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1 Introduction

We consider the Wave-Klein-Gordon (W-KG) system in 3 4+ 1 dimensions,
— Ou = A*9,v05v + Dv?,
(~0+ 1)v = uB*?9,05v + Euv, (1.1)

where u, v are real-valued functions, and A*?, B®%, D, and E are real constants. Without loss
of generality we may assume that A% = A8® and B*8 = B o, € {0,1,2,3}.

The system (1.1) was derived by Wang [42] and LeFloch-Ma [35] as a model for the full
Einstein—-Klein-Gordon (E-KG) system

Ricap = DatyDpt) + (1/2)¢°gap, Ogth = 1. (1.2)

Intuitively, the deviation of the Lorentzian metric ¢ from the Minkowski metric is replaced by
a scalar function u, and the massive scalar field ¢ is replaced by v. The system (1.1) keeps

the same linear structure as the Einstein—Klein—Gordon equations in harmonic gauge, but only
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keeps, schematically, quadratic interactions that involve the massive scalar field (the semilinear
terms in the first equation and the quasilinear terms in the second equation coming from the

reduced wave operator).

A natural question in the context of evolution equations is the question of global stability
of certain physical solutions. For example, for the Einstein-vacuum equation, global stability
of the Minkowski space-time is a central theorem in General Relativity, due to Christodoulou—
Klainerman [5] (see also the more recent papers of Klainerman—Nicolo [33], Lindblad-Rodnianski
[37], Bieri—Zipser [3], and Speck [41]).

In our case, this question was first addressed by Wang [42] and LeFloch-Ma [35], who proved
global stability for the (W-KG) system in the case of small, smooth, and compactly supported
perturbations. Global stability of the full (E-KG) system was then proved by LeFloch-Ma [36],
in the case of small and smooth perturbations that agree with a Schwarzschild solution outside
a compact set (see also the outline of a similar theorem by Wang [43]).

The analysis in [35, 36, 42, 43] relies on refinements of the hyperbolic foliation method (see
also [34] for a longer exposition of the method). To implement this method one needs to first
have control of the solution on an initial hyperboloid, and then propagate this control to the
interior region. As a result, this approach appears to be restricted to the case when one can
establish such good control on an initial hyperboloid. Due to the finite speed of propagation,
this is possible in the case of compactly supported data for the (W-KG) system, and in the
case of data that agrees with (S;,,0) outside a compact set for the (E-KG) system (here S, is
a Schwarzschild solution with mass m < 1). In the Einstein-vacuum case, the corresponding
global regularity result for such “restricted data” was proved by Lindblad—Rodnianski [37]. See

also the work of Friedrich [12] for an earlier semi-global result.

Our goal in this paper is to initiate the study of global solutions for the systems (1.1)
and (1.2), in the case of small and smooth data that decay at suitable rates at infinity, but are
not necessarily compactly supported. This case is physically relevant because of the large family
of asymptotically flat initial data sets. We consider here only the simpler (W-KG) model (1.1),
and hope to return to the full Einstein—Klein—Gordon model in the future.

Our framework in this paper is inspired by the recent advances in the global existence
theory for quasilinear dispersive models, such as plasma models and water waves. We rely on a
combination of energy estimates and Fourier analysis. At a very general level one should think
that energy estimates are used, in combination with vector-fields, to control high regularity
norms of the solutions, while the Fourier analysis is used, mostly in connection with normal
forms, analysis of resonant sets, and a special “designer” norm, to prove dispersion and decay

in lower regularity norms.

1.1 The Main Theorem

Our main theorem concerns the global regularity of the (W-KG) system (1.1), for small initial
data (ug,vp). To state this theorem precisely we need some notation. We define the operators
on R3

Ao = |V|, Ay :=(V)=/|V|2+1. (1.3)
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We define also the Lorentz vector-fields I'; and the rotation vector-fields €2,

Fj = xj(?t + tﬁj, ij = :cjak — l‘kaj, (14)
for 4,k € {1,2,3}. These vector-fields commute with both the wave operator and the Klein—
Gordon operator. For any a = (a1, ag,a3) € (Z4)? we define

0% := 071052053, Q% :=Q33Q05307%, T :=T{T5°T5°. (1.5)
For any n € Z we define V,, as the set of differential operators of the form
3 3
Vi = {ra“rszrgmzaﬂgiﬂ’iaag%f‘l8328?3 1D (a5 + b)) + Y o < ”} (1.6)
j=1 k=0
To state our main theorem we need to introduce several Banach spaces of functions on R3.

Definition 1.1 Fora > 0 let H® denote the usual Sobolev spaces of index a on R3. We define
also the Banach spaces Hg’b, a,b € Z,, by the norms

1F e = D 12 f e (L.7)
| <b
We also define the weighted Sobolev spaces H;Zm and ngzg by the norms
— B’ 56 — B’ 58
Flse o= 3 120 lme, Flgee = 3 127 flae, (18)
181<181<b 181,16"1<b

where ¥ = xfixgémgé and 9° = 81518528?3. Notice that ngzg — Hg.:fua — Hg’b — He.

We are now ready to state our main theorem, which is a global regularity result for the
system (1.1). For simplicity we will assume that B% = 0. This can be achieved by replacing a
term like B°93v with BY"(Av —v) (which can be incorporated with the other quadratic terms
in the nonlinearity), at the expense of creating cubic order terms in the second equation in (1.1)
which do not change the analysis.

Theorem 1.2 Assume that Ny := 40, Ny := 3, d := 10, and A*?,B*} . D,E € R, B =
0. Assume that ug, g, vo, %0 : R3 — R are real-valued initial data satisfying the smallness

assumptions
Ny

_ k
SV 1/2U8”“|\Hg5;2"‘ + |\U09||Hév$),n] <ep<e, (1.9)

n=0
where ¢ is a sufficiently small constant (depending only on the constants A°?, B*? D, E in
(1.1)), N(0) = Ng + 3d, N(n) = Ng —dn forn > 1, and

Uéua = 110 — iAwauo, U(]fg = 1.}0 — iAkg’Uo. (1.10)

Then there is a unique real-valued global solution (u,v) of the system (1.1) with (|V|*/?u,v) €
C([0,00) : HNO) x HNO+1)y A C1([0,00) : HNO=1 x HNO)) " with initial data

U(O) = Uo, 8tu(0) = il‘Oa U(O) = Vo, 3tv(0) = 00'
Moreover, with 6 = 1077, the solution (u,v) satisfies the energy bounds with slow growth,

o V17285 = Awa) Lult) | ren + 110 = ihg) Lo(B) | aen } S eo(1+1)°, (1.11)
n<Ny, LEV,
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for any t € [0,00), and the pointwise decay bounds
> {1005 ut)|lpe + 10%05°v(t)l| 1<} S eo(1+1)° 1 (1.12)
‘alJrOé()SNo*Qd
We conclude this subsection with several remarks.

Remark 1.3 (i) The hypothesis on the data (1.9) can be expressed easily in terms of the
physical variables ug, g, v, U9, which are related to the real and the imaginary parts of the

normalized variables U'® and Uy Y. It can also be expressed in the Fourier space, i.e.

- n) 58 Frwa n) 58 17k9
Yo METEHON™OI T e+ Y IHEME@ONM UGz S o, (1.13)
I3 |<v<n 18’ ,v<n
for n € [0, Nq].
(ii) The low frequency structure of the wave component, in particular the |V|_1/ 2 multiplier,

is important. This is due to the fact that the bilinear interactions in the (W-KG) system are
resonant only when the frequency of the wave component is 0, so we need precise control of
these low frequencies. See also Subsection 1.3 below for a discussion of some of the main bilinear
interactions that involve low frequencies of the wave component.

(iii) One can derive more information about the global solution (u, v) as part of the bootstrap
argument. In fact, the solution satisfies the main bounds (2.17)—(2.19) in Proposition 2.2.

At a qualitative level, we also provide a precise description of the asymptotic behavior of
the solution. More precisely, the wave component u scatters linearly®) (in a weaker norm), in
the sense that there exists a profile V¢ € L?(R?) such that

[0y — iAwa)u(t) — e Hhwave| 5 0, ast — oo. (1.14)

On the other hand, the Klein—-Gordon component undergoes nonlinear scattering, in the sense
that there exists a profile V%9 such that

(8 — iApg)v(t) — e~ HAratiOE KI5 0 ast — oo,

' (1.15)
where ©(¢,1) := q+(§)/0 Ulow (VAR (£), 8) ds.

Here g, (¢) denotes a suitable multiplier that depends on the coefficients B*? and E, and 1oy
is a low-frequency truncation of u. The phase O(¢,t) is only relevant if ujoy is not integrable
along Klein—Gordon characteristics, which is the case in our problem. See Subsection 1.3 below.

1.2 Overview of the Proof

The system (1.1) is a quasilinear system of hyperbolic and dispersive equations. For general
such systems, even small and smooth data can lead to finite-time blow-up [24] and the analysis
depends on fine properties of the propagation of small waves (i.e. the linearized operator) and
on the precise structure of the nonlinearity (null forms).

One of the main difficulties in the analysis of (1.1) comes from the fact that we have a

genuine system in the sense that the linear evolution admits different speeds of propagation,

1) The linear scattering here is likely due to the very simple semilinear equation for w. In the case of the full

Einstein—Klein—Gordon system, one expects modified scattering for the metric components as well.
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corresponding to wave and Klein—Gordon propagation. As a result the set of “characteristics”
is more involved and one has a more limited set of geometric vector-fields available.

On a more technical level, it turns out that the main feature of the system above is the
slow decay of the low frequencies of wave component u in the interior of the light cone and in
particular along the characteristics associated to the Klein—-Gordon operator. This nonlinear
effect ultimately leads to modified scattering for the Klein—-Gordon component. This effect
would not be present if the quasilinear term was of the form Ou - V2v, in which case one
recovers linear scattering, see [26].

A number of important techniques have emerged over the years in the study of hyperbolic
systems of wave-type, starting with seminal contributions of John, Klainerman, Shatah, Simon,
Christodoulou, and Alinhac [1, 2, 4, 5, 24, 25, 29-32, 39, 40]. These include the vector-
field method, the normal form method, and the isolation of null structures. In our case, the
nonlinearity does not present a null structure, but has a delicate resonant pattern, and the
coupled system has a limited set of vector-fields which we use in our analysis.

Our approach, which builds on these early contributions can be traced back to ideas intro-
duced by Delort-Fang—Xue [6-8], Germain-Masmoud-Shatah [15, 16], Gustafson—Nakanishi-
Tsai [19], and developed by the authors and coauthors [9-11, 17, 18, 20-23, 28]. We also refer to
[13, 26] for additional works on systems of wave and Klein—-Gordon equations, and to [9, 14, 21]
for recent work on systems of Klein—-Gordon equations with different speeds.

In this paper we use a combination of energy estimates and Fourier analysis to control our
solutions. More precisely, we prove:

e Energy estimates to control high Sobolev norms and weighted norms using the vector-
fields in V,,. All the energy bounds are allowed to grow slowly in time, at various rates. These
energy bounds are also transferred to prove L? bounds with slow time growth on the linear
profiles and their derivatives in the Fourier space.

e Dispersive estimates, which lead to sharp decay. These are uniform bounds in time (i.e.
without slow time growth), in a suitable lower regularity Z norm. The choice of this “designer”
norm is important, and we construct it using a space-frequency atomic decomposition of the
profiles of the solution, as in some of our earlier papers? starting with [20]. At this stage, in
order to prove uniform bounds it is important to identify a nonlinear correction of the phase

and prove nonlinear scattering.

1.3 Nonlinear Effects

In this subsection we isolate two of the main nonlinear interactions in the system (1.1), and

explain their relevance in the proof.
1.3.1 The Low Frequency Structure of the Wave Component

By inspection of (1.1) we observe first that bounding the quadratic terms amounts to control

I://u-aav~65vda:dt.

2) In general, one should think of the Z norm as being connected to the location and the shape of the set of

trilinear integrals of the form

space-time resonances of the system, as in [10, 11, 17, 21]. In our case here there are no nontrivial space-time

resonances and the construction is simpler.
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Thus the resonant analysis is controlled by (essentially) only one type of quadratic phase

(&1, &) = Aig(&1) £ Apg(&2) £ Aa(E1+ &), |D] 2 (1+ |G|+ 16D +&f (1.16)

Thus we expect that the interactions where the wave component has small frequency, in par-
ticular when ¢|&; + &| < 1, will play an important role in the analysis.

One of the main difficulties in proving energy estimates comes from the imbalance in the
quasilinear term uV?2v, since energy estimates only lead to control of derivatives of u. To

illustrate this, apply a commuting vector-field T to (1.1) to get a system of the schematic form
—0OTu) =v-To,
(~O0+1)(Tv) = (Tw)d*v + {u-9*(Tv) + u-0*v}.

The terms in curly bracket in the equation for v can be treated easily (assuming bootstrap
energy estimates for v) and will be discarded for the following discussion. The first term in the
equation for v is more problematic because standard energy estimates would only allow us to

control energy functionals of the form
Eo(Tu) = Vo TulFz,  E7y(To) = [[TF:.

Thus T'u - 9?v is not well controlled when v has small frequencies ~ 1/t, and we have an
unwanted growth factor of up to ¢.
In order to compensate for this and recover the missing derivative, we use the faster (opti-

mal) decay of the Klein—-Gordon solution in two steps and the special structure of the system
KG x KG — Wave, Wave x KG — KQG.

This allows us to control first \V\_l/ ’T'w in energy norm. Indeed, assuming that u is located at

frequencies |¢| = 1/t, the first equation gives

0:£u(IV|20u) SIIVITY2Porye(v-To)lre S (14 6)2 0] L= - Exg(T0).

~

We would thus obtain an acceptable contribution, at least as long as we can show that v

decays pointwise at the optimal rate (1 + t)’3/2. On the other hand, if we now compute the
corresponding contribution in the energy estimates for v, we obtain (discarding the easy terms,

and assuming again that u is located at frequencies = 1/t)
D0:Erg(Tw) S [ITu - 002 S NVITY2 - (V| VI2Tw) | 22 0]z
S 402 ollwee - Eu(IV|7/T ).

Once again we obtain an acceptable contribution, as long as we can show that v has optimal
decay in time. To prove this optimal decay® we need to use the Z-norm, identify a nonlinear
phase correction, and prove modified scattering for v (see below for a discussion of this step).

This scheme allows us to deal with the contribution of the frequencies || ~ 1/t coming

from u (and also explains the factor |V|~1/2

in the energy functionals for u). To deal with
the contribution of larger frequencies we can start integrating by parts in time (the method of
normal forms) and use the lower bound (1.16) on the resonance phases.

3) In fact, we will not prove optimal decay for the full function v, but we will decompose v = voo + v2 wWhere
Voo has optimal pointwise decay and vz is suitably small in L2
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1.3.2 Long-range Perturbations and Modified Scattering

Assume for simplicity that we consider radial solutions of the system

Ou + |[Va0* +0° =0, (u(0), 8yu(0)) = (0,0),
(=04 1Dv—uAv=0, (v(0),00(0)) = (x,0), 1aj<1y <X < Lyjzi<2y (1.17)

Assume that v decays no faster than a linear solution,
Vao(t)] + ()] = ()™ *1pj01<0/2).

Using the explicit form of the linear propagator for the wave equation, and in particular, the

fact that it is nonnegative, one can see that
u(z,t) > 2/(t), |x| <t/4. (1.18)

Thus we see that u has a substantial (i.e. non integrable) presence inside the light cone, where
the characteristics of the Klein—Gordon equation are located. This is already a departure from
linear behavior (although this only affects the behavior of u on large spatial scales and disappears
in the energy of u, as the scattering statement in H' in (1.14) suggests). In addition, since u
is nonnegative, there can be no gain by averaging (i.e. no normal form), and the contribution
from uAw in (1.17) is indeed a long range quasilinear perturbation.

To control a norm that does not grow (the Z norm) we need to identify the correct asymp-

totic behavior and the correct nonlinear oscillations. Conjugating by the linear flow, letting
VkI(t) = e (8, — ihgg)v(t),

leads to a nonlinear equation for the Klein—Gordon profile

1

D Vk(¢, 1) = o’

/ k5, 1) (B Tadp0(€ — . t) + ED(E — 1)) dn.
RS

We write the right-hand side in terms of the linear profile V*9 and extract the resonant inter-
action that corresponds to the case when u has low frequencies, see (1.16). This leads to an
equation of the form

i
(27m)?

= iq: (OVF9(&,1) -

B V(€ ) = / itlAks (= Ara €=, ), (€ — ) VF9(E — n, t)d + Lo.t.
{Inl«1}

1 ) / SV Arg O+0Un G £ + Lot.
(2m)% i<y
where q4 denotes a real-valued multiplier. Discarding the quadratic error in the phase and

performing the Fourier inversion leads to the ODE
O VH9(€,t) = 14 () wow (tV AR (€), 1) - VFI(E, 1) + Lot

This leads to a phase correction (written explicitly in (1.15)) corresponding to integrating the
effect of the quasilinear term along the characteristics of the Klein—-Gordon flow (tVA,(£),1).
This is consistent with a choice of Z-norm for v controlling the amplitude of the solutions

pointwise in Fourier space, but allowing for an additional oscillating phase, see (2.11).
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1.4 Organization

The rest of the paper is concerned with the proof of Theorem 1.2. In Section 2 we introduce the
main notation, define the main Z-norm, and state the main bootstrap proposition. In Section 3
we prove various lemmas, such as dispersive linear bounds and some bounds on quadratic
phases. In Section 4 we use the bootstrap assumptions and elliptic analysis to derive various
bounds on the unknowns and their vector-field derivatives.

We then start the proof of the main bootstrap proposition in Section 5, where we obtain
improved energy estimates. In Section 6 we translate the estimate on vector-fields applied
to functions into weighted bounds on the linear profiles. In the last two sections, we recover
uniform control of the Z-norm. This involves first isolating the modification to linear scattering
in Section 7, where we also control the Klein-Gordon solution. Finally in Section 8 we control
the Z-norm for the wave unknown.

