. In each
round m, we consider a problem of evaluating a quadratic function
fm(Xj) = X}'—Xj_&m (deg(f)=2) over n = 3 workers, where the input
dataset X is divided to X7, X». Each worker stores r = 2 encoded
data chunks (nr = 6 > k deg(f) — 1 = 3). We define u as follows:

W) 2 X 2 X T G X)X (@)
0—-1 1-0

in which u(0) = X3 and u(1) = Xa. Then, we encode X; and X»

tOX —u(l—l) ie., Xl Xl,Xz—Xz,X3——X1+2X2,X4—

—2X1 + 3X>, X5 = —-3X; +4X3 and X(, = —4X7 + 5X3. Each worker

i stores Xp;_1 and Xp; locally.

We now consider the scenario where nr < k deg(f) — 1. We
consider the same problem in the previous scenario, but the there
is larger input dataset X which is divided to X1, X2, X3 and X4
(nr = 6 < k deg(f)—1 = 7). We encode X; and X; using a repetition
codlng d651gn such that X; = X1, X3 = Xz, X3 = X3, X4 = Xu,
X5 = X1 and X6 = X,. Each worker i stores le,l and Xgl locally.

Formally, we describe Lagrange coding scheme as follows:

(1) nr > k deg(f) — 1: We first select k distinct elements

B1, P2, ..., P from F, and let u be the respective Lagrange interpo-
lation polynomial
> ﬂ iy
uz) £ Y Xj : (5)
= g A

where u : F — V is a polynomial of degree k — 1 such that
u(fj) = Xj. To encode the input X1, Xy, ..., X}, we select nr dis-
tinct elements a1, @y, . .., an, from F, and encode X1, Xo, ..., X
to Xy = u(ay) for all v € [nr], ie.,

k
Xo=goM) =u@) 23X [] 7

j=1 le[k] \{J}

ﬁz (6)

Each worker i stores)2(,-_1),+1,)~((,~_1)r+2, ..., X;r locally.

(2) nr < k deg(f) — 1: We use a repetition coding design to encode
the input X1, Xz, . . ., X.. We replicate every X; either | 5] or [55]
times such that the number of total encoded data chunks is nr. Then,

we obtain the encoded data X],Xz, . ,)~(nr. Each worker picks r
of the encoded data X1, X3, . . ., Xnr to be stored locally.

Note that decoding and encoding in Lagrange coding scheme
relies on polynomial interpolation and evaluation which can be
done efficiently.

3.2 Load Allocation in LEA

Before introducing the EA algorithm, we first define the following
terms. For each worker i, we denote Cy—4, ;(m) as the number of
times that event "good state to good state" happened up to round
m, Cy_,p ;(m) as the number of times that event "good state to bad
state" happened up to round m, Cp_, 4 ;(m) as the number of times
that event "bad state to good state” happened up to round m and
Cp—p, i(m) as the number of times that event "bad state to bad state"
happened up to round m.

For worker i, we denote py—g,i(m) and pp,_,p, ;(m) as the esti-
mated transition probabilities after the first m — 1 rounds of com-
putations. For worker i, we denote pg, ;(m) and py, ;(m) as the es-
timated probabilities being in the good state and the bad state in
round m respectively. Without loss of generality, we assume that
Pg,1(m) = pg a(m) = -+ = pg n(m). We also define £, £ pp,d and
ty = min(pgd,r)

Now, we formally describe the EA algorithm. In each round m,
the EA algorithm has the following 4 phases:

(1) Load Assignment Phase: The master maximizes the esti-
mated success probability in round m based on the the estimated
probabilities pg, ;(m) and py, ;(m). To do so, the master finds i,
(1 < i}, < n) maximizing the estimated success probability func-
tion defined as follows?:

Bpa(i) = 0if K* > ity + (n - i)ly,)
otherwise
Bp(i) = Z)y l_[pg,<m) ﬂ Br.i(m) (8)
I=w(i) g:Gclil, |1G|=1 i€G elihG

where w(i) £ [%jm] and K* is defined as follows:

if nr > k deg(f) -1

oo {(k ~ 1deg(f) + 1 | o)
otherwise.

nr— 7] +1

Note that equations (7) and (8) define the estimated success prob-
ability which is the function of i (number of workers assigned to
compute {4 evaluations). The intuition behind equation (7) is that
if total load assigned to all the workers is smaller than the optimal
recovery threshold, the probability of success is zero. Based on the
estimated probabilities p; and py,, equation (8) gives us the esti-
mated success probability by summing the probabilities of events
which have enough workers in good state leading to successful
completion of the computation before the deadline. Also, K* de-
fined in (9) is the optimal recovery threshold using Lagrange coding
scheme [29] which guarantees that the evaluations can be recov-
ered when the master receives any K* results from the workers.

2Note that we only consider the case: K* > nppd = ntp, otherwise the computation
can be always finished in time d which is trivial.

Thus, i}, = argmax P (). Then, the master does assignment by
using the load allocation vector {5, such that

by, if1<i<iy
bmi=1] o (10)
{}p, otherwise.

In load assignment phase, the idea is to select workers in the order
of the estimated probability being in the good state, and assign
more loads accordingly. Note that it is just a linear search in load
assignment phase which is computationally efficient.

