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1 Introduction

We consider the Wave-Klein–Gordon (W-KG) system in 3 + 1 dimensions,

− �u = Aαβ∂αv∂βv +Dv2,

(−� + 1)v = uBαβ∂α∂βv + Euv, (1.1)

where u, v are real-valued functions, and Aαβ, Bαβ , D, and E are real constants. Without loss
of generality we may assume that Aαβ = Aβα and Bαβ = Bβα, α, β ∈ {0, 1, 2, 3}.

The system (1.1) was derived by Wang [42] and LeFloch–Ma [35] as a model for the full
Einstein–Klein–Gordon (E-KG) system

Ricαβ = DαψDβψ + (1/2)ψ2gαβ , �gψ = ψ. (1.2)

Intuitively, the deviation of the Lorentzian metric g from the Minkowski metric is replaced by
a scalar function u, and the massive scalar field ψ is replaced by v. The system (1.1) keeps
the same linear structure as the Einstein–Klein–Gordon equations in harmonic gauge, but only
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keeps, schematically, quadratic interactions that involve the massive scalar field (the semilinear
terms in the first equation and the quasilinear terms in the second equation coming from the
reduced wave operator).

A natural question in the context of evolution equations is the question of global stability
of certain physical solutions. For example, for the Einstein-vacuum equation, global stability
of the Minkowski space-time is a central theorem in General Relativity, due to Christodoulou–
Klainerman [5] (see also the more recent papers of Klainerman–Nicolo [33], Lindblad–Rodnianski
[37], Bieri–Zipser [3], and Speck [41]).

In our case, this question was first addressed by Wang [42] and LeFloch–Ma [35], who proved
global stability for the (W-KG) system in the case of small, smooth, and compactly supported
perturbations. Global stability of the full (E-KG) system was then proved by LeFloch–Ma [36],
in the case of small and smooth perturbations that agree with a Schwarzschild solution outside
a compact set (see also the outline of a similar theorem by Wang [43]).

The analysis in [35, 36, 42, 43] relies on refinements of the hyperbolic foliation method (see
also [34] for a longer exposition of the method). To implement this method one needs to first
have control of the solution on an initial hyperboloid, and then propagate this control to the
interior region. As a result, this approach appears to be restricted to the case when one can
establish such good control on an initial hyperboloid. Due to the finite speed of propagation,
this is possible in the case of compactly supported data for the (W-KG) system, and in the
case of data that agrees with (Sm, 0) outside a compact set for the (E-KG) system (here Sm is
a Schwarzschild solution with mass m � 1). In the Einstein-vacuum case, the corresponding
global regularity result for such “restricted data” was proved by Lindblad–Rodnianski [37]. See
also the work of Friedrich [12] for an earlier semi-global result.

Our goal in this paper is to initiate the study of global solutions for the systems (1.1)
and (1.2), in the case of small and smooth data that decay at suitable rates at infinity, but are
not necessarily compactly supported. This case is physically relevant because of the large family
of asymptotically flat initial data sets. We consider here only the simpler (W-KG) model (1.1),
and hope to return to the full Einstein–Klein–Gordon model in the future.

Our framework in this paper is inspired by the recent advances in the global existence
theory for quasilinear dispersive models, such as plasma models and water waves. We rely on a
combination of energy estimates and Fourier analysis. At a very general level one should think
that energy estimates are used, in combination with vector-fields, to control high regularity
norms of the solutions, while the Fourier analysis is used, mostly in connection with normal
forms, analysis of resonant sets, and a special “designer” norm, to prove dispersion and decay
in lower regularity norms.

1.1 The Main Theorem

Our main theorem concerns the global regularity of the (W-KG) system (1.1), for small initial
data (u0, v0). To state this theorem precisely we need some notation. We define the operators
on R

3

Λwa := |∇|, Λkg := 〈∇〉 =
√
|∇|2 + 1. (1.3)
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We define also the Lorentz vector-fields Γj and the rotation vector-fields Ωjk,

Γj := xj∂t + t∂j , Ωjk := xj∂k − xk∂j , (1.4)

for j, k ∈ {1, 2, 3}. These vector-fields commute with both the wave operator and the Klein–
Gordon operator. For any α = (α1, α2, α3) ∈ (Z+)3 we define

∂α := ∂α1
1 ∂α2

2 ∂α3
3 , Ωα := Ωα1

23 Ωα2
31 Ωα3

12 , Γα := Γα1
1 Γα2

2 Γα3
3 . (1.5)

For any n ∈ Z+ we define Vn as the set of differential operators of the form

Vn :=
{

Γa1
1 Γa2

2 Γa3
3 Ωb1

23Ω
b2
31Ω

b3
12∂

α0
0 ∂α1

1 ∂α2
2 ∂α3

3 :
3∑

j=1

(aj + bj) +
3∑

k=0

αk ≤ n

}
. (1.6)

To state our main theorem we need to introduce several Banach spaces of functions on R
3.

Definition 1.1 For a ≥ 0 let Ha denote the usual Sobolev spaces of index a on R
3. We define

also the Banach spaces Ha,b
Ω , a, b ∈ Z+, by the norms

‖f‖Ha,b
Ω

:=
∑

|α|≤b

‖Ωαf‖Ha . (1.7)

We also define the weighted Sobolev spaces Ha,b
S,wa and Ha,b

S,kg by the norms

‖f‖Ha,b
S,wa

:=
∑

|β′|≤|β|≤b

‖xβ′
∂βf‖Ha , ‖f‖Ha,b

S,kg
:=

∑

|β|,|β′|≤b

‖xβ′
∂βf‖Ha , (1.8)

where xβ′
= x

β′
1

1 x
β′
2

2 x
β′
3

3 and ∂β := ∂β1
1 ∂β2

2 ∂β3
3 . Notice that Ha,b

S,kg ↪→ Ha,b
S,wa ↪→ Ha,b

Ω ↪→ Ha.

We are now ready to state our main theorem, which is a global regularity result for the
system (1.1). For simplicity we will assume that B00 = 0. This can be achieved by replacing a
term like B00∂2

0v with B00(Δv− v) (which can be incorporated with the other quadratic terms
in the nonlinearity), at the expense of creating cubic order terms in the second equation in (1.1)
which do not change the analysis.

Theorem 1.2 Assume that N0 := 40, N1 := 3, d := 10, and Aαβ , Bαβ , D,E ∈ R, B00 =
0. Assume that u0, u̇0, v0, v̇0 : R

3 → R are real-valued initial data satisfying the smallness
assumptions

N1∑

n=0

[‖ |∇|−1/2Uwa
0 ‖

H
N(n),n
S,wa

+ ‖Ukg
0 ‖

H
N(n),n
S,kg

] ≤ ε0 ≤ ε, (1.9)

where ε is a sufficiently small constant (depending only on the constants Aαβ, Bαβ , D, E in
(1.1)), N(0) = N0 + 3d, N(n) = N0 − dn for n ≥ 1, and

Uwa
0 := u̇0 − iΛwau0, Ukg

0 := v̇0 − iΛkgv0. (1.10)

Then there is a unique real-valued global solution (u, v) of the system (1.1) with (|∇|1/2u, v) ∈
C([0,∞) : HN(0) ×HN(0)+1) ∩ C1([0,∞) : HN(0)−1 ×HN(0)) , with initial data

u(0) = u0, ∂tu(0) = u̇0, v(0) = v0, ∂tv(0) = v̇0.

Moreover, with δ = 10−7, the solution (u, v) satisfies the energy bounds with slow growth,

sup
n≤N1,L∈Vn

{‖|∇|−1/2(∂t − iΛwa)Lu(t)‖HN(n) + ‖(∂t − iΛkg)Lv(t)‖HN(n)} � ε0(1 + t)δ, (1.11)
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for any t ∈ [0,∞), and the pointwise decay bounds
∑

|α|+α0≤N0−2d

{‖∂α∂α0
0 u(t)‖L∞ + ‖∂α∂α0

0 v(t)‖L∞} � ε0(1 + t)δ−1. (1.12)

We conclude this subsection with several remarks.

Remark 1.3 (i) The hypothesis on the data (1.9) can be expressed easily in terms of the
physical variables u0, u̇0, v0, v̇0, which are related to the real and the imaginary parts of the
normalized variables Uwa

0 and Ukg
0 . It can also be expressed in the Fourier space, i.e.

∑

|β′|≤γ≤n

‖ |ξ|−1/2+γ〈ξ〉N(n)∂β′
ξ Û

wa
0 ‖L2

ξ
+

∑

|β′|,γ≤n

‖ |ξ|γ〈ξ〉N(n)∂β′
ξ Û

kg
0 ‖L2

ξ
� ε0, (1.13)

for n ∈ [0, N1].
(ii) The low frequency structure of the wave component, in particular the |∇|−1/2 multiplier,

is important. This is due to the fact that the bilinear interactions in the (W-KG) system are
resonant only when the frequency of the wave component is 0, so we need precise control of
these low frequencies. See also Subsection 1.3 below for a discussion of some of the main bilinear
interactions that involve low frequencies of the wave component.

(iii) One can derive more information about the global solution (u, v) as part of the bootstrap
argument. In fact, the solution satisfies the main bounds (2.17)–(2.19) in Proposition 2.2.

At a qualitative level, we also provide a precise description of the asymptotic behavior of
the solution. More precisely, the wave component u scatters linearly1) (in a weaker norm), in
the sense that there exists a profile V wa

∞ ∈ L2(R3) such that

‖(∂t − iΛwa)u(t) − e−itΛwaV wa
∞ ‖L2 → 0, as t→ ∞. (1.14)

On the other hand, the Klein–Gordon component undergoes nonlinear scattering, in the sense
that there exists a profile V kg

∞ such that

‖(∂t − iΛkg)v(t) − e−itΛkg+iΘ(ξ,t)V kg
∞ ‖L2 → 0, as t→ ∞,

where Θ(ξ, t) := q+(ξ)
∫ t

0

ulow(s∇Λkg(ξ), s) ds.
(1.15)

Here q+(ξ) denotes a suitable multiplier that depends on the coefficients Bαβ and E, and ulow

is a low-frequency truncation of u. The phase Θ(ξ, t) is only relevant if ulow is not integrable
along Klein–Gordon characteristics, which is the case in our problem. See Subsection 1.3 below.

1.2 Overview of the Proof

The system (1.1) is a quasilinear system of hyperbolic and dispersive equations. For general
such systems, even small and smooth data can lead to finite-time blow-up [24] and the analysis
depends on fine properties of the propagation of small waves (i.e. the linearized operator) and
on the precise structure of the nonlinearity (null forms).

One of the main difficulties in the analysis of (1.1) comes from the fact that we have a
genuine system in the sense that the linear evolution admits different speeds of propagation,

1) The linear scattering here is likely due to the very simple semilinear equation for u. In the case of the full

Einstein–Klein–Gordon system, one expects modified scattering for the metric components as well.
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corresponding to wave and Klein–Gordon propagation. As a result the set of “characteristics”
is more involved and one has a more limited set of geometric vector-fields available.

On a more technical level, it turns out that the main feature of the system above is the
slow decay of the low frequencies of wave component u in the interior of the light cone and in
particular along the characteristics associated to the Klein–Gordon operator. This nonlinear
effect ultimately leads to modified scattering for the Klein–Gordon component. This effect
would not be present if the quasilinear term was of the form ∂u · ∇2v, in which case one
recovers linear scattering, see [26].

A number of important techniques have emerged over the years in the study of hyperbolic
systems of wave-type, starting with seminal contributions of John, Klainerman, Shatah, Simon,
Christodoulou, and Alinhac [1, 2, 4, 5, 24, 25, 29–32, 39, 40]. These include the vector-
field method, the normal form method, and the isolation of null structures. In our case, the
nonlinearity does not present a null structure, but has a delicate resonant pattern, and the
coupled system has a limited set of vector-fields which we use in our analysis.

Our approach, which builds on these early contributions can be traced back to ideas intro-
duced by Delort–Fang–Xue [6–8], Germain–Masmoud–Shatah [15, 16], Gustafson–Nakanishi–
Tsai [19], and developed by the authors and coauthors [9–11, 17, 18, 20–23, 28]. We also refer to
[13, 26] for additional works on systems of wave and Klein–Gordon equations, and to [9, 14, 21]
for recent work on systems of Klein–Gordon equations with different speeds.

In this paper we use a combination of energy estimates and Fourier analysis to control our
solutions. More precisely, we prove:

• Energy estimates to control high Sobolev norms and weighted norms using the vector-
fields in Vn. All the energy bounds are allowed to grow slowly in time, at various rates. These
energy bounds are also transferred to prove L2 bounds with slow time growth on the linear
profiles and their derivatives in the Fourier space.

• Dispersive estimates, which lead to sharp decay. These are uniform bounds in time (i.e.
without slow time growth), in a suitable lower regularity Z norm. The choice of this “designer”
norm is important, and we construct it using a space-frequency atomic decomposition of the
profiles of the solution, as in some of our earlier papers2) starting with [20]. At this stage, in
order to prove uniform bounds it is important to identify a nonlinear correction of the phase
and prove nonlinear scattering.

1.3 Nonlinear Effects

In this subsection we isolate two of the main nonlinear interactions in the system (1.1), and
explain their relevance in the proof.

1.3.1 The Low Frequency Structure of the Wave Component

By inspection of (1.1) we observe first that bounding the quadratic terms amounts to control
trilinear integrals of the form

I =
∫∫

u · ∂αv · ∂βv dxdt.

2) In general, one should think of the Z norm as being connected to the location and the shape of the set of

space-time resonances of the system, as in [10, 11, 17, 21]. In our case here there are no nontrivial space-time

resonances and the construction is simpler.
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Thus the resonant analysis is controlled by (essentially) only one type of quadratic phase

Φ(ξ1, ξ2) = Λkg(ξ1) ± Λkg(ξ2) ± Λwa(ξ1 + ξ2), |Φ| � (1 + |ξ1| + |ξ2|)−2|ξ1 + ξ2|. (1.16)

Thus we expect that the interactions where the wave component has small frequency, in par-
ticular when t|ξ1 + ξ2| � 1, will play an important role in the analysis.

One of the main difficulties in proving energy estimates comes from the imbalance in the
quasilinear term u∇2v, since energy estimates only lead to control of derivatives of u. To
illustrate this, apply a commuting vector-field Γ to (1.1) to get a system of the schematic form

− �(Γu) = v · Γv,
(−� + 1)(Γv) = (Γu)∂2v +

{
u · ∂2(Γv) + u · ∂2v

}
.

The terms in curly bracket in the equation for v can be treated easily (assuming bootstrap
energy estimates for v) and will be discarded for the following discussion. The first term in the
equation for v is more problematic because standard energy estimates would only allow us to
control energy functionals of the form

E2
w(Γu) ≈ ‖∇x,tΓu‖2

L2 , E2
kg(Γv) ≈ ‖Γv‖2

H1 .

Thus Γu · ∂2v is not well controlled when u has small frequencies ≈ 1/t, and we have an
unwanted growth factor of up to t.

In order to compensate for this and recover the missing derivative, we use the faster (opti-
mal) decay of the Klein–Gordon solution in two steps and the special structure of the system

KG×KG→ Wave, Wave ×KG→ KG.

This allows us to control first |∇|−1/2Γu in energy norm. Indeed, assuming that u is located at
frequencies |ξ| ≈ 1/t, the first equation gives

∂tEw(|∇|−1/2Γu) � ‖|∇|−1/2P∼1/t(v · Γv)‖L2 � (1 + t)1/2‖v‖L∞ · Ekg(Γv).

We would thus obtain an acceptable contribution, at least as long as we can show that v
decays pointwise at the optimal rate (1 + t)−3/2. On the other hand, if we now compute the
corresponding contribution in the energy estimates for v, we obtain (discarding the easy terms,
and assuming again that u is located at frequencies ≈ 1/t)

∂tEkg(Γv) � ‖Γu · ∂2v‖L2 � ‖|∇|−1/2 · (∇x,t|∇|−1/2Γu)‖L2‖v‖W 2,∞

� (1 + t)1/2‖v‖W 2,∞ · Ew(|∇|−1/2Γu).

Once again we obtain an acceptable contribution, as long as we can show that v has optimal
decay in time. To prove this optimal decay3) we need to use the Z-norm, identify a nonlinear
phase correction, and prove modified scattering for v (see below for a discussion of this step).

This scheme allows us to deal with the contribution of the frequencies |ξ| ≈ 1/t coming
from u (and also explains the factor |∇|−1/2 in the energy functionals for u). To deal with
the contribution of larger frequencies we can start integrating by parts in time (the method of
normal forms) and use the lower bound (1.16) on the resonance phases.

3) In fact, we will not prove optimal decay for the full function v, but we will decompose v = v∞ + v2 where

v∞ has optimal pointwise decay and v2 is suitably small in L2.
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1.3.2 Long-range Perturbations and Modified Scattering

Assume for simplicity that we consider radial solutions of the system

�u+ |∇x,tv|2 + v2 = 0, (u(0), ∂tu(0)) = (0, 0),

(−� + 1)v − uΔv = 0, (v(0), ∂tv(0)) = (χ, 0), 1{|x|≤1} ≤ χ ≤ 1{|x|≤2}. (1.17)

Assume that v decays no faster than a linear solution,

|∇x,tv(t)| + |v(t)| ≥ ε〈t〉−3/21{|x|≤t/2}.