2 Function Spaces and the Main Proposition

2.1 Notation, Atomic Decomposition, and the Z-norm

We start by summarizing our main definitions and notations.
2.1.1 Littlewood—Paley Projections

We fix ¢ : R — [0,1] an even smooth function supported in [—8/5,8/5] and equal to 1 in
[~5/4,5/4]. For simplicity of notation, we also let ¢ : R® — [0,1] denote the corresponding
radial function on R?. Let

or(x) := p(Jz|/2%) — p(|z|/2"71) for any k € Z, ;= Z ©m for any I C R.
melnZ

For any B € R let

P<B ‘= P(-00,B]y P>B ‘= P[B,c0)y P<B ‘= P(-00,B)s P>B ‘= P(B,x0)-

For any a < b€ Z and j € [a,b] N Z let

©j ifa<j<b,
petli=Lpe,  ifj=a, (2.1)
©>b if j =b.
For any x € Z let 7 = max(z,0) and 2~ := min(x,0). Let

J={(k,j) €ZxZy: k+j>0}.
For any (k,j) € J let
p<_(x) ifk4+j=0and k<0,
2 (2) == { peo(a) ifj=0and k>0,
w;(x) ifk+j>1landj>1,
and notice that, for any k € Z fixed, zjz—min(k,o) §5§.k) =1.

Let Py, k € Z, denote the operator on R? defined by the Fourier multiplier & — ().
Let P<p (respectively P-p) denote the operators on R? defined by the Fourier multipliers
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& — p<p(&) (respectively & — ¢~ p(§)). For (k,j) € J let Q;, denote the operator
(Qr)(@) =3 (@) - Pef (). (22)

In view of the uncertainty principle the operators @) are relevant only when 272F > 1, which

explains the definitions above.
2.1.2 Linear Profiles and Norms

An important role will be played by the normalized solutions U™* U*9 and their associated

profiles V@ V*9 defined by
U (t) = Qpu(t) — ihwau(t), UM (t) := dpu(t) — iAgyv(t), (2.3)
Vel (L) = elthee e (t),  VRI(L) 1= et b (1), '

where, as before, Ay, = |V| and Ay, = /1 + |V|2. More generally, for differential operators
L € Vy, we define U¥®, UL VL& V9 by
Upe(t) := (0 — iMwa) (Lu) (), Ulgg(t) = (0 — iAkg) (LV)(2),
VR () = e URe(t),  VAI(E) = e Up9 (1),
We define also
Uwa’ = Uy, ng, — 729; Vwa’ = Vpe, ng’ — l’fg’
Uzua,+ — Uwa7 ng,Jr = UEQ; Vwa + Vwa VﬂkgHr — ng.

(2.4)

(2.5)

The functions Lu, Lv can be recovered from the normalized variables Up¢ Uzg by the formulas

Oo(Lu) = (U +Up) /2, Awa(Lu) =i(Up* —UE*)/2,

A (Lv) = (U + UL /2, Apg(Lv) =i(U —U))2. 20
The system (1.1) gives, for any £ € Vy,,
(0 + 1M UL = NP := L]AYP 00050 + Dv?],
(8 + Mg ) UL = N9 := L[uB* 0,050 + Euv]. (2.7)
Let
P :={(wa, +), (wa, —), (kg, +), (kg, —)}- (2.8)

Let Awa,Jr(f) = Awa(é-) = f'; Awa,f(g) = _Awa,Jr(f)y Akg,+(§) = Ak:g(f) = \/‘5'2 +1,
Apg,—(€) == —Apg +(§). For any o, u,v € P we define the associated quadratic phase function
(I)a;w 'R® xR — R, (ba;w(gvn) = Aa(g) - Au(g - 77) - Au(n)' (2'9)
We are now ready to define the main norms.

Definition 2.1 For any x € R let 27 = max(x,0) and 2~ = min(z,0). Let § := 10710,
Ki=20V/6 =2 x107%, d =10, and d’ := 3d/2. We define the spaces Zwa, Zig, by the norms

_ + — K .
1F e i= ?;61}2){2(% d kT ok (1/24k) Z 2J||ijf||L2} (2.10)

j>max(0,~k)

and

—dkt - —K D 7 — to—k—kk™
Hf”Zkg = iléIZ){Q(No d')k 2k (1/2 )”PkaLoo +2(N(0) 2)k ) k k ||PkaL2} (2.11)
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We remark that the norms 7, and Z, are applied to the profiles V** and Vk9 not to
the normalized solutions U%* and U*9.
2.2 The Main Bootstrap Proposition
Our main result is the following proposition:

Proposition 2.2  Assume that (u,v) is a solution to (1.1) on some time interval [0,T], T > 1,
with initial data (ug, o, vo, Vo) satisfying the assumptions (1.9), and define UF®, U]Zg, Ve, Vﬁkg
as before. Assume also that, for any t € [0,T], the solution satisfies the bootstrap hypothesis

sup  {[[VITPURY Ol v + US|l von} < ()7, (2.12)
n<Ny, LEV,
4 _
sup sup 2V (982 (€) (9, V) (€,)
n<Ni—1, LEV,,1€{1,2,3} kEL
+ kg n
+ 2 [l on(€)(0 V) (€, D) 12} < ex(t) T2, (2.13)
and
VO 2y + IV (D)l 2, < €1, (2.14)
where (t) := /1 +12, e, = 53/3, §=10"1°, d =10,
H(0)=1, H(n)=200n—190 forne{l,...,Ni}, (2.15)
and
N(©0)=No+3d, N(n)=Ny—dn forne{l,...,Ni}. (2.16)

Then the following improved bounds hold, for any t € [0,T],

sup  {IV[TPUEY O grven + 1UE @)l nem } S eo(t) 002, (2.17)
n<Ni, LEV,
n + (7wa
sup sup 2N DR {98201 (€) (9, V) (€, 1) 2

n<N;—1, LEV,,,1€{1,2,3} kEZ

+ 2|k (€) (9 VE)) (6, D) 12} S eo (1) 12, (2.18)
and

IV 2y + IV 20, S €0 (2.19)

We will show in Proposition 4.4 below that the hypothesis (1.9) implies that desired con-
clusions (2.17)—(2.19) at time ¢ = 0. Given Proposition 2.2, Theorem 1.2 follows using a local
existence result and a continuity argument. The rest of this paper is concerned with the proof
of Proposition 2.2.

The bounds (2.12) and (2.17) provide high order energy control on the main variables Uy
and Ufg. Notice that all the energy functionals are allowed to grow slowly in time. Notice
also that there is a certain energy hierarchy expressed in terms of the parameters H(n) and
N(n), in the sense that the variables with more vector-fields are allowed to grow slightly faster
compared with those with fewer vector-fields, in weaker Sobolev spaces.

The bounds (2.13) and (2.18) are our main L? bounds on the derivatives of the profiles V
and fo 9 in the Fourier space. They correspond to weighted bounds in the physical space and

can be linked to the energy estimates using the key identities in Lemma 6.1.
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The bounds (2.14) and (2.19) are our main dispersive bounds. Notice that these bounds are
more precise than the Sobolev bounds, in the sense that the solutions are not allowed to grow
slowly in time in the Z-norm, but at a lower order of derivatives and without vector-fields. To
prove these dispersive bounds it is important to first renormalize the Klein-Gordon profile V*9

and prove modified scattering.

3 Some Lemmas

In this section we collect several lemmas that are used in the rest of the paper. We start with a

lemma that is used often in integration by parts arguments. See [21, Lemma 5.4] for the proof.

Lemma 3.1 Assume that0 < e <1/e < K, N > 1 is an integer, and f,g € CN+1(R3). Then
[ e tgds] S (07| S dlinzgln]. (3.1)

la|<N
provided that f is real-valued,

Ve f| > Lsupp g and ||D3f - 1supngL°° SN 617|a|7 2<]a|<N+1. (3.2)

To bound bilinear operators, we often use the following simple lemma.

Lemma 3.2 (i) Assume that | > 2, fi,...,fi, fis1 € L*(R®), and M : (R®)! — C is a

continuous compactly supported function. Then

‘ o M(&,.. &) fi(€) -+ A& Fr (=& — - — &) de; -+ dE,
5 ||.7:_1M||L1((R3)L)||f1HLpl ..... Hfl+1||LPl,+1, (33)

for any exponents p1,...,pi1 € [1,00] satisfying 1/p1 + -+ 1/pip1 = 1.
(ii) As a consequence, if q,p2,ps € [1,00] satisfy 1/pa + 1/ps = 1/q then

7 { [ aremimac-e-man| S Il lole. G4)

La
Our next lemma is often used in integration by parts in time arguments (normal forms).

Lemma 3.3 (i) Assume that ®,,, is as in (2.9). If ], —nl,|n| € [0,b], 1 < b, then
|¢)O'Ml/(§7,'7)| 2 |£|/(4b2) Zf (U7Ma V) = ((wavL)a(kg7L1)a(kga L?))a
|(b0'p,z/(§> 7])| 2 |77|/(4b2) Zf (07 122 V) = ((kga L), (kg7 Ll)a (wa, L2))'

(ii) Assume that k,ki,ke € Z and n is a multiplier such that ||.7:*1n||L1(RsxR3) < 1. Let
k= max(kvkhk?)' If (0'“11,,1/) = ((wa7L)a (kngl)v (kga LQ)) then

(3.5)

1D (€, 1) 1€, ) - 91 (E) P (€ = M)Pks (M} 11 5 sy S 27F2% (3.6)
Moreover, if (o, u,v) = ((kg,t), (kg, 1), (wa,t2)) then
[ F N Popn (&,m) (&, m) - 01(E) Pk, (€ — M)y (M) ] 1 (RE xR S gkagih” (3.7)

Proof (i) The bounds follow from the elementary inequalities

V14241442 — (@ +y) > 1/(20),
2+ V1+y? = V1t (2 +y)? = a/(407),
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which hold if z,y,x +y € [0,b]. The second inequality can be proved by setting F'(x) :=
x4+ /1+y2—/1+ (z +y)? and noticing that F’(z) > 1/(4b?) as long as y,x +y € [0, ).
(ii) By symmetry, it suffices to prove (3.6). Also, since

1FH Dl SNF Tl IF gl e, (3.9)

without loss of generality we may assume that n =1 and + = 4. Let
1

=270, (250, )t = :
(v, ) I o) 2k, (5~ 280) — 2K A, ()

For (3.6) it suffices to prove that

|7~ m(v,m) - 0o(v)x, (7 — 20) 0, ()} 1o sy S 22 (3.11)
We consider two cases, depending on the signs ¢1 and ¢s.
Case 1 11 # 1. By symmetry we may assume that 1o = —, 11 = +, so
1
o] = 27% /1 + [ — 2k0[2 + 2% /1 + |2
C 2R 4 /1 + )2+ /14 | — 2k0]?
- 2(jolv/1+ [f? + v )
_ REl+ V1 P+ V1 = 2P0 fol 1+ [0l = o]
2[jvl* + [v*[n]* = (v - n)?]
The first identity follows by algebraic simplifications, after multiplying both the numerator and
the denominator by |v| +27%\/1 4 |n — 2kv|2 + 27%,/1 + |5|2. The second identity follows by
multiplying both the numerator and the denominator by |v|\/1 + ||> — v - 1. The numerator

m(v,n) =

(3.12)

in the formula above is a sum of simple products and its contribution is a factor of 92" In
view of the general bound (3.9), for (3.11) it suffices to prove that, for I > 0

R . 1
iz iyn dvd
H/ o2 4 fof2pnl2 — (v -y POl dvdn

We insert thin angular cutoffs in v, i.e. factors of the form p<_;_19(v2)p<_;—10(v3). Due

< 2%, (3.13)
L,

to rotation invariance it suffices to prove that

PREEN Y<—1-10(V2)P<—-1—-10\V3
H /Rs R3 . ) ( )@O(U)wgz(n) dvdn
x

S L
[0 + [o[n]* = (v -n)?

1

x,y

We make the changes of variables v < wy, vy < 27wy, v = 27w, m < 2lp1,172 — P2,M3 <
ps. After rescaling the spatial variables appropriately, it suffices to prove that

H/q gei“"“’eiy"’m’(w,p)@[74,4](wl)wgflo(wz)@gflo(wz%)
R3xR

p<a(pr)p<iralp2)p<iralps) dwdp S (3.14)

L; y
where
m/(w, p) = {wi(1+ p3 + p3) + pi(w3 + w3)

+ 272 (w3 4+ wi + (waps — wap2)?) — 2p1w1 (waps + waps)} '
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It is easy to see that |m/(w, p)| ~ (1 + |p|*)~" and [DGDIm/(w,p)| < (1+ [p|*)~~1#1/2 in the
support of the integral, for all multi-indeces a and 8 with |a| < 4, |3] < 4. The bound (3.14)
follows by a standard integration by parts argument, which completes the proof of (3.11).
Case 2 1] = 9. If 11 = 15 = +, then we write, as in (3.12),

1

m(v,n) =
= ) 2o/ = 2ol — 21
_ 2l = VIl 4 VL = 2802 [ol /1 (2 4o )
2[[vf* + [v[[nl* = (v - n)?]
On the other hand, if 11 = 15 = —, then we write, as in (3.12),
1
m(v,n)

ol 27F /1 4 | — 2R0)2 4 27k /1 4 [

_ 2ol + V1 2 = V1 = 280l /T + 2 — v )
2[[v[? + [v2[n[? = (v 7)?]

The desired conclusion follows in both cases using (3.13) and the general bound (3.9). In fact,
since || F~Hpo(v)(28[v] £ 1+ 02 F 1+ |n— 2k I resrsy S 2%, we get a stronger
bound when o = (wa, ) and p =v € {(kg,+), (kg,—)},
v
17 H{ o (€ m) " (&, ) - 1 (€)rs (€ = Mka (M H 21 Roxm) S 27 (3.15)

as desired O

3.0.1 Linear Estimates
We prove now several linear estimates.

Lemma 3.4 (i) For any f € L*(R®) and (k,j) € J let

fik = PQif, Q<jif = > Qjf,  f<jk = PQ<jnl, (3.16)

j’€[max(—k,0),j]

where P}, = Py_s i 42. Then, for any a € (Z4)?,

1D Frellze < 29901 Qufllze, 108 Frnll S 29| Qif |l (3.17)
Moreover we have
1Fkllzee S min{2¥/2)|Qjf 12, 2772 KLU/ Qpp fll o}, (3.18)
1k O 2 2am iz S 27 1Qunf e, (3.19)
15O 2(r2ary g Sp |Qinfllgor, b€ [2,00), (3.20)
and
1@t — Tl S 2597227460 Py o (3.21)
In particular, if
sup [|Qufllgor <A, sup 2F|Qif | gor < B (3.22)
j>—k~ j=>—k~

for some k € Z and A < B € [0,00), then

||-Fk\fHL°° < 9—3k/2 f(1-68)/2 g(1+6)/2 (3.23)
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(ii) For anyt € R, (k,j) € J, and f € L*(R?) we have
le™ e £kl o < 2°%/% min(1,27(6) ™) |Qyn fl 2. (3.24)

Moreover, if |t| > 1 and j > max(—k,0), then we have the stronger bounds

lo-100,100((8) ") (€ A £ 1) (@) [ 2= S (072821 4+ (0271 Qif |l o1 (3.25)
le™ 8w £ ke S (T2 + (025 B Qun fll o if 27 < 270 (3.26)
e Sl S 250 NGl i 2 5 ()72 (327

(iii) For anyt € R, (k,j) € J, and f € L*(R3) we have
—i . 4 ,
le™ %% £ gl poe S min{ 23572, 2557 (1) =323 /231 Qj £ 2. (3.28)
Moreover, if 1 < 228" =20t} and j > max(—k,0), then we have the stronger bounds
le= %0 £ gl e S 27K (&) 72222 (02 )3 Qrfll o i 2 <28 7F); (3.29)
le™ %0 ekl S 25 (2N Qeint e i 2 S (B2 (3.30)

(iv) The bounds (3.26), (3.27), and (3.29) can be improved by using super-localization in
frequency. Indeed, for n >4 and l € Z we define the operators Cp; by

Cri9(€) = x(1€1271 = n)g(€), (3.31)

where x : R — [0,1] is a smooth function supported in [—~2,2] with the property that ), x (v —
n) =1 for all x € R. Assume that [t| > 1, j > max(—k,0), and | < k —6. Then

1/2
{Sletmcuifinli-} S 072204 02 Qg 632
n>4
provided that 27 4+ 270 < (£)(1 + (£)2%)=%/8. Moreover, if 27 + 271 < (t)1/227F/2 then
sup le™ e Crt fejpellz= S 252/ () 1 Q<jnf |l L= (3.33)
nz

Finally, if 20 4270 < (#)2F7 (1 + (£)2%F7)=%/8 then

1/2
{ > |eimwcn,lfj,k||im} <O ()22 (L4 (0927 Qued g (334)
n>4
The super-localized bounds in (iv) are not being used in this paper. We include them here
for future reference, as they can be proved in the same way as the bounds in (ii) and (iii).
Proof (i) The bound (3.17) follows from definitions, since every £ derivative corresponds to

multiplication by « in the physical space. Similarly,
1Fillze S Qe * P<jrallr= S 22| Qju fll 12,

which gives the first inequality in (3.18). A similar argument also gives (3.21).
Using the Sobolev embedding along the spheres S2, for any g € H, g’l and p € [2,00) we have

19(r0) | L2 (r2arye Sp > 1955l Sp 19l (3.35)
mi+ma+m3z<1
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This gives (3.20). Moreover, for £ € R? with |¢| ~ 2% we estimate
BRI % [ | 1@l — ro)lraras
S 1@ 19 22ar g 129 (1 + 2716 = 160) ™8| a0
<» ||¢jjz,«f||H%1 . 93i9—i/29k9=2(j+k)/p’

The second bound in (3.18) follows. The proof of (3.19) is similar.
To prove (3.23) we use (3.18) to estimate

Z ||f]\k||L°° < 9—3k/2 Z 2(j+k:)/226(j+k)/8”ijfHH%l < 2’3’“/214(1’5)/23(”5)/2,
el Jjz—k-

and the desired conclusion follows.