(2) Local Computation Phase: Within each round m of compu-
tation, each worker i receives function f;;, and load assignment ¢, ;
from the master. Then, each worker i computes evaluations of func-
tion fm over encoded data X(;_1)r+1, X(i-1)r+2: - - - > X(i=1)r +£m. ;>
ie., fM(X(i—l)r+1)’ fM(X(i—l)r+2)’ Ce ’fM(X(i—l)r+[’m’i)' After the
computation, each worker sends all the computation results back
to the master upon its completion.

(3) Aggregation and Observation Phase: Having received the
fastest K* computation results from the workers, the master re-
covers the evaluations fi,(X1), fm(X2), . . ., fm(Xj) for the request
function f,. By observing whether the results are sent back or not,
the master checks which one of events "good state to good state”,
"good state to bad state”, "bad state to good state" and "bad state to
bad state" has happened in round m for each worker i. Then, the
master obtains Cg—g,i(m), Cy_p,i(m), Cp_4,i(m) and Cp_,p, ;(m).
Note that the time that it takes for one worker’s result to be com-
pleted and sent back to the master actually indicates the (previous)
state of that worker, since the speeds are deterministic and the
computation time in a good state is less than the computation time
in a bad state.

(4) Update Phase: After aggregation and observation phase, the
master updates the estimated transition probabilities pg— g, ;(m +
1) and pp_,p ;(m + 1) for the round m + 1: pgg i(m + 1) =

Cyog,i(m) . _ Cp—p,i(m)
Cymog i)ty) A0 Pospilm + 1) = 50 = oy

The master updates the estimated probabilities pg, ;(m + 1) and
Pp,i(m + 1). If worker i was in good state in round m, g, ;(m +1) =
Pg—g,i(m+1),and pg ;(m+1) = 1-pp_,p, ;(m+1) otherwise. Then,
the computation goes to the round m + 1.

4 UPPER BOUND ON THE TIMELY
COMPUTATION THROUGHPUT

In this section, we give an upper bound for the timely computation

throughput. The idea is to consider the case that the Markov model

of the network is known to the master and achieve the optimal

computation throughput for this case.

4.1 Optimal Success Probability of One Round
Computation

First, we corisider one round of computation using a load alloca-

tion vector ¢ with a linear coding scheme g. Without knowing

computing speed vector i, we denote T(E’é)(ﬁ) as the random vari-

able of finish time using { and g. We define the success probability
as the probability that the computation is finished in time d, i.e.,

IP’(T@’»‘;) < d) according to the distribution of /i.

For a coding scheme, we define recovery threshold which is for-
mally stated as follows:

Definition 4.1 (Recovery Threshold). For an integer k, a coding
scheme g is k-recoverable if the master can recover the required
function evaluations from any k of nr local computation results.
We define the recovery threshold of a coding scheme g, denoted by
K(g), as the minimum number of k such that the coding scheme ¢
is k-recoverable.

Given a coding scheme g, we have the recovery threshold K(g)
which is the minimum number of evaluations to be received in total
from the workers. Thus, we aim at finding a coding scheme and
a load allocation vector that maximizes the success probability by
solving the following optimization problem:

Maximize P(T(¢9) < d) 11)
n

subject to Z & > K(3), (12)
i=1

0<¢<r t;eZVI<i<n. (13)

In the following, we show that the Lagrange coding scheme achieves
the highest success probability for any fixed load allocation vector.
Before proving the optimality of Lagrange coding scheme in terms
of success probability, we first define optimal recovery threshold as
follows:

Definition 4.2. We define the optimal recovery threshold, denoted
by K*, as the minimum achievable recovery threshold. Specifically,

K* £ min K(g). (14)
g9

By [29], Lagrange coding scheme achieves optimal recovery
threshold of evaluating a multivariate polynomial function f (total
degree deg(f)) on a dataset of k inputs, which is given by

K* = (k — 1)deg(f) +1 (15)
when nr > k deg(f) — 1, and
K*znr—l_%]+l (16)

otherwise.

We now show that Lagrange coding scheme achieves the highest
success probability for any fixed load allocation vector. It is intuitive
that a coding scheme achieving smaller recovery threshold should
have higher success probability. We formally state this claim in the
following lemma.

LEmMA 4.3. (Monotonicity) Consider an arbitrary load allocation

vector €, for any coding schemes §i and gy, such that K(§1) < K(Ga),
we have

prEd) < gy > pr@d) < g). a7)

The proof of the lemma 4.3 is provided in the Appendix A.

4.2 Load Allocation Problem

From Lemma 4.3, by fixing Lagrange coding scheme denoted by
g*, the optimization problem proposed in Subsection 4.1 can be
simplified to the optimization problem that only has load allocation

vector as variables. We now introduce an optimization problem
called Load Allocation Problem which is defined as follows:
Load Allocation Problem:

Maximize P(T(f’-‘;*) <d) (18)
n

subject to Z 6 > K*, (19)
i=1

0<t<r t;eZNV1<i<n. (20)

where K* is the optimal recovery threshold defined in (15) and (16).
Note that the proposed load allocation problem is a combinatorial
optimization problem that in general requires combinatorial search
over all possible allocations to maximize the success probability.