Using the explicit form of the linear propagator for the wave equation, and in particular, the
fact that it is nonnegative, one can see that

u(x, t) � ε2/〈t〉, |x| ≤ t/4. (1.18)

Thus we see that u has a substantial (i.e. non integrable) presence inside the light cone, where
the characteristics of the Klein–Gordon equation are located. This is already a departure from
linear behavior (although this only affects the behavior of u on large spatial scales and disappears
in the energy of u, as the scattering statement in Ḣ1 in (1.14) suggests). In addition, since u
is nonnegative, there can be no gain by averaging (i.e. no normal form), and the contribution
from uΔv in (1.17) is indeed a long range quasilinear perturbation.

To control a norm that does not grow (the Z norm) we need to identify the correct asymp-
totic behavior and the correct nonlinear oscillations. Conjugating by the linear flow, letting

V kg(t) = eitΛkg (∂t − iΛkg)v(t),

leads to a nonlinear equation for the Klein–Gordon profile

∂tV̂ kg(ξ, t) =
1

(2π)3

∫

R3
eitΛkg(ξ)û(η, t)[Bαβ ∂̂α∂βv(ξ − η, t) + Ev̂(ξ − η, t)] dη.

We write the right-hand side in terms of the linear profile V kg and extract the resonant inter-
action that corresponds to the case when u has low frequencies, see (1.16). This leads to an
equation of the form

∂tV̂ kg(ξ, t) =
i

(2π)3

∫

{|η|�1}
eit[Λkg(ξ)−Λkg(ξ−η)]û(η, t)q+(ξ − η)V̂ kg(ξ − η, t)dη + l.o.t.

= iq+(ξ)V̂ kg(ξ, t) · 1
(2π)3

∫

{|η|�1}
eit[η·∇Λkg(ξ)+O(|η|2)]û(η, t)dη + l.o.t.

where q+ denotes a real-valued multiplier. Discarding the quadratic error in the phase and
performing the Fourier inversion leads to the ODE

∂tV̂ kg(ξ, t) = iq+(ξ)ulow(t∇Λkg(ξ), t) · V̂ kg(ξ, t) + l.o.t.

This leads to a phase correction (written explicitly in (1.15)) corresponding to integrating the
effect of the quasilinear term along the characteristics of the Klein–Gordon flow (t∇Λkg(ξ), t).
This is consistent with a choice of Z-norm for v controlling the amplitude of the solutions
pointwise in Fourier space, but allowing for an additional oscillating phase, see (2.11).
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1.4 Organization

The rest of the paper is concerned with the proof of Theorem 1.2. In Section 2 we introduce the
main notation, define the main Z-norm, and state the main bootstrap proposition. In Section 3
we prove various lemmas, such as dispersive linear bounds and some bounds on quadratic
phases. In Section 4 we use the bootstrap assumptions and elliptic analysis to derive various
bounds on the unknowns and their vector-field derivatives.

We then start the proof of the main bootstrap proposition in Section 5, where we obtain
improved energy estimates. In Section 6 we translate the estimate on vector-fields applied
to functions into weighted bounds on the linear profiles. In the last two sections, we recover
uniform control of the Z-norm. This involves first isolating the modification to linear scattering
in Section 7, where we also control the Klein–Gordon solution. Finally in Section 8 we control
the Z-norm for the wave unknown.

2 Function Spaces and the Main Proposition

2.1 Notation, Atomic Decomposition, and the Z-norm

We start by summarizing our main definitions and notations.

2.1.1 Littlewood–Paley Projections

We fix ϕ : R → [0, 1] an even smooth function supported in [−8/5, 8/5] and equal to 1 in
[−5/4, 5/4]. For simplicity of notation, we also let ϕ : R

3 → [0, 1] denote the corresponding
radial function on R

3. Let

ϕk(x) := ϕ(|x|/2k) − ϕ(|x|/2k−1) for any k ∈ Z, ϕI :=
∑

m∈I∩Z

ϕm for any I ⊆ R.

For any B ∈ R let

ϕ≤B := ϕ(−∞,B], ϕ≥B := ϕ[B,∞), ϕ<B := ϕ(−∞,B), ϕ>B := ϕ(B,∞).

For any a < b ∈ Z and j ∈ [a, b] ∩ Z let

ϕ
[a,b]
j :=

⎧
⎪⎪⎨

⎪⎪⎩

ϕj if a < j < b,

ϕ≤a if j = a,

ϕ≥b if j = b.

(2.1)

For any x ∈ Z let x+ = max(x, 0) and x− := min(x, 0). Let

J := {(k, j) ∈ Z × Z+ : k + j ≥ 0}.
For any (k, j) ∈ J let

ϕ̃
(k)
j (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

ϕ≤−k(x) if k + j = 0 and k ≤ 0,

ϕ≤0(x) if j = 0 and k ≥ 0,

ϕj(x) if k + j ≥ 1 and j ≥ 1,

and notice that, for any k ∈ Z fixed,
∑

j≥−min(k,0) ϕ̃
(k)
j = 1.

Let Pk, k ∈ Z, denote the operator on R
2 defined by the Fourier multiplier ξ �→ ϕk(ξ).

Let P≤B (respectively P>B) denote the operators on R
2 defined by the Fourier multipliers
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ξ �→ ϕ≤B(ξ) (respectively ξ �→ ϕ>B(ξ)). For (k, j) ∈ J let Qjk denote the operator

(Qjkf)(x) := ϕ̃
(k)
j (x) · Pkf(x). (2.2)

In view of the uncertainty principle the operators Qjk are relevant only when 2j2k � 1, which
explains the definitions above.

2.1.2 Linear Profiles and Norms

An important role will be played by the normalized solutions Uwa, Ukg and their associated
profiles V wa, V kg defined by

Uwa(t) := ∂tu(t) − iΛwau(t), Ukg(t) := ∂tv(t) − iΛkgv(t),

V wa(t) := eitΛwaUwa(t), V kg(t) := eitΛkgUkg(t),
(2.3)

where, as before, Λwa = |∇| and Λkg =
√

1 + |∇|2. More generally, for differential operators
L ∈ VN1 we define Uwa

L , Ukg
L , V wa

L , V kg
L by

Uwa
L (t) := (∂t − iΛwa)(Lu)(t), Ukg

L (t) := (∂t − iΛkg)(Lv)(t),
V wa
L (t) := eitΛwaUwa

L (t), V kg
L (t) := eitΛkgUkg

L (t).
(2.4)

We define also

Uwa,−
L := Uwa

L , Ukg,−
L := Ukg

L ; V wa,−
L := V wa

L , V kg,−
L := V kg

L ,

Uwa,+
L := Uwa, Ukg,+ := Ukg

L ; V wa,+
L := V wa, V kg,+

L := V kg.
(2.5)

The functions Lu,Lv can be recovered from the normalized variables Uwa
L , Ukg

L by the formulas

∂0(Lu) = (Uwa
L + Uwa

L )/2, Λwa(Lu) = i(Uwa
L − Uwa

L )/2,

∂0(Lv) = (Ukg
L + Ukg

L )/2, Λkg(Lv) = i(Ukg
L − Ukg

L )/2.
(2.6)

The system (1.1) gives, for any L ∈ VN1 ,

(∂t + iΛwa)Uwa
L = Nwa

L := L[Aαβ∂αv∂βv +Dv2],

(∂t + iΛkg)U
kg
L = N kg

L := L[uBαβ∂α∂βv + Euv]. (2.7)

Let
P := {(wa,+), (wa,−), (kg,+), (kg,−)}. (2.8)

Let Λwa,+(ξ) := Λwa(ξ) = |ξ|, Λwa,−(ξ) := −Λwa,+(ξ), Λkg,+(ξ) := Λkg(ξ) =
√|ξ|2 + 1,

Λkg,−(ξ) := −Λkg,+(ξ). For any σ, μ, ν ∈ P we define the associated quadratic phase function

Φσμν : R
3 × R

3 → R, Φσμν(ξ, η) := Λσ(ξ) − Λμ(ξ − η) − Λν(η). (2.9)

We are now ready to define the main norms.

Definition 2.1 For any x ∈ R let x+ = max(x, 0) and x− = min(x, 0). Let δ := 10−10,
κ := 20

√
δ = 2 × 10−4, d = 10, and d′ := 3d/2. We define the spaces Zwa, Zkg, by the norms

‖f‖Zwa
:= sup

k∈Z

{
2(N0−d′)k+

2k−(1/2+κ)
∑

j≥max(0,−k)

2j‖Qjkf‖L2

}
(2.10)

and

‖f‖Zkg
:= sup

k∈Z

{2(N0−d′)k+
2k−(1/2−κ)‖P̂kf‖L∞ + 2(N(0)−2)k+

2−k−−κk−‖Pkf‖L2}. (2.11)
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We remark that the norms Zwa and Zkg are applied to the profiles V wa and V kg, not to
the normalized solutions Uwa and Ukg.

2.2 The Main Bootstrap Proposition

Our main result is the following proposition:

Proposition 2.2 Assume that (u, v) is a solution to (1.1) on some time interval [0, T ], T ≥ 1,
with initial data (u0, u̇0, v0, v̇0) satisfying the assumptions (1.9), and define Uwa

L , Ukg
L , V wa

L , V kg
L

as before. Assume also that, for any t ∈ [0, T ], the solution satisfies the bootstrap hypothesis

sup
n≤N1,L∈Vn

{‖|∇|−1/2Uwa
L (t)‖HN(n) + ‖Ukg

L (t)‖HN(n)} ≤ ε1〈t〉H(n)δ, (2.12)

sup
n≤N1−1,L∈Vn, l∈{1,2,3}

sup
k∈Z

2N(n+1)k+{2k/2‖ϕk(ξ)(∂ξl
V̂ wa
L )(ξ, t)‖L2

ξ

+ 2k+‖ϕk(ξ)(∂ξl
V̂ kg
L )(ξ, t)‖L2

ξ
} ≤ ε1〈t〉H(n+1)δ, (2.13)

and
‖V wa(t)‖Zwa

+ ‖V kg(t)‖Zkg
≤ ε1, (2.14)

where 〈t〉 :=
√

1 + t2, ε1 = ε
2/3
0 , δ = 10−10, d = 10,

H(0) = 1, H(n) = 200n− 190 for n ∈ {1, . . . , N1}, (2.15)

and
N(0) = N0 + 3d, N(n) = N0 − dn for n ∈ {1, . . . , N1}. (2.16)

Then the following improved bounds hold, for any t ∈ [0, T ],

sup
n≤N1,L∈Vn

{‖|∇|−1/2Uwa
L (t)‖HN(n) + ‖Ukg

L (t)‖HN(n)} � ε0〈t〉H(n)δ, (2.17)

sup
n≤N1−1,L∈Vn, l∈{1,2,3}

sup
k∈Z

2N(n+1)k+{2k/2‖ϕk(ξ)(∂ξl
V̂ wa
L )(ξ, t)‖L2

ξ

+ 2k+‖ϕk(ξ)(∂ξl
V̂ kg
L )(ξ, t)‖L2

ξ
} � ε0〈t〉H(n+1)δ, (2.18)

and
‖V wa(t)‖Zwa

+ ‖V kg(t)‖Zkg
� ε0. (2.19)

We will show in Proposition 4.4 below that the hypothesis (1.9) implies that desired con-
clusions (2.17)–(2.19) at time t = 0. Given Proposition 2.2, Theorem 1.2 follows using a local
existence result and a continuity argument. The rest of this paper is concerned with the proof
of Proposition 2.2.

The bounds (2.12) and (2.17) provide high order energy control on the main variables Uwa
L

and Ukg
L . Notice that all the energy functionals are allowed to grow slowly in time. Notice

also that there is a certain energy hierarchy expressed in terms of the parameters H(n) and
N(n), in the sense that the variables with more vector-fields are allowed to grow slightly faster
compared with those with fewer vector-fields, in weaker Sobolev spaces.

The bounds (2.13) and (2.18) are our main L2 bounds on the derivatives of the profiles V wa
L

and V kg
L in the Fourier space. They correspond to weighted bounds in the physical space and

can be linked to the energy estimates using the key identities in Lemma 6.1.
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The bounds (2.14) and (2.19) are our main dispersive bounds. Notice that these bounds are
more precise than the Sobolev bounds, in the sense that the solutions are not allowed to grow
slowly in time in the Z-norm, but at a lower order of derivatives and without vector-fields. To
prove these dispersive bounds it is important to first renormalize the Klein–Gordon profile V kg

and prove modified scattering.

3 Some Lemmas

In this section we collect several lemmas that are used in the rest of the paper. We start with a
lemma that is used often in integration by parts arguments. See [21, Lemma 5.4] for the proof.

Lemma 3.1 Assume that 0 < ε ≤ 1/ε ≤ K, N ≥ 1 is an integer, and f, g ∈ CN+1(R3). Then
∣
∣
∣∣

∫

R3
eiKfg dx

∣
∣
∣∣ �N (Kε)−N

[ ∑

|α|≤N

ε|α|‖Dα
x g‖L1

]
, (3.1)

provided that f is real-valued,

|∇xf | ≥ 1supp g, and ‖Dα
xf · 1supp g‖L∞ �N ε1−|α|, 2 ≤ |α| ≤ N + 1. (3.2)

To bound bilinear operators, we often use the following simple lemma.

Lemma 3.2 (i) Assume that l ≥ 2, f1, . . . , fl, fl+1 ∈ L2(R3), and M : (R3)l → C is a
continuous compactly supported function. Then

∣
∣∣
∣

∫

(R3)l

M(ξ1, . . . , ξl) · f̂1(ξ1) · · · · · f̂l(ξl) · f̂l+1(−ξ1 − · · · − ξl) dξ1 · · · dξl
∣
∣∣
∣

� ‖F−1M‖L1((R3)l)‖f1‖Lp1 · · · · · ‖fl+1‖Lpl+1 , (3.3)

for any exponents p1, . . . , pl+1 ∈ [1,∞] satisfying 1/p1 + · · · + 1/pl+1 = 1.
(ii) As a consequence, if q, p2, p3 ∈ [1,∞] satisfy 1/p2 + 1/p3 = 1/q then

∥
∥
∥∥F−1

ξ

{ ∫

R3
M(ξ, η)f̂(η)ĝ(−ξ − η) dη

}∥
∥
∥∥

Lq

� ‖F−1M‖L1‖f‖Lp2 ‖g‖Lp3 . (3.4)

Our next lemma is often used in integration by parts in time arguments (normal forms).

Lemma 3.3 (i) Assume that Φσμν is as in (2.9). If |ξ|, |ξ − η|, |η| ∈ [0, b], 1 ≤ b, then

|Φσμν(ξ, η)| ≥ |ξ|/(4b2) if (σ, μ, ν) = ((wa, ι), (kg, ι1), (kg, ι2)),

|Φσμν(ξ, η)| ≥ |η|/(4b2) if (σ, μ, ν) = ((kg, ι), (kg, ι1), (wa, ι2)).
(3.5)

(ii) Assume that k, k1, k2 ∈ Z and n is a multiplier such that ‖F−1n‖L1(R3×R3) ≤ 1. Let
k = max(k, k1, k2). If (σ, μ, ν) = ((wa, ι), (kg, ι1), (kg, ι2)) then

‖F−1{Φσμν(ξ, η)−1n(ξ, η) · ϕk(ξ)ϕk1(ξ − η)ϕk2(η)}‖L1(R3×R3) � 2−k24k
+

. (3.6)

Moreover, if (σ, μ, ν) = ((kg, ι), (kg, ι1), (wa, ι2)) then

‖F−1{Φσμν(ξ, η)−1n(ξ, η) · ϕk(ξ)ϕk1(ξ − η)ϕk2(η)}‖L1(R3×R3) � 2−k224k
+

. (3.7)

Proof (i) The bounds follow from the elementary inequalities
√

1 + x2 +
√

1 + y2 − (x+ y) ≥ 1/(2b),

x+
√

1 + y2 −
√

1 + (x+ y)2 ≥ x/(4b2),
(3.8)
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which hold if x, y, x + y ∈ [0, b]. The second inequality can be proved by setting F (x) :=
x+

√
1 + y2 − √

1 + (x+ y)2 and noticing that F ′(x) ≥ 1/(4b2) as long as y, x+ y ∈ [0, b].
(ii) By symmetry, it suffices to prove (3.6). Also, since

‖F−1(fg)‖L1 � ‖F−1f‖L1‖F−1g‖L1 , (3.9)

without loss of generality we may assume that n ≡ 1 and ι = +. Let

m(v, η) := 2−kΦσμν(2kv, η)−1 =
1

|v| − 2−kΛkg,ι1(η − 2kv) − 2−kΛkg,ι2(η)
. (3.10)

For (3.6) it suffices to prove that

‖F−1{m(v, η) · ϕ0(v)ϕk1(η − 2kv)ϕk2(η)}‖L1(R3×R3) � 24k
+

. (3.11)

We consider two cases, depending on the signs ι1 and ι2.