We prove the remaining bounds (3.24)—(3.34) in several steps.
Step 1  Proof of (3.32) and (3.33) Let

T = Qunfs i = Coafins  Granl(&) = F()pa(27!I] = m). (3.36)

By orthogonality,

1/2
{ S ol } 5 Mrialg

n>4

For (3.32) it suffices to prove that, for any n > 4 and x € R3,
‘ /R el g () P2 (X (€127 — ) df‘ S 0722625 gj im0+ (3.37)

This follows easily if 2%(t) < 1. Recall that 27 + 27 < (£)(1 + (¢)2¥)7%/% and k > [ + 6.
The bounds (3.37) also follow directly from Lemma 3.1 (integration by parts in &) if |z| ¢
2-90(1), 240(1)].

It remains to prove (3.37) when

26(t) > 2%, Jal € [27°0(t),2%°(t)]. (3.38)

By rotation invariance we may assume z = (21,0,0). We decompose e twaf; . (v) =

Zb,czo Jp,c, where
Toei=C [ G (€pneansm(OX(E2 = neitse el (6) de,

Unel€) 1=y (/2P (6/2Y), 2% = (1) 712242,

We estimate first |Jg o|. For any p € [2,00), using also (3.35) we have

(3.39)

o0l S 195kn (rO) | p2(rzarypp (22 )22 2522 <) I gj el o - (87122 (0)29)1P. - (3.40)

This is consistent with the desired bound (3.37), by taking p large enough.
To estimate |Jp .| when (b, ¢) # (0,0) we may assume without loss of generality that b > c.
It suffices to show that if b > max(c,1) then

el S 6)7122((0)25) Ul gjinl o (3.41)
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We integrate by parts in the integral in (3.39), up to three times, using the rotation vector-
field Q19 = &10¢, — &20¢,. Since Qio{z1&1 — t€|} = —&ax1, every integration by parts gains a
factor of [t|2* 0 ~ (£)1/22F/2%0 and loses a factor < (t)1/22%/2. If Q5 hits the function g; xn
then we stop integrating by parts and bound the integral by estimating Q12g; 5 in L2 As
in (3.40) it follows that

[ Tbel S 1G5mm (r0) |22y 2 (2227 28212270 1|15 g5 0|2 (22 F02172) (1) /228 /240) 71,
which gives the desired bound (3.41). This completes the proof of the main bounds (3.37).
The proof of (3.33) is easier. We define f<jk;n 1= Cnif<jk and fZ,, = Q<jif. For (3.33)
it suffices to prove that, for any n > 4 and = € R3,

\ / el T (€ ooz (OX(E[27 — ) dg| S 220 T e (3.42)

_ —itAya i _ /
As before, we may assume z = (x1,0,0) and decompose e~ va foi . (x) = Zb,cZO Jp » where

Thei=C [ FoaOpnoanem (Ol = men ey, () de

Unel€) 1= gy €2/l (6/2Y), 2% = ()72

Using polar coordinates, it is easy to see that |.J§ o] < 2k2l<t>*1||f/2;€||mo. Then we integrate
by parts in & or &3 (using the assumption 27 4 27! < (#)2*27%) to show that

(3.43)

| Jpol S 272kl (1) 7Y F2 ]| e

for any b, ¢ > 0. The desired conclusion (3.42) follows.
Step 2  Proof of (3.24) and (3.25) We start with (3.25). By rotation invariance we may

assume = = (x1,0,0), |z1| =~ (t). We may also assume that 2¥(t) > 240, As before we decompose

e thwa £ (1) = > b0 Jper Where

Jye = /R3 ]Tj,\k(f)w[k74,k+4] (&)elmr ety (€) de,

Do) 1= Pl (£2/20)pl0) (g5/2%), 2 1= (1) 71/22k/2,

This is similar to the decomposition (3.39) with { = k—6, once we notice that super-localization
is not important if 2/ ~ 2¥. As in (3.40) and (3.41), we have

160l Sp Ifillgns - () 12%2((1)25)2/1,

(3.44)

and, if b > max(c, 1),

[Jhel S (0)712"2(02) 10 £,

)

| 0,1.
HQ

The proof of this second bound uses integration by parts with the rotation vector-field Q15 =
£10g, — £20¢,, and relies on the assumption |z1| ~ (). The desired conclusion (3.25) follows
from these two bounds.

The bounds (3.24) follow by the same argument, using the decomposition (3.44), but us-
ing (3.19) instead of (3.20) in the estimate of |Jyo|. Also, integration by parts in & or &3 is
used to bound |Jy .| when 2Xtmax(b:e) > 9tk (1)—1,
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Step 3 Proof of (3.26) and (3.27) The bounds (3.27) follow directly from (3.33) by taking
2! ~ 2k, To prove (3.26) we may assume that z = (x1,0,0) and (t)2F > 240 If |z| €
[2719]¢[,2%]¢|], then the desired bounds follow from (3.25). On the other hand, if |z1]| < 2719¢|

or |z1| > 210]¢|, then we write

[ethwe 1 ](z) = C - ijf(y)e_iy'feiwlfle_it‘glw[kfz,kﬂ](f) dgdy. (3.45)
3>< 3

Here we use the fact that 27 < (¢)2719 and integrate by parts in ¢ sufficiently many times (using

Lemma 3.1) to see that
o™ e fi (@) S (02°) 122521 Quu fllze < ((6)25) 2% ()2 Qn f 22,

which is better than what we need.

Step 4 Proof of (3.34) This is similar to the proof of (3.32). It suffices to show that for
anyn24andxeR3,

’/Rg e_it@ei‘”f%(@s@[kq,km](§)x(|§|2_l _ n) d¢

+ _ .- —
SO 712227E (L (022 )| gjin

o (3.46)

This follows easily if 22% (t) < 1. Recall that 27 +270 < (#)2F (1 + ()22 )=9/% and k > [ +6.
The bounds (3.46) also follow directly from Lemma 3.1 if |z| ¢ [27402F (t), 2402k (¢)].

It remains to prove (3.46) when

22 (1) > 250 x| € [27992% (1), 2502F (1))]. (3.47)

We may assume z = (71,0,0) and decompose e~ Ars f; 1 (z) = > be>0 Jpes Where
Jie=C /R Gk (P22 (X(€27 = n)em O (€ de,

Vo (€) 1= @l (€/2Y )pl0) (g5/2), 2V = (1) V/22M"

As in the proof of (3.32), we estimate first |Jg'y|, using (3.35). Thus, for any p € [2, 00),

(3.48)

— r_ / + .- _ —
1960 < 13500 (rO) | 2 rzary 1 (2 7)Y/ P' 222 S gkl o - 2°F 27 () 71212 ()220 )P

~

Moreover, if b > max(c, 1) then we show that
A S 25 1) 12/ (0220 g, . (3.49)

These two bounds clearly suffice to prove (3.46).

To prove (3.49) we integrate by parts in the integral in (3.48), up to three times, using the
rotation vector-field Q1o = &10g, — €20¢,. Since Qqa{z1&1 —t(§)} = —&a1, every integration by
parts gains a factor of 28 |22 0 ~ (£)1/225+ (see (3.47)) and loses a factor < (£)1/22%, If Qo
hits the function 97;;1 then we stop integrating by parts and bound the integral by estimating
Q1275 km in L2, As before it follows that

o) S 1G5 (O agrary g (2 )P 22102270 - |uagy 10 (2V 02172 () /228) 1,

which gives the desired bound (3.49). This completes the proof of the main bounds (3.46).
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Step 5 Proof of (3.28)-(3.30)  Clearly [le= s £, pllzoe < |1 Fiklln < 2502 finllz2. More-
over, the standard dispersive bounds

le™ M0 Peyapoe S (14 Jt])~5/22%
can then be used to prove (3.28), i.e.
—i _ + _ + :
le™ A% £l S (L4 1) 72222 Qe fllor S (14 [t) =222 2992 Qe f | 2.

To prove (3.29) we consider first the harder case 2/ > (t)1/2. By rotation invariance we may
assume x = (11, 0,0), x1/t > 0. We may also assume that 2/+% > 2367410 (otherwise the desired
conclusion follows from (3.28)) and (£)273%" > 1. If |21 < 27190)¢|2% or |zy] > 2100)¢[2k~
then we write

e fin@) =C [ Quflye e VIR gy o (€) dedy. (3.50)
R3 xR

We integrate by parts in ¢ sufficiently many times (using Lemma 3.1 and recalling that |y| <
27+ < 2k =19(1)) to see that

e fk(2)] S ((02%F) 120252 Qjuf | 1o

This is better than what we need.

It remains to consider the main case |71 ~ [t|2¥ . Let p € (0,00) denote the unique
number with the property that tp/\/p2 + 1 = z1, such that (p,0,0) is the stationary point of
the phase ¢ — x1£; —t4/|€|2 + 1 and p > 2F . Using integration by parts (Lemma 3.1), we may
assume that £, &, &3 are restricted to |&o, [€3] < 28710 and & € [2K710, 28+10] (for the other
contributions we can use the formula (3.50) and get stronger bounds as before). Then we let

Jape i= /R3 J/tj,\k(f)<ﬁ[k—4,k+4](f)1+(51)9031@79(52)<P§k79(53)6”“517it\/‘5‘2+1¢a,b,c(f) dg,

(3.51)
Yabe(€) = 0% (&1 — p) /220l (€2/22) ) (£3/272),
where, for some sufficiently large constant C,
M = 2 (1) 193K HC (192K )8/20 9o () ~1/29KT (3.52)

Compared to the earlier decompositions, such as (3.39), we notice that we insert an additional
decomposition in the variable £; around the stationary point (p,0,0).
Recall that 27 > ()1/2. We estimate first |Jy 0,0, using (3.20), for any p € [2, 00),

o.0.0] Sp 1556 (r0) | 2(gany g (227F)2/P 242 /2
So £kl o (£)73/220/227K7 91K () 92k y1/eo/20, (3.53)
This is consistent with the desired bound (3.29), by taking p large enough.
To estimate |J, 5| when (a,b,c) # (0,0,0) we may assume without loss of generality that

b > c. If 2220 > 23 (1) =12k ((¢)22F7)9/40 then we integrate by parts in & many times, using
Lemma 3.1, to show that

[abel S I1fnlla ()27 ) 12342,
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which is better than what we need. This bound also holds, using integration by parts in &, if
222 tb < 97 (1) =12k7 ((¢)22k7)3/40 and ¢ > 1. It remains to prove that

+ _ . . —
ol S 2557 () 732207270 (027 ) 1) Qjief | o (3.54)

provided that
b>max(c,1) and 2%2F0 < 27(p) 1ok ((£)22k)0/40, (3.55)

To prove (3.54) we integrate by parts in (3.51), up to three times, using the rotation vector-
field Q12 = £10¢, — £20¢,. Since Qqa{z1&1 — t\/|§|2 + 1} = —&xq, every integration by parts
gains a factor of |¢[2F 2*2F0 ~ (¢)1/22F+Y and loses a factor < (t)1/22%. If Q5 hits the function
E—;, then we stop integrating by parts and bound the integral by estimating ngfj; in L?. As
in (3.53) it follows that

|J0,,c] Sp Hfj,k(re)||L2(r2dr)Ls(2)\27k)2/p,2k2)\1/227b + | Qo fygll 2222222 ((1)/22k) 7L

which gives the desired bound (3.54). This completes the proof of (3.29) when 27 > (t)1/2,
The bound (3.30) follows by a similar argument. We decompose the integral dyadically
around the critical point (p,0,0), as in (3.51) with 2% = (¢)~1/223k"+C ang 2X2 = (§)~1/29k"
and integrate by parts four times either in &, or in &, or in &5.
The bound (3.29) when 27 < (t)1/2 follows from (3.30) using also (3.18). O

We prove now a Hardy-type estimate involving localization in frequency and space.

Lemma 3.5 For f € L*(R3) and k € Z let

3 ~ _ 1/2
A= Pl + IO DOz, Bri=| X 2QuflE:| . @5
=1 j>max(—k,0)
Then, for any k € Z,
Ay < Z By, (3.57)
|k —k|<4
and
7 4 . >
By < Dok —kj<a A / / k=0, (3.58)
Swen A2 2 min(1, 28 %) itk <o,
Proof Clearly, by almost orthogonality,
By~ 27RO B f|| 2 + 2] - Pif 2
3
~ 2RO Bl + > 110, (Pr(€)FE Nz (3.59)

=1
The bound (3.57) follows. The bound in (3.58) also follows when k& > 0. On the other hand, if
k < 0 then it suffices to prove that
2R Pefllze $ > A2V 2 min(1, 25 ). (3.60)
K€L
For this we let f; :==a;f, 1 € {1,2,3}, so

3
1 x;
f= \x|2+1f+l; af2 + 17
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and, for any k' € Z,
3

1Pur fllz2 + Y 1P fill 2 S A
=1

Since |[F{(z®+1)71}(&)| £ €72 and |[F{zy (22 +1)"1}(&)| < |€] 72 for I € {1,2,3}, for (3.60)
it suffices to prove that
27 *lon(€)(g* K)(E)llre S Y Aw2 ™1/ min(1,2% %), (3.61)
=

provided that |og - gllz2 < Aw and K(n) = |n|=2. With gir = i - g we estimate

lor(©) (g * K) Lz S llgw 2l K - o<iyiollr S 28gwllre  if [k — K| < 6;
ok(€) (grr * K)(E)r2 S 2%%/2|gie || p2 || K - O —akr+4)llz2 S 23k/20=K 12 gl iE K > k4 6;
(&) (g * K)Ellze S lgw e |K - ep-apralee S 22722752 g2 if k' <k —6.

The desired bound (3.61) follows, which completes the proof of the lemma. O

4 Elliptic Estimates

In this section we prove several bounds on the functions V¢, Vﬁk 9, NP and N, gg at fixed times
€ [0,T]. These bounds are used in the energy estimates and the normal form arguments in

the next sections.

4.1 Bounds on the Profiles V¢ and VéC g

Recall the definitions (2.4) and the bootstrap assumptions (2.12)-(2.14). For p € {(wa,+),
(wa, —), (kg,+), (kg,—)}, L€ V,, n € {0,...,N1}, t € [0,T], (j,k) € J, and J > max(—k,0)
we define the localized profiles

Vi, c(t) 1= P2 k429 QirVE (1),
VE ket ngkﬁ Ve ke(t) = Zv}lfk;p(t) (4.1)

J<J 3>J
For simplicity of notation, we write sometimes Vj" > Vﬁ Tk and V 7k O denote the correspond-
ing functions V' ., V&, . and VL, - when £ =1d.
Lemma 4.1 Assume that (u,v) is a solution to (1.1) on some time interval [0,T], T > 1,
satisfying the bounds (2.12)—(2.14) in Proposition 2.2. Assume that L € V,,, n € {0,..., N1 }.
(i) For any t € [0,T] we have

VI 2VEA Ol von + IVEI Ol rven S ea(t)H (4.2)
Moreover, ifn <Ny —1, k€ Z, and | € {1,2,3} then
— + -
22|10k (€) (96 VA€ D) 2 + 2% or(€) (96 V) (E D) L2 S e1Y (K, tin), (4.3)
where
Y(k,t;n) = <t>H(”+1)52*N("+1)k+. (4.4)

As a consequence, if n < Ny — 1 and (k,j) € J then

222|QuuVE (1)l = + 22 QuVE (1) 12 S &Y (R, i), (4.5)
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In particular, if n < Ny — 1 and k € Z then
P2 PVEN |2 + 25 | PVE (B)l| e S ex2F () (Do NI DRT, (4.6)

(ii) As a consequence, if n < N1 — 1 then for any t € [0,T] and k € Z

—itA, wa, + - . — -
D lle e Vi () S Y (ki) (72222 min((1) 71, 2), (A7)
jz—k~
and
> Nl VI @llim S e (k)22 28 2 min((f) 7, 22). (4.8)
jz—k-

Moreover, if n < Ny — 2 and 228 =20(t) > 1 then

> e Ak VRIE ()| g S 1Y (ky tym 4 1) (1) 3/2H0/227R 29867 (4.9
27 g[2—k7 [ 2k7 —20(¢)]
(iii) In the case n =0 (so L =1d), we have the stronger bounds
S0 VQuV ) S ea2 /2R g N AT
i>—h-

|BVFS (1) | o S 21 27h /200K g NoR T +k"

)

[PV (8)| 2 < e 28 THk7 2= (NO) =2k (4.10)
forany k € Z and t € [0, T]. As a consequence

ST e AV (1) e S &2 G ming(r) 128 ppr MR @R )
Jj=z—k~

Moreover, if (t) > 272k +20 qnd 27 € [27F" 2k =20(4)] then
e VA (1) S e () /207K 24 ANk R (419)

Proof  All the bounds in the lemma follow easily from the bootstrap assumptions (2.12)—(2.14),
and Lemmas 3.4 and 3.5. Indeed, the bounds (4.2), (4.3), and (4.5) follow directly from the
bootstrap assumptions (2.12)—(2.13) and the bounds (3.58). The bounds (4.6) follow from (4.5)
by summation over j > —k~. The bounds (4.10) follow from (2.14) and Definition 2.1.