To show that load allocation problem can be solved efficiently,
we first present the following lemma whose proof is provided in
Appendix B.

LEMMA 4.4. Given a deadline d, if a load allocation vector € has
the success probability P(T(f’g*)(ﬁ) < d), then there exists a load
allocation vector £ with success probability P(T(fl’g*)(ﬁ) <d) such

that P(T(gl’§*>(ﬁ) <d) >]P’(T@’-‘;*)(ﬁ) <d) and [;. € {ly,ly} where
ty = min(ugd, r) and €, = ppd.

By Lemma 4.4, we can focus on finding the optimal load allo-
cation vector by searching all { satisfying that £; € {{4,{}} for
all i. To find the optimal load allocation vector, we now consider
the load allocation vector characterized by the set G5 = {i : {; =
lg,1<i< n} which represents the set of workers that computes
g evaluations locally. Once the set G4 has been determined, G,
representing the set of workers that computes ¢}, evaluations can
be defined as {i : i € [n]\Gy}.

Since f—’z is always less than d, the workers in G, will always
send the results back to the master in time d. Since the optimal
recovery threshold is K* using Lagrange coding scheme, the master
has to receive at least K* — |G}, |{}, results from the workers in G4
to recover the computation in time d. That is, there must be at

least [%1 workers in the good state in set G5. We define
g

a(Gg) = [M] which denotes the minimum number of
workers in the good state in set G, to guarantee that the master
can recover the computation in time d.

Before writing the success probability as a function of G4, we
first define the following terms. We define T(gg)(ﬁ) as the random
variable denoting the finish time using the allocation vector char-
acterized by G4. We denote py, ; as the probability that worker i is
in the good state and py, ; as the probability that worker i is in the
bad state. Also, we denote the random variable that represents the
number of workers being in good state in set G as Q(G).

Using the load allocation vector characterized by G4, we can
find the success probability which is a function of G as follows:
(1) a(Gg) > |Ggl: In this case, the master needs at least a(Gy)
workers being in good state which is greater than |Gy|. It implies
that P(T(99)(ji) < d) = 0.

(2) 0 < a(Gy) < |Gyl In this case, we have

1G4
P(TU99)(ji) < d) = P(Q(G) = alGg)) =). P(Q(Gg) =)
I:a(gg)
1G]

= Z Z I_[Pg,i l_[Pb,i- (21)
I=a(Gy) G:GCGy. |Gl=l i€eG i€G,\G

Therefore, our goal is to find the optimal set G; characterizing
the optimal load allocation vector which maximizes the success
probability over all possible sets G; C [n]. The complexity of
searching over all possible sets G5 C [n] grows exponentially with
n, since there are overall 2" choices for Gy

The following lemma shows that the optimal G, contains the
workers having the largest pg ; among all the workers, which
largely reduce the time complexity of finding the optimal G,

LEMMA 4.5. Without loss of generality, we assume pg,1 2 pg,2 =

+ 2 pg,n- Considering all possible sets G4 with fixed cardinality

ng, the optimal Q; with cardinality ng that maximizes the success
probability is

Gy =1{1.2...,ng} (22)

which represents the set of ng workers having largest pg ; among all

the workers.

ProoF. For a fixed integer ng, we suppose G is the optimal set
with cardinality n, where i ¢ G; and 1 < i < ng. Thus, there
exists a j € Gy such that j > ng4. Then, we construct a set G2 =
(G1\{j}) U {i}. The success probability of using the load allocation
vector characterized by G can be written as

B(T'9)() < d) = PQ(G1) = a(Gy)) (23)
=pg,jPQ(GI\{J}) = a(G1) - 1) + (1 = pg,))P(Q(G1\{j}) = a(G1))

where the first term is the success probability when worker j is in
the good state, and the second term is the success probability when
worker j is in bad state. Similarly, the success probability of using
the load allocation vector characterized by G2 can be written as

P(T'9)(ji) < d) = P(Q(G2) = a(G)) (24)
=pg,iP(Q(G2\{i}) 2 a(G2) — 1) + (1 — pg,)P(Q(G2\{i}) = a(G2)),
which can be further written as

pg,iP(QGI\}) = a(G1) — 1) + (1 — pg,))P(Q(G1\{/}) = a(G1))
since Gz = (G1\{j}) U {i} and a(G1) = a(G2). Because py,; > pg, j
and P(Q(G1\{j}) 2 a(G1) — 1) 2 P(Q(G1\{J}) = a(G1)), we have

B(T'9) () < d) - B(T9) < d) (25)
=(pg,i — pg.) {P(Q(G1\{j}) = a(G1) — 1) - P(Q(G1\{j}) = a(G1))}
>0
which is a contradiction. Thus, the optimal set G with fixed cardi-

nality ng must include i forall 1 < i < ny. O

By Lemma 4.5, for a fixed cardinality ng, the optimal Q; is the
collection of ng workers having largest p,, ; among all the workers.
Therefore, to find the optimal load allocation vector, we can only
focus on finding the optimal ng. Since there are only n choices for

nZ (i.e. 1,2,...,n), the complexity of searching the optimal n; is
linear in the number of workers n which is much smaller than 2" .