Case 1 ι1 �= ι2. By symmetry we may assume that ι2 = −, ι1 = +, so

m(v, η) =
1

|v| − 2−k
√

1 + |η − 2kv|2 + 2−k
√

1 + |η|2

=
2k|v| + √

1 + |η|2 +
√

1 + |η − 2kv|2
2(|v|√1 + |η|2 + v · η)

=
[2k|v| + √

1 + |η|2 +
√

1 + |η − 2kv|2][|v|√1 + |η|2 − v · η]
2[|v|2 + |v|2|η|2 − (v · η)2] . (3.12)

The first identity follows by algebraic simplifications, after multiplying both the numerator and
the denominator by |v| + 2−k

√
1 + |η − 2kv|2 + 2−k

√
1 + |η|2. The second identity follows by

multiplying both the numerator and the denominator by |v|√1 + |η|2 − v · η. The numerator
in the formula above is a sum of simple products and its contribution is a factor of 22k

+

. In
view of the general bound (3.9), for (3.11) it suffices to prove that, for l ≥ 0

∥
∥
∥∥

∫

R3×R3
eix·veiy·η 1

|v|2 + |v|2|η|2 − (v · η)2ϕ0(v)ϕ≤l(η) dvdη
∥
∥
∥∥

L1
x,y

� 22l. (3.13)

We insert thin angular cutoffs in v, i.e. factors of the form ϕ≤−l−10(v2)ϕ≤−l−10(v3). Due
to rotation invariance it suffices to prove that

∥∥
∥
∥

∫

R3×R3
eix·veiy·ηϕ≤−l−10(v2)ϕ≤−l−10(v3)

|v|2 + |v|2|η|2 − (v · η)2 ϕ0(v)ϕ≤l(η) dvdη
∥∥
∥
∥

L1
x,y

� 1.

We make the changes of variables v1 ↔ w1, v2 ↔ 2−lw2, v3 ↔ 2−lw3, η1 ↔ 2lρ1, η2 ↔ ρ2, η3 ↔
ρ3. After rescaling the spatial variables appropriately, it suffices to prove that

∥
∥∥
∥

∫

R3×R3
eix·weiy·ρm′(w, ρ)ϕ[−4,4](w1)ϕ≤−10(w2)ϕ≤−10(w3)

ϕ≤4(ρ1)ϕ≤l+4(ρ2)ϕ≤l+4(ρ3) dwdρ
∥
∥
∥∥

L1
x,y

� 1, (3.14)

where

m′(w, ρ) := {w2
1(1 + ρ2

2 + ρ2
3) + ρ2

1(w
2
2 + w2

3)

+ 2−2l(w2
2 + w2

3 + (w2ρ3 − w3ρ2)2) − 2ρ1w1(w2ρ2 + w3ρ3)}−1.
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It is easy to see that |m′(w, ρ)| ≈ (1 + |ρ|2)−1 and |Dα
wD

β
ρm

′(w, ρ)| � (1 + |ρ|2)−1−|β|/2 in the
support of the integral, for all multi-indeces α and β with |α| ≤ 4, |β| ≤ 4. The bound (3.14)
follows by a standard integration by parts argument, which completes the proof of (3.11).

Case 2 ι1 = ι2. If ι1 = ι2 = +, then we write, as in (3.12),

m(v, η) =
1

|v| − 2−k
√

1 + |η − 2kv|2 − 2−k
√

1 + |η|2

=
−[2k|v| − √

1 + |η|2 +
√

1 + |η − 2kv|2][|v|√1 + |η|2 + v · η]
2[|v|2 + |v|2|η|2 − (v · η)2] .

On the other hand, if ι1 = ι2 = −, then we write, as in (3.12),

m(v, η) =
1

|v| + 2−k
√

1 + |η − 2kv|2 + 2−k
√

1 + |η|2

=
[2k|v| + √

1 + |η|2 − √
1 + |η − 2kv|2][|v|√1 + |η|2 − v · η]

2[|v|2 + |v|2|η|2 − (v · η)2] .

The desired conclusion follows in both cases using (3.13) and the general bound (3.9). In fact,
since ‖F−1{ϕ0(v)(2k|v| ± √

1 + |η|2 ∓ √
1 + |η − 2kv|2)}‖L1(R3×R3) � 2k, we get a stronger

bound when σ = (wa, ι) and μ = ν ∈ {(kg,+), (kg,−)},
‖F−1{Φσμν(ξ, η)−1n(ξ, η) · ϕk(ξ)ϕk1(ξ − η)ϕk2(η)}‖L1(R3×R3) � 23k

+

, (3.15)

as desired �

3.0.1 Linear Estimates

We prove now several linear estimates.

Lemma 3.4 (i) For any f ∈ L2(R3) and (k, j) ∈ J let

fj,k := P ′
kQjkf, Q≤jkf :=

∑

j′∈[max(−k,0),j]

Qj′kf, f≤j,k := P ′
kQ≤jkf, (3.16)

where P ′
k = P[k−2,k+2]. Then, for any α ∈ (Z+)3,

‖Dα
ξ f̂j,k‖L2 � 2|α|j‖Q̂jkf‖L2 , ‖Dα

ξ f̂j,k‖L∞ � 2|α|j‖Q̂jkf‖L∞ . (3.17)

Moreover we have

‖f̂j,k‖L∞ � min{23j/2‖Qjkf‖L2 , 2j/2−k2δ(j+k)/8‖Qjkf‖H0,1
Ω

}, (3.18)

‖f̂j,k(rθ)‖L2(r2dr)L∞
θ

� 2j+k‖Qjkf‖L2 , (3.19)

‖f̂j,k(rθ)‖L2(r2dr)Lp
θ

�p ‖Qjkf‖H0,1
Ω
, p ∈ [2,∞), (3.20)

and
‖Q̂jkf − f̂j,k‖L∞ � 23j/22−4(j+k)‖Pkf‖L2 . (3.21)

In particular, if
sup

j≥−k−
‖Qjkf‖H0,1

Ω
≤ A, sup

j≥−k−
2j+k‖Qjkf‖H0,1

Ω
≤ B (3.22)

for some k ∈ Z and A ≤ B ∈ [0,∞), then

‖P̂kf‖L∞ � 2−3k/2A(1−δ)/2B(1+δ)/2. (3.23)
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(ii) For any t ∈ R, (k, j) ∈ J , and f ∈ L2(R3) we have

‖e−itΛwafj,k‖L∞ � 23k/2 min(1, 2j〈t〉−1)‖Qjkf‖L2 . (3.24)

Moreover, if |t| ≥ 1 and j ≥ max(−k, 0), then we have the stronger bounds

‖ϕ[−100,100](〈t〉−1x)(e−itΛwafj,k)(x)‖L∞
x

� 〈t〉−12k/2(1 + 〈t〉2k)δ/8‖Qjkf‖H0,1
Ω

; (3.25)

‖e−itΛwafj,k‖L∞ � 〈t〉−12k/2(1 + 〈t〉2k)δ/8‖Qjkf‖H0,1
Ω

if 2j ≤ 2−10〈t〉; (3.26)

‖e−itΛwaf≤j,k‖L∞ � 22k〈t〉−1‖Q̂≤jkf‖L∞ if 2j � 〈t〉1/22−k/2. (3.27)

(iii) For any t ∈ R, (k, j) ∈ J , and f ∈ L2(R3) we have

‖e−itΛkgfj,k‖L∞ � min{23k/2, 23k+〈t〉−3/223j/2}‖Qjkf‖L2 . (3.28)

Moreover, if 1 ≤ 22k−−20〈t〉 and j ≥ max(−k, 0), then we have the stronger bounds

‖e−itΛkgfj,k‖L∞ � 25k+〈t〉−3/22j/2−k−
(〈t〉22k−

)δ/8‖Qjkf‖H0,1
Ω

if 2j ≤ 2k−−20〈t〉; (3.29)

‖e−itΛkgf≤j,k‖L∞ � 25k+〈t〉−3/2‖Q̂≤jkf‖L∞ if 2j � 〈t〉1/2. (3.30)

(iv) The bounds (3.26), (3.27), and (3.29) can be improved by using super-localization in
frequency. Indeed, for n ≥ 4 and l ∈ Z we define the operators Cn,l by

Ĉn,lg(ξ) := χ(|ξ|2−l − n)ĝ(ξ), (3.31)

where χ : R → [0, 1] is a smooth function supported in [−2, 2] with the property that
∑

n∈Z
χ(x−

n) = 1 for all x ∈ R. Assume that |t| ≥ 1, j ≥ max(−k, 0), and l ≤ k − 6. Then
{ ∑

n≥4

‖e−itΛwaCn,lfj,k‖2
L∞

}1/2

� 〈t〉−12l/2(1 + 〈t〉2k)δ/8‖Qjkf‖H0,1
Ω

(3.32)

provided that 2j + 2−l � 〈t〉(1 + 〈t〉2k)−δ/8. Moreover, if 2j + 2−l � 〈t〉1/22−k/2 then

sup
n≥4

‖e−itΛwaCn,lf≤j,k‖L∞ � 2k2l〈t〉−1‖Q̂≤jkf‖L∞ . (3.33)

Finally, if 2j + 2−l � 〈t〉2k−
(1 + 〈t〉22k−

)−δ/8 then
{ ∑

n≥4

‖e−itΛkgCn,lfj,k‖2
L∞

}1/2

� 25k+〈t〉−12l/22−k−
(1 + 〈t〉22k−

)δ/8‖Qjkf‖H0,1
Ω
. (3.34)

The super-localized bounds in (iv) are not being used in this paper. We include them here
for future reference, as they can be proved in the same way as the bounds in (ii) and (iii).
Proof (i) The bound (3.17) follows from definitions, since every ξ derivative corresponds to
multiplication by x in the physical space. Similarly,

‖f̂j,k‖L∞ � ‖Q̂jkf ∗ ϕ̂≤j+4‖L∞ � 23j/2‖Q̂jkf‖L2 ,

which gives the first inequality in (3.18). A similar argument also gives (3.21).
Using the Sobolev embedding along the spheres S

2, for any g ∈ H0,1
Ω and p ∈ [2,∞) we have

‖ĝ(rθ) ‖L2(r2dr)Lp
θ

�p

∑

m1+m2+m3≤1

‖Ωm1
23 Ωm2

31 Ωm3
12 ĝ‖L2 �p ‖ĝ‖H0,1

Ω
. (3.35)
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This gives (3.20). Moreover, for ξ ∈ R
3 with |ξ| ≈ 2k we estimate

|f̂j,k(ξ)| �
∫

R3
|Q̂jkf(rθ)||ϕ̂≤j+4(ξ − rθ)|r2drdθ

� ‖Q̂jkf(rθ)‖L2(r2dr)Lp
θ
‖23j(1 + 2j |ξ − rθ|)−8‖

L2(r2dr)Lp′
θ

�p ‖Q̂jkf‖H0,1
Ω

· 23j2−j/22k2−2(j+k)/p′
.

The second bound in (3.18) follows. The proof of (3.19) is similar.
To prove (3.23) we use (3.18) to estimate

∑

j≥−k−
‖f̂j,k‖L∞ � 2−3k/2

∑

j≥−k−
2(j+k)/22δ(j+k)/8‖Qjkf‖H0,1

Ω
� 2−3k/2A(1−δ)/2B(1+δ)/2,

and the desired conclusion follows.
We prove the remaining bounds (3.24)–(3.34) in several steps.

Step 1 Proof of (3.32) and (3.33) Let

f∗j,k := Qjkf, fj,k;n := Cn,lfj,k, ĝj,k;n(ξ) := f̂∗j,k(ξ)ϕ≤4(2−l|ξ| − n). (3.36)

By orthogonality,
{ ∑

n≥4

‖gj,k;n‖2
H0,1

Ω

}1/2

� ‖f∗j,k‖H0,1
Ω
.

For (3.32) it suffices to prove that, for any n ≥ 4 and x ∈ R
3,

∣
∣
∣∣

∫

R3
e−it|ξ|eix·ξ ĝj,k;n(ξ)ϕ[k−2,k+2](ξ)χ(|ξ|2−l − n) dξ

∣
∣
∣∣ � 〈t〉−12l/2(〈t〉2k)δ/8‖gj,k;n‖H0,1

Ω
. (3.37)

This follows easily if 2k〈t〉 � 1. Recall that 2j + 2−l � 〈t〉(1 + 〈t〉2k)−δ/8 and k ≥ l + 6.
The bounds (3.37) also follow directly from Lemma 3.1 (integration by parts in ξ) if |x| /∈
[2−40〈t〉, 240〈t〉].

It remains to prove (3.37) when

2k〈t〉 ≥ 250, |x| ∈ [2−50〈t〉, 250〈t〉]. (3.38)

By rotation invariance we may assume x = (x1, 0, 0). We decompose e−itΛwafj,k;n(x) =
∑

b,c≥0 Jb,c, where

Jb,c := C

∫

R3
ĝj,k;n(ξ)ϕ[k−2,k+2](ξ)χ(|ξ|2−l − n)eix1ξ1−it|ξ|ψb,c(ξ) dξ,

ψb,c(ξ) := ϕ
[0,∞)
b (ξ2/2λ)ϕ[0,∞)

c (ξ3/2λ), 2λ := 〈t〉−1/22k/2.

(3.39)

We estimate first |J0,0|. For any p ∈ [2,∞), using also (3.35) we have

|J0,0| � ‖ĝj,k;n(rθ)‖L2(r2dr)Lp
θ
(2λ−k)2/p′ · 2k2l/2 �p ‖gj,k;n‖H0,1

Ω
· 〈t〉−12l/2(〈t〉2k)1/p. (3.40)

This is consistent with the desired bound (3.37), by taking p large enough.
To estimate |Jb,c| when (b, c) �= (0, 0) we may assume without loss of generality that b ≥ c.

It suffices to show that if b ≥ max(c, 1) then

|Jb,c| � 〈t〉−12l/2(〈t〉2k)δ/40‖gj,k;n‖H0,1
Ω
. (3.41)
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We integrate by parts in the integral in (3.39), up to three times, using the rotation vector-
field Ω12 = ξ1∂ξ2 − ξ2∂ξ1 . Since Ω12{x1ξ1 − t|ξ|} = −ξ2x1, every integration by parts gains a
factor of |t|2λ+b ≈ 〈t〉1/22k/2+b and loses a factor � 〈t〉1/22k/2. If Ω12 hits the function ĝj,k;n

then we stop integrating by parts and bound the integral by estimating Ω12ĝj,k;n in L2. As
in (3.40) it follows that

|Jb,c| � ‖ĝj,k;n(rθ)‖L2(r2dr)Lp
θ
(2λ−k)2/p′

2k2l/22−b + ‖Ω12ĝj,k;n‖L2(2λ+b2l/2)(〈t〉1/22k/2+b)−1,

which gives the desired bound (3.41). This completes the proof of the main bounds (3.37).
The proof of (3.33) is easier. We define f≤j,k;n := Cn,lf≤j,k and f∗≤j,k := Q≤jkf . For (3.33)

it suffices to prove that, for any n ≥ 4 and x ∈ R
3,

∣
∣
∣∣

∫

R3
e−it|ξ|eix·ξf̂∗≤j,k(ξ)ϕ[k−2,k+2](ξ)χ(|ξ|2−l − n) dξ

∣
∣
∣∣ � 2k2l〈t〉−1‖f̂∗≤j,k‖L∞ . (3.42)

As before, we may assume x = (x1, 0, 0) and decompose e−itΛwaf≤j,k;n(x) =
∑

b,c≥0 J
′
b,c, where

J ′
b,c := C

∫

R3
f̂∗≤j,k(ξ)ϕ[k−2,k+2](ξ)χ(|ξ|2−l − n)eix1ξ1−it|ξ|ψb,c(ξ) dξ,

ψb,c(ξ) := ϕ
[0,∞)
b (ξ2/2λ)ϕ[0,∞)

c (ξ3/2λ), 2λ := 〈t〉−1/22k/2.

(3.43)

Using polar coordinates, it is easy to see that |J ′
0,0| � 2k2l〈t〉−1‖f̂∗≤j,k‖L∞ . Then we integrate

by parts in ξ2 or ξ3 (using the assumption 2j + 2−l � 〈t〉2λ2−k) to show that

|J ′
b,c| � 2−max(b,c)2k2l〈t〉−1‖f̂∗≤j,k‖L∞

for any b, c ≥ 0. The desired conclusion (3.42) follows.

Step 2 Proof of (3.24) and (3.25) We start with (3.25). By rotation invariance we may
assume x = (x1, 0, 0), |x1| ≈ 〈t〉. We may also assume that 2k〈t〉 ≥ 240. As before we decompose
e−itΛwafj,k(x) =

∑
b,c≥0 J

′′
b,c, where

J ′′
b,c :=

∫

R3
f̂j,k(ξ)ϕ[k−4,k+4](ξ)eix1ξ1−it|ξ|ψb,c(ξ) dξ,

ψb,c(ξ) := ϕ
[0,∞)
b (ξ2/2λ)ϕ[0,∞)

c (ξ3/2λ), 2λ := 〈t〉−1/22k/2.