The dispersive bounds (4.7) and (4.11) follow from (3.24) and the bounds (4.5) and (4.10)
respectively. The bounds (4.8) follow from (3.28) and (4.5), by summation over j. The

bounds (4.9) follow from (3.29), once we notice that, as a consequence of (4.5), for |a|] <1

1QukQVE 12 S =Y (ks i+ fa)2 727" (1.13)
The bounds (4.12) follow directly from (4.2) if 2¥ > (t)1/34) and from (4.10) if 2% < () ~1/2++/8,
They also follow from (3.30) and (4.10) if 27 < (£)'/2. Finally, if 28 € [(t)=1/2+#/8 ($)1/(d)]
and 27 > (t)'/2 then we use (3.29) and (4.13) to estimate the remaining contribution by

Yool Vi@ s Y 2RI () e Y (k)27 27

29€[{t)1/2,27] 20 €[(t)1/2,27]
< e <t>73/227k¢’ 2—Nok++2dk++5k+ <t>6+H(2)571/4.

This suffices to complete the proof of (4.12) in the range 2F € [(t)~1/2+#/8 ()1/(3d)],
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We remark that the bounds (4.11) and (4.12) are the only dispersive bounds that provide

-3/2

sharp rates of decay (t)~' and (t) for significant parts of the normalized solutions U™ (t)

and U (t) respectively. All the other pointwise bounds involve small (t)©° losses. O

4.2 The Nonlinearities N y®
We prove now several bounds on the nonlinearities N 2.

Lemma 4.2  Assume that NF® is as in (2.7), L€ V,, n € {0,..., N1}, t € [0,T)], and k € Z.
(i) Then

wa wa - I’ (n : - — — n)kT +
IPANE (D)2 + [P0 VE (02 S €72 /() Pue ™ min(2F ", (1) =) 27 NWETHRT 0 (4.14)

where
H! (0):=5, H!. (n):=H(n)+160 forne{l,...,N1}. (4.15)

(ii) Moreover forl € {1,2,3} andn < Ny — 1,
1Pk (zNE) (1) 2 S 328 /2 (1) Hua(mig=NmET 45k (4.16)
Proof (i) For k € Z let
Xy, = {(k1, ko) € Z? : | max(ky, ko) —k| < 6 or (max(ky, ko) > k+7 and |k —ko| < 6)}. (4.17)

Let m denote generic multipliers that satisfy the bounds

17 (o - Dgm)z1 Sa 27101k" " for any k€7 and o € Z3. (4.18)
For my,mo as in (4.18), let I denote a bilinear operator of the form
TFal©) 1= [ ma(€ = nma(n) s = mitn) dn (1.19)
Notice that for 8 € {0,1,2,3} and L* € {T'1,T'3, '3, Qa3, 31, 212} we have
[L%,05] = > e 0y, (4.20)
v€{0,1,2,3}

for suitable coefficients cj. 5 € R. Clearly |[PuNF*(t)||p2 ~ [|Pr0:V?(t)]| 2. Recall also the
identities (2.6) and the definitions N = L[A*?,v05v + Dv?]. For (4.14) it suffices to prove
that, with I defined as in (4.18)—(4.19),
S L () S 52 /28T min(2 (5~ MO 4T
(k1,k2)€X) (4.21)
kg, kg,

’Z?U,%l,kz (t) = HPkI[PklUﬁf 17Pk2ULg 2](t)||L27
for any t1,t2 € {+,—}, L1 € Vp,, L2 € Vp,, n1 + na < n. Without loss of generality, we may
assume that n; < na. To prove (4.21) we consider several cases.

Case 1  Assume first that (nq,n2) # (0,0) and k& > —10. Let
S = > Ptk (t), Sai= > L%, ko (D). (4.22)
(kl,kg)GXk,klngJrlO (k‘l,kQ)GXk,kQSkl*lO

Using (4.2) and (4.8) we estimate
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S < Z €%<t>H(n2)62—N(n2)k; <t>H(n1+1)5—12—N(n1+1)k1++2k1+2k;/2

(k1,k2)EXp, by <ka+10
< 2 (t)H(n2)0+H(n+1)5-19=N(n2)k™ (4.23)
Similarly, since N(n) < N(n; + 1),
S < si<t>5/2+H(n2)6+H(n1+1)6—12—N(n)k++2k+. (4.24)
Notice that, as a consequence of (2.15), if ny,nq,n1 + na € [0, Ny — 1] N Z, and ny # 0 then
H(ny+1)+ H(n2) < H(ny + na) + 10. (4.25)
Thus S + Sy < e2(t)Hua(Mi=19=NmE +4kT 4 degired.
Case 2 Assume now that (ng,n2) # (0,0) and k < —10.%) Notice that, as a consequence
of (4.2) and (4.6),

L%, gy (1) S 22ROk 2 Py U292 | 2 || Py U2 | 12

< 612—4(k1++k;)23 mm(k7k1,k2)/22k1 <t> (n1+1)5+H(n2)6. (426)

Also, as a consequence of (4.2) and (4.8),
kg, kg,
T (8) S NP Ul Moo [Py Uyl 2

§€%274(kf+k;)2k1/2<t> (n1+1)8+H (n2)6—1 (4.27)

Recalling (4.25), the bounds (4.26) already suffice to prove (4.21) if 2% < (¢)~1+1459 On
the other hand, if 28 > (#)~1*14% then the contribution of the pairs (ki,k2) € A}, for which
2k < 2k(£)2999 can be bounded using (4.27). Also, the contribution of the pairs (ki, ko) € Xj
for which 2F1 < 27F(#)71+145 can be bounded using again (4.26). After these reductions,

for (4.21) it remains to prove that
Z I k() S e2b/2 (1) Hua(mo=1, (4.28)
(k1,k2)€ X, 251 ~2>max(2k 2k (t) ~1+1450)
We set 27 = 2% =39(¢) and decompose Pklvkg = Véki’lb%;ﬁl + Vkﬂzl ., as in (4.1). We
have

” —itAgg .y V<kcg”L€11’£1( )||L°° S 612716;/2<t>73/2+H(n1+2)5+627N(n1+2)kf+6kf7
(t

IVES 2 Ollze S e127F () ~HHHm Do Nm DR, (4.29)

see (4.9) and (4.5). Therefore, using also (4.2), for (ki, k2) € Xy as in (4.28),
—itApg ., kg, kg, —i g kg, kg,
[PeTe™ Mo VIS 1 (8), PoUpl™ (0)]llpe S lle™ ™o VETE o ()]l pee | Pe, U2 " (1) 2
< 5%2—1@;/2< £)~ 3/2+H(nl+2)5+5+H(m)52—4k1+
and
—i k kg, kg, kg,
[ PeIe™ Mo VIS (1), P, Up2 2 (0)][l22 S 221 VESRE o) (D21 P, U2 (1)1 2
< 5%23k/22—k; <t>—1+H(n1+1)5+H(n2)52—4kf_

4) One should think of (n1,n2,n) = (0, N1, N1) as the worst case. In this case the only available bounds for the
profiles Uzg’“" are the L2 bounds in (4.2).
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Therefore, using (4.25) and the identity H(ny + 2) = H(nq + 1) + 200, we have

I/?le,kg (t) /S €%2k/2<t>71+H(n)6+105274kj [27k/227k;/2<t>71/2+2055 + 2krfkf]

3

which suffices to prove the bounds (4.28).

Case 3 Finally, assume that (nq,nq,n) = (0,0,0). We estimate first, using symmetry, (4.2),
and (4.8)

> LS > [P, U9 ()] 2 | P, U (8) || o
(kl,kQ)GXk (kl,kg)eXk,kQSkl
< Z €§<t>62—1v(o)k1+ ) <t>H(1)5—12k;/2
(k1,k2)EXy, ka<ki
< 2(t) ATHW))I-19=N(0)kT (4.30)

This suffices to prove (4.21) when 2* > ()2, Moreover, we also have, as in (4.26),

L%, 1y (1) S 2B RURD 2| Py R s || Py, U942 | 2
< Eiszo(kf%»k;)QBmin(k,kl,kQ)/Q<t>25. (4.31)
This suffices to prove (4.21) when 2% < (¢)=1+20,
On the other hand, if 2F € [(t)71+2% (¢)2%] then we use first (4.6) and (4.8) to show that

I]gjil,kz (t) < 5%2710(kf+k;)<t>71+2H(1)62min(k17,k;)zmax(k{,k;)/2.

This suffices to control the contribution of the pairs (ky, kg) for which 2min(kr k) < (4)=1/2,
For (4.21) it remains to prove that if 28 € [(t)71+2% (¢)2%] then
Z Illclle,lw (t) < €§2k’/2<t>71+5527N(0)k++4k+. (4.32)
(k1,ka) € X, (1) =1/2220<22 <2F1
We set 27 = 2F1 =39(¢) and decompose Py, V911 = Vgg,?l + Vfi’,?l, as in (4.1). We have

”efitAkg,L1 ng‘%:;gll (t)HLOO S 51271€1—/2+l€k?1_/20<t>*3/227N0kf'+(d’+6)kr

)

IVEGR (@)|z2 S e12755 (1)~ HH M= NORT, (4.33)

see (4.12) and (4.5). Therefore, using also (4.10), for (ki,ks) € X as in (4.32)
|Pelfe s VEGL (1), P U (0] 2 S lle™ s VER (1) [ oe | P, U2 ()]
< 5@—@/221@; <t>—3/22—4kl+
and
—1 . kg, N2 kg, g,L
[P Ie™ Aenn VSR (1), P, U (0] |2 S (IVET58 (O] | P U (1) | o
< Efrkl— 2k;/2<t>72+2H(1)6274kj"
Therefore, if (ki, ko) € Ay and (£)~1/2220 < 2k < 2F1 then
I, b (£) S €1(0) 70228 Mg (4.34)

which suffices to prove the bounds (4.32).
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(ii) For (4.16) it suffices to prove that

Y (@)@ FUIP UL PuU " IH(E )]z
(k1,k2)€X)

< €%2k*/2<t>Hga(n)627N(n)k++5k+, (4.35)

for any t1,t0 € {4+, -1}, 1€ {1,2,3}, L1 € Vp,, L2 € Vp,, 11 + 12 < n.

Without loss of generality we may assume that nq < ny. Recall that Uff’“ = e kg Vﬁklg’b1
and U’g“;”L2 = e kg Vfﬂg’”. We examine the formula (4.19). The 0, derivative can hit either
the phase e~ ks, (6= or the profile f{Ple[’ff’”}(f — 1), or the multiplier m;(§ — 7). In
the first case, the g, derivative effectively corresponds to multiplying by a factor < (¢), and
changing m; in a way that still satisfies (4.18). The corresponding bounds follow from (4.14).

It remains to consider the case when the 9, derivative hits the function mq(§ — n)pk, (§ —

—

77)V£ki“1 (& — ). Tt suffices to prove that

N BIVUESS L P, U )(0)] e S €325 /2(1) Hia(migm NIRRT - (4 36)
(k1,k2)EX)

where sz::}ykl(f,t) = e %0 (09 (g, -my - fo’”)(ﬁ,t). It follows from (4.2)—(4.3) that

U5 4 (B)llze S e1 (t) (DI Nu+DkT

(4.37)
[P UL ()]l S ea(t) 20Nk
Thus
1P I UES P, U] (1)l 2
< 28 mintku ke M2 Trios ()] 2 || Pry USS (1) 2
< c23min(hi k) /2 <t>H(n1+1)5+H(n2)527N(n1+1)k1+27N("2)k;. (4.38)

This suffices to prove (4.36) if (n1,n2) # (0,0), using (4.25) and the inequality n; +1 < n.

On the other hand, if (n1,n2) = (0,0) then we need to be more careful because of the loss
of derivative and the slightly worse power of (¢) in (4.38). From the very beginning, in proving
(4.35) we notice that we may assume that the sum is over pairs (ki, ko) with k1 < ko (otherwise
we make the change of variables  — £ — 7 to move the £ derivative on the low frequency
component). Using (4.8) and the L? bounds in the first line of (4.37), we have

1P I (UK Py UR942](8)]| 2
kg, L
S UL @)l 2| Pry UR2 (£) ] e
< 2()2HWI-19= Nk 9= N(DKS 92k5 gl /2. (4.39)

It is easy to see that the bounds (4.38)—(4.39) suffice to control the contribution of the pairs
(k1, ko) with k1 < kg in (4.36). The desired bounds (4.35) thus follow when (ny,n2) = (0,0). O

4.3 The Nonlinearities N, gg
We prove now similar bounds for the nonlinearities N, fg .

Lemma 4.3 Assume that Nfg isasin (2.7), LEVy, ne{0,...,N1},t€[0,T], and k € Z.
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(i) Then
IPANE (1) 122 + | POV (1) 2 S e308) HHam® min((1)~1, 287 )2 Nt DRT =5 (4 40
where N(n+1):= N(n) —d if n =Ny and
HY,(0):=8, Hyj,(n):=H(n)+ 160 forn € {1,...,Ni}. (4.41)
(ii) Moreover, forl € {1,2,3} and n < Ny — 1,
1P (2N (1) | g2 S e3(t)Hra(mig=Nins DT =5k™, (4.42)
Proof (1) With I defined as in (4.18)—(4.19), for (4.40) it suffices to prove that

S I () S ST min ()t 2k g NI DRT sk
(k1,ko)EXs, (4.43)
k +_ kg, wa,tL:
ka}chkz(t) = ok1 ’“2||PkI[Pk1U£f Y P, U] () || g2

for any ty,t2 € {+a _}a Ly € Vnu Ly € Vnzv ny +ne < n.
We estimate first, using just (4.2),
+_ min wa
SR LS Y ok kg k2 B R ()| ]| P, UEE ()| 1
(k1,k2)EX) (k1,k2)€X),
< 5%<t>5(H(n1)+H(n2)+1)2k7' (444)

~

Since H(n1) + H(n2) +2 < Hy/ (n), this suffices to prove the bounds (4.43) when 2k < (1)L
On the other hand, if 28" > (#)~! then we estimate, using also (4.7)—(4.8),

k + _ k )
> Bhe®s 3 29TRIPGURONelPLUL O
(k1,k2)EX, k1 >k—20 (k1,k2) € X, k1 2k—20
5 E%<ﬁ>—1—5—6(H(n1)-i-H(nQ-ﬁ-l)-‘rQ)2—1\’("1)k++2kJr (445)

if ng < N; — 1, and

k +— k wa
> L S > 250 =2 || P, U (8| oo | Py U2 (4) | 2
(k1,k2)EXy, ka>k—20 (k1,k2)EXy, ka>k—20
< 6%<t>71+5(H(n1+1)+H(n2)+2)27N(n2)k++2k+ (4.46)

if ny < Ny — 1. The desired bounds (4.43) follow from (4.45)—(4.46) and (4.25), unless ny =0
or ng = 0. We consider separately these remaining cases.

Case 1  Assume first that 28 > (¢)~1, n = n; > 1, and ny = 0. The bound (4.45) still gives

suitable control of the sum over k; > k — 20. Estimating as in (4.44) it is easy to see that
k 2/\—1g—N(n1)kt 42k
> T, g (1) S 3(t) 712 VT2,
(k1,k2)€Xy, k1 <k—20,2F1 <(t) =2

The contribution of the remaining pairs (ki, ko) for which (t)=2 < 2kt < 2#=20 i5 also bounded
as claimed since
k t_ k wa
L5 s (8) S 29792 P, UL (8) | 2| P, U (2) |
< sf <t>—1+6(H(n1)+H(1)+2)2—N(1)k;+2k;2—1@1*'. (4.47)
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Case 2 Assume now that 28 > (t)~!, ny = 0, and ny = n > 1. The bound (4.46) still gives
suitable control of the sum over ky > k — 20. It remains to show that if 2F > (t)‘l then

S 2R RI[RLUR PLUES ()1
(k1,k2)€Xy, ka<k—10
S () (n2)3 19N (o) kT 5kT, (4.48)

To prove (4.48) we estimate first, when ko < k — 10 and |ky — k| < 4,
| PeI [Py, U, P UZS2)(t) |2 S || Py U (6)] £22%%2/2 | P UL (8)]| 2
< 6%<t>H(1)6+H(nz)5+262kf22k; 2—N(O)k+, (4.49)
using (4.2) and (4.6). Therefore, since N(0) — N (1) = 40,

3 oMl k2| P I[Py, U9, P, UR™)(1)]| 2
(k1,k2) EX, ko <k—10,2F1 TF2 (1) - 1414582408+

< E%<t>H"(n2)67127N(1)k++4k+.

For (4.48) it remains to prove that
27| P[Py, UM, P U (1) S € (1) 10000 7 hgm N ik (4.50)
for any ki, ko, k € Z such that
ko <k —10, |k —k| <4, 2k +h2 > <t>71+1455240k3++80. (4.51)

We set 27 = 2F1 =30(¢) decompose P, V*941 = ngcg,,?l +V>k§:;?1a and recall the bounds (4.33).
Therefore, using also the L? bounds (4.2)
2782 || Pl Aro VESL P UEM )] (8)]| 2
<Jky’ kaY L, L
S 27l e VES L e [ PeU S (1) 22

< 5%<t>—3/2+H(n2)52—k;/22—k;/22_N(1)k++16k+’

~

and

272 || PuIfe Mo VESH PLURS )| (8) ]| e S 2R e Ak VIS || 2 | P, U RS (£) | o

< 5%{1&) —1+4108+H (n2)d9—ky 9ky 2—N(1)k+.

~

Since 27 k1 /227k2 /2 < (1)1/2-T539-20k™ (gee (4.51)), these bounds suffice to prove (4.50).