The following theorem shows that the computation strategy
composed of the Lagrange coding scheme and the load allocation
vector that is the solution of load allocation problem achieves the
optimal timely computation throughput when the Markov model
is known to the master.

THEOREM 4.6. Assume the Markov model of the network is know
to the master. Let the computation strategy n* = (f‘, {E“m}ﬁzl) be
the computation strategy where f‘ is the Lagrange coding scheme
and {ﬁm}z:l is given by solving load allocation problem. Then, n*
achieves the optimal timely computation throughput.

Proor. We consider the computation of round m and denote
Ny (d) as the indicator represents whether the computation is fin-
ished in time d in round m using an arbitrary computation strategy.
Clearly, Ny, (d) is a Bernoulli random variable with parameter P(m)
which denotes the success probability using this computation strat-
egy in round m. Thus, N;,,(d) would contribute to the throughput
with probability P(m). Since n* maximizes P(m) for all m, this strat-
egy is optimal. O

Since the Markov model is unknown to the master in the original
problem, the timely computation throughput achieved by n* gives
us an upper bound. In the next section, we will show that this upper
bound can be matched by using LEA.

5 OPTIMALITY OF LEA
Now, we show the optimality of LEA by the following theorem.

THEOREM 5.1. The proposed Lagrange Estimate-and-Allocate
(LEA) strategy is optimal, i.e.,

Rrea(d) = R*(d) almost surely, (26)

where Rppa(d) denotes the timely computation throughput using the
LEA strategy.

ProoOF. In order to prove Theorem 5.1, we first state Lemma 5.2
whose proof is moved to Appendix C for the purpose of readibility.

LEMMA 5.2. Prpa(m) converges to P*(m) as m goes to infinity,
where P*(m) denotes the optimal success probability in round m and
Prpa(m) denotes the success probability in round m using the LEA
strategy.

Before proving the optimality of LEA, we first define the follow-
ing terms. We denote N;;,(d) as the indicator representing whether
the computation is finished by time d in round m using the opti-
mal computation strategy which maximizes the success probability
in round m. Clearly, N;;,(d) is a Bernoulli random variable with
parameter P*(m). Also, we denote Ny ga_,(d) as the indicator rep-
resenting whether the computation is finished in time d in round
m using LEA. Then, N g, m(d) is a Bernoulli random variable with
parameter Prga(m). We denote Ryga(d) as the timely computation
throughput using LEA.

Now, we model the state of the whole system which includes
all n workers as a Markov chain. Since each worker has 2 states
(good or bad), there are a total of 2" different states of the system.
Without loss of generality, we index the states of the system as

{1,2,...,2"}. Clearly, the transition matrix of this Markov chain
has all the entries larger than 0. It implies that this Markov chain
is irreducible. We denote s(m) as the state of the system in round
m. Also, p; is denoted as the success probability of state s using
the optimal computation strategy, i.e., P*(m) = pj if s(m) = s. By
the Strong Law of Large Numbers and the Ergodic theorem, the
optimal timely computation throughput R*(d) can be written as

Szt Nin(d)

R i Zg @
. L Zmzl:s(m):s N;;‘l(d) Vi(M) N *
= lim = Z s a.s.,
Moo Vi(M) M = Eq[Ts]

where the Ergodic theorem is formally stated as follows:

TueEOREM (ERGODIC THEOREM). Iftransition matrix P of a Markov
chain (Xm)mz>o is irreducible, then we have
Vem) 1
 EslTy]
where Vs(m) is the number of visits to state s up to round m and
Eg[Ts] is the expected return time to state s.

lim

m—ooco m

(28)

By Lemma 5.2, for all € > 0, there exits m(¢) such that Ppga (m) >
P*(m) — € for all m > m(e). Let N,,(d) be the independent Bernoulli
process with parameter P*(m)—e. We couple Ny ga_,(d) and Ny, (d)

as follows. If N ga m(d) = 0, then Np(d) = 0. If NiEA, m(d) = 1,
P*(m)—e

then Ny,(d) = 1 with probability NG and Ny, (d) = 0 with
probability 1 —]g;g:();j . Note that Ny, (d) is still marginally inde-

pendent Bernoulli process of parameter P*(m) — €. Then, we have

=M Niga,m(d)

Riga(d) = N%lglm i (29)
M NLEA, m(d)
> lim m=m(e)+1 m (30)
M—>oo M
M Npn(d)
> i —mEm(e+1 T (1)
M—oo M
1 & -
=Jim =30 D Na@ (32)

s=1 m>m(e)+1:s(m)=s

M= m(e) 1 Zmzm(e)+1:s(m)=s Nm(d) Vy(M) = Vy(m(e))
M

=]\/}li)noo =1 Vs(M) - Vs(m(e)) M _ m(e)
2n 1 on) on .
=SZ:;(PS _e)Es[Ts] - SZ;pS Es[Ts] _;fES[TS] (33)
271
" 1
- Ra@- ; ‘BTl * (34)

using the SLLN and the Ergodic theorem. Also, it is clear that
Riga(d) < R*(d). Letting e — 0, we have Rpa(d) = R*(d) which
completes the proof. O

6 EXPERIMENTS

In this section, we present our results both from simulation studies
as well as from experiments over Amazon EC2 cluster.