(3.44)

This is similar to the decomposition (3.39) with l = k−6, once we notice that super-localization
is not important if 2l ≈ 2k. As in (3.40) and (3.41), we have

|J ′′
0,0| �p ‖fj,k‖H0,1

Ω
· 〈t〉−12k/2(〈t〉2k)δ/10,

and, if b ≥ max(c, 1),

|J ′′
b,c| � 〈t〉−12k/2(〈t〉2k)δ/10‖f∗j,k‖H0,1

Ω
.

The proof of this second bound uses integration by parts with the rotation vector-field Ω12 =
ξ1∂ξ2 − ξ2∂ξ1 , and relies on the assumption |x1| ≈ 〈t〉. The desired conclusion (3.25) follows
from these two bounds.

The bounds (3.24) follow by the same argument, using the decomposition (3.44), but us-
ing (3.19) instead of (3.20) in the estimate of |J0,0|. Also, integration by parts in ξ2 or ξ3 is
used to bound |Jb,c| when 2λ+max(b,c) � 2j+k〈t〉−1.
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Step 3 Proof of (3.26) and (3.27) The bounds (3.27) follow directly from (3.33) by taking
2l ≈ 2k. To prove (3.26) we may assume that x = (x1, 0, 0) and 〈t〉2k ≥ 240. If |x1| ∈
[2−10|t|, 210|t|], then the desired bounds follow from (3.25). On the other hand, if |x1| ≤ 2−10|t|
or |x1| ≥ 210|t|, then we write

[e−itΛwafj,k](x) = C

∫

R3×R3
Qjkf(y)e−iy·ξeix1ξ1e−it|ξ|ϕ[k−2,k+2](ξ) dξdy. (3.45)

Here we use the fact that 2j ≤ 〈t〉2−10 and integrate by parts in ξ sufficiently many times (using
Lemma 3.1) to see that

|e−itΛwafj,k(x)| � (〈t〉2k)−423k23j/2‖Qjkf‖L2 � (〈t〉2k)−423k〈t〉3/2‖Qjkf‖L2 ,

which is better than what we need.

Step 4 Proof of (3.34) This is similar to the proof of (3.32). It suffices to show that for
any n ≥ 4 and x ∈ R

3,
∣
∣∣
∣

∫

R3
e−it〈ξ〉eix·ξ ĝj,k;n(ξ)ϕ[k−2,k+2](ξ)χ(|ξ|2−l − n) dξ

∣
∣∣
∣

� 25k+〈t〉−12l/22−k−
(1 + 〈t〉22k−

)δ/8‖gj,k;n‖H0,1
Ω
. (3.46)

This follows easily if 22k−〈t〉 � 1. Recall that 2j + 2−l � 〈t〉2k−
(1 + 〈t〉22k−

)−δ/8 and k ≥ l+ 6.
The bounds (3.46) also follow directly from Lemma 3.1 if |x| /∈ [2−402k−〈t〉, 2402k−〈t〉].

It remains to prove (3.46) when

22k−〈t〉 ≥ 250, |x| ∈ [2−502k−〈t〉, 2502k−〈t〉]. (3.47)

We may assume x = (x1, 0, 0) and decompose e−itΛkgfj,k;n(x) =
∑

b,c≥0 J
′′′
b,c, where

J ′′′
b,c := C

∫

R3
ĝj,k;n(ξ)ϕ[k−2,k+2](ξ)χ(|ξ|2−l − n)eix1ξ1−it〈ξ〉ψ′

b,c(ξ) dξ,

ψ′
b,c(ξ) := ϕ

[0,∞)
b (ξ2/2λ′

)ϕ[0,∞)
c (ξ3/2λ′

), 2λ′
:= 〈t〉−1/22k+

.

(3.48)

As in the proof of (3.32), we estimate first |J ′′′
0,0|, using (3.35). Thus, for any p ∈ [2,∞),

|J ′′′
0,0| � ‖ĝj,k;n(rθ)‖L2(r2dr)Lp

θ
(2λ′−k)2/p′

2k2l/2 �p ‖gj,k;n‖H0,1
Ω

· 25k+
2−k−〈t〉−12l/2(〈t〉22k−

)1/p.

Moreover, if b ≥ max(c, 1) then we show that

|J ′′′
b,c| � 25k+〈t〉−12l/22−k−

(〈t〉22k−
)δ/10‖gj,k;n‖H0,1

Ω
. (3.49)

These two bounds clearly suffice to prove (3.46).
To prove (3.49) we integrate by parts in the integral in (3.48), up to three times, using the

rotation vector-field Ω12 = ξ1∂ξ2 − ξ2∂ξ1 . Since Ω12{x1ξ1 − t〈ξ〉} = −ξ2x1, every integration by
parts gains a factor of 2k− |t|2λ′+b ≈ 〈t〉1/22k+b (see (3.47)) and loses a factor � 〈t〉1/22k. If Ω12

hits the function ĝj,k;n then we stop integrating by parts and bound the integral by estimating
Ω12ĝj,k;n in L2. As before it follows that

|J ′′′
b,c| � ‖ĝj,k;n(rθ)‖L2(r2dr)Lp

θ
(2λ′−k)2/p′

2k2l/22−b + ‖Ω12ĝj,k;n‖L2(2λ′+b2l/2)(〈t〉1/22k+b)−1,

which gives the desired bound (3.49). This completes the proof of the main bounds (3.46).
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Step 5 Proof of (3.28)–(3.30) Clearly ‖e−itΛkgfj,k‖L∞ � ‖f̂j,k‖L1 � 23k/2‖fj,k‖L2 . More-
over, the standard dispersive bounds

‖e−itΛkgP≤k‖L1→L∞ � (1 + |t|)−3/223k+

can then be used to prove (3.28), i.e.

‖e−itΛkgfj,k‖L∞ � (1 + |t|)−3/223k+‖Qjkf‖L1 � (1 + |t|)−3/223k+
23j/2‖Qjkf‖L2 .

To prove (3.29) we consider first the harder case 2j ≥ 〈t〉1/2. By rotation invariance we may
assume x = (x1, 0, 0), x1/t > 0. We may also assume that 2j+k ≥ 23k++10 (otherwise the desired
conclusion follows from (3.28)) and 〈t〉2−3k+ � 1. If |x1| ≤ 2−100|t|2k−

or |x1| ≥ 2100|t|2k−

then we write

[e−itΛkgfj,k](x) = C

∫

R3×R3
Qjkf(y)e−iy·ξeix1ξ1e−it

√
|ξ|2+1ϕ[k−2,k+2](ξ) dξdy. (3.50)

We integrate by parts in ξ sufficiently many times (using Lemma 3.1 and recalling that |y| ≤
2j+1 ≤ 2k−−19〈t〉) to see that

|e−itΛkgfj,k(x)| � (〈t〉22k−
)−423k23j/2‖Qjkf‖L2 .

This is better than what we need.
It remains to consider the main case |x1| ≈ |t|2k−

. Let ρ ∈ (0,∞) denote the unique
number with the property that tρ/

√
ρ2 + 1 = x1, such that (ρ, 0, 0) is the stationary point of

the phase ξ �→ x1ξ1− t
√|ξ|2 + 1 and ρ � 2k−

. Using integration by parts (Lemma 3.1), we may
assume that ξ1, ξ2, ξ3 are restricted to |ξ2|, |ξ3| ≤ 2k−10 and ξ1 ∈ [2k−10, 2k+10] (for the other
contributions we can use the formula (3.50) and get stronger bounds as before). Then we let

Ja,b,c :=
∫

R3
f̂j,k(ξ)ϕ[k−4,k+4](ξ)1+(ξ1)ϕ≤k−9(ξ2)ϕ≤k−9(ξ3)eix1ξ1−it

√
|ξ|2+1ψa,b,c(ξ) dξ,

ψa,b,c(ξ) := ϕ[0,∞)
a ((ξ1 − ρ)/2λ1)ϕ[0,∞)

b (ξ2/2λ2)ϕ[0,∞)
c (ξ3/2λ2),

(3.51)

where, for some sufficiently large constant C,

2λ1 := 2j〈t〉−123k++C(〈t〉22k−
)δ/20, 2λ2 := 〈t〉−1/22k+

. (3.52)

Compared to the earlier decompositions, such as (3.39), we notice that we insert an additional
decomposition in the variable ξ1 around the stationary point (ρ, 0, 0).

Recall that 2j ≥ 〈t〉1/2. We estimate first |J0,0,0|, using (3.20), for any p ∈ [2,∞),

|J0,0,0| �p ‖f̂j,k(rθ)‖L2(r2dr)Lp
θ
(2λ2−k)2/p′

2k2λ1/2

�p ‖fj,k‖H0,1
Ω

〈t〉−3/22j/22−k−
24k+

(〈t〉22k−
)1/p+δ/20. (3.53)

This is consistent with the desired bound (3.29), by taking p large enough.
To estimate |Ja,b,c| when (a, b, c) �= (0, 0, 0) we may assume without loss of generality that

b ≥ c. If 2λ2+b ≥ 2j〈t〉−12k+
(〈t〉22k−

)δ/40, then we integrate by parts in ξ2 many times, using
Lemma 3.1, to show that

|Ja,b,c| � ‖fj,k‖L2(〈t〉22k−
)−423k/2,
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which is better than what we need. This bound also holds, using integration by parts in ξ1, if
2λ2+b ≤ 2j〈t〉−12k+

(〈t〉22k−
)δ/40 and a ≥ 1. It remains to prove that

|J0,b,c| � 25k+〈t〉−3/22j/2−k−
(〈t〉22k−

)δ/10‖Qjkf‖H0,1
Ω

(3.54)

provided that
b ≥ max(c, 1) and 2λ2+b ≤ 2j〈t〉−12k+

(〈t〉22k−
)δ/40. (3.55)

To prove (3.54) we integrate by parts in (3.51), up to three times, using the rotation vector-
field Ω12 = ξ1∂ξ2 − ξ2∂ξ1 . Since Ω12{x1ξ1 − t

√|ξ|2 + 1} = −ξ2x1, every integration by parts
gains a factor of |t|2k−

2λ2+b ≈ 〈t〉1/22k+b and loses a factor � 〈t〉1/22k. If Ω12 hits the function
f̂j,k, then we stop integrating by parts and bound the integral by estimating Ω12f̂j,k in L2. As
in (3.53) it follows that

|J0,b,c| �p ‖f̂j,k(rθ)‖L2(r2dr)Lp
θ
(2λ2−k)2/p′

2k2λ1/22−b + ‖Ω12f̂j,k‖L22λ22λ1/2(〈t〉1/22k)−1,

which gives the desired bound (3.54). This completes the proof of (3.29) when 2j ≥ 〈t〉1/2.
The bound (3.30) follows by a similar argument. We decompose the integral dyadically

around the critical point (ρ, 0, 0), as in (3.51) with 2λ1 = 〈t〉−1/223k++C and 2λ2 = 〈t〉−1/22k+
,

and integrate by parts four times either in ξ1, or in ξ2, or in ξ3.
The bound (3.29) when 2j ≤ 〈t〉1/2 follows from (3.30) using also (3.18). �
We prove now a Hardy-type estimate involving localization in frequency and space.

Lemma 3.5 For f ∈ L2(R3) and k ∈ Z let

Ak := ‖Pkf‖L2 +
3∑

l=1

‖ϕk(ξ)(∂ξl
f̂)(ξ)‖L2

ξ
, Bk :=

[ ∑

j≥max(−k,0)

22j‖Qjkf‖2
L2

]1/2

. (3.56)

Then, for any k ∈ Z,
Ak �

∑

|k′−k|≤4

Bk′ (3.57)

and

Bk �

⎧
⎨

⎩

∑
|k′−k|≤4Ak′ if k ≥ 0,

∑
k′∈Z

Ak′2−|k−k′|/2 min(1, 2k′−k) if k ≤ 0.
(3.58)

Proof Clearly, by almost orthogonality,

Bk ≈ 2max(−k,0)‖Pkf‖L2 + ‖|x| · Pkf‖L2

≈ 2max(−k,0)‖Pkf‖L2 +
3∑

l=1

‖∂ξl
(ϕk(ξ)f̂(ξ))‖L2

ξ
. (3.59)

The bound (3.57) follows. The bound in (3.58) also follows when k ≥ 0. On the other hand, if
k ≤ 0 then it suffices to prove that

2−k‖Pkf‖L2 �
∑

k′∈Z

Ak′2−|k−k′|/2 min(1, 2k′−k). (3.60)

For this we let fl := xlf , l ∈ {1, 2, 3}, so

f =
1

|x|2 + 1
f +

3∑

l=1

xl

|x|2 + 1
fl
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and, for any k′ ∈ Z,

‖Pk′f‖L2 +
3∑

l=1

‖Pk′fl‖L2 � Ak′ .

Since |F{(x2+1)−1}(ξ)| � |ξ|−2 and |F{xl(x2+1)−1}(ξ)| � |ξ|−2 for l ∈ {1, 2, 3}, for (3.60)
it suffices to prove that

2−k‖ϕk(ξ)(g ∗K)(ξ)‖L2 �
∑

k′∈Z

Ak′2−|k−k′|/2 min(1, 2k′−k), (3.61)

provided that ‖ϕk′ · g‖L2 � Ak′ and K(η) = |η|−2. With gk′ = ϕk′ · g we estimate

‖ϕk(ξ)(gk′ ∗K)(ξ)‖L2 � ‖gk′‖L2‖K · ϕ≤k+10‖L1 � 2k‖gk′‖L2 if |k − k′| ≤ 6;

‖ϕk(ξ)(gk′ ∗K)(ξ)‖L2 � 23k/2‖gk′‖L2‖K · ϕ[k′−4,k′+4]‖L2 � 23k/22−k′/2‖gk′‖L2 if k′ ≥ k + 6;

‖ϕk(ξ)(gk′ ∗K)(ξ)‖L2 � ‖gk′‖L1‖K · ϕ[k−4,k+4]‖L2 � 23k′/22−k/2‖gk′‖L2 if k′ ≤ k − 6.

The desired bound (3.61) follows, which completes the proof of the lemma. �

4 Elliptic Estimates

In this section we prove several bounds on the functions V wa
L , V kg

L , Nwa
L and N kg

L at fixed times
t ∈ [0, T ]. These bounds are used in the energy estimates and the normal form arguments in
the next sections.

4.1 Bounds on the Profiles V wa
L and V kg

L
Recall the definitions (2.4) and the bootstrap assumptions (2.12)–(2.14). For μ ∈ {(wa,+),
(wa,−), (kg,+), (kg,−)}, L ∈ Vn, n ∈ {0, . . . , N1}, t ∈ [0, T ], (j, k) ∈ J , and J ≥ max(−k, 0)
we define the localized profiles

V μ
j,k;L(t) := P[k−2,k+2]QjkV

μ
L (t),

V μ
≤J,k;L(t) :=

∑

j≤J

V μ
j,k;L(t), V μ

>J,k;L(t) :=
∑

j>J

V μ
j,k;L(t). (4.1)

For simplicity of notation, we write sometimes V μ
j,k, V μ

≤J,k, and V μ
>J,k to denote the correspond-

ing functions V μ
j,k;L, V μ

≤J,k;L and V μ
>J,k;L when L = Id.

Lemma 4.1 Assume that (u, v) is a solution to (1.1) on some time interval [0, T ], T ≥ 1,
satisfying the bounds (2.12)–(2.14) in Proposition 2.2. Assume that L ∈ Vn, n ∈ {0, . . . , N1}.