Case 3 Finally, assume that 28 > (t)=! and n; = ny = n = 0. The bounds (4.45)-
(4.46) are sufficient if 28" > ()20, The contribution of the pairs (ki, ko) in (4.43) for which
gmin(ky,k2) 9—30(k{ +k) < (#)7159 can be bounded as before using just L? estimates and
recalling that N (1) = N(0) — 40. For (4.43) it remains to show that

242 P[Py, U, P, U2 (1) 2 < ) 0012 NORT =4, (4.52)
provided that

2k c [<t>_1, <t>26}, 2min(k17k2)2—30(k1++k;) > <t>_1+5'96240. (453)
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We decompose

PaUM ™ ()= 7 e e V(). PUM () = Y e Mheen VIR (454)

Ji,k1 J2,k2
J1z—ky Jaz—ky

as in (4.1). Notice that

FAPI[e Mo Vgt et a VEIRRTHE 1)

17k1 ? J27k2
= C‘Pk(f)/ ot kg .y (E=1) —itAwa iy (1)
]Ri}
e (€ = MV (€ = .0) - ma (VT 00) @55

The main observation is that the absolute value of the 7 gradient of the phase function n —
t[Akg., (6 — 1) + Awa,i, (n)] is bounded from below by c|t|2*2"3;r in the support of the integral.
Recalling also (4.53), we can thus use Lemma 3.1 to show that the contribution of the pairs
(41, 72) for which 2max(i1.32) < (t)l_‘s/22_2k1+ is negligible, i.e.
+- —i v kg0 —itAwa iy [ Wast -
o he || P T fe ke VG (), e 2 VISR ()] 12 S €7 (E) 2. (4.56)

To deal with the remaining pairs (j1,j2) we fix J; such that 27t = (¢£)2°%° and estimate

2K | Pt e VEGY, (1), PLaU™ 2 (1) 2

>J1,k1
K —k kg, )
S 20 T NVES Dl | Pey U2 (1) || oo
< Efrh <t>71+2H(1)6+627N(1)kf'+4k1*'27N(1)k3'+4k;'7 (4.57)

using (4.5) and (4.7). This is consistent with the desired bounds (4.52), due to the choice of J;.
For the remaining contribution (which is nontrivial only when 2%t > (£)=209) we fix J, such
that 272 = (¢)179/22=2k1 and prove two bounds. We have

2 b | e Vs VEG (1), 07 e VIR (1)1

+_ k :
< M hag 2 VAR (1) VR, ()] 2o

< g2 <t>H(1)5+52k; +hy 9= N(0)k{ +2k1 9—N(0)k3 +2k3 7 (4.58)

~ <1

using just the L? bounds (4.2) and (4.6). The bounds (4.56)—(4.58) suffice to prove (4.52) if
(4.53) holds and, in addition, 2¥1 +#2 < (¢)=1=3:59 On the other hand, we also have

24T || Pytfe e VAR (1), 07 e VIR (1)) 1o

o
< bl k2| ltAkg,qu;Ljﬂ(t)||Lm||V;D;ﬁ2(t)”m (4.59)

< 5§2kffk2 <t>*3/22*761_/22*N0k?j'+(d'+6)kf' .27k2/2<t>71+6/222k:j' <t>H(1)527N(1)k;"
using (4.5) and (4.12). If 2k +k2° > (£)=173:50 then the right-hand side of (4.59) is bounded by
Oe%<t>’2+12‘552’k5 o= N(k{ +d'kf 9=N(1)k5

Since 27%2 < (t>1_5'9‘52_28(k1++k2+) (see (4.53)) this is consistent with the desired bound (4.52).

The conclusion follows in the remaining case 2F1 T*2 > (¢)=1-3:59,

(ii) With the same notation as before, it suffices to prove that
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+_ L1 wa,ty
Y 2RO FUPL UL PuUE 1N 1) 2
(kl,kz)EXk

< 8%<t>H,’C'g(n)627N(n+1)k+75k:+’ (4.60)

for any t1,t0 € {+,—}, 1€ {1,2,3}, L1 € Vy,, L2 € Vp,, 1 +n2 < n.
We write UE]’“ = e ke Vﬁklg’b1 and notice that the J¢, derivative can hit either the phase
e ko1 (€71 or the multiplier m; (€ — 7), or the profile f{Plel’ff’”}(f —n). In the first case
the derivative effectively corresponds to multiplying by factors < (t) or < 27%1 | and changing
the multiplier my, in a way that still satisfies (4.18). The desired estimates follow from (4.43).
It remains to consider the case when the O derivative falls on the function mq(§{ —
7)).7-"{Pk1fo’“}(§ —n). It suffices to prove that

ST R B L Pl URS (1)1 S €3 r) Fa(msg N DRSS (g 1)
(k1,k2)€X)

— —

where, as in the proof of Lemma 4.2, Uéf:llkl (&,t) = e R0 O Lo -my - fo””}(f, t). The
estimates (4.61) follow from (4.37) and (4.2) if ng > 1, using an estimate similar to (4.44).
Assume now that
ny=n and ny=0. (4.62)

We need to be slightly more careful than before. If 2 < (¢)1/190 then we can just use the L™
bounds (4.7) and the L? bounds (4.37) to prove (4.61). On the other hand, if 2¢=10 > (¢)1/100
then the contribution of the pairs (ki, k2) with ko > k — 10 or ks < —6k can be estimated as
before, using just L? bounds.

To estimate the contribution of the remaining pairs, we need to avoid derivative loss. We
go back to (4.60). It remains to prove that if 28710 > (£)1/190 then

i - L wa,L
) 2982 o1 (€) (D, FAI [P, U™, Py UM 1) (6, 8) | 12
(k1,k2)€Xy, ko €[—6k,k—10]
< 5%<t>H1/e/g(”)527N(n+1)k+75k+. (4.63)

We make the change of variables 7 — £ — 7 in the integral (4.19), to move the 0g, derivative to
the low frequency factor. Using (4.2) and L? x L™ estimates as before, for (4.63) it suffices to
prove that
|70 [ma(€) P, U0 (€ )]z S e {1)?1(72720 ok =20k, (4.64)

We remark that the loss of a factor of (t)“° is mitigated by the gain of derivative and the
assumption 2% > (¢)1/100,

It remains to prove (4.64). The derivative 0, can hit the symbol my, and this contribution
is bounded easily using (4.7). On the other hand, if ¢, hits the function F{P, U"*}({,t) then
we replace U™ (t) with e~ *IVIV®e(¢). Notice that

— —i T —4kT ok =6k
17~ {8 [l pr, (E)Vea(€) [z S ea (1) TDTH2027 4 gks ks

as a consequence of (4.3) and (4.7). The desired bound (4.64) follows in this case as well. This
completes the proof of the lemma. O
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4.4 The Bounds (2.17)—(2.19) at Time t =0

We use now the initial-data assumptions (1.9) and elliptic estimates to take the first step towards
proving Proposition 2.2.

Proposition 4.4 The bounds (2.17)—(2.19) hold at time t = 0.
Proof

Step1 We prove first the Z norm bounds (2.19). Notice that Up#*(0) = V"*(0) and UEQ(O) =
VF9(0). Tt follows from (1.13) and (3.59) that
. ‘ 1/2
{ > 2N QuUrO)llFs | S <o (4.65)
(k,g)ed
Moreover 22123%/2||Q,;,.U™(0)||z2 < o for j > 10]k| + 10 as a consequence of (1.9). Using
also (4.65) it follows that, for any k € Z,

> 2QuU ()]s S 27 VOE 2T 4 [k, (4.66)
JjZ>max(—Fk,0)
This gives the desired Z norm control for the wave component.

Similarly, using the assumptions (1.9) we have

10 v + 3 IPU e S eo. (467)
1B1<3

L —

In particular ||PyUS?| 1 < o, which gives | PoUY||~ < eo for any k € Z. This suffices for
k < 0. On the other hand, if & > 0 then it follows from (4.67) that

1PUG N2 S 2027 VO |2l BUG |2 S e02 NN

Thus [|PeUE|| 1 < go2~ (NO+NG)/26T hich gives the desired control.

Step 2 We consider now the high order Sobolev bounds in (2.17). It suffices to show that

ST VY@ 9%05 ) (0)] v
18'|<|B|+Bo—1<n

+ Y @000 (0)] v S e, (4.68)
18],18]+Bo—1<n

for any n € [0, Ny], where 27" = xfixgém’gé and 97 = 0 9200

We prove (4.68) by induction over 5. Notice that the bounds follow directly from (1.13)
if By = 0 or if By = 1, by passing to the Fourier space. If 8y > 2 then we use the identities
O?u = Au+ N and 9?v = Av — v + N*9. The contribution of the linear components is

bounded as claimed, due to the induction hypothesis. For (4.68) it remains to prove that, for
ne [0, Nl],

> 11V 2@ 9%8 NP ) (0) | i S 0,
[8|<IB]+v<n, 1<y<Bp—1

(2" 9% N ) (0) ]| gv ey S <o
[B8],18]+v<n, 1<y<Bp—1

(4.69)
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These bounds follow easily using the induction hypothesis (4.68) and the explicit formulas.
For the first inequality, recall that N* = A*?8,v9zv + Dv?. Therefore 7 979 ' N'** can
be written as a sum of terms of the form

27 (0% 00 v) (07202 v),

where |B'| < n, |B1| + 7 + |62] + 72 < n+ 1, and max(vy1,7v2) < Bp — 1. Such products can be
easily bounded in HN(™  using the induction hypothesis and LittlewoodPaley decompositions
as before, and placing the high frequency component in L? and the low frequency component
in L. The contribution at low frequencies can be estimated using just L? bounds on both
components.

The proof of the inequality in the second line of (4.69) is similar. We use the formula
N* = uB*P9,05v + Euv. Since B = 0, one can distribute the 7] " derivatives and still

get only terms with no more than Gy — 1 time derivatives, of the form
2% (9% 07 u) (9% 37 v),

where |3'| < n, [Bi] + 71+ [Be] + 72 S n+ 1 || + 71 < n—1, and max(y1,72) < Bo — 1.
Such products can be bounded in HV(") | using the induction hypothesis and Littlewood-Paley
decompositions. This completes the proof of (4.4).

Step 3 We consider now the Sobolev bounds (2.18) on the profiles V}** and Vﬁkg . Since
Ve(0) = Up*(0) and Vﬁkg(O) = UEQ(O) it suffices to prove that
22| 1 (€) D, F{(0r — iAuwa) LU} (€, 0) | 2

+ 257 01 (6)0e, F{(y — i1g) LUH(E, 0)]| 2
< 602—N(n—i—1)k+ ,

forl € {1,2,3}, k€ Z, L € V,, n € [0, N; — 1]. These bounds follow again from (4.68), after

passing to the Fourier space. O

5 Energy Estimates

In this section we prove the energy bounds in (2.17). The vector-fields I'; and Q,;; commute

with the wave operator, so, as a consequence of (1.1), for any £ € Vy,,

— O(Lu) = L(A*P04vdsv + Dv?),

(=0 + 1)(Lv) = L(uB**8,05v + Euv). (5.1)
5.1 The Bound on Up*
We start by estimating the wave component.
Proposition 5.1 With the notation and hypothesis in Proposition 2.2, for any t € [0,T],

€ [0, N1] and L € V,
V20 ) ven S eoft) ™2, (5.2)

Proof With P := |V|7/2(V)N( L we define the energy functional
3

EE(t) = /R 3 [((%Pu(t))z + (ajpu(t))ﬂ dz. (5.3)

Jj=1
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Using the first equation in (5.1) we calculate
d
dtgia(t) = 2/ P[A®P8,v05v + Dv?|(t) - 8y Pu(t) dz
R3

VITA(V) N LIAY 000050 + D?) () - [V TN M Lult) du - (5.4)
R3

e / €171+ €20 F{LIAP 0,050 + DU} (€, 1) - BoLu(€, 1) d.
RS

We decompose time integrals into dyadic pieces. More precisely, given ¢ € [0,7T], we fix
a suitable decomposition of the function 1jo4, i.e. we fix functions qo,...,qr11 : R — [0,1],
|L —logy (2 4 t)| < 2, with the properties
suppqo C [0,2], suppqri1 C [t —2,1], suppgn, C[27 2™ for m € {1,...,L},
L+1 t (5.5)
Z am(s) = 104(5), gm € C'(R) and / ¢, (s)|ds <1 form e {1,...,L}.
0
Let I,,, denote the support of g,,. In view of (5.4) and (4.20), it suffices to prove that

A Y1+ €PN FLAL v - 8 Lov}(E, 5) - DoLu(€, s) deds| S e322Hm,

Iy,

for any t € [0 T],me{0,...,L+1}, 0,0 € {I,00,01,02,03}, L1 € Vy,, L2 € Vp,, n1+n2 < 1.
We rewrite the functions Elv Lov, Lu in terms of the variables ng + Ulzg’i, UP®™ asin (2.6).

It suffices to prove that, for any ¢,¢1,02 € {+, -1},

‘/ / S)ENH A+ [N i (€ = m)ma(n)

—

xUEg S =, S)UES (1, UL (€, 5) dédds
S efgHmom, (5.6)

where m; and mqy are symbols satisfying (4.18).

We further decompose dyadically in frequency. For any k, k1, ks € Z let

mkk1 ky i= / /R3 R3 (f)ml(f—ﬁ)m2(77)
X P UR" (6~ .5 >P&f?”<n, S BUT (&, 5) dédnds, (5.7)

where m3 is also a multiplier as in (4.18). For (5.6) it remains to prove that if n < Ny,
ny+ng <n, L1 € Vy,, Ly €V,, then
_ +
D> 2 RNk k| S EF22H O (5.8)
k,k1,k2€Z

for any ¢,t1,t0 € {+,—},t€[0,T), me€{0,...,L+1}.

In certain cases we need to integrate by parts in time. For this we write

PLUE (6~ . 8)PUET (1. 9) BLUL™ (6. )

— —

_ e—isAkg,L1 (g—n)—iSAkg,Lg(17)+iSAu;(L,L(€)Pk1VL]:€197L1 (f -, S)Pk2 VgQg,Lz (,,7, S)kaz:ﬂa,b(& S)
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Let o = (wa’a L)v B = (kga Ll)’ v= (kga L2)7 and ‘I)(f,n) = (I)o;w(fﬂ?) = Ao(f)_Au(f—U)_Au(n)
We define the trilinear operators Q = Q¥ by

Q[f.g,h] := /R - 5P (&M s (€Ymy (& — n)yma(n) - G(E — n)h(n) F(€) dedn. (5.9)
Clearly
Lk oy oy = /I qm(S)Q[Png(I’L(S), P, VLE(LL] (5)7 szvgzng (S)} ds. (510)

This formula and integration by parts in time show that if m € [1, L] then

Lok kr by = 1/1 q:n(s)H/g,kl,kz(S) + qm(s)[H/%,kl,kQ (s)+ Illg,kl,kz(s) + Ilg,kl,kz(s)] ds, (5.11)

m

where
IIk: Jk1,ko (S) = Q* [kaéva L( ) Pkl V,Cklg’“ (S), PkQVLkQ%Q (S)]v
14,1 (5) = QIPLOVE™)(5), P VE (5), PuVE (9], 512
IT} oy ko (5) 1= Q[PLVE ™ (5), Py (DSVES") (5), Pry V2 (s)], '
IIk 1,k (3) = Q* [kawa L(S) Pklvkg Ll( )a Pk2 (8SV£]€§]’L2)(S)]3

and

ouv (€M) N
Qlf.gh = [ ma(€)ma (€ — nyma() - (€ — MR F(E) dedn. (5.13)
R3 xR3 ‘I)auu(gvn)

Without loss of generality, in proving (5.8), we may assume that ny; < ns. We often use the
basic bound
st den k] S SUD | L | | PeUE“" ()| ol Py UL (8) || o | Py US ' (5) | o2 (5.14)
s€lm

for any choice of (p,p1,p2) € {(2,2,0),(2,00,2), (c0,2,2)}, which follows from Lemma 3.2 (i).
We consider two cases.

Case 1 We prove now the bounds (5.8) when

In particular, ny,ne <n—1< Ny — 1. We apply (5.14) to bound

2—/{7221\/'(n)k+ |Im | < E?‘Im|2(H(n)+H(n1)+H(n2))6m2_k/223 min(k,k1,k2)/2

ikokka | S

« QN =N (n)kf =N (n2)k; (5.16)

using the L? bounds (4.2). Since H(n1)+H (ny) < H(n)—190 and N(n) < min(N(n1), N(nz))—
10, this suffices to prove (5.8) if |I,,,| < 1. It also suffices to control the contribution of triplets
(k, k1, ko) for which min(k, k1, k2) < —m + 180dm when |I,,| = 2™. It remains to prove that if
m € [1/k, L] then
> 2 RQ2N(MKT T ko] S E322H MO, (5.17)
Kk, k2 €Z, min(k, k1, k2 )>—m+1808m

For this we integrate by parts in time (the method of normal forms), using the identities
(5.11)—(5.13). Notice that
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9—k92N(n)k |Q*[Pr.f, Py g, Pr,hl|
< 27 K/23max(i KD 92N(RT | Py |1 o | Py, gl 2 | Pkl 2, (>15)

using just the Cauchy—Schwarz inequality in the Fourier space and the lower bound (3.5). To
apply this, we need the L? bounds

[P VRS (5)|| L2 S 12F/22H (MImg=N(mk™
1Py VES (5) | 12 S €12 (m)0mg-Nnky (5.19)
1P, VES ()| 12 S £127(2)mg=Nna)ks
and
27| P(B.V ) (5)22 S €128/ 2 i (momym N ()i -5k
2| Py (D VS )(5) 2 S e12Mko(m)omg =Nt DT =5k (5.20)
27| Pr,y (05 VA2 (s
which follow from (4.2), (4.14), and

" _ +_ +
e < er2Hbanaima- Nk~

(4.40). Since nq,n9,n =ny + ng > 1, we also have
Ho(n) + H(n) + H(nz) = H(n) + H(n1) + H(nz2) + 160 < 2H (n) — 30, (5.21)
H(n) + Hl,(n1) + H(no) = H(n) + H(ny) + H} (n2) < 2H(n) — 30. '

Using these estimates and the definitions (5.12), it follows that, for any s € I,,,

3
2—]622N(n)k:+ { |II]87k17k2 (8)| + Z 2m|IIllg,k17k2 (8)‘ } g E?QQH(n)ém—306m2— max(k;k3) )
=1

The desired bound (5.17) follows, and this completes the proof in the case (5.15).
Case 2 The bounds (5.8) in the case ny = 0 follow from Lemma 5.3 below, see (5.38). O

5.2 The Bound on U]Zg
We estimate now the Klein-Gordon components.

Proposition 5.2 With the notation and hypothesis in Proposition 2.2, for any t € [0,T],
n € [0,N1] and L €V,
IUZ @) v S oty 2, (5.22)

Proof With P := (V)N £ we define the energy functional
3
L) )2
EE (1) = /R 3 [(%Pv(t)) + ; (9, Pt

3
u(t) Z B9, Pv(t)0; Pu(t) — Eu(t)(Pv(t))Q} dx.
ij=1

Using the second equation in (5.1) we calculate
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3

d g
dtglfg = / {ZP(uBaﬁaaagv + Euv)0gPv + dou Z BY9;Pv - 0;Pv — Edyu(Pv)?
R3 f
7,7=1
3 ..
+2u Y BY9;Pv-0y0;Pv — 2EuPv - 80Pv} dz.
ij=1

Recall that B = 0. Using integration by parts the energy identity can be rewritten as

0 = [ e+ o)

I* = 2B°P 9y Pv{ P(ud,05v) — u8adpPv} + 2By Pv{ P(uv) — uPv}, (5.23)
IT% := 4uB7°0;0y Pvdo Pv + 0ouB™ ; Pvd; Pv — Edyu(Pv)?* — 20;uB" 9; Pvdy Pv.
Using (4.11), for any s € [0,T]
IVu(s)llze + l9ou(s)ll= S D IPU(s) = S er(1+5)7" (5.24)

kEZ

Therefore, for any s € [0,T]

‘/Rs IT*(s)dx

Since 5,%(5) ~ ||U]Zg( $)|12 xny for any s € [0,7], it suffices to prove that, for any ¢ € [0, 77,

¢
//Ic(x,s)dfcds
o Jrs

The commutation relations (4.20) show that

P(uda0pv) = (V)N {0a05Lv - u} + > ez, £0,00(V)N{0,0,L10 - Lou},

Se(l+ S)_IHU]Zg(S)H%[N(n) < 5?(1 + s)—l+2H(n)6.