6.1 Numerical Analysis

We now present numerical results evaluating the performance of
the LEA strategy.

First, we call a computation strategy static if this computation
strategy assigns the loads to workers without considering their
states in previous rounds. For comparison with LEA, we consider
the following static computation strategy:

Static Computation Strategy: Prior to computation, Lagrange
coding scheme is used for data encoding. In each round m, each
worker i is assigned a load £y,,; € {{y,)} based on the stationary
distributions of the underlying Markov model, in which we denote
(7g,i> 7p, ;) as stationary distribution of worker i. More specifically,
for each worker i in each round m, this strategy does assignment
as follows:

{4 with probabilit i
Em’i:{gw1 probability 7, ; (35)

¢}, with probability 7, ;.

Note that whenever the total loads of the generated {m is smaller
than the minimum recovery threshold, then the strategy would
do assignments again until the total loads of the generated s
greater than the minimum recovery threshold.

Since static computation strategies don’t learn the dynamics of
network, they can only do load assignments in a deterministic man-
ner or randomly without using any history. Thus, the chosen static
computation strategy which utilizes the stationary distributions of
underlying Markov model is better than other static computation
strategies in general.

Given deadline d = 1 second in each round m, we consider a prob-
lem of evaluating a quadratic function fy,(X;) = XJT (Xjwm—1j) over
n = 15 workers, where the dataset X1, X, ..., X50 € R1000x1000/
7 € R1990X1 and v, € R1990%1 which is the input vector in round m.
Each worker stores r = 10 encoded data chunks using Lagrange cod-
ing scheme. In such setting, we have the optimal recovery threshold
K* =99 for both LEA and the static computation strategy.

For simulations, we let pg—g,i = pg—g>Pb—b,i = Po—p for all i,
and consider the following four scenarios:

Scenario 1: (ug, i) = (10,3), (pg—g>Pp—pb) = (0.8,0.8) and the
corresponding stationary probabilities (pg, pp) = (0.5,0.5).
Scenario 2: (ug, ip) = (10,3), (pg—g,Pp—b) = (0.8,0.7) and the
corresponding stationary probabilities (pg, pp) = (0.6,0.4).
Scenario 3: (g, 1) = (10,3), (Pg—g> Pp—p) = (0.8,0.533) and the
corresponding stationary probabilities (pg, pp) = (0.7,0.3).
Scenario 4: (g, i) = (10,3), (pg—g>Pp—b) = (0.9,0.6) and the
corresponding stationary probabilities (pg, pp) = (0.8,0.2).

Fig. 3 illustrate the performance comparison for LEA and the
static computation strategy. We make the following conclusions
from the results:

e LEA increases substantial improvement in terms of the timely
computation throughput. Over the four scenarios, LEA improves
the static computation strategy by 1.38x ~ 17.5x.

® The timely computation throughput improvements over the static
computation strategy become more significant as the stationary
probability p, decreases. When py is small, the workers would
be in the bad state more probably in the long run. In this sense,
the static computation strategy assigns loads to the workers in a
more pessimistic way. However, there is temporal correlation of

1
T

oo |HELEA 4
[Istatic Load Allocation

od- ,
o ,
o l ,
. ‘ L] ‘ ‘

1 2 3 4

Scenarios

Timely Computation Throughput
T

Figure 3: Numerical Results

computation speeds which the static computation strategy doesn’t
take into account. Thus, although p, is small, LEA can achieve
much higher timely computation throughput which demonstrates
that LEA can adapt to the dynamics of network well.

6.2 Experiments using Amazon EC2 machines

Before showing the experimental results, we first introduce CPU
credits [9] which can boost T2 and T3 instances above baseline
performance. For a t2.micro instance, as shown in Fig. 1, there is
a 10 times difference between baseline performance and burstable
performance, i.e., a burst t2.micro instance has computing speed
10 times faster. The baseline performance and ability to burst are
governed by CPU credits. More details of CPU credits and burstable
performance can be found in [9].

We ran the master node over m4. xlarge instance and all work-
ers over t2.micro instances. We implemented two computation
strategies in python, and used MPI4py [7] for message passing be-
tween instances. Before starting computations, each worker stores
a certain amount of data in its local memory. In round m, having
received function fp, from the master, each worker computes the
assigned computation using the stored data, and sends it back to the
master asynchronously using Isend(). As soon as the master gath-
ers enough results from the workers, it computes the evaluations
for the function f,.