(i) For any t ∈ [0, T ] we have

‖|∇|−1/2V wa
L (t)‖HN(n) + ‖V kg

L (t)‖HN(n) � ε1〈t〉H(n)δ. (4.2)

Moreover, if n ≤ N1 − 1, k ∈ Z, and l ∈ {1, 2, 3} then

2k/2‖ϕk(ξ)(∂ξl
V̂ wa
L )(ξ, t)‖L2

ξ
+ 2k+‖ϕk(ξ)(∂ξl

V̂ kg
L )(ξ, t)‖L2

ξ
� ε1Y (k, t;n), (4.3)

where
Y (k, t;n) := 〈t〉H(n+1)δ2−N(n+1)k+

. (4.4)

As a consequence, if n ≤ N1 − 1 and (k, j) ∈ J then

2j2k/2‖QjkV
wa
L (t)‖L2 + 2j2k+‖QjkV

kg
L (t)‖L2 � ε1Y (k, t;n). (4.5)
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In particular, if n ≤ N1 − 1 and k ∈ Z then

2k/2‖PkV
wa
L (t)‖L2 + 2k+‖PkV

kg
L (t)‖L2 � ε12k−〈t〉H(n+1)δ2−N(n+1)k+

. (4.6)

(ii) As a consequence, if n ≤ N1 − 1 then for any t ∈ [0, T ] and k ∈ Z

∑

j≥−k−
‖e−itΛwaV wa,+

j,k;L (t)‖L∞ � ε1Y (k, t;n)〈t〉δ/222k+
2k−

min(〈t〉−1, 2k−
), (4.7)

and ∑

j≥−k−
‖e−itΛkgV kg,+

j,k;L (t)‖L∞ � ε1Y (k, t;n)22k+
2k−/2 min(〈t〉−1, 22k−

). (4.8)

Moreover, if n ≤ N1 − 2 and 22k−−20〈t〉 ≥ 1 then
∑

2j∈[2−k− ,2k−−20〈t〉]
‖e−itΛkgV kg,+

j,k;L (t)‖L∞ � ε1Y (k, t;n+ 1)〈t〉−3/2+δ/22−k−/226k+
. (4.9)

(iii) In the case n = 0 (so L = Id), we have the stronger bounds
∑

j≥−k−
2j‖QjkV

wa(t)‖L2 � ε12−k−/2−κk−
2−N0k++d′k+

,

‖P̂kV kg(t)‖L∞ � ε12−k−/2+κk−
2−N0k++d′k+

,

‖PkV
kg(t)‖L2 � ε12k−+κk−

2−(N(0)−2)k+
, (4.10)

for any k ∈ Z and t ∈ [0, T ]. As a consequence
∑

j≥−k−
‖e−itΛwaV wa,+

j,k (t)‖L∞ � ε12k−(1−κ) min{〈t〉−1, 2k−}2−N0k++(d′+3)k+
. (4.11)

Moreover, if 〈t〉 ≥ 2−2k−+20 and 2J ∈ [2−k−
, 2k−−20〈t〉] then

‖e−itΛkgV kg,+
≤J,k (t)‖L∞ � ε1〈t〉−3/22−k−/2+κk−/202−N0k++(d′+6)k+

. (4.12)

Proof All the bounds in the lemma follow easily from the bootstrap assumptions (2.12)–(2.14),
and Lemmas 3.4 and 3.5. Indeed, the bounds (4.2), (4.3), and (4.5) follow directly from the
bootstrap assumptions (2.12)–(2.13) and the bounds (3.58). The bounds (4.6) follow from (4.5)
by summation over j ≥ −k−. The bounds (4.10) follow from (2.14) and Definition 2.1.

The dispersive bounds (4.7) and (4.11) follow from (3.24) and the bounds (4.5) and (4.10)
respectively. The bounds (4.8) follow from (3.28) and (4.5), by summation over j. The
bounds (4.9) follow from (3.29), once we notice that, as a consequence of (4.5), for |α| ≤ 1

‖QjkΩαV kg
L ‖L2 � ε1Y (k, t;n+ |α|)2−j2−k+

. (4.13)

The bounds (4.12) follow directly from (4.2) if 2k � 〈t〉1/(3d) and from (4.10) if 2k � 〈t〉−1/2+κ/8.
They also follow from (3.30) and (4.10) if 2J ≤ 〈t〉1/2. Finally, if 2k ∈ [〈t〉−1/2+κ/8, 〈t〉1/(3d)]
and 2J ≥ 〈t〉1/2 then we use (3.29) and (4.13) to estimate the remaining contribution by

∑

2j∈[〈t〉1/2,2J ]

‖e−itΛkgV kg,+
j,k (t)‖L∞ �

∑

2j∈[〈t〉1/2,2J ]

25k+〈t〉−3/22j/2−k−〈t〉δ · ε1Y (k, t; 1)2−j2−k+

� ε1〈t〉−3/22−k−
2−N0k++2dk++5k+〈t〉δ+H(2)δ−1/4.

This suffices to complete the proof of (4.12) in the range 2k ∈ [〈t〉−1/2+κ/8, 〈t〉1/(3d)].
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We remark that the bounds (4.11) and (4.12) are the only dispersive bounds that provide
sharp rates of decay 〈t〉−1 and 〈t〉−3/2 for significant parts of the normalized solutions Uwa(t)
and Ukg(t) respectively. All the other pointwise bounds involve small 〈t〉Cδ losses. �

4.2 The Nonlinearities Nwa
L

We prove now several bounds on the nonlinearities Nwa
L .

Lemma 4.2 Assume that Nwa
L is as in (2.7), L ∈ Vn, n ∈ {0, . . . , N1}, t ∈ [0, T ], and k ∈ Z.

(i) Then

‖PkNwa
L (t)‖L2 + ‖Pk∂tV

wa
L (t)‖L2 � ε212

k−/2〈t〉H′′
wa(n)δ min(2k−

, 〈t〉−1)2−N(n)k++5k+
, (4.14)

where
H ′′

wa(0) := 5, H ′′
wa(n) := H(n) + 160 for n ∈ {1, . . . , N1}. (4.15)

(ii) Moreover for l ∈ {1, 2, 3} and n ≤ N1 − 1,

‖Pk(xlNwa
L )(t)‖L2 � ε212

k−/2〈t〉H′′
wa(n)δ2−N(n)k++5k+

. (4.16)

Proof (i) For k ∈ Z let

Xk := {(k1, k2) ∈ Z
2 : |max(k1, k2)−k| ≤ 6 or (max(k1, k2) ≥ k+7 and |k1−k2| ≤ 6)}. (4.17)

Let m denote generic multipliers that satisfy the bounds

‖F−1(ϕk ·Dα
ξ m)‖L1

x
�α 2−|α|k−

, for any k ∈ Z and α ∈ Z
3
+. (4.18)

For m1,m2 as in (4.18), let I denote a bilinear operator of the form

Î[f, g](ξ) :=
∫

R3
m1(ξ − η)m2(η)f̂(ξ − η)ĝ(η) dη. (4.19)

Notice that for β ∈ {0, 1, 2, 3} and L∗ ∈ {Γ1,Γ2,Γ3,Ω23,Ω31,Ω12} we have

[L∗, ∂β] =
∑

γ∈{0,1,2,3}
cγL∗,β∂γ , (4.20)

for suitable coefficients cγL∗,β ∈ R. Clearly ‖PkNwa
L (t)‖L2 ≈ ‖Pk∂tV

wa
L (t)‖L2 . Recall also the

identities (2.6) and the definitions Nwa
L = L[Aαβ∂αv∂βv +Dv2]. For (4.14) it suffices to prove

that, with I defined as in (4.18)–(4.19),
∑

(k1,k2)∈Xk

Iwa
k,k1,k2

(t) � ε212
k−/2〈t〉H′′

wa(n)δ min(2k−
, 〈t〉−1)2−N(n)k++5k+

,

Iwa
k,k1,k2

(t) := ‖PkI[Pk1U
kg,ι1
L1

, Pk2U
kg,ι2
L2

](t)‖L2 ,

(4.21)

for any ι1, ι2 ∈ {+,−}, L1 ∈ Vn1 , L2 ∈ Vn2 , n1 + n2 ≤ n. Without loss of generality, we may
assume that n1 ≤ n2. To prove (4.21) we consider several cases.

Case 1 Assume first that (n1, n2) �= (0, 0) and k ≥ −10. Let

S1 :=
∑

(k1,k2)∈Xk, k1≤k2+10

Iwa
k,k1,k2

(t), S2 :=
∑

(k1,k2)∈Xk, k2≤k1−10

Iwa
k,k1,k2

(t). (4.22)

Using (4.2) and (4.8) we estimate
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S1 �
∑

(k1,k2)∈Xk, k1≤k2+10

ε21〈t〉H(n2)δ2−N(n2)k
+
2 〈t〉H(n1+1)δ−12−N(n1+1)k+

1 +2k+
1 2k−

1 /2

� ε21〈t〉H(n2)δ+H(n1+1)δ−12−N(n2)k
+
. (4.23)

Similarly, since N(n) ≤ N(n1 + 1),

S2 � ε21〈t〉δ/2+H(n2)δ+H(n1+1)δ−12−N(n)k++2k+
. (4.24)

Notice that, as a consequence of (2.15), if n1, n2, n1 + n2 ∈ [0, N1 − 1] ∩ Z, and n2 �= 0 then

H(n1 + 1) +H(n2) ≤ H(n1 + n2) + 10. (4.25)

Thus S1 + S2 � ε21〈t〉H
′′
wa(n)δ−12−N(n)k++4k+

, as desired.

Case 2 Assume now that (n1, n2) �= (0, 0) and k ≤ −10.4) Notice that, as a consequence
of (4.2) and (4.6),

Iwa
k,k1,k2

(t) � 23 min(k,k1,k2)/2‖Pk1U
kg,ι1
L1

‖L2‖Pk2U
kg,ι2
L2

‖L2

� ε212
−4(k+

1 +k+
2 )23 min(k,k1,k2)/22k1〈t〉H(n1+1)δ+H(n2)δ. (4.26)

Also, as a consequence of (4.2) and (4.8),

Iwa
k,k1,k2

(t) � ‖Pk1U
kg,ι1
L1

‖L∞‖Pk2U
kg,ι2
L2

‖L2

� ε212
−4(k+

1 +k+
2 )2k1/2〈t〉H(n1+1)δ+H(n2)δ−1. (4.27)

Recalling (4.25), the bounds (4.26) already suffice to prove (4.21) if 2k � 〈t〉−1+145δ. On
the other hand, if 2k ≥ 〈t〉−1+145δ then the contribution of the pairs (k1, k2) ∈ Xk for which
2k−

1 � 2k〈t〉290δ can be bounded using (4.27). Also, the contribution of the pairs (k1, k2) ∈ Xk

for which 2k−
1 � 2−k〈t〉−1+145δ can be bounded using again (4.26). After these reductions,

for (4.21) it remains to prove that
∑

(k1,k2)∈Xk, 2k
−
1 −20≥max(2k,2−k〈t〉−1+145δ)

Iwa
k,k1,k2

(t) � ε212
k/2〈t〉H′′

wa(n)δ−1. (4.28)

We set 2J = 2k−
1 −30〈t〉 and decompose Pk1V

kg,ι1
L1

= V kg,ι1
≤J,k1;L1

+ V kg,ι1
>J,k1;L1

, as in (4.1). We
have

‖e−itΛkg,ι1V kg,ι1
≤J,k1;L1

(t)‖L∞ � ε12−k−
1 /2〈t〉−3/2+H(n1+2)δ+δ2−N(n1+2)k+

1 +6k+
1 ,

‖V kg,ι1
>J,k1;L1

(t)‖L2 � ε12−k−
1 〈t〉−1+H(n1+1)δ2−N(n1+1)k+

1 , (4.29)

see (4.9) and (4.5). Therefore, using also (4.2), for (k1, k2) ∈ Xk as in (4.28),

‖PkI[e−itΛkg,ι1V kg,ι1
≤J,k1;L1

(t), Pk2U
kg,ι2
L2

(t)]‖L2 � ‖e−itΛkg,ι1V kg,ι1
≤J,k1;L1

(t)‖L∞‖Pk2U
kg,ι2
L2

(t)‖L2

� ε212
−k−

1 /2〈t〉−3/2+H(n1+2)δ+δ+H(n2)δ2−4k+
1

and

‖PkI[e−itΛkg,ι1V kg,ι1
>J,k1;L1

(t), Pk2U
kg,ι2
L2

(t)]‖L2 � 23k/2‖V kg,ι1
>J,k1;L1

(t)‖L2‖Pk2U
kg,ι2
L2

(t)‖L2

� ε212
3k/22−k−

1 〈t〉−1+H(n1+1)δ+H(n2)δ2−4k+
1 .

4) One should think of (n1, n2, n) = (0, N1, N1) as the worst case. In this case the only available bounds for the

profiles Ukg,ι2
L2

are the L2 bounds in (4.2).
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Therefore, using (4.25) and the identity H(n1 + 2) = H(n1 + 1) + 200, we have

Iwa
k,k1,k2

(t) � ε212
k/2〈t〉−1+H(n)δ+10δ2−4k+

1 [2−k/22−k−
1 /2〈t〉−1/2+205δ + 2k−k−

1 ],

which suffices to prove the bounds (4.28).

Case 3 Finally, assume that (n1, n2, n) = (0, 0, 0). We estimate first, using symmetry, (4.2),
and (4.8)

∑

(k1,k2)∈Xk

Iwa
k,k1,k2

(t) �
∑

(k1,k2)∈Xk, k2≤k1

‖Pk1U
kg(t)‖L2‖Pk2U

kg(t)‖L∞

�
∑

(k1,k2)∈Xk, k2≤k1

ε21〈t〉δ2−N(0)k+
1 · 〈t〉H(1)δ−12k−

2 /2

� ε21〈t〉(1+H(1))δ−12−N(0)k+
. (4.30)

This suffices to prove (4.21) when 2k � 〈t〉2δ. Moreover, we also have, as in (4.26),

Iwa
k,k1,k2

(t) � 23 min(k,k1,k2)/2‖Pk1U
kg,ι1‖L2‖Pk2U

kg,ι2‖L2

� ε212
−N0(k

+
1 +k+

2 )23 min(k,k1,k2)/2〈t〉2δ. (4.31)

This suffices to prove (4.21) when 2k � 〈t〉−1+2δ.
On the other hand, if 2k ∈ [〈t〉−1+2δ, 〈t〉2δ] then we use first (4.6) and (4.8) to show that

Iwa
k,k1,k2

(t) � ε212
−10(k+

1 +k+
2 )〈t〉−1+2H(1)δ2min(k−

1 ,k−
2 )2max(k−

1 ,k−
2 )/2.

This suffices to control the contribution of the pairs (k1, k2) for which 2min(k−
1 ,k−

2 ) � 〈t〉−1/2.
For (4.21) it remains to prove that if 2k ∈ [〈t〉−1+2δ, 〈t〉2δ] then

∑

(k1,k2)∈Xk, 〈t〉−1/2220≤2k
−
2 ≤2k

−
1

Iwa
k,k1,k2

(t) � ε212
k−/2〈t〉−1+5δ2−N(0)k++4k+

. (4.32)

We set 2J = 2k−
1 −30〈t〉 and decompose Pk1V

kg,ι1 = V kg,ι1
≤J,k1

+ V kg,ι1
>J,k1

, as in (4.1). We have

‖e−itΛkg,ι1V kg,ι1
≤J,k1

(t)‖L∞ � ε12−k−
1 /2+κk−

1 /20〈t〉−3/22−N0k+
1 +(d′+6)k+

1 ,

‖V kg,ι1
>J,k1

(t)‖L2 � ε12−k−
1 〈t〉−1+H(1)δ2−N(1)k+

1 , (4.33)

see (4.12) and (4.5). Therefore, using also (4.10), for (k1, k2) ∈ Xk as in (4.32)

‖PkI[e−itΛkg,ι1V kg,ι1
≤J,k1

(t), Pk2U
kg,ι2(t)]‖L2 � ‖e−itΛkg,ι1V kg,ι1

≤J,k1
(t)‖L∞‖Pk2U

kg,ι2(t)‖L2

� ε212
−k−

1 /22k−
2 〈t〉−3/22−4k+

1

and

‖PkI[e−itΛkg,ι1V kg,ι1
>J,k1

(t), Pk2U
kg,ι2(t)]‖L2 � ‖V kg,ι1

>J,k1
(t)‖L2‖Pk2U

kg,ι2(t)‖L∞

� ε212
−k−

1 2k−
2 /2〈t〉−2+2H(1)δ2−4k+

1 .

Therefore, if (k1, k2) ∈ Xk and 〈t〉−1/2220 ≤ 2k−
2 ≤ 2k−

1 then

Iwa
k,k1,k2

(t) � ε21〈t〉−3/22k−
2 /42−4k+

1 , (4.34)

which suffices to prove the bounds (4.32).
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(ii) For (4.16) it suffices to prove that
∑

(k1,k2)∈Xk

‖ϕk(ξ)(∂ξl
F{I[Pk1U

kg,ι1
L1

, Pk2U
kg,ι2
L2

]})(ξ, t)‖L2
ξ

� ε212
k−/2〈t〉H′′

wa(n)δ2−N(n)k++5k+
, (4.35)

for any ι1, ι2 ∈ {+,−}, l ∈ {1, 2, 3}, L1 ∈ Vn1 , L2 ∈ Vn2 , n1 + n2 ≤ n.
Without loss of generality we may assume that n1 ≤ n2. Recall that Ukg,ι1

L1
= e−itΛkg,ι1V kg,ι1

L1

and Ukg,ι2
L2

= e−itΛkg,ι2V kg,ι2
L2

. We examine the formula (4.19). The ∂ξl
derivative can hit either

the phase e−itΛkg,ι1(ξ−η), or the profile F{Pk1V
kg,ι1
L1

}(ξ − η), or the multiplier m1(ξ − η). In
the first case, the ∂ξl

derivative effectively corresponds to multiplying by a factor � 〈t〉, and
changing m1 in a way that still satisfies (4.18). The corresponding bounds follow from (4.14).

It remains to consider the case when the ∂ξl
derivative hits the function m1(ξ − η)ϕk1(ξ −

η)̂
V kg,ι1
L1

(ξ − η). It suffices to prove that
∑

(k1,k2)∈Xk

‖PkI
wa[Ukg,ι1

L1,∗l,k1
, Pk2U

kg,ι2
L2

](t)‖L2 � ε212
k−/2〈t〉H′′

wa(n)δ2−N(n)k++5k+
, (4.36)

where ̂
Ukg,ι1
L1,∗l,k1

(ξ, t) := e−itΛkg,ι1 (ξ)∂ξl
(ϕk1 ·m1 · ̂

V kg,ι1
L1

)(ξ, t). It follows from (4.2)–(4.3) that

‖Ukg,ι1
L1,∗l,k1

(t)‖L2 � ε1〈t〉H(n1+1)δ2−N(n1+1)k+
1 ,

‖Pk2U
kg,ι2
L2

(t)‖L2 � ε1〈t〉H(n2)δ2−N(n2)k
+
2 .