S ed(t)2Hm9, (5.25)

where ¢z, £, 0 are suitable coefficients, and the sum ), is taken over operators £q, Lo € V,
with |£1] + |L2] < n, |£1] < n —1, and indices p,o € {0,1,2,3}. Also,

P(uv) = (V)N Lo u} + > ¢ (VN{Lyv - Loul,
where ¢y, . are suitable coefficients, and the sum __, is taken over operators Lq,Ls € V,
with |£1| + |£2| S n, |E1| S n—1.

We express the functions £1v, Lv, Lou in terms of the variables ng = ng + Ly Up * asin
(2.3)—(2.6). Let m; denote a multiplier as in (4.18) and define
bu (&) = [n (€ = myma (€ = (T VUV — (€ = N, (5.26)
With ¢y, defined as in (5.5), for (5.25) it suffices to prove that
] / / W(6,1) - UET (6 — )00 1, 5) UL (€, ) dedds| S 32709 (5.07)
]R3><]R3

‘/ /]R3><1R3 $)nl =M (L + (€PN E = myma (€ — )

X UE (€= 0 ) U™ () UR (6, ) dédnds | < b2, (5.28)
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provided that ¢,¢1,t0 € {+,—}, and L1 € V,,,, L2 €V, 1 + 12 <n,ny <n— 1.
Step 1 We start by proving the bounds (5.27). We decompose dyadically in frequency. For
any k, ki, ko € Z let

n,0
m'k k?l,k:Q

= [ € mPLUE ™ € = )P (1,5 PUE (6, 5) dsdnds.(5:29)
’VTL X
We have the multiplier bounds

¥
17~ ok (€) P, (€ = m)ons (MB(E, Y 11 (o sy S 20k AT 2@N ) =DRT, (5.30)

where, as before, max(k, k1, k2) = k and min(k, k1, ko) = k. This can be seen easily when k < 0.
On the other hand, if ¥ > 0 then (5.30) can be proved by analyzing the three cases k = k,
k1 =k, and ko = k, and using the cancellation in the multiplier in the last case.

Using Lemma 3.2, (4.11), and (4.8), we have

n n + —mao—kT o
Tl S [ YO PG UE G I PUE Ol -2 2 25 s (531)

m

if ko = k, and
0 | S [Ted2mmtem/29k™ /29K /2 (5.32)

if ko > k + 1. Indeed, this follows by estimating the lowest frequency factor in L> and the
other two factors in L2, except for the case n = Ni, ko > k + 1 when we estimate the high
frequency wave component in L. The gain of 1/2 high-order derivative in (5.32) is due to the
gain of derivative in (5.30). It follows from (5.31) that

n,0 3926m
E ‘Jm;k,kl,k2| 5 812 .
k,k1,k2€Z, ko=k

Moreover, the sum of |J1:;’9C ko k| OVET K K1, ko with & < —2km or k > 2km is also suitably
bounded due to (5.32). For (5.27) it remains to prove that

| g0 <el (5.33)

sup m;k,kl,k2‘ ~

k,k1,k2€[—2km,2km]

provided that ¢ € [0,T), ¢,t1,t2 € {+,—}, and m € {1/k, ..., L}.
This follows easily by integration by parts in time, as in the proof of Proposition 5.1. This
procedure gains a factor of 2~™ and losses at most a factor of 2™ when applying Lemma 3.3

(ii), in the range of frequencies as in (5.33).

Step 2 We prove now the bounds (5.28). Notice that the case ny = 0 follows from Lemma 5.3

below, after making changes of variables. Recall that n; <n — 1, so we may assume that
ny,ng € [1, Ny — 1], ny+ns=n. (5.34)

We define
o= [ [ an @l 0+ Y e = ahrs (s~ )
Ly R3><R3

X Py U (¢ — 1, ) P TR (1, 5) PRUET (€, ) dédids,
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and we have to prove that

Z |J:{;1k,k1,k2| S 5?22H(n)5m- (5.35)
k,k1,k2€Z

Using just the L? bounds (4.2) and Sobolev embedding we see that

‘ n,1l

Jm;k,kl,k2| < E?‘Im|2(2H(n)7190)6m21\/'(n)k+7N(n1)kl+fN(nz)k;2k;r27k2/223min(k,k1,k2)/27 (5.36)

since H(n1) + H(n2) < H(n) — 190. This suffices to prove the desired bound when |I,,| < 1.
If |L,,| = 2™ (so m € [1/k, L]), the bound (5.36) still suffices to control the contribution of the
triplets (k, k1, ko) for which min(k, k1, ko) < —m + 180dm. It remains to prove that

n,1 302H(n)ém
Z |J7n;k,k1,k2‘ 5 512
k,k1,k2 €Z, min(k,k1,k2)>—m+180m

We notice that this is similar to the bound (5.17) in Proposition 5.1, essentially with the indices
k and ko reversed. The proof follows by the same integration by parts argument, using just the
L? estimates (5.19)—(5.20). This completes the proof of the proposition. O

5.3 The Main Cubic Bulk Estimate

We prove now suitable bounds on the cubic bulk terms arising in the energy estimates in
Propositions 5.1 and 5.2, corresponding to the case when all the vector-fields hit one of the
profiles.

Lemma 5.3 Assume that n € [0, N1] and L£,Lo € V,,, t € [0,T], and m € {0,..., L+ 1}. As
n (5.7) (with (n1,na,n) = (0,n,n)), for any k, ki, ke € Z and 111,12 € {+,—}, let

Tk ke ks / /RSXRS ms(§)ma (€ —n)ma(n)

—

x Po Ukgw (€ — 1, 5 8) P, U2 (n, $)PeUY" (€, ) dednds, (5.37)
where my, ma, mg are multipliers as in (4.18). Then
Z 2—16(22N(n)kJr + 2e(n)2N(n)k;r2e(n)kf)|Im.k ks k2‘ < 551322H(n)6m7 (538)
k,k1,ko€Z
where e(0) := 0 and e(n) :=1 forn € [1, Ny].
Proof Let k := min(k, ki,ko) and k := max(k,kq,k2). Using just the L? bounds (4.2)
and (4.10), we have

27k|1m;k boka] < 65%|Im|22H(n)6m27k/223min(k,kl,kg)/22k1_+nk:1_

 9-N(m)k* —N(n)ki 9= N(O)ki +2kF (5.39)

This suffices bound the contribution of triplets (k, k1, k2) for which k¥ < —m (in the case n =0
we use also a similar bound with the roles of k1 and ko reversed). It also suffices to prove the
desired bound (5.38) when |I,,| < 1.

Step 1 We show first that if m € [1/§, L] then

Z Q—k(zzN(n)m + 26(n)2N(n)k;26(n)kf)|Im;k’kl)k2| < 6?22H(n)6m. (5.40)
kK1 ,ka €2, k>—m, k<—0.6m
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This is the case of small frequencies 2¥. The estimates (5.39) cleary suffice to control the
contribution of the triplets (k, k1, ko) for which & < —0.6m and 2%+ < 2794™_ They also suffice
to control the contribution of the triplets (k, k1, ko) for which £ < —0.6 and k + k7 (1 4+ &) —
35ki“ < —m.

It remains to bound the contribution of the triplets (k, k1, k2) for which

ke [-m,—0.6m] and k+k;(1+k)— 35k > —m. (5.41)

as in (4.33). With Q as in (5.9), let

In particular, k; > —m/2+100. Let J := k; +m—40 and decompose Py, V911 = Vftg,_’,?l—i—Vf?:;ll

) kg, kg,
17171?7€7k1,/€2 = / qm(s)Q[P’fVLwa L(S)’ Vﬁz,kll (8)7 szvﬁj " (S)] ds,

m

) kg, kg,
T :/ G (8) QPR V' (5), VET4 (8), Py Vi (s)] ds.

m

Using (4.2) and (4.33) we estimate

- - : kg, kg,
2 Ly | S 227" Sup 1PV ()2 IVET (5l oo 1 P Vi (5) | 22
m

se
< E§22H(n)6m2—m/22—k/22—kf/22—N(n)k+—N(n)k2+2—Ngk;r+(d’+6)k;r'
Therefore, for (k, k1, k2) as in (5.41),
27k(22N(n)k+ + 2e(n)2N(n)k;26(n)kT)|Irln;k7kl7k2‘
< 5?22H(n)5m27m/227k:/227k1_/226(n)N(n)k;27N(1)kf'+12kf" (5.42)

Similarly, using (4.2), (4.33), and L? bounds we estimate
2L gy | S 2727 R23 Sup 1PV ™ ()22 IV ()2 | Py VD2 (5)] 2
s&ilm

< €§)22H(n)6m2106m2k—k; 2—N(n)k+—N(n)k; 2—N(1)kl+ .

Therefore, for (k, k1, k2) as in (5.41),

271@(22N(n)k+ + Qe(n)ZN(n)k;r 26(n)kr)|lrln;k,k1,k2|

5 811322H(n)5m2105m2k7kf 2e(n)N(n)k2+ 27N(1)k‘r+kl+' (543)

Notice that for (k, ki1, ko) as in (5.41) we have 2-m/22—k/29=k1 /2912k" < 9=dlm+k|+oky k7
and 2109mok—ki 9kl < 9-0m—k' = Therefore the bounds (5.42)—(5.43) suffice to bound the
remaining contribution of the triplets (k, k1, k2) as in (5.41), as claimed in (5.40).

Step 2 'We show now that if m € [1/4, L] then
Z 27k(22N(n)k+ n Qe(n)zN(n)k; 2e(n)kf)|fm;k7khk2|
kb1, ko €Z, k>—m, k>—0.6m, k<dxm
< g392H(m)am, (5.44)

To prove this we would like to integrate by parts in time (the method of normal forms). We
examine the identities (5.11)—(5.13) and estimate \II,lc)khkz(s)\, 1 €{0,1,2,3}, using Lemma 3.3
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(ii). The bounds we need are
IPVES ()| 2 + 27 [ Pe(@VE“ ) ()12 S ex2F /22Ma(mimom N(n DR =5k,
| P VES ()12 + 27 [Py (B VE92) (8) 12 S 12O Nnr Dk =50, (5.45)
”e—isAkg,LlPlekg,Ll(S)HLOC < &_121{/22—m+106m2—N0k1++(d+2)kf7

which follow from (4.2), (4.14), and (4.40). Using (3.6), and recalling the assumptions on the
triplets (k, k1, ko) in (5.44), it follows that, for s € I,,,,

|ng,k1,k2(5)\ + 2m|H/1,k1,k2(3)| + 2m|III§,k1,k2(S)| < edomh gk [2gmmdem, (5.46)
To estimate |1 121’1317162 (s)| we need an additional L* bound, namely
le™isAk 1 Py (B,V 5941 (s) | e S €127 2R NIDAT+5KT (5.47)
which follows from (4.7)—(4.8) and the identity e~'*A#s(9,V*9)(s) = N*9(s). Using also the L?
bounds in the first two lines of (5.45), together with Lemma 3.3 (ii), we estimate
2m|Hl§,k1,k2(5)\ S efamk /2gmmA2em,
Using also the bounds (5.46) and the formula (5.11), it follows that
sy | < €327 % /29 met2mm.
for triplets (k, k1, k2) as in (5.44). The desired bound (5.44) follows.
Step 3  Finally we show that if m € [1/4, L] then
Z 2*16(221\’(71)764r + Qe(n)QN(n)kJQG(n)kf)|[m;k7kl,k2|
k,k1,k2 €7, k>—m, k>—0.6m, k>4xm
< g392H(m)om, (5.48)
Using (5.14) with (p, p1,p2) = (2, 00,2) and the bounds (4.2) and (4.8), we have

2—k|1—m‘k bl < 6§2105m22H(n)6m2—k/22k;/22—N(n)k+—N(n)k2+2—Nok1++(d+2)k;r. (5.49)

Notice the factor 27%/2 in (5.49), which is favorable when k is large. These bounds clearly suffice
to control the contribution of the triplets (k, k1, k2) in (5.48) for which k; = min(k, k1, k2).

We consider now the sum over triplets (k, k1, k2) as in (5.48) for which k2 = min(k, k1, k2).
We use (5.14) with (p, p1,p2) = (2,2,00) and (4.8), so

2ik‘Im;k7k1)k2| 5 6?2nm22H(n)5m27k/227N(n)k+7N(O)kl+27|k2\/27 (550)

provided that n < Ny —1. The estimates (5.49) suffice to bound the contribution of the triplets
(k, k1, ko) for which ko = min(k, k1, ko) if n > 2, while the estimates (5.50) suffice in the
remaining cases n € {0,1}.

Finally, we consider the sum over triplets (k, k1, k2) as in (5.48) for which k = min(k, k1, k2).
We use (5.14) with (p, p1,p2) = (00,2,2) and (4.7), so

0| ik s g | < €325 22H (W)6mo =N () —N(O)K] g =4kt (5.51)

provided that n < N; — 1. This suffices to complete the proof of (5.48) if n < Ny — 1. After

these reductions, for (5.48) it remains to show that if n = N; then

_ + +
E 2 k22N(n)k2 2k1 ‘Im;k7k1’k;2| 5 E§22H(n)§m. (552)
k,k1,k2€Z, k=k>—0.6m, k>4drxm
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This follows by the same integration by parts argument as in Step 2 above, using Lemma 3.3
(ii) and the bounds (5.45) and (5.47). This completes the proof of the lemma. O

6 Bounds on the Profiles, I: Weighted L? Norms

In this section we prove the bounds in (2.18). These bounds will be derived by elliptic estimates
from the bounds (2.17) proved in the previous two sections. We also need two identities that

connect the vector-fields I'; with weighted norms on the profiles.

Lemma 6.1 Assume p € {wa, kg} and

(O +iA)U =N, (6.1)
on R® x [0,T]. If V(t) = e U(t) and | € {1,2,3} then, for any t € [0,T],
LU 1) = (06 N) (€ 1) + e MO0 [A, (OV (&, 1))- (6.2)

Proof We calculate
LU (&,1) = FlaidU + 10U} (6,1)
= (0 N) (€, 1) + 9 [Mu(OTU(E, )] +it&U (€, 1)
= (D, N) (&, 1) + e O [A, OV (&, )]
— (D¢ M) (€)e T M ONL(OV (€, 1) +it&U (€, ).
This gives (6.2) since (9¢,Ap)(EAL(E) = &- O
We prove now the bounds (2.18).
Proposition 6.2 With the hypothesis in Proposition 2.2, for any t € [0,T], n € [0, N7 — 1],
keZ, LeV,, andl € {1,2,3} we have
VDR (982 ()0, VFO) (€ )12 + 2 lon(€) (0 VAT, 0l 2} S o (745, (6.3)
Proof The identity (6.2) for Up® gives
TiUE™(€,1) = i(0e NED)(E,1) + e~ Run© 0 [Aya (O VE(E 1),
Therefore
T A0 (€) (06, VE)(E) = TWUE™(€) = 10 NE)(E) + 74O (61 ) VE™(€)
€ wa Ve Y WOg N € l C .
We multiply all the terms by 27%/2¢,(¢) and take L? norms to show that
220k (€) (06 V) ()l 2 S 272 llon(OTWUE () 12
+2752)|0(§) Qe NED) )2 + 272 ©VEH©)llz= (6.4)
It follows from (4.16) and Proposition 5.1 that
_ —— e _ kT +
2720 (€) (D NED)(©) |2 S e () a2 NIWETHORT,
272 o (TUE (&) 12  eoft) Do Nm kT
272 o () VEH(€) 12 S eot) (P2~ MWK,
The desired inequality for the wave component in (6.3) follows using (6.4), since N(n + 1) <
N(n) —d and H(n+ 1) > max(H .(n), H(n)).
The inequality for the Klein-Gordon component in (6.3) follows similarly, using the iden-
tity (6.2) for u = kg, the energy estimates in Proposition 5.2, and the bounds (4.42). O
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7 Bounds on the Profiles, II: the Klein—Gordon Z Norm

In this section we prove the bounds in (2.19) for the Klein—Gordon component. We notice that,
unlike the energy norms, the Z norms of the two profiles are not allowed to grow slowly in time.