Given deadline d seconds in each round m, we consider a prob-
lem of evaluating a linear function f,(X;) = XjTBm overn = 15

workers, where the datasets {X; }]]?:1 ’s are real matrices with cer-

tain dimensions, and B,, € R3000x3000 j¢ the input matrix. Each

worker stores r = 10 encoded data chunks using Lagrange coding
scheme. In particular, in each round, the computation request’s
arrival time is shift-exponential random variable which is the sum
of a constant T, = 30 and an exponential random variable with
mean A. In this setting, we have the optimal recovery threshold
K* = 50 for both LEA and the static computation strategy. Since
the Markov model is unknown (and indeed even the type of the
underlying stochastic process determining the states of the workers
in the cloud is not known), to compare with the LEA strategy, we
consider a static computation strategy that each worker is assigned
to €4 or £}, number of evaluations with equal probability in each
round. For experiments, we consider the following six scenarios:

Scenario 1: Size of X; = 25 x 3000, k = 120, A = 10 and d = 2.5.

o
ES
n

ElLEA
[Istatic Load allocation| -|

Ilﬂ ‘ A A s IH |

Scenarios

Timely Computation Throughput
o o o

°e L 92 v 2 u ©°

T

°
°
25

o

Figure 4: Experimental evaluations over 15 t2.micro in-
stances in Amazon EC2. Compared with the static load al-
location strategy, LEA improves the timely computation
throughput by 1.27X ~ 6.5%.

Scenario 2: Size of X = 25 x 3000, k = 120, A = 30 and d = 2.5.
Scenario 3: Size of X = 30 x 3000, k = 100, A = 10 and d = 3.
Scenario 4: Size of X = 30 X 3000, k = 100, A = 30 and d = 3.
Scenario 5: Size of X = 60 X 3000, k = 50, A = 10 and d = 6.
Scenario 6: Size of X; = 60 x 3000, k = 50, A =30 and d = 6.

Fig. 4 provides a performance comparison of LEA with the static
load allocation strategy for the six scenarios. From the results,
we found that LEA provides substantial improvement in terms of
the timely computation throughput. Over the six scenarios, LEA
increases the static computation strategy by 1.27X ~ 6.5X.

7 CONCLUSION

Motivated by high variability of computing resources in modern
distributed computing systems and increasing demand for timely
event-driven services with deadline constraints, we consider the
problem of dynamic computation load allocation over a coded com-
puting framework. We propose an optimal dynamic computation
strategy Lagrange Estimate and Allocate, LEA, which is composed
of utilizing the Lagrange coding scheme for data encoding and
assigning computation loads based on the estimated state of the
network, which is done by estimating the transition probabilities of
an underlying Markov model for the system’s state from observing
the past events at each time step. In the end, we show that com-
pared to the static computation strategy, LEA increases the timely
computation throughput by 1.38X ~ 17.5X in simulations and by
1.27X ~ 6.5% in Amazon EC2 clusters.

At a conceptual level, this paper has some interesting compar-
isons/connections with [14]. Under wireless networks, [14] investi-
gates how to turn base stations on or off, in order to adapt to the
unknown load arrival and channel statistics. Under cloud comput-
ing networks, our paper focuses on how to do the computation load
assignment in order to adapt to unknown computing networks. So,
at a high-level, the corresponding scheduling problems can be seen
as dual of each other: [14] assigns base stations to good (on) or bad
(off) states in order to meet the demands, while our goal is to assign
the computation loads in order to optimally exploit the (unknown)
state of the workers. However, we also point out that the setting
and objective of the two papers are quite different. We consider

cloud computing platforms and focus on the timely computation
throughput, which is very different from [14]. Another difference
is in the proof techniques to show the optimality of the proposed
algorithms. The Lyapunov arguments for the adaptive scheme used
in [14] is quite different from our approach.

8 ACKNOWLEDGMENT

This material is based upon work supported by Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
HR001117C0053, ARO award W911NF1810400, NSF grants CCF-
1703575, ONR Award No. N00014-16-1-2189, and CCF-1763673. The
views, opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government. This
work is also in part supported by ONR award N000141612189 and
NSF Grants CCF-1703575 and NeTS-1419632 and the UC Office of
President under grant No. LFR-18-548175.

REFERENCES

[1] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.
Effective Straggler Mitigation: Attack of the Clones.. In NSDI, Vol. 13. 185-198.

[2] Vahid Arabnejad, Kris Bubendorfer, and Bryan Ng. 2017. Scheduling deadline

constrained scientific workflows on dynamically provisioned cloud resources.

Future Generation Computer Systems 75 (2017), 348-364.

Francois Baccelli, William A Massey, and Don Towsley. 1989. Acyclic fork-join

queuing networks. Journal of the ACM (JACM) 36, 3 (1989).

[4] Rawad Bitar, Parimal Parag, and Salim El Rouayheb. 2017. Minimizing latency for
secure distributed computing. In Information Theory (ISIT), 2017 IEEE International
Symposium on. IEEE, 2900-2904.

[5] Lingjiao Chen, Zachary Charles, Dimitris Papailiopoulos, et al. 2018. DRACO:
Robust Distributed Training via Redundant Gradients. arXiv preprint
arXiv:1803.09877 (2018).

[6] Jim G Dai and Wugqin Lin. 2005. Maximum pressure policies in stochastic pro-
cessing networks. Operations Research 53, 2 (2005).

[7] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and Alejandro Cosimo. 2011.
Parallel distributed computing using Python. Advances in Water Resources 34, 9
(2011), 1124-1139.

[8] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. 2016. Short-dot: Com-
puting large linear transforms distributedly using coded short dot products. In
Advances In Neural Information Processing Systems. 2100-2108.

[9] Amazon EC2:. [n. d.]. https://docs.aws.amazon.com/ec2/.