(4.37)

Thus

‖PkI
wa[Ukg,ι1

L1,∗l,k1
, Pk2U

kg,ι2
L2

](t)‖L2

� 23 min(k1,k2,k)/2‖Ukg,ι1
L1,∗l,k1

(t)‖L2‖Pk2U
kg,ι2
L2

(t)‖L2

� ε212
3 min(k1,k2,k)/2〈t〉H(n1+1)δ+H(n2)δ2−N(n1+1)k+

1 2−N(n2)k
+
2 . (4.38)

This suffices to prove (4.36) if (n1, n2) �= (0, 0), using (4.25) and the inequality n1 + 1 ≤ n.
On the other hand, if (n1, n2) = (0, 0) then we need to be more careful because of the loss

of derivative and the slightly worse power of 〈t〉 in (4.38). From the very beginning, in proving
(4.35) we notice that we may assume that the sum is over pairs (k1, k2) with k1 ≤ k2 (otherwise
we make the change of variables η → ξ − η to move the ξ derivative on the low frequency
component). Using (4.8) and the L2 bounds in the first line of (4.37), we have

‖PkI
wa[Ukg,ι1

∗l,k1
, Pk2U

kg,ι2 ](t)‖L2

� ‖Ukg,ι1
∗l,k1

(t)‖L2‖Pk2U
kg,ι2(t)‖L∞

� ε21〈t〉2H(1)δ−12−N(1)k+
1 2−N(1)k+

2 22k+
2 2k−

2 /2. (4.39)

It is easy to see that the bounds (4.38)–(4.39) suffice to control the contribution of the pairs
(k1, k2) with k1 ≤ k2 in (4.36). The desired bounds (4.35) thus follow when (n1, n2) = (0, 0). �

4.3 The Nonlinearities N kg
L

We prove now similar bounds for the nonlinearities N kg
L .

Lemma 4.3 Assume that N kg
L is as in (2.7), L ∈ Vn, n ∈ {0, . . . , N1}, t ∈ [0, T ], and k ∈ Z.
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(i) Then

‖PkN kg
L (t)‖L2 + ‖Pk∂tV

kg
L (t)‖L2 � ε21〈t〉H

′′
kg(n)δ min(〈t〉−1, 2k−

)2−N(n+1)k+−5k+
, (4.40)

where N(n+ 1) := N(n) − d if n = N1 and

H ′′
kg(0) := 8, H ′′

kg(n) := H(n) + 160 for n ∈ {1, . . . , N1}. (4.41)

(ii) Moreover, for l ∈ {1, 2, 3} and n ≤ N1 − 1,

‖Pk(xlN kg
L )(t)‖L2 � ε21〈t〉H

′′
kg(n)δ2−N(n+1)k+−5k+

. (4.42)

Proof (i) With I defined as in (4.18)–(4.19), for (4.40) it suffices to prove that
∑

(k1,k2)∈Xk

Ikg
k,k1,k2

(t) � ε21〈t〉H
′′
kg(n)δ min(〈t〉−1, 2k−

)2−N(n+1)k+−5k+
,

Ikg
k,k1,k2

(t) := 2k+
1 −k2‖PkI[Pk1U

kg,ι1
L1

, Pk2U
wa,ι2
L2

](t)‖L2 ,

(4.43)

for any ι1, ι2 ∈ {+,−}, L1 ∈ Vn1 , L2 ∈ Vn2 , n1 + n2 ≤ n.
We estimate first, using just (4.2),

∑

(k1,k2)∈Xk

Ikg
k,k1,k2

(t) �
∑

(k1,k2)∈Xk

2k+
1 −k223 min(k,k1,k2)/2‖Pk1U

kg
L1

(t)‖L2‖Pk2U
wa
L2

(t)‖L2

� ε21〈t〉δ(H(n1)+H(n2)+1)2k−
. (4.44)

Since H(n1) +H(n2) + 2 ≤ H ′′
kg(n), this suffices to prove the bounds (4.43) when 2k− � 〈t〉−1.

On the other hand, if 2k− ≥ 〈t〉−1 then we estimate, using also (4.7)–(4.8),
∑

(k1,k2)∈Xk, k1≥k−20

Ikg
k,k1,k2

(t) �
∑

(k1,k2)∈Xk, k1≥k−20

2k+
1 −k2‖Pk1U

kg
L1

(t)‖L2‖Pk2U
wa
L2

(t)‖L∞

� ε21〈t〉−1+δ(H(n1)+H(n2+1)+2)2−N(n1)k
++2k+

(4.45)

if n2 ≤ N1 − 1, and
∑

(k1,k2)∈Xk, k2≥k−20

Ikg
k,k1,k2

(t) �
∑

(k1,k2)∈Xk, k2≥k−20

2k+
1 −k2‖Pk1U

kg
L1

(t)‖L∞‖Pk2U
wa
L2

(t)‖L2

� ε21〈t〉−1+δ(H(n1+1)+H(n2)+2)2−N(n2)k
++2k+

(4.46)

if n1 ≤ N1 − 1. The desired bounds (4.43) follow from (4.45)–(4.46) and (4.25), unless n1 = 0
or n2 = 0. We consider separately these remaining cases.

Case 1 Assume first that 2k− ≥ 〈t〉−1, n = n1 ≥ 1, and n2 = 0. The bound (4.45) still gives
suitable control of the sum over k1 ≥ k − 20. Estimating as in (4.44) it is easy to see that

∑

(k1,k2)∈Xk, k1≤k−20, 2k1≤〈t〉−2

Ikg
k,k1,k2

(t) � ε21〈t〉−12−N(n1)k++2k+
.

The contribution of the remaining pairs (k1, k2) for which 〈t〉−2 ≤ 2k1 ≤ 2k−20 is also bounded
as claimed since

Ikg
k,k1,k2

(t) � 2k+
1 −k2‖Pk1U

kg
L1

(t)‖L2‖Pk2U
wa(t)‖L∞

� ε21〈t〉−1+δ(H(n1)+H(1)+2)2−N(1)k+
2 +2k+

2 2−k+
1 . (4.47)
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Case 2 Assume now that 2k− ≥ 〈t〉−1, n1 = 0, and n2 = n ≥ 1. The bound (4.46) still gives
suitable control of the sum over k2 ≥ k − 20. It remains to show that if 2k ≥ 〈t〉−1 then

∑

(k1,k2)∈Xk, k2≤k−10

2k+
1 −k2‖PkI[Pk1U

kg,ι1 , Pk2U
wa,ι2
L2

](t)‖L2

� ε21〈t〉H
′′(n2)δ−12−N(n2)k

++5k+
. (4.48)

To prove (4.48) we estimate first, when k2 ≤ k − 10 and |k1 − k| ≤ 4,

‖PkI[Pk1U
kg,ι1 , Pk2U

wa,ι2
L2

](t)‖L2 � ‖Pk1U
kg(t)‖L223k2/2‖Pk2U

wa
L2

(t)‖L2

� ε21〈t〉H(1)δ+H(n2)δ+2δ2k−
1 22k−

2 2−N(0)k+
, (4.49)

using (4.2) and (4.6). Therefore, since N(0) −N(1) = 40,
∑

(k1,k2)∈Xk, k2≤k−10, 2k
−
1 +k

−
2 �〈t〉−1+145δ240k+

2k+
1 −k2‖PkI[Pk1U

kg,ι1 , Pk2U
wa,ι2
L2

](t)‖L2

� ε21〈t〉H
′′(n2)δ−12−N(1)k++4k+

.

For (4.48) it remains to prove that

2−k2‖PkI[Pk1U
kg,ι1 , Pk2U

wa,ι2
L2

](t)‖L2 � ε21〈t〉H
′′(n2)δ−δ−12−N(n2)k

++4k+
(4.50)

for any k1, k2, k ∈ Z such that

k2 ≤ k − 10, |k1 − k| ≤ 4, 2k−
1 +k−

2 ≥ 〈t〉−1+145δ240k++80. (4.51)

We set 2J = 2k−
1 −30〈t〉, decompose Pk1V

kg,ι1 = V kg,ι1
≤J,k1

+V kg,ι1
>J,k1

, and recall the bounds (4.33).
Therefore, using also the L2 bounds (4.2)

2−k2‖PkI[e−itΛkg,ι1V kg,ι1
≤J,k1

, Pk2U
wa,ι2
L2

)](t)‖L2

� 2−k2‖e−itΛkg,ι1V kg,ι1
≤J,k1

‖L∞‖Pk2U
wa,ι2
L2

(t)‖L2

� ε21〈t〉−3/2+H(n2)δ2−k−
1 /22−k−

2 /22−N(1)k++16k+
,

and

2−k2‖PkI[e−itΛkg,ι1V kg,ι1
>J,k1

, Pk2U
wa,ι2
L2

)](t)‖L2 � 2−k2‖e−itΛkg,ι1V kg,ι1
>J,k1

‖L2‖Pk2U
wa,ι2
L2

(t)‖L∞

� ε21〈t〉−1+10δ+H(n2)δ2−k−
1 2k−

2 2−N(1)k+
.

Since 2−k−
1 /22−k−

2 /2 � 〈t〉1/2−75δ2−20k+
(see (4.51)), these bounds suffice to prove (4.50).

Case 3 Finally, assume that 2k− ≥ 〈t〉−1 and n1 = n2 = n = 0. The bounds (4.45)–
(4.46) are sufficient if 2k+ � 〈t〉2δ. The contribution of the pairs (k1, k2) in (4.43) for which
2min(k1,k2)2−30(k+

1 +k+
2 ) � 〈t〉−1+5.9δ can be bounded as before using just L2 estimates and

recalling that N(1) = N(0) − 40. For (4.43) it remains to show that

2k+
1 −k2‖PkI[Pk1U

kg,ι1 , Pk2U
wa,ι2 ](t)‖L2 � ε21〈t〉7.9δ−12−N(1)k+−5k+

, (4.52)

provided that

2k ∈ [〈t〉−1, 〈t〉2δ], 2min(k1,k2)2−30(k+
1 +k+

2 ) ≥ 〈t〉−1+5.9δ240. (4.53)
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We decompose

Pk1U
kg,ι1(t) =

∑

j1≥−k−
1

e−itΛkg,ι1V kg,ι1
j1,k1

(t), Pk2U
wa,ι2(t) =

∑

j2≥−k−
2

e−itΛwa,ι2V wa,ι2
j2,k2

(t) (4.54)

as in (4.1). Notice that

F{PkI[e−itΛkg,ι1V kg,ι1
j1,k1

, e−itΛwa,ι2V wa,ι2
j2,k2

]}(ξ, t)

= Cϕk(ξ)
∫

R3
e−itΛkg,ι1(ξ−η)−itΛwa,ι2 (η)

m1(ξ − η)̂
V kg,ι1

j1,k1
(ξ − η, t) ·m2(η)V̂

wa,ι2
j2,k2

(η, t) dη. (4.55)

The main observation is that the absolute value of the η gradient of the phase function η �→
t[Λkg,ι1(ξ − η) + Λwa,ι2(η)] is bounded from below by c|t|2−2k+

1 in the support of the integral.
Recalling also (4.53), we can thus use Lemma 3.1 to show that the contribution of the pairs
(j1, j2) for which 2max(j1,j2) ≤ 〈t〉1−δ/22−2k+

1 is negligible, i.e.

2k+
1 −k2‖PkI

kg[e−itΛkg,ι1V kg,ι1
j1,k1

(t), e−itΛwa,ι2V wa,ι2
j2,k2

(t)]‖L2 � ε21〈t〉−2. (4.56)

To deal with the remaining pairs (j1, j2) we fix J1 such that 2J1 = 〈t〉200δ and estimate

2k+
1 −k2‖PkI[e−itΛkg,ι1V kg,ι1

>J1,k1
(t), Pk2U

wa,ι2(t)]‖L2

� 2k+
1 −k2‖V kg,ι1

>J1,k1
(t)‖L2‖Pk2U

wa,ι2(t)‖L∞

� ε212
−J1〈t〉−1+2H(1)δ+δ2−N(1)k+

1 +4k+
1 2−N(1)k+

2 +4k+
2 , (4.57)

using (4.5) and (4.7). This is consistent with the desired bounds (4.52), due to the choice of J1.
For the remaining contribution (which is nontrivial only when 2k1 � 〈t〉−200δ) we fix J2 such
that 2J2 = 〈t〉1−δ/22−2k+

1 and prove two bounds. We have

2k+
1 −k2‖PkI[e−itΛkg,ι1V kg,ι1

≤J1,k1
(t), e−itΛwa,ι2V wa,ι2

>J2,k2
(t)]‖L2

� 2k+
1 −k223k2/2‖V kg,ι1

≤J1,k1
(t)‖L2‖V wa,ι2

>J2,k2
(t)‖L2

� ε21〈t〉H(1)δ+δ2k−
1 +k−

2 2−N(0)k+
1 +2k+

1 2−N(0)k+
2 +2k+

2 , (4.58)

using just the L2 bounds (4.2) and (4.6). The bounds (4.56)–(4.58) suffice to prove (4.52) if
(4.53) holds and, in addition, 2k−

1 +k−
2 � 〈t〉−1−3.5δ. On the other hand, we also have

2k+
1 −k2‖PkI[e−itΛkg,ι1V kg,ι1

≤J1,k1
(t), e−itΛwa,ι2V wa,ι2

>J2,k2
(t)]‖L2

� 2k+
1 −k2‖e−itΛkg,ι1V kg,ι1

≤J1,k1
(t)‖L∞‖V wa,ι2

>J2,k2
(t)‖L2

� ε212
k+
1 −k2〈t〉−3/22−k−

1 /22−N0k+
1 +(d′+6)k+

1 · 2−k2/2〈t〉−1+δ/222k+
1 〈t〉H(1)δ2−N(1)k+

2 ,

(4.59)

using (4.5) and (4.12). If 2k−
1 +k−

2 � 〈t〉−1−3.5δ then the right-hand side of (4.59) is bounded by

Cε21〈t〉−2+12.5δ2−k−
2 2−N(1)k+

1 +d′k+
1 2−N(1)k+

2 .

Since 2−k−
2 � 〈t〉1−5.9δ2−28(k+

1 +k+
2 ) (see (4.53)) this is consistent with the desired bound (4.52).

The conclusion follows in the remaining case 2k−
1 +k−

2 � 〈t〉−1−3.5δ.
(ii) With the same notation as before, it suffices to prove that
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∑

(k1,k2)∈Xk

2k+
1 −k2‖ϕk(ξ)(∂ξl

F{I[Pk1U
kg,ι1
L1

, Pk2U
wa,ι2
L2

]})(ξ, t)‖L2
ξ

� ε21〈t〉H
′′
kg(n)δ2−N(n+1)k+−5k+

, (4.60)

for any ι1, ι2 ∈ {+,−}, l ∈ {1, 2, 3}, L1 ∈ Vn1 , L2 ∈ Vn2 , n1 + n2 ≤ n.
We write Ukg,ι1

L1
= e−itΛkg,ι1V kg,ι1

L1
and notice that the ∂ξl

derivative can hit either the phase
e−itΛkg,ι1(ξ−η), or the multiplier m1(ξ− η), or the profile F{Pk1V

kg,ι1
L1

}(ξ− η). In the first case
the derivative effectively corresponds to multiplying by factors � 〈t〉 or � 2−k−

1 , and changing
the multiplier m1, in a way that still satisfies (4.18). The desired estimates follow from (4.43).

It remains to consider the case when the ∂ξl
derivative falls on the function m1(ξ −

η)F{Pk1V
kg,ι1
L1

}(ξ − η). It suffices to prove that
∑

(k1,k2)∈Xk

2k+
1 −k2‖PkI[U

kg,ι1
L1,∗l,k1

, Pk2U
wa,ι2
L2

](t)‖L2 � ε21〈t〉H
′′
kg(n)δ2−N(n+1)k+−5k+

, (4.61)

where, as in the proof of Lemma 4.2, ̂Ukg,ι1
L1,∗l,k1

(ξ, t) = e−itΛkg,ι1 (ξ)∂ξl
{ϕk1 ·m1 · ̂V kg,ι1

L1
}(ξ, t). The

estimates (4.61) follow from (4.37) and (4.2) if n2 ≥ 1, using an estimate similar to (4.44).
Assume now that

n1 = n and n2 = 0. (4.62)

We need to be slightly more careful than before. If 2k � 〈t〉1/100 then we can just use the L∞

bounds (4.7) and the L2 bounds (4.37) to prove (4.61). On the other hand, if 2k−10 ≥ 〈t〉1/100

then the contribution of the pairs (k1, k2) with k2 ≥ k − 10 or k2 ≤ −6k can be estimated as
before, using just L2 bounds.