Because of this we need to renormalize the Klein—Gordon profile.

7.1 Renormalization

We start from the equation 9,V*9 = el*As N'k9 for the profile V*9 = V*9+ where N*9 =
uB*?9,03v + Euv. In the Fourier space this becomes

AVHI(E, 1) = (2;3 / O, 0)[ B 00050(¢ — ,1) + EB(E — )] dn.

Recall that B% = 0. The formulas in the second line of (2.6) show that

BT T0(p,t) = (—Bpyp) VT () = VR (p, 1)
(e 5 = j

2Ak9(ﬂ)
Ta=itArg (D) TR T (p. £) + eithra (D) TR (.t
N (QBOkpk)l[e s kg, (p, )2+e V= (p, )]
Therefore
— 1 ) : —
VR (€. 1) = 3/ ieitMrs O (n, 1) {e~ TR E=D VR F (¢ — . 1)q (€ — )
(27T) R3 (71)
+ithea GV ke~ (€ — . t)q_ (€ — )} dn,
where .
B’ p;px Ok E
q+(p) :==F + B £ . 7.2
() 201q(p) 204(p) 72

We would like to eliminate the bilinear interaction between u and V*9% in the first line

of (7.1) corresponding to |n| < 1. To extract the main term we approximate, heuristically,

1 . ~ —i —M) T kgt
(277)3/“ -1/ ie! Ao ©)g(n, t)e A E=D VR (€ — 1), 1)y (€ — ) dn
n|<(£)~

e 1 itn- ) ~
VR, 084(6) g0 /|n|<<<t>1/2 MY A i(r, £) di

~ lvkg (67 t)q+(§)u10W (tﬁ/Akg (5)7 t)a
where ujoy is a suitable low-frequency component of wu.

In view of this calculation we set py := 0.68 and define the phase correction
t
08, t) = cI+(§)/ Wow (8€/Ag(€), 8) ds,  Tiow(p, 8) = p<o((s)p)ulp,s).  (7.3)
0
Then we define the modified Klein—Gordon profile vk by

VRS (¢, 1) = e OED TTRa (¢ 4). (7.4)

We notice that both the function uj., and the multiplier q4 are real-valued, thus © is real-
valued. With upigh = % — Uiow, the formula (7.1) shows that

OV (€, 1) = e OO [0,TR9(¢, 1) — TV FI(E, 1 (€t (H€/ Ay €),0))
= Rl(f,t) + Rz(fat) + R3(§7t)7

(7.5)
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where
e~ 1061 . . . o
Ri(E,t) == @ﬂgt@;“““%mwmﬂﬁm“gmV@*@—nJMJf—mdm (7.6)
—iO(¢&,t) ) _—
Ra(&,t) = ° / itt1w (1, 1) x {!Aes @ =Rra GV ko (¢ — 1, 1)q (€ = 1)
(2m)% s
_ eit(ﬁ'n)/Akg(ﬁ)ng(f, g+ ()} dn, (7.7)
and
0101
R3(£at) = (271_)3

/ e Mo () o (n, t)e ke ETM Y ke (¢ - t)q, (E—n)dy.  (7.8)
nefr,—) /R

7.2 Improved Control
We prove now our main Z-norm estimate for the profile V*9.

Proposition 7.1  For any t € [0,T] we have
IVE )]z, S €o-

The rest of this section is concerned with the proof of this proposition. Since |[V*9(£, )| =

[VE9(¢,1)], in view of the definition (2.11) it suffices to prove that

lion(€){VE (€, t2) — VIEI(E 1) Ml g S go27 /2 7k /2 g Nok kT (7.9)
and
||50k(f){v*kg(§,t2) _ V*kg(f,tl)}HL’g’ < 502—5m/22k’+mk*2—Nok+—(3d—2)k+, (7.10)

for any k € Z, m > 1, and t1,t5 € [2™ — 2,2mT1] N[0, T).
Lemma 7.2 The bounds (7.9) and (7.10) hold if k > km/100 — 10 or if k < —km.

Proof Notice that the bound (7.10) follows from Proposition 5.2 if 2% > 220" It remains to
show that if k ¢ [—km, km /100 — 10] and ¢ € [2™ — 2,2™T1] N[0, 7] then

H(Pk(g)‘%(fat)HL? < g2 9m/29=k" /24rk™ 9= NokT+d'k" (7.11)
Step 1 It follows from Proposition 6.2 that
2 o1 (€) (0 VD) (€. )12 S 2o (0103~ Nok 4t k™
forany t € [0,T], k€ Z,1 € {1,2,3}, and L € V,,, n € [0, N; — 1]. Using Lemma 3.5, we have

: _ +_kta(n +
sup QJHijvckg(t)HL? §€O<t>H(n+1)62 Nok™—kT+(n+1)dk™ (7.12)
j=—k~

Using this and (3.23) it follows that
HP/k\‘/kg(t)”L“’ < 60<t>H(2)627k_/227N0k:+7k+/2+(3d/2)k+' (713)

The bound (7.11) follows if 2F > 24H(2)9™ 'since d' = 3d/2.
It remains to prove (7.11) when k < —xm. We use again (7.12) and (3.23) to estimate

|PVRa() [0 S 27372 sup Q™ (1) o =02 g (1) H (202401402,
§>—k-
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Therefore, recalling that ? = 4004, for (7.11) it suffices to prove that
| PLVEI (8)|| o S oty (D)0 0k+10k
Q

if k< —km and t € 2™ — 2,2 N[0, T]. In view of (3.60), for this is suffices to prove that

3 .
1PV @)llz2 + D ler(€)(Be, Va ) (€ D)z S eoft) @210, (7.14)

a=1

for any l€eZand t € [O,T], where () € {Id, 923, le7 ng}.
The bound on the first term in the left-hand side of (7.14) follows from (7.12). To bound

the remaining terms we use the identities (6.2). For (7.14) it suffices to prove that

—

IPTaUG? (D122 + l01(€) (9e, No) (€, )|z S eoft) @210, (7.15)
for any I € Z, t € [0,T], and a € {1,2,3}. The term ||[PT,UE ()| 12 is bounded as claimed due

to (7.12) (with n = 2). Therefore, it remains to prove the bilinear estimates
I NG (€ )l 22 < eott) 31210 min((6) 1, 247)2 7",

o8 (€)(De NG (€ 1) 112 S o) @210,
for any k € Z,t € [0,T], and a € {1, 2, 3}.

(7.16)

Step 2 The bounds (7.16) are similar to the bounds in Lemma 4.3. The only issue is to gain
the factors 2'°%% and we are allowed to lose small powers (£)¢?. We may assume k < 0 and
define I as in (4.18)—(4.19). For (7.16) it suffices to prove that

S 2R B P, UES PUES ()| < 3y @021 min((1) =1 257)  (7.17)
(k1,k2)EX)
and
+t k. kg, s K
Yo 2RO, FUIPL UL PuUR N )2 S 61 () TP0210F, - (7.18)
(k}l,k}2)€Xk
for any t1,42 € {+a _}7 a & {1a253}7 ‘Cl € Vn17 ‘C2 € Vn27 ny +ng < 1.
Using the L? estimates (4.6) and (4.2), we bound
+7 L wa,t
2R || I[P U™ P U 2)(8)] e
- 3 min wa
S 2 Regdminh kLR 2| P U9 (8)| 2| Py, U (1) 2 (7.19)

< 5% <t>2H(2)52krk2/223 min(k,ky k2)/29—4(k] +k3)

~

This suffices to prove (7.17) when 28 < (t)~!. On the other hand, if 2¥~ > (#)~! then we

estimate, using also (4.7),

2| P [P UET™, PloUgy ) ()22
<25 P UR )l | P, UES (1) 2
< e29k1 <t>—1+2H(2)6 min(1, 2F> <t>)274(k1*'+k§').
This suffices to bound the contribution of the pairs (k1, k2) € X}, in (7.17) for which 2k < 2+/10,
For the remaining pairs we have min(ky,k2) > k/10 + 10, |k1 — ka| < 4, and we use the

decomposition (4.29) to estimate

2k1+—k2 ||PkI[Pk1 szybl , sz Ugj’m](t)”[,z S 6?2—161/22—162/2<t>—3/2+m2—4(kf+k;).
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This suffices to complete the proof of (7.17).
To prove (7.18) we write UZ?’” = e ko Vﬁklg’b1 and notice that the ¢, derivative can hit

—

either the phase e~ Ars.1 (€= or the multiplier m, (¢ — n), or the profile Pklvffv“ (—mn). In
the first case the derivative effectively corresponds to multiplying by factors < (¢), and changing
the multiplier my, in a way that still satisfies (4.18). The desired estimates follow from (7.17).

o —

In the case when the J¢, derivative hits the function m4 (& — n)Pkl‘/flg’“(ﬁ — 1), it suffices to
prove that

> BRI, b Pl W) e S (0110210,

(k1,k2) € X,
where, as in the proof of Lemma 4.3, U]Zf:i;kl(ﬁ,t) = e M0 ©9, Lopp, - my - fov“}(g,t).
This follows from the L? bounds (4.37) and (4.2). O

We return now to the proof of the main estimates (7.9)—(7.10). In view of the identity (7.5),
it suffices to prove that, for a € {1,2, 3},

it k € [-xm, km/100 — 10]. These bounds are proved in Lemmas 7.3-7.5 below.

to

ee(€) | Ral€,s)ds

ty

< 5927 0m 29—k 24k o= (No+d)k™ (7.20)
Lo
3

In some estimates we need to use integration by parts in time (normal forms). For any
s € [0, T] we define the bilinear operators T}%J by

THIf, g)(€, ) = / O (€ =T =y 8) - ma(n)(n, ) d (7.21)
uo L] 9IS, 8) = s ‘I’(kg,Jr),w(fﬂ?) 1 n 1, 2\1)g(1, U .

where @ (19 1y, (§,1) = Arg(§) — Ap(€ —n) — Au(n) (see (2.9)) and my, my are as in (4.18).
vheE yuad

We will sometimes need L> bounds on the localized profiles , and the time
derivative P,0,Vk9:%. Since 2j||Qj7ka9(s)||Hg,1 < £,2H2)0mo=Nok™+2dkT "gee (4.5) it follows
from (3.18) that

||‘?I‘:;]?E(s) ||Loo 5 512H(2)5m27j/227k25(j+k)27N0k++2dk+ , (722)

for any s € [t1,t2]. Similarly

||V’wa i( )”LOO 5 612H(2)5m2—j/22—3k/225(j+k)2—Nok++2dk+. (723)

Finally, to bound Pk(‘)stgvi, recall that

S Q@ ) Ol S g3 () "I, (DI~ NRT =5k,

7.24
sup 2j+k||ij(atvkg’i)(t)||Hg,1 5 5%2]“<t>H1/clg(1)52_N(2)k+_5k+7 ( )
j>—k~
1 , See Lemimas an n partlcu ar, USIDg
if 2k > L 4.3 and 3.5. 1 1 3.23),
1P (@ VESE) (8) | oo S €2(t) "1/ >HH 2097k 9= N, (7.25)

Lemma 7.3 The bounds (7.20) hold if a =1, m > 1/k, and k € [—xm, xm/100].
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Proof We examine the formula (7.6), substitute u = iA (U%®+ — U%%~) /2, and decompose
the input functions dyadically in frequency. Let U @*?(&,s) := p<o({s)P0&)Uw®¢2(&, s) and

low

Vlg‘g "2, 8) = apgo(<s>1’0§)m(§, s). With I as in (4.19) and ¢ € {4, —}, it suflices to prove
that

Z ok —k>

Sﬁk(f)/ elsAkg(f)—le(f,s)]:{I[Pklng,—,pk2 ﬁ'ﬁfﬁ”]}(f, s)ds

(k1,k2) €, f e
< g2970m/29—k" /2+rk™ 9= (No+4d)k" (7.26)
We estimate first, using (4.10),
T k2 || FAI[Py, U9, Py, U 2]} (¢ & 5)llLe
< M e || P TR0 | o | Py Uy 1
< 29kag ki /29— Nok{ +(d+ 1k (7.27)

This suffices to control the contribution of the pairs (kq, ko) for which k < —1.01m. Thus it

remains to prove that
t —_—
’ / 2 / eis/\kg(g)—i@(f,s)ml(§ _ n)eisAkg(g—n)Pklvkgr(g -1, s)
t1 R3
x my(n)e” $hwea () P VIR (n,s) dnds| < 7272, (7.28)

for any ¢ with |¢| € [2K174,251+4] provided that
ko € [-1.01m, —pom + 10], k1 € [km — 10, km/100 + 10]. (7.29)

To prove (7.28) we integrate by parts in time. Notice that ®,,,(§,n) 2 1 in the support of
the integral if o = (kg, +), u = (kg, —), v = (wa, t2).%) The left-hand side of (7.28) is dominated
by C(J1 + J2 + Js), where, with p = (kg, —) and v = (wa, 13) and Tjr¢ defined as in (7.21),

to .
Bim 3 HIPLVS PGVENE [ IO TPV P )6 o)l ds

s€{t1,t2} t

Ty = / ITR9(0,(Py, VH), Py Vi (€, )| ds,
ty

ta
Jy = / ITE PGV, 0P, VI, )| ds. (7.30)

t
Assuming kq, ko as in (7.29), we estimate, as in (7.27),
TR2IP VH, P Vit (6, 5)| S 722220,
27T [P, V', 0s(Piy Vig)I(€, 5)| S 1277228
Here we used the bounds ||P,€2 Vvl S 22k290m and |0, Py, 1ow||L1 < 92kag-mA105m  geo

(4.2) and (4.14). Since O(&,5) = q4 (&)uiow (56/Arg(£), ), see (7.3), it follows from (4.7) that
10(¢, )] < ki 9=m+120m  The desired bounds for the terms J; and Js follow.

5) Here it is important that p # (kg,+), so the phase is nonresonant. The nonlinear correction (7.4) was done

precisely to weaken the corresponding resonant contribution of the profile V*9:+.
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To estimate Jy we use (7.25). Therefore

I T52105(Piy V1), Pry Vi) (€, 8)| S ef2mm/2Hemahe,

v
and the desired estimates follow since 2¥2 < 27Po™_ This completes the proof of the lemma. [J

Lemma 7.4 The bounds (7.20) hold if a =2, m > 1/k, and k € [—xm, km/100].
Proof We decompose V%9 = Dok g)eT Vﬁ ,;T as in (4.1). For (7.20) it suffices to prove that

> Akgk (& 5)] S ef2H00m (7.31)
(k1,51)€T

for any s € [2m~1 27T N[0, T] and k € [—km, km/100], where

Ak b (€, 8) = @i(€) / Ulgw (1, 1) {@* (e (O Ara (6 "”V]’j?’ (E—ms)ar(€—n)
R? (7.32)

is(&- ?
_ eis(€ n)/Akg(i)le?k;L(f, $)q4- (&)} dn.
As a consequence of (7.22), without using the cancellation of the two terms in the integral,
|Ak;j1,k1 (Ea S)| /S 6127j1/2+§j1 2H(2)§m27k1||u/1:;/(8)‘|111 S 5127j1/2+5j12H(2)5m27k127p0m+6m.

Since 27%1 < 25™/4 this suffices to control the contribution of the terms in (7.31) corresponding
to large values of jj, i.e. 271/2 > 2(1.01=po)m
On the other hand, if j; /2 < (1.01 — pg)m = 0.33m then we estimate
|eiS(Akg(£)—Ak9(f—n)) _ eiS(S-n)/Akg(£)| < 9~ 2pomtm
s (7.33)
VEST (€, 8)a4 (6) — VI (€ = m, 5)a (€ — )| < 4201/2mma—pom.

provided that [£] ~ 2¥ and |n| < 27Po™. Indeed, the first bound follows from the observation
that VAgg(€) = £/Akg(§). The second bound follows from (7.22), once we notice that differ-

entiation in £ of the localized profile Vj’fgkf(f ,8) corresponds essentially to multiplication by a
factor of 271, Therefore, since ||y (s)||p1 < 2770 9™ and 201/2 < 20-33m

| Akigi s (6 8)] S liow (s) || p1e227Pom (212 4 gpomtma=in/2) < g 9= 2pomet2nm0.35m,

The contribution of the pairs (ky,7;) for which 271/2 < 20-33m ig therefore bounded as claimed
n (7.31). This completes the proof of the lemma. O

Lemma 7.5 The bounds (7.20) hold if a =3, m > 1/k, and k € [—xm, km/100].
Proof We examine the formula (7.8), write u = iA,}(U*®*T — U%¥%~)/2, and decompose

the input functions dyadically in frequency. Let Up/%2 := U2 — U 0" and V0" =

ywata — 002 - As in the proof of Lemma 7.3, after simple reductions it suffices to prove that

gkl —ka e (7.34)

t2 . .
Pu(6) [ MO PP Uk P U} € 5) ds
LOC
3

t1

for any ¢1,t2 € {+, —} and kq, k2 € [-pom — 10, m/10].
We integrate by parts in time to estimate

t2 . .
’ /t el Mo () =IOES) FLI [P, UF, P, U1} (€,5) ds| S J1(8) + J5(€) + J4(8),
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where, with y = (kg,¢1) and v = (wa, t2) and T[fﬁ defined as in (7.21),
to .
J{(f) = Z ‘Tﬁg[Pkl VE, Pk2vhyigh](£a S)| + / |@(€’ 3)| ’ |T;]fg[P/€1 % P/fzvhyigh](fa S)| ds,
s€{t1,t2} 2

to
T5() = / ITH910,(Poy V), Py Vil (€. )| ds,
t1

12
T5(6) = / TR [P VP, 0u(Pry Vi) (€. )] ds.

ty

Since |O(¢, s)| < 2749 for (7.34) it suffices to prove that for any s € [271, 2+,

|50k (g)T;]fg [Pk'l VH; Pk2 Vhyigh](ga S)| S 5%272Hm2k2_a (735)
270k ()T (05 (P, V), Py Vil (€, 5)| S ef272rmaks | (7.36)
27 ok () TS [Pr, V', O (Pry Vitign)1(€, 8)| S e72725m 2 (7.37)

provided that k € [—xm,km/100], ki,ky € [—pm — 10,m/10], u = (kg,t1), v = (wa,ta),
11,2 € {+,—}.