[10] Atilla Eryilmaz and R Srikant. 2007. Fair resource allocation in wireless net-
works using queue-length-based scheduling and congestion control. IEEE/ACM
Transactions on Networking (TON) 15, 6 (2007), 1333-1344.

[11] Atilla Eryilmaz, Rayadurgam Srikant, and James R Perkins. 2005. Stable schedul-
ing policies for fading wireless channels. IEEE/ACM Transactions on Networking
13, 2 (2005), 411-424.

[12] Mina Hoseinnejhad and Nima Jafari Navimipour. 2017. Deadline constrained
task scheduling in the cloud computing using a discrete firefly algorithm. IN-
TERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING 8, 3 (2017).

[13] I..Hou, V. Borkar, and P. R. Kumar. 2009. A Theory of QoS for Wireless. In IEEE
INFOCOM 2009. 486-494. https://doi.org/10.1109/INFCOM.2009.5061954

[14] Subhashini Krishnasamy, PT Akhil, Ari Arapostathis, Rajesh Sundaresan, and
Sanjay Shakkottai. 2018. Augmenting max-weight with explicit learning for
wireless scheduling with switching costs. IEEE/ACM Transactions on Networking
26, 6 (2018), 2501-2514.

[15] Yu-Kwong Kwok and Ishfaqg Ahmad. 1999. Static scheduling algorithms for

allocating directed task graphs to multiprocessors. ACM Computing Surveys

(CSUR) 31, 4 (1999), 406-471.

Sina Lashgari and A Salman Avestimehr. 2013. Timely throughput of heteroge-

neous wireless networks: Fundamental limits and algorithms. IEEE Transactions

on Information Theory 59, 12 (2013), 8414-8433.

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and

Kannan Ramchandran. 2018. Speeding up distributed machine learning using

codes. IEEE Transactions on Information Theory 64, 3 (2018), 1514-1529.

Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. 2017. Coding

for distributed fog computing. IEEE Communications Magazine 55, 4 (2017),

34-40.

Songze Li, Mohammad Ali Maddah-Ali, Qian Yu, and A Salman Avestimehr. 2018.

A fundamental tradeoff between computation and communication in distributed

B3

[16

(17

[18

[19

https://doi.org/10.1109/INFCOM.2009.5061954

computing. IEEE Transactions on Information Theory 64, 1 (2018), 109-128.

Siva Theja Maguluri, R Srikant, and Lei Ying. 2012. Stochastic models of load
balancing and scheduling in cloud computing clusters. In INFOCOM, 2012 Pro-
ceedings IEEE. IEEE, 702-710.

Michael J Neely, Eytan Modiano, and Charles E Rohrs. 2005. Dynamic power
allocation and routing for time-varying wireless networks. IEEE Journal on
Selected Areas in Communications 23, 1 (2005), 89-103.

Ramtin Pedarsani, Jean Walrand, and Yuan Zhong. 2017. Robust scheduling for
flexible processing networks. Advances in Applied Probability 49 (2017).

Saurav Prakash, Amirhossein Reisizadeh, Ramtin Pedarsani, and Salman Aves-
timehr. 2018. Coded computing for distributed graph analytics. In 2018 IEEE
International Symposium on Information Theory (ISIT). IEEE, 1221-1225.
Amirhossein Reisizadeh, Saurav Prakash, Ramtin Pedarsani, and Salman Aves-
timehr. 2017. Coded computation over heterogeneous clusters. In Information
Theory (ISIT), 2017 IEEE International Symposium on. IEEE, 2408-2412.

Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. 2017.
Gradient coding: Avoiding stragglers in distributed learning. In International
Conference on Machine Learning. 3368-3376.

Leandros Tassiulas and Anthony Ephremides. 1992. Stability properties of con-
strained queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE transactions on automatic control 37, 12 (1992),
1936-1948.

Haluk Topcuoglu, Salim Hariri, and Min-you Wu. 2002. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE transactions
on parallel and distributed systems 13, 3 (2002), 260-274.

Chien-Sheng Yang, Ramtin Pedarsani, and Salman Avestimehr. 2018.
Communication-Aware Scheduling of Serial Tasks for Dispersed Com-
puting. In 2018 IEEE International Symposium on Information Theory (ISIT)
(ISIT’2018). Vail, USA.

Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi, Mahdi
Soltanolkotabi, and A Salman Avestimehr. 2019. Lagrange Coded Computing:
Optimal Design for Resiliency, Security and Privacy. In Artificial Intelligence and
Statistics.

Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. 2017. Polynomial
codes: an optimal design for high-dimensional coded matrix multiplication. In
Advances in Neural Information Processing Systems. 4403-4413.

Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.
2008. Improving MapReduce performance in heterogeneous environments.. In
Osdi, Vol. 8. 7.

Wei Zheng and Rizos Sakellariou. 2013. Stochastic DAG scheduling using a
Monte Carlo approach. J. Parallel and Distrib. Comput. 73, 12 (2013), 1673-1689.