To estimate the contribution of the remaining pairs, we need to avoid derivative loss. We
go back to (4.60). It remains to prove that if 2k−10 ≥ 〈t〉1/100 then

∑

(k1,k2)∈Xk, k2∈[−6k,k−10]

2k+
1 −k2‖ϕk(ξ)(∂ξl

F{I[Pk1U
kg,ι1
L1

, Pk2U
wa,ι2 ]})(ξ, t)‖L2

ξ

� ε21〈t〉H
′′
kg(n)δ2−N(n+1)k+−5k+

. (4.63)

We make the change of variables η → ξ − η in the integral (4.19), to move the ∂ξl
derivative to

the low frequency factor. Using (4.2) and L2 × L∞ estimates as before, for (4.63) it suffices to
prove that

‖F−1{∂ξl
[m2(ξ)P̂k2U

wa(ξ, t)]}‖L∞ � ε1〈t〉2H(1)δ2−2k+
2 2k−

2 −2δk−
2 . (4.64)

We remark that the loss of a factor of 〈t〉Cδ is mitigated by the gain of derivative and the
assumption 2k � 〈t〉1/100.

It remains to prove (4.64). The derivative ∂ξl
can hit the symbol m2, and this contribution

is bounded easily using (4.7). On the other hand, if ∂ξl
hits the function F{Pk2U

wa}(ξ, t) then
we replace Uwa(t) with e−it|∇|V wa(t). Notice that

‖F−1{∂ξl
[e−it|ξ|ϕk2(ξ)V̂ wa(ξ)]}‖L∞ � ε1〈t〉H(1)δ+2δ2−4k+

2 2k−
2 −δk−

2 ,

as a consequence of (4.3) and (4.7). The desired bound (4.64) follows in this case as well. This
completes the proof of the lemma. �
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4.4 The Bounds (2.17)–(2.19) at Time t = 0

We use now the initial-data assumptions (1.9) and elliptic estimates to take the first step towards
proving Proposition 2.2.

Proposition 4.4 The bounds (2.17)–(2.19) hold at time t = 0.

Proof

Step 1 We prove first the Z norm bounds (2.19). Notice that Uwa
L (0) = V wa

L (0) and Ukg
L (0) =

V kg
L (0). It follows from (1.13) and (3.59) that

[ ∑

(k,j)∈J
22N(1)k+

2k22j‖QjkU
wa(0)‖2

L2

]1/2

� ε0. (4.65)

Moreover 22j23k/2‖QjkU
wa(0)‖L2 � ε0 for j ≥ 10|k| + 10 as a consequence of (1.9). Using

also (4.65) it follows that, for any k ∈ Z,
∑

j≥max(−k,0)

2j‖QjkU
wa(0)‖L2 � 2−N(1)k+

2−k/2(1 + |k|). (4.66)

This gives the desired Z norm control for the wave component.
Similarly, using the assumptions (1.9) we have

‖Ukg
0 ‖HN(0) +

∑

|β|≤3

‖xβUkg
0 ‖HN(3) � ε0. (4.67)

In particular ‖PkU
kg
0 ‖L1 � ε0, which gives ‖ ̂

PkU
kg
0 ‖L∞ � ε0 for any k ∈ Z. This suffices for

k ≤ 0. On the other hand, if k ≥ 0 then it follows from (4.67) that

‖PkU
kg
0 ‖L2 � ε02−N(0)k+

, ‖ |x|3PkU
kg
0 ‖L2 � ε02−N(3)k+

.

Thus ‖PkU
kg
0 ‖L1 � ε02−(N(0)+N(3))/2k+

, which gives the desired control.

Step 2 We consider now the high order Sobolev bounds in (2.17). It suffices to show that
∑

|β′|≤|β|+β0−1≤n

‖|∇|−1/2(xβ′
∂β∂β0

0 u)(0)‖HN(n)

+
∑

|β′|,|β|+β0−1≤n

‖(xβ′
∂β∂β0

0 v)(0)‖HN(n) � ε0, (4.68)

for any n ∈ [0, N1], where xβ′
= x

β′
1

1 x
β′
2

2 x
β′
3

3 and ∂β = ∂β1
1 ∂β2

2 ∂β3
3 .

We prove (4.68) by induction over β0. Notice that the bounds follow directly from (1.13)
if β0 = 0 or if β0 = 1, by passing to the Fourier space. If β0 ≥ 2 then we use the identities
∂2

t u = Δu + Nwa and ∂2
t v = Δv − v + N kg. The contribution of the linear components is

bounded as claimed, due to the induction hypothesis. For (4.68) it remains to prove that, for
n ∈ [0, N1],

∑

|β′|≤|β|+γ≤n, 1≤γ≤β0−1

‖|∇|−1/2(xβ′
∂β∂γ−1

0 Nwa)(0)‖HN(n) � ε0,

∑

|β′|,|β|+γ≤n, 1≤γ≤β0−1

‖(xβ′
∂β∂γ−1

0 N kg)(0)‖HN(n) � ε0.
(4.69)



Wave-Klein–Gordon 963

These bounds follow easily using the induction hypothesis (4.68) and the explicit formulas.
For the first inequality, recall that Nwa = Aαβ∂αv∂βv + Dv2. Therefore xβ′

∂β∂γ−1
0 Nwa can

be written as a sum of terms of the form

xβ′
(∂β1∂γ1

0 v)(∂β2∂γ2
0 v),

where |β′| ≤ n, |β1| + γ1 + |β2| + γ2 ≤ n+ 1, and max(γ1, γ2) ≤ β0 − 1. Such products can be
easily bounded in HN(n), using the induction hypothesis and Littlewood–Paley decompositions
as before, and placing the high frequency component in L2 and the low frequency component
in L∞. The contribution at low frequencies can be estimated using just L2 bounds on both
components.

The proof of the inequality in the second line of (4.69) is similar. We use the formula
N kg = uBαβ∂α∂βv + Euv. Since B00 = 0, one can distribute the ∂β∂γ−1

0 derivatives and still
get only terms with no more than β0 − 1 time derivatives, of the form

xβ′
(∂β1∂γ1

0 u)(∂β2∂γ2
0 v),

where |β′| ≤ n, |β1| + γ1 + |β2| + γ2 ≤ n + 1, |β1| + γ1 ≤ n − 1, and max(γ1, γ2) ≤ β0 − 1.
Such products can be bounded in HN(n), using the induction hypothesis and Littlewood–Paley
decompositions. This completes the proof of (4.4).

Step 3 We consider now the Sobolev bounds (2.18) on the profiles V wa
L and V kg

L . Since
V wa
L (0) = Uwa

L (0) and V kg
L (0) = Ukg

L (0) it suffices to prove that

2k/2‖ϕk(ξ)∂ξl
F{(∂t − iΛwa)Lu}(ξ, 0)‖L2

+ 2k+‖ϕk(ξ)∂ξl
F{(∂t − iΛkg)Lv}(ξ, 0)‖L2

� ε02−N(n+1)k+
,

for l ∈ {1, 2, 3}, k ∈ Z, L ∈ Vn, n ∈ [0, N1 − 1]. These bounds follow again from (4.68), after
passing to the Fourier space. �

5 Energy Estimates

In this section we prove the energy bounds in (2.17). The vector-fields Γj and Ωjk commute
with the wave operator, so, as a consequence of (1.1), for any L ∈ VN1 ,

− �(Lu) = L(Aαβ∂αv∂βv +Dv2),

(−� + 1)(Lv) = L(uBαβ∂α∂βv + Euv). (5.1)

5.1 The Bound on Uwa
L

We start by estimating the wave component.

Proposition 5.1 With the notation and hypothesis in Proposition 2.2, for any t ∈ [0, T ],
n ∈ [0, N1] and L ∈ Vn

‖ |∇|−1/2Uwa
L (t)‖HN(n) � ε0〈t〉H(n)δ. (5.2)

Proof With P := |∇|−1/2〈∇〉N(n)L we define the energy functional

EL
wa(t) =

∫

R3

[
(∂0Pu(t))2 +

3∑

j=1

(∂jPu(t))2
]
dx. (5.3)
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Using the first equation in (5.1) we calculate

d

dt
EL

wa(t) = 2
∫

R3
P [Aαβ∂αv∂βv +Dv2](t) · ∂0Pu(t) dx

= 2
∫

R3
|∇|−1/2〈∇〉N(n)L[Aαβ∂αv∂βv +Dv2](t) · |∇|−1/2〈∇〉N(n)∂0Lu(t) dx

= C

∫

R3
|ξ|−1(1 + |ξ|2)N(n)F{L[Aαβ∂αv∂βv +Dv2]}(ξ, t) · ∂̂0Lu(ξ, t) dξ.

(5.4)

We decompose time integrals into dyadic pieces. More precisely, given t ∈ [0, T ], we fix
a suitable decomposition of the function 1[0,t], i.e. we fix functions q0, . . . , qL+1 : R → [0, 1],
|L− log2(2 + t)| ≤ 2, with the properties

supp q0 ⊆ [0, 2], supp qL+1 ⊆ [t− 2, t], supp qm ⊆ [2m−1, 2m+1] for m ∈ {1, . . . , L},
L+1∑

m=0

qm(s) = 1[0,t](s), qm ∈ C1(R) and
∫ t

0

|q′m(s)| ds � 1 for m ∈ {1, . . . , L}.
(5.5)

Let Im denote the support of qm. In view of (5.4) and (4.20), it suffices to prove that
∣
∣
∣∣

∫

Im

∫

R3
qm(s)|ξ|−1(1 + |ξ|2)N(n)F{∂L1v · ∂′L2v}(ξ, s) · ∂̂0Lu(ξ, s) dξds

∣
∣
∣∣ � ε312

2H(n)δm,

for any t ∈ [0, T ], m ∈ {0, . . . , L+1}, ∂, ∂′ ∈ {I, ∂0, ∂1, ∂2, ∂3}, L1 ∈ Vn1 , L2 ∈ Vn2 , n1+n2 ≤ n.
We rewrite the functions L1v, L2v, Lu in terms of the variables Ukg,±

L1
, Ukg,±

L2
, Uwa,±

L , as in (2.6).
It suffices to prove that, for any ι, ι1, ι2 ∈ {+,−},

∣
∣
∣∣

∫

Im

∫

R3×R3
qm(s)|ξ|−1(1 + |ξ|2)N(n)m1(ξ − η)m2(η)

× ̂Ukg,ι1
L1

(ξ − η, s)̂Ukg,ι2
L2

(η, s)Ûwa,ι
L (ξ, s) dξdηds

∣
∣
∣∣

� ε312
2H(n)δm, (5.6)

where m1 and m2 are symbols satisfying (4.18).
We further decompose dyadically in frequency. For any k, k1, k2 ∈ Z let

Im;k,k1,k2 :=
∫

Im

∫

R3×R3
qm(s)m3(ξ)m1(ξ − η)m2(η)

× ̂
Pk1U

kg,ι1
L1

(ξ − η, s) ̂
Pk2U

kg,ι2
L2

(η, s) ̂PkU
wa,ι
L (ξ, s)dξdηds, (5.7)

where m3 is also a multiplier as in (4.18). For (5.6) it remains to prove that if n ≤ N1,
n1 + n2 ≤ n, L1 ∈ Vn1 ,L2 ∈ Vn2 then

∑

k,k1,k2∈Z

2−k22N(n)k+ |Im;k,k1,k2 | � ε312
2H(n)δm (5.8)

for any ι, ι1, ι2 ∈ {+,−}, t ∈ [0, T ], m ∈ {0, . . . , L+ 1}.
In certain cases we need to integrate by parts in time. For this we write

̂
Pk1U

kg,ι1
L1

(ξ − η, s) ̂
Pk2U

kg,ι2
L2

(η, s) ̂PkU
wa,ι
L (ξ, s)

= e−isΛkg,ι1(ξ−η)−isΛkg,ι2(η)+isΛwa,ι(ξ) ̂
Pk1V

kg,ι1
L1

(ξ − η, s) ̂
Pk2V

kg,ι2
L2

(η, s) ̂PkV
wa,ι
L (ξ, s).
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Let σ = (wa, ι), μ = (kg, ι1), ν = (kg, ι2), and Φ(ξ, η) = Φσμν(ξ, η) = Λσ(ξ)−Λμ(ξ−η)−Λν(η).
We define the trilinear operators Q = Qσμν

s by

Q[f, g, h] :=
∫

R3×R3
eisΦσμν(ξ,η)m3(ξ)m1(ξ − η)m2(η) · ĝ(ξ − η)ĥ(η)f̂(ξ) dξdη. (5.9)

Clearly

Im;k,k1,k2 =
∫

Im

qm(s)Q[PkV
wa,ι
L (s), Pk1V

kg,ι1
L1

(s), Pk2V
kg,ι2
L2

(s)] ds. (5.10)

This formula and integration by parts in time show that if m ∈ [1, L] then

Im;k,k1,k2 = i

∫

Im

q′m(s)II0
k,k1,k2

(s) + qm(s)[II1
k,k1,k2

(s) + II2
k,k1,k2

(s) + II3
k,k1,k2

(s)] ds, (5.11)

where

II0
k,k1,k2

(s) := Q∗[PkV
wa,ι
L (s), Pk1V

kg,ι1
L1

(s), Pk2V
kg,ι2
L2

(s)],

II1
k,k1,k2

(s) := Q∗[Pk(∂sV
wa,ι
L )(s), Pk1V

kg,ι1
L1

(s), Pk2V
kg,ι2
L2

(s)],

II2
k,k1,k2

(s) := Q∗[PkV
wa,ι
L (s), Pk1(∂sV

kg,ι1
L1

)(s), Pk2V
kg,ι2
L2

(s)],

II3
k,k1,k2

(s) := Q∗[PkV
wa,ι
L (s), Pk1V

kg,ι1
L1

(s), Pk2(∂sV
kg,ι2
L2

)(s)],

(5.12)

and

Q∗[f, g, h] :=
∫

R3×R3

eisΦσμν(ξ,η)

Φσμν(ξ, η)
m3(ξ)m1(ξ − η)m2(η) · ĝ(ξ − η)ĥ(η)f̂(ξ) dξdη. (5.13)

Without loss of generality, in proving (5.8), we may assume that n1 ≤ n2. We often use the
basic bound

|Im;k,k1,k2 | � sup
s∈Im

|Im| ‖PkU
wa,ι
L (s)‖Lp‖Pk1U

kg,ι1
L1

(s)‖Lp1‖Pk2U
kg,ι2
L2

(s)‖Lp2 , (5.14)

for any choice of (p, p1, p2) ∈ {(2, 2,∞), (2,∞, 2), (∞, 2, 2)}, which follows from Lemma 3.2 (i).
We consider two cases.

Case 1 We prove now the bounds (5.8) when

n1 ≥ 1. (5.15)

In particular, n1, n2 ≤ n− 1 ≤ N1 − 1. We apply (5.14) to bound

2−k22N(n)k+ |Im;k,k1,k2 | � ε31|Im|2(H(n)+H(n1)+H(n2))δm2−k/223 min(k,k1,k2)/2

× 2N(n)k+−N(n1)k
+
1 −N(n2)k

+
2 ,

(5.16)

using the L2 bounds (4.2). SinceH(n1)+H(n2) ≤ H(n)−190 andN(n) ≤ min(N(n1), N(n2))−
10, this suffices to prove (5.8) if |Im| � 1. It also suffices to control the contribution of triplets
(k, k1, k2) for which min(k, k1, k2) ≤ −m+ 180δm when |Im| ≈ 2m. It remains to prove that if
m ∈ [1/κ, L] then

∑

k,k1,k2∈Z, min(k,k1,k2)≥−m+180δm

2−k22N(n)k+ |Im;k,k1,k2 | � ε312
2H(n)δm. (5.17)

For this we integrate by parts in time (the method of normal forms), using the identities
(5.11)–(5.13). Notice that
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2−k22N(n)k+ |Q∗[Pkf, Pk1g, Pk2h]|
� 2−k/223 max(k+

1 ,k+
2 )22N(n)k+‖Pkf‖L2‖Pk1g‖L2‖Pk2k‖L2 , (5.18)

using just the Cauchy–Schwarz inequality in the Fourier space and the lower bound (3.5). To
apply this, we need the L2 bounds

‖PkV
wa,ι
L (s)‖L2 � ε12k/22H(n)δm2−N(n)k+

,

‖Pk1V
kg,ι1
L1

(s)‖L2 � ε12H(n1)δm2−N(n1)k+
1 ,

‖Pk2V
kg,ι2
L2

(s)‖L2 � ε12H(n2)δm2−N(n2)k+
2 ,

(5.19)

and

2m‖Pk(∂sV
wa,ι
L )(s)‖L2 � ε12k/22H′′

wa(n)δm2−N(n+1)k+−5k+
,

2m‖Pk1(∂sV
kg,ι1
L1

)(s)‖L2 � ε12H′′
kg(n1)δm2−N(n1+1)k+

1 −5k+
1 ,

2m‖Pk2(∂sV
kg,ι2
L2

)(s)‖L2 � ε12H′′
kg(n2)δm2−N(n2+1)k+

2 −5k+
2 ,

(5.20)

which follow from (4.2), (4.14), and (4.40). Since n1, n2, n = n1 + n2 ≥ 1, we also have

H ′′
wa(n) +H(n1) +H(n2) = H(n) +H(n1) +H(n2) + 160 ≤ 2H(n) − 30,

H(n) +H ′′
kg(n1) +H(n2) = H(n) +H(n1) +H ′′

kg(n2) ≤ 2H(n) − 30.
(5.21)

Using these estimates and the definitions (5.12), it follows that, for any s ∈ Im,

2−k22N(n)k+
{
|II0

k,k1,k2
(s)| +

3∑

l=1

2m|II l
k,k1,k2

(s)|
}

� ε312
2H(n)δm−30δm2−max(k+

1 ,k+
2 ).