Step 1 Proof of (7.35) 1If k1 < —4km (so ky > —km — 20) then we can just use L2
bounds (4.2)—(4.6) on both inputs and Lemma 3.3 (i) to prove (7.35). On the other hand, if
ki > —4xm then we decompose Py, V* =37, VI, and P, V¥ =37, VI asin (4.1). Let
k := max(k, k1, k2) and recall that |® g 1y, (€, 1) 2 2#29-2k" iy the support of the integrals
defining the operators Tfﬁ (see (3.5)).

The contribution of the pairs (V'

ks VJZJW) for which 2max(j1.j2) < 20499m2—6k+ is negligible,

TROVE Vi )€ 5) S 3272 if gmextinaz) < 90:09mg =6k, (7.38)

Indeed, this follows by integration by parts in 1 (using Lemma 3.1), the bounds (3.17), and the
observation that the gradient of the phase admits a suitable lower bound [V, {sAyg,., (& —n) +
SNya,, (MY 2 <s>2*2kfr in the support of the integral. On the other hand, we estimate

k
T2V

B + —_— —
L Vi l(69) S 2722 23R 2 V()| e [V L ()12

< 5%2,%2192/222/@1*”@ .9~ k19=j1/298(j1+k1) 910k  9—jag—k; /29—10k]
< €§22nm27k127j1/2+5j127j2276k+’

using (4.10), (7.22), and Lemma 3.3 (i). Recalling that k; > —4xm, this suffices to estimate the

contribution of the pairs (V}, .V}, ) for which gmax(ji.j2) > 90-99m9-6k" The bound (7.35)

v
j2,k2
follows.

Step 2 Proof of (7.36) Recall that e ks, 9,Vk9:41 () = N'*9(t) for any t € [0, T]. Notice
that F{ P, N*9}(s) can be written as a sum of terms of the form

o) [ 1617y = phmaley = TR = )T ) dp,

where ¢3,t4 € {+, —} and ms is a symbol as in (4.18). We combine this with the formula (7.21).
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For (7.36) it suffices to prove that, for any ¢ € R?,

3% R3 g m v

< ms(€ =1 —p)(€—n—plp| T UrS 2 (€ =1 — p, )T (p, 5) diydp
< 29kz 9=1.005m
provided that u = (kg,t1), v = (wa, t2), t1,t2,t3,t4 € {+,—}, and kq, ks € [—-pom — 10, m/10].
We decompose the solutions U943, U%%t4  and Py, V*®*2 dyadically in frequency and space

as in (4.1). Then we notice that the contribution when one of the parameters js, k3, ja, k4, jo is

large can be bounded using just L? estimates. It suffices to prove that

—ky oki— —is kg, —isA, Y wa,t —isAy 1 wa,t —1.
25 9 [e VIS () 0TIV ) o AR ()] ()] S ef2 O (7.39)

for any ko € [—pom — 10,m/10], k3, ks < m/10, and ja,7J3,j2 < 2m, where 6 = (kg,t3),

¥ = (wa, tg), and, with my, mg, m3, my as in (4.18),

Crglf, 9, hJ(E) :z/ k(&) (€ = m)ma (€ — n)ngn)

roxrs  Arg(§) = Au(€—n) —Au(n (7.40)
x (€ = = p)ma(p) - F(E = n = p)G(mh(p) dndp.
Substep 2.1  Assume first that
g3 > 0.99m — 3k . (7.41)
Let Y denote the left-hand side of (7.39). Using Lemma 3.3 and 3.2 (i) we estimate
Y g M by s b D s ) e VR O VI O

5 6?2K‘m2_j3_dk; 2—m2—k2 2—k4/2,

where in the last line we used bounds from Lemma 4.1. Since 2 %2 < 20.68m 55d Js + 3/€3+ >
0.99m, this suffices to prove (7.39) when k4 > —0.56m. On the other hand, if k4 < —0.56m,
then we estimate in the Fourier space. Using (3.5), (7.22), and (4.2)

J—
+ B R kg, T e
Y 5 2k3 k42 2ka+3 max(k™ k3 )”Vj;]k;s (S)HLOO 23k2/2”‘7j1;3€:2 (S)||L223k4/2”‘rj1i}3€:4 (S)HLz

o (7.43)
< eformoia/2toagkag—ka,

Since k4 < —0.56m, this suffices to prove (7.39) when k3 > —0.01m. Finally, if k4 < —0.56m
and k3 < —0.01m then ko > —km—10 (due to the assumption k > —xm) and a similar estimate

gives
Y S 2 ket ma BT 98 2V (5) | 2 |V (9) o 2 2V (5) o
< 390-00mo=jagka (7.44)

This completes the proof of (7.39) when j3 > 0.99m — 3k .

Substep 2.2 Assume now that jz < 0.99m —3k; . We notice that the 1 gradient of the phase
—sNg(§ —nm—p) —sA,(n) is 2 2m2-2k3 in the support of the integral in (7.40). Similarly, the
p gradient of the phase —sAg(§ —n — p) — sAy(p) is = 2m9=2k3 in the support of the integral.

Using Lemma 3.1 (integration by parts in n or p), the contribution is negligible unless

j2 >0.99m — 3k and  js > 0.99m — 3k . (7.45)



Wave-Klein—Gordon 981

Given (7.45), we estimate first, as in (7.43),

J——
+ B P kg, TN, o
Y 5 2k3 k42 2ka+3 max(k™ k3 )”Vj;]k;s (S)HLOO 23k2/2”‘7j1;3€;2 (S)||L223k4/2”‘rj1i}3€:4 (5)||L2

< efgrmoiz—iig—hag—hag =10k,
This suffices if k3 > —0.2m. On the other hand, if k3 < —0.2m then we may assume that
max(kz, kg) > —rm — 10 (due to the assumption k > —xm) and estimate as in (7.42),

Y g 2 g e ma T oMV (5)]| oo [V (9)] a2 ViR (9)] 2

< E?zl{m27m27j27j4275k2/2273k4/22710k;.
This suffices to prove (7.39) when k4 > —0.1m. Finally, if k3, ks < —0.1m and ks > —km — 10
then we estimate, as in (7.44) and using also (7.23),

—_— —_— —_—
Y 9 hag e max R g 2V () 2 |V 5 () e 22V ) o

< 65%20‘01m27j427j2/2+mj22710k:§',
which suffices. This completes the proof of the the bounds (7.36).
Step 3 Proof of (7.37) Recall that e~ *Awaw2 g, VWatz(t) = NWe(¢) for any t € [0,7]. If

k1 < —0.01m then we may assume that k2 > —xm — 10 (due to the assumption k& > —km).
Using (4.14) we estimate the left-hand side of (7.37) by

Comaheg2max(WT kD) | B V|| s || PN al| 2 S 22k 226m,

which suffices. We can also decompose Py, VF94 = Zjlz—k; Vj]fl’cbll, and notice that the
contribution of the localized profiles for which j; > 0.1m can be bounded in a similar way,

using (7.22). After these reductions it remains to prove that

i ()T IV (5), €N ez P, N2 (s)] (€)] S ef2 =002k (7.46)

for any s € [2m~1, 2" F by € [—pom — 10,m/10], k; > —0.01m, and j; < 0.1m.
We examine now the quadratic nonlinearities N*® in (2.7). We define the trilinear operators

/ ,_ ©1(§)er, (Mma (€ — n)ma(n)
Chall.o = [ e (7.47)

~

x ma(n — p)yma(p) - F(& = n)G(n — p)h(p) dndp,

where my, mg, m3, my are as in (4.18). For (7.46) it suffices to prove that

9—ky ‘Cllcg[e—isA“lej;’J’;L;(S)’e—isAkg,Lg VJIZ?I;? (S)7e—isAk9,L4 VJ_IZ!’J];:; (5)}(5” < 8%2—1.01771’ (7.48)

where s, k1, ka,j1 are as in (7.46) and (ks, j3), (K4, ja) € J.
Using Lemma 3.3 (ii) and (4.12), we estimate the left-hand side of (7.48) by

_ + Lt i kg, kg, kg, —1. —J39—Jjao—
2R APma D) [l M RS (5) | oo | VG2 ()2 |V (8) 1 S 2t 40madogming =2k,

This suffices if 270-48m2=J32=742=2k2 < 1. Otherwise, if j3 + j4 + 0.48m < —2ky — 120 then we
may assume that j3 < js (so j3 < 0.45m — 50 since ko > —0.68m — 10) and use (4.12) again to
estimate the left-hand side of (7.48) by

—_—
_ + kY kg —i vt rkg, kg,
Oy omas(KT K [ R ()| g3¥a/2 oo Men i VSIS (5)] o | V1S 5

S 6?2—1.49m2—k;/22—k;/22_j4_
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Since 273 /22731 < 273/3=41 < 1, the bounds (7.48) follow. This completes the proof. O

8 Bounds on the Profiles, III: the Wave Z Norm
We prove now our main Z-norm estimate for the profile V*¢.

Proposition 8.1 For any t € [0,T] we have
V4D 200 < 0

The rest of the section is concerned with the proof of this proposition. In view of the
definition (2.10) it suffices to prove that for any m > 1 and k € Z we have

+

S PQuV N (ts) — Qu VU (t1)l| e S eo2 2R (/2RI (No—d)k
j>max(—k,0)

(8.1)

for any t1,ty € [2™ — 2,2™T1] N[0, T]. This follows from Lemmas 8.2-8.4 below.

Lemma 8.2 For any m > 1 and k € Z let Jo := m(1 + &) + 2|k| + 10. Then, for any
t1,t2 € 2™ — 2,2 N[0, T

D7 20 QueV " 2) = QU (t) 12 S o2 2R (/R (Nm T (g.9)
Jj=Jdo
Proof This is a bound on the contribution of large j in the sum in (8.1). To prove it we use
an approximate finite speed of propagation argument. Since 9;V"* = eltAwa N for (8.2) it

suffices to prove that

2j(1+5)+mH<pj -eitA“’"'Pk./\/wa(t)”LQ S 60276m27k_(1/2+n)27N0k++d'k+

)

for any t € [2™ — 2,21 N[0, T] and j > Jo. With I as in (4.19), it suffices to show that

Do ey e e B[Py UM, Py UY)(1)] 2 S 202 mgmNok et (3.3
(k1,k2)€ Xy,
forany m > 1,k €Z, j > Jo, t € 2™ —2,2"F1N[0,T)], and p,v € {(kg,+), (kg, —)}.
Notice first that the contribution of the pairs (k1, ko) with max(k1, ke) > j or min(ky, ko) <
—j can be controlled easily using just the L? bounds (4.2) and (4.6). On the other hand, if
k1, ko € [—], 4] then we decompose

P, U = Z e itAuyH

Ji,k1?
J1>—ky J2=>—ky

P,U" = Y ety

J2,k2

as in (4.1). For (8.3) it suffices to prove that

lipj - eee Pedle™ VI (), e MV L (D) 22

< 6%2—j(1+6)2—m(1+6)2—6j12—6j22—N(1)k++2k+7

for any m, k, j, t, u, v as before, and any (k1,j1), (k2,j2) € J with kq, ks € [—7, J].
If min(j1, j2) > j(1 — J) then we estimate the left-hand side of (8.4) by

COR2|VE ()12 lIV], 1 (8) 22 S 323829791 —J2g = N(DKT ~N (ks g200m,

using (4.5). This gives the desired bound (8.4), since j > Jo > m(1 + k).
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On the other hand, if min(jq,j2) < j(1 — §) then the left-hand side of (8.4) is negligible.
Indeed, we may assume that j; < j(1 —4) and write

pi(a) - e NPl VL (1), 0TV (0)](2)
—Cosla) [ nl)e
R3 xR3

X it ()= A=) =Ae 0, (& — ) VI (¢ — 7, Oyma(n) V2, (1, t) dEcln.

We integrate by parts in £ many times, using Lemma 3.1; at each integration by parts we gain
a factor of || ~ 27 and lose a factor < 2™ 4 2/F1 4-271 Tt follows that the left-hand side of (8.4)
is bounded by C2710072-72 if j; < j(1 — §). The desired bounds (8.4) follow, which completes
the proof of the lemma. O

We prove now the bounds (8.1) when & is not close to 0, using Proposition 6.2.
Lemma 8.3 The bounds (8.1) hold if k > km/100 — 10 or k < —km.
Proof Tt follows from Proposition 6.2 that

2820k (€) (e, V) (&,1) 1z S coft) (N2~ Mok +akT,
forany t € [0,T], k € Z, 1 € {1,2,3}. Using Lemma 3.5, we have

sup 29[|Qu Ve (t)]| 2 S ety Nok kT g=k/2 (8.5)
jz—k—

Given the assumption on k, this suffices to control the contribution of the sum over j < Jj
in (8.1). The remaining part of the sum is suitably bounded because of Lemma 8.2. O
Finally, we also prove the bounds (8.1) when k is close to 0.

Lemma 8.4 The bounds (8.1) hold if m > 1/k and k € [—xm, xm/100].

Proof In view of Lemma 8.2, it suffices to show that
2P PV (t5) — PV ()12 S o2 M2 (/2R o= (Nomd kT,

Recall that 9,V% = etAwa N and k € [—xm, km/100]. It remains to show that

>

(k‘l,kQ)GXk

for any t1,ty € 2771, 27T N[0, 7] and 1,10 € {+, —}, where I is as in (4.19).
It is easy to bound the contribution of the pairs (k1, k2) in (8.6) for which either min(ky, ko) <
—0.9m or max(ky,ke) > m/10, using just the L? estimates in (4.10). For the remaining pairs

to .
(&) / o N O F (I[P, U, P, U2} (€, 5) ds

t1

<g2gmmTdem(8.6)

2
L&

we would like to integrate by parts in time. We define the bilinear operators 757 by

e15® (wa, +)uw (€:1) ~

TV g) (6 5) = / (€ — ) F(E —m8) - ma(m)Glm,s)dn,  (8.7)

R3 (I)(wa,Jr),uV(fv 77)
where s € [OvTL v o€ {(kgv+)v (kgv _)}v (I)(wa,+)/w(£,77) = Awa(f) - Aﬂ(g - 77) - Av(ﬂ)
(see (2.9)), and mq, mo are as in (4.18). Compare with the definition (7.21). We integrate by
parts in time to estimate

to
‘/ el hea & FAI[Py, U*, P, UY1}(E, s) ds| S 7 (&) + 5 (&)

t1
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where, with p = (kg, t1), v = (nu, t2), and T[fi‘f defined as in (8.7),

J{,(E) = Z |T;l:UVa [Pk1v'u7 P]@vu](g’ 8)‘,

sef{t1,ta2}
B© = [P, PVl s + [ TPV 0PV IIE 9 ds.
1 1
Using also the symmetry in kq, ko, for (8.6) it suffices to prove that for
o ()T [P, VP, Pe, V(€ 8)ll 12 S eF27m 4, (8.8)
2" or ()T [P, V', (0 Py VI (€, 8)ll 2 S 7274, (8.9)

provided that s € [2m~1 2m* Lk € [—km,km/100], ki, k2 € [-0.9m,m/10], u = (kg,t1),
v =(kg,t2), and t1,12 € {+,—}.
To prove (8.8)—(8.9) we notice that, as a consequence of (3.6) and Lemma 3.2 (ii),

— max(lt 1+ —is —is

()T [Pr, fo Pogl(€, )l gz S 27120 WD e =8 By f ps [le ™ Prgllpee (8.10)

for any f(s),g(s) € L3(R3), l,11,ls € Z, and (p1,p2) € {(2,), (o0,2)}. Therefore
||<pk(§)T;7ua[Pk1 V#a Pk:zvy](fa S)HL? + 2m||50k(§)T;ivua[Pk1 V‘uv (85Pk2V”)](§, S)”Lg
< €§2—k2kf/22—m+nm

using also (4.8), (4.2), and (4.40). This suffices to prove (8.8)—(8.9) if k; < —0.1m.

On the other hand, if k; € [~0.1m,0.1m] then we set 27 = 2ki =302™ and decompose
Py, VFou = nggzll + Vfi’;ll, as in (4.1). We have, see (4.33),

leieMxses VEGLS (5)]| oo S €427 R0 /20 73m/ 210K

kg,t1 —kT 9g—m+rmeo—10k; (811)
IVS9k ($)llre S €27 2 27
Therefore, using (8.10) with (p1, p2) = (00,2), and the bounds (4.2) and (4.40),
k()T IV ky» PrnVIIE 92 + 27 lor ()T VE > (05 Prs VI)IES 8) 12
< g2gkg ki /29=3m/2Rm (8.12)
In addition, using (8.10) with (p1,p2) = (2, 00), and the L*> bounds (4.8) and (5.47),
ler( T VL > Pra V& )Lz + 27 [or ()T VL s, » (O P, VIS, 8)lI 22
< g297kg =k g=2mA3em, (8.13)

The desired bounds (8.8)—(8.9) follow if |k;| < 0.1m from (8.12)—(8.13). This completes the
proof of the lemma. O
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