[20]

[21

[22

[23

[25]

[26

[27

[28]

[29]

[30]

[31

[32]

APPENDIX
A PROOF OF LEMMA 4.3

Given an outcome of ji, we denote Y(d, [, t?) as the total number of
results sent back to the master in time d using the load allocation

vector £. We define two events A = {ji : Y(d, /i, €) > K(¢1)} and B =
{i : Y(d, [, {7) > K(g2)}. It is clear that we have P(T(Zgl) <d) =
P(A) and P(T(Z’§2) < d) = P(B). Considering an arbitrarz outcome
of ji with theﬂfact K(g1) < K(g2), we have that if Y(d, [i,£) > K(g2)
then Y(d, i, €) > K(g1). It implies B C A which concludes P(A) >
P(B), e, BTE9)() < d) > BTE9)(F) < d).

B PROOF OF LEMMA 4.4
Given a load allocation vector £, we can construct £ by assigning
{’; ={pif0 < {; < {p,and é’; = {4 otherwise.

Given an outcome of ji, we denote Y(d, ji, €) as total number of
results sent back to the master in time d using the load allocation
vector £. We define two events A = {f : Y(d, i€ > K*} and
B2 {ji:Y(d,ji,{') 2 K*}. It is clear that we have P(T([’g*)(ﬁ) <
d) = P(A), and P(T(K’gi)(ﬁ) < d) = P(B). Considering an arbitrary
outcome of /i, we have the following facts: (1) If 0 < ¢; < ¢}, then

£, . VAR
Zi< < L2
we have o < d.(2)If ¢, < t; < €4, we have either e Ty S d or

’

I

T d.(3) E;. > ¢; for all i. By the facts above, if Y(d, i, Z) >
K*, then Y(d, ﬁ,g') > K* which implies A € B. Thus, we have
P(T(gl’g*)(ﬁ) <d) > P(T(g’g*)(ﬁ) < d) which completes the proof.

C PROOF OF LEMMA 5.2

In round m, we have the optimal success probability:

1G5 (m)]
[Teaitm]

1=a(Gy(m) G:GCGy(m).|G|=1i€G ieGy(m\G

where Q;(m) characterizes the optimal load allocation vector in

P*(m) = Pp,i(m)

round m. Let’s recall that we have i}, to determine load allocation
vector in round m using LEA, i.e., {m,; = €4 if 1 <1 < iy, €, i = €
otherwise. It is clear that this allocation vector is characterized
by a set G(m) = [ir,]. Also, we have w(i},) = a(G(m)) where

w(i) £ [%;Mb]. Thus, P ga(m) can be written as follows:

P

lm
Prea(m) = [1pg:m [po.itm
I=w(i},) G:G<li}n).|G|=1 i€G ie[i\G
1Gy(m)|
= > > [eeitm] pestm
I=a(Gy(m)) G:GCGy(m),|G|=1 1€G i€Gy(m\G

Note that the allocation vector characterized by Gg(m) maximizes
the estimated success probability defined in (7) and (8) which is the
estimated success probability based on pgy, ;(m) and py, ;(m).

By SLLN, we have that p4 ;(m) converges to pg, ;(m) and py, ;(m)
converges to pp, ;(m) almost surely, as m goes to infinity. For all
€ > 0, there exists m(e) such that |pg, ;(m) — pg,i(m)| < € and
|pp,i(m) — pp, i(m)| < € for all m > m(e). Since Gg(m) maximizes
the estimated success probability based on pg, ;(m) and py, ;(m), for
all m > m(e), we have

P*(m)
16 (m)]

<) > [ésim+e

< [T @eitm+o
I=a(|Gg(m)]) G:GCGy(m),|G|=l ieG

ieG;(m\G
1G5 (m)]
= > > [1pg.im || foitm+flo
I=a(1G;(m)) G:GCG(m),|G|=l i€G i€Gy(m\G
\Gg(mﬂ
Y > [16g:m)] Boitm+fee)
I=a(|Gy(m)]) G:GCGy(m).|G|=11€G i€Gy(m\G

1Gg(m)]

> > [[®g.itm)+e)
I=a(|Gg(m)]) G:GCGy(m).|G|=11€G
+ f(e) =Prga(m) + g(e) + f(e).
Note that h(e) = g(e) + f(¢) is a polynomial function of € and
h(0) = 0, which implies h(e) — 0 as € — 0. Moreover, it is clear
that Prga(m) < P*(m) since P*(m) is optimal. Therefore, we can
conclude that for all e; > 0, there exists m(e1) such that |PLga(m)—
P*(m)| < €; for all m > m(e;) which completes the proof.

[T @eim+e
ieGg(m\G

	Abstract
	1 Introduction
	1.1 Related Prior Work

	2 System Model
	2.1 Computation Model
	2.2 Network Model
	2.3 Problem Formulation

	3 Lagrange Estimate-and-Allocate (LEA) Strategy
	3.1 Data Encoding in LEA
	3.2 Load Allocation in LEA

	4 Upper bound on the timely computation throughput
	4.1 Optimal Success Probability of One Round Computation
	4.2 Load Allocation Problem

	5 Optimality of LEA
	6 Experiments
	6.1 Numerical Analysis
	6.2 Experiments using Amazon EC2 machines

	7 Conclusion
	8 Acknowledgment
	References
	A Proof of Lemma ??
	B Proof of Lemma ??
	C Proof of Lemma ??