The desired bound (5.17) follows, and this completes the proof in the case (5.15).

Case 2 The bounds (5.8) in the case n1 = 0 follow from Lemma 5.3 below, see (5.38). �

5.2 The Bound on Ukg
L

We estimate now the Klein–Gordon components.

Proposition 5.2 With the notation and hypothesis in Proposition 2.2, for any t ∈ [0, T ],
n ∈ [0, N1] and L ∈ Vn

‖Ukg
L (t)‖HN(n) � ε0〈t〉H(n)δ. (5.22)

Proof With P := 〈∇〉N(n)L we define the energy functional

EL
kg(t) =

∫

R3

[
(∂0Pv(t))2 + (Pv(t))2 +

3∑

j=1

(∂jPv(t))2

+ u(t)
3∑

i,j=1

Bij∂iPv(t)∂jPv(t) − Eu(t)(Pv(t))2
]
dx.

Using the second equation in (5.1) we calculate
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d

dt
EL

kg =
∫

R3

{
2P (uBαβ∂α∂βv + Euv)∂0Pv + ∂0u

3∑

i,j=1

Bij∂iPv · ∂jPv − E∂0u(Pv)2

+ 2u
3∑

i,j=1

Bij∂iPv · ∂0∂jPv − 2EuPv · ∂0Pv

}
dx.

Recall that B00 = 0. Using integration by parts the energy identity can be rewritten as

d

dt
EL

kg(t) =
∫

R3
[IL(t) + IIL(t)] dx,

IL := 2Bαβ∂0Pv{P (u∂α∂βv) − u∂α∂βPv} + 2E∂0Pv{P (uv) − uPv},
IIL := 4uBj0∂j∂0Pv∂0Pv + ∂0uB

ij∂iPv∂jPv − E∂0u(Pv)2 − 2∂juB
ij∂iPv∂0Pv.

(5.23)

Using (4.11), for any s ∈ [0, T ]

‖∇u(s)‖L∞ + ‖∂0u(s)‖L∞ �
∑

k∈Z

‖PkU
wa(s)‖L∞ � ε1(1 + s)−1. (5.24)

Therefore, for any s ∈ [0, T ]
∣
∣∣
∣

∫

R3
IIL(s) dx

∣
∣∣
∣ � ε1(1 + s)−1‖Ukg

L (s)‖2
HN(n) � ε31(1 + s)−1+2H(n)δ.

Since EL
kg(s) ≈ ‖Ukg

L (s)‖2
HN(n) for any s ∈ [0, T ], it suffices to prove that, for any t ∈ [0, T ],

∣
∣
∣∣

∫ t

0

∫

R3
IL(x, s) dxds

∣
∣
∣∣ � ε31〈t〉2H(n)δ. (5.25)

The commutation relations (4.20) show that

P (u∂α∂βv) = 〈∇〉N(n){∂α∂βLv · u} +
∑

∗cL1,L2,ρ,σ〈∇〉N(n){∂ρ∂σL1v · L2u},
where cL1,L2,ρ,σ are suitable coefficients, and the sum

∑
∗ is taken over operators L1,L2 ∈ Vn

with |L1| + |L2| ≤ n, |L1| ≤ n− 1, and indices ρ, σ ∈ {0, 1, 2, 3}. Also,

P (uv) = 〈∇〉N(n){Lv · u} +
∑

∗∗c
′
L1,L2

〈∇〉N(n){L1v · L2u},
where c′L1,L2

are suitable coefficients, and the sum
∑

∗∗ is taken over operators L1,L2 ∈ Vn

with |L1| + |L2| ≤ n, |L1| ≤ n− 1.
We express the functions L1v, Lv, L2u in terms of the variables Ukg,±

L1
, Ukg,±

L , Uwa,±
L2

, as in
(2.3)–(2.6). Let m1 denote a multiplier as in (4.18) and define

bn(ξ, η) := |η|−1〈ξ − η〉m1(ξ − η)〈ξ〉N(n)[〈ξ〉N(n) − 〈ξ − η〉N(n)]. (5.26)

With qm defined as in (5.5), for (5.25) it suffices to prove that
∣
∣∣
∣

∫

Im

∫

R3×R3
qm(s)bn(ξ, η) · ̂

Ukg,ι1
L (ξ − η, s)Ûwa,ι2(η, s) ̂

Ukg,ι
L (ξ, s) dξdηds

∣
∣∣
∣ � ε312

2H(n)δm, (5.27)

and
∣
∣∣
∣

∫

Im

∫

R3×R3
qm(s)|η|−1(1 + |ξ|2)N(n)〈ξ − η〉m1(ξ − η)

× ̂
Ukg,ι1
L1

(ξ − η, s)Ûwa,ι2
L2

(η, s) ̂
Ukg,ι
L (ξ, s) dξdηds

∣
∣
∣∣ � ε312

2H(n)δm, (5.28)



968 Ionescu, A. and Pausader, B.

provided that ι, ι1, ι2 ∈ {+,−}, and L1 ∈ Vn1 ,L2 ∈ Vn2 , n1 + n2 ≤ n, n1 ≤ n− 1.

Step 1 We start by proving the bounds (5.27). We decompose dyadically in frequency. For
any k, k1, k2 ∈ Z let

Jn,0
m;k,k1,k2

:=
∫

Im

∫

R3×R3
qm(s)bn(ξ, η) ̂

Pk1U
kg,ι1
L (ξ − η, s) ̂Pk2U

wa,ι2(η, s) ̂
PkU

kg,ι
L (ξ, s)dξdηds. (5.29)

We have the multiplier bounds

‖F−1{ϕk(ξ)ϕk1(ξ − η)ϕk2(η)b(ξ, η)}‖L1(R3×R3) � 2min(k+
1 ,k+)2(2N(n)−1)k

+

, (5.30)

where, as before, max(k, k1, k2) = k and min(k, k1, k2) = k. This can be seen easily when k ≤ 0.
On the other hand, if k ≥ 0 then (5.30) can be proved by analyzing the three cases k = k,
k1 = k, and k2 = k, and using the cancellation in the multiplier in the last case.

Using Lemma 3.2, (4.11), and (4.8), we have

|Jn,0
m;k,k1,k2

| �
∫

Im

22N(n)k
+‖Pk1U

kg
L (s)‖L2‖PkU

kg
L (s)‖L2 · ε12−m2−k+

2 2k−
2 /2 ds (5.31)

if k2 = k, and
|Jn,0

m;k,k1,k2
| � |Im|ε312−m+κm/22k−/22−k

+
/2 (5.32)

if k2 ≥ k + 1. Indeed, this follows by estimating the lowest frequency factor in L∞ and the
other two factors in L2, except for the case n = N1, k2 ≥ k + 1 when we estimate the high
frequency wave component in L∞. The gain of 1/2 high-order derivative in (5.32) is due to the
gain of derivative in (5.30). It follows from (5.31) that

∑

k,k1,k2∈Z, k2=k

|Jn,0
m;k,k1,k2

| � ε312
2δm.

Moreover, the sum of |Jn,0
m;k,k1,k2

| over k, k1, k2 with k ≤ −2κm or k ≥ 2κm is also suitably
bounded due to (5.32). For (5.27) it remains to prove that

sup
k,k1,k2∈[−2κm,2κm]

|Jn,0
m;k,k1,k2

| � ε31 (5.33)

provided that t ∈ [0, T ], ι, ι1, ι2 ∈ {+,−}, and m ∈ {1/κ, . . . , L}.
This follows easily by integration by parts in time, as in the proof of Proposition 5.1. This

procedure gains a factor of 2−m and losses at most a factor of 210κm when applying Lemma 3.3
(ii), in the range of frequencies as in (5.33).

Step 2 We prove now the bounds (5.28). Notice that the case n1 = 0 follows from Lemma 5.3
below, after making changes of variables. Recall that n1 ≤ n− 1, so we may assume that

n1, n2 ∈ [1, N1 − 1], n1 + n2 = n. (5.34)

We define

Jn,1
m;k,k1,k2

:=
∫

Im

∫

R3×R3
qm(s)|η|−1(1 + |ξ|2)N(n)〈ξ − η〉m1(ξ − η)

× ̂
Pk1U

kg,ι1
L1

(ξ − η, s) ̂Pk2U
wa,ι2
L2

(η, s) ̂
PkU

kg,ι
L (ξ, s) dξdηds,
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and we have to prove that
∑

k,k1,k2∈Z

|Jn,1
m;k,k1,k2

| � ε312
2H(n)δm. (5.35)

Using just the L2 bounds (4.2) and Sobolev embedding we see that

|Jn,1
m;k,k1,k2

| � ε31|Im|2(2H(n)−190)δm2N(n)k+−N(n1)k
+
1 −N(n2)k

+
2 2k+

1 2−k2/223 min(k,k1,k2)/2, (5.36)

since H(n1) +H(n2) ≤ H(n) − 190. This suffices to prove the desired bound when |Im| � 1.
If |Im| ≈ 2m (so m ∈ [1/κ, L]), the bound (5.36) still suffices to control the contribution of the
triplets (k, k1, k2) for which min(k, k1, k2) ≤ −m+ 180δm. It remains to prove that

∑

k,k1,k2∈Z, min(k,k1,k2)≥−m+180δm

|Jn,1
m;k,k1,k2

| � ε312
2H(n)δm.

We notice that this is similar to the bound (5.17) in Proposition 5.1, essentially with the indices
k and k2 reversed. The proof follows by the same integration by parts argument, using just the
L2 estimates (5.19)–(5.20). This completes the proof of the proposition. �

5.3 The Main Cubic Bulk Estimate

We prove now suitable bounds on the cubic bulk terms arising in the energy estimates in
Propositions 5.1 and 5.2, corresponding to the case when all the vector-fields hit one of the
profiles.

Lemma 5.3 Assume that n ∈ [0, N1] and L,L2 ∈ Vn, t ∈ [0, T ], and m ∈ {0, . . . , L+ 1}. As
in (5.7) (with (n1, n2, n) = (0, n, n)), for any k, k1, k2 ∈ Z and ι, ι1, ι2 ∈ {+,−}, let

Im;k,k1,k2 :=
∫

Im

∫

R3×R3
qm(s)m3(ξ)m1(ξ − η)m2(η)

× ̂Pk1U
kg,ι1(ξ − η, s) ̂

Pk2U
kg,ι2
L2

(η, s) ̂PkU
wa,ι
L (ξ, s) dξdηds, (5.37)

where m1,m2,m3 are multipliers as in (4.18). Then
∑

k,k1,k2∈Z

2−k(22N(n)k+
+ 2e(n)2N(n)k+

2 2e(n)k+
1 )|Im;k,k1,k2 | � ε312

2H(n)δm, (5.38)

where e(0) := 0 and e(n) := 1 for n ∈ [1, N1].

Proof Let k := min(k, k1, k2) and k := max(k, k1, k2). Using just the L2 bounds (4.2)
and (4.10), we have

2−k|Im;k,k1,k2 | � ε31|Im|22H(n)δm2−k/223 min(k,k1,k2)/22k−
1 +κk−

1

× 2−N(n)k+−N(n)k+
2 2−N(0)k+

1 +2k+
1 .

(5.39)

This suffices bound the contribution of triplets (k, k1, k2) for which k ≤ −m (in the case n = 0
we use also a similar bound with the roles of k1 and k2 reversed). It also suffices to prove the
desired bound (5.38) when |Im| � 1.

Step 1 We show first that if m ∈ [1/δ, L] then
∑

k,k1,k2∈Z, k≥−m, k≤−0.6m

2−k(22N(n)k+
+ 2e(n)2N(n)k+

2 2e(n)k+
1 )|Im;k,k1,k2 | � ε312

2H(n)δm. (5.40)
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This is the case of small frequencies 2k. The estimates (5.39) cleary suffice to control the
contribution of the triplets (k, k1, k2) for which k ≤ −0.6m and 2k1 � 2−0.4m. They also suffice
to control the contribution of the triplets (k, k1, k2) for which k ≤ −0.6 and k + k−1 (1 + κ) −
35k+

1 ≤ −m.

It remains to bound the contribution of the triplets (k, k1, k2) for which

k ∈ [−m,−0.6m] and k + k−1 (1 + κ) − 35k+
1 ≥ −m. (5.41)

In particular, k1 ≥ −m/2+100. Let J := k−1 +m−40 and decompose Pk1V
kg,ι1 = V kg,ι1

≤J,k1
+V kg,ι1

>J,k1

as in (4.33). With Q as in (5.9), let

I1
m;k,k1,k2

=
∫

Im

qm(s)Q[PkV
wa,ι
L (s), V kg,ι1

≤J,k1
(s), Pk2V

kg,ι2
L2

(s)] ds,

I2
m;k,k1,k2

=
∫

Im

qm(s)Q[PkV
wa,ι
L (s), V kg,ι1

>J,k1
(s), Pk2V

kg,ι2
L2

(s)] ds.

Using (4.2) and (4.33) we estimate

2−k|I1
m;k,k1,k2

| � 2m2−k sup
s∈Im

‖PkV
wa,ι
L (s)‖L2‖V kg,ι1

≤J,k1
(s)‖L∞‖Pk2V

kg,ι2
L2

(s)‖L2

� ε312
2H(n)δm2−m/22−k/22−k−

1 /22−N(n)k+−N(n)k+
2 2−N0k+

1 +(d′+6)k+
1 .

Therefore, for (k, k1, k2) as in (5.41),

2−k(22N(n)k+
+ 2e(n)2N(n)k+

2 2e(n)k+
1 )|I1

m;k,k1,k2
|

� ε312
2H(n)δm2−m/22−k/22−k−

1 /22e(n)N(n)k+
2 2−N(1)k+

1 +12k+
1 . (5.42)

Similarly, using (4.2), (4.33), and L2 bounds we estimate

2−k|I2
m;k,k1,k2

| � 2m2−k23k/2 sup
s∈Im

‖PkV
wa,ι
L (s)‖L2‖V kg,ι1

>J,k1
(s)‖L2‖Pk2V

kg,ι2
L2

(s)‖L2

� ε312
2H(n)δm210δm2k−k−

1 2−N(n)k+−N(n)k+
2 2−N(1)k+

1 .

Therefore, for (k, k1, k2) as in (5.41),

2−k(22N(n)k+
+ 2e(n)2N(n)k+

2 2e(n)k+
1 )|I1

m;k,k1,k2
|

� ε312
2H(n)δm210δm2k−k−

1 2e(n)N(n)k+
2 2−N(1)k+

1 +k+
1 . (5.43)

Notice that for (k, k1, k2) as in (5.41) we have 2−m/22−k/22−k−
1 /2212k+

1 � 2−δ|m+k|+δk−
1 −k+

1

and 210δm2k−k−
1 2k+

1 � 2−δm−k+
1 . Therefore the bounds (5.42)–(5.43) suffice to bound the

remaining contribution of the triplets (k, k1, k2) as in (5.41), as claimed in (5.40).

Step 2 We show now that if m ∈ [1/δ, L] then
∑

k,k1,k2∈Z, k≥−m, k≥−0.6m, k≤4κm

2−k(22N(n)k+
+ 2e(n)2N(n)k+

2 2e(n)k+
1 )|Im;k,k1,k2 |

� ε312
2H(n)δm. (5.44)

To prove this we would like to integrate by parts in time (the method of normal forms). We
examine the identities (5.11)–(5.13) and estimate |II l

k,k1,k2
(s)|, l ∈ {0, 1, 2, 3}, using Lemma 3.3
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(ii). The bounds we need are

‖PkV
wa,ι
L (s)‖L2 + 2m‖Pk(∂sV

wa,ι
L )(s)‖L2 � ε12k−/22H′′

wa(n)δm2−N(n+1)k+−5k+
,

‖Pk2V
kg,ι2
L2

(s)‖L2 + 2m‖Pk2(∂sV
kg,ι2
L2

)(s)‖L2 � ε12H′′
kg(n)δm2−N(n+1)k+

2 −5k+
2 ,

‖e−isΛkg,ι1Pk1V
kg,ι1(s)‖L∞ � ε12k−

1 /22−m+10δm2−N0k+
1 +(d+2)k+

1 ,

(5.45)

which follow from (4.2), (4.14), and (4.40). Using (3.6), and recalling the assumptions on the
triplets (k, k1, k2) in (5.44), it follows that, for s ∈ Im,

|II0
k,k1,k2

(s)| + 2m|II1
k,k1,k2

(s)| + 2m|II3
k,k1,k2

(s)| � ε312
−k−/22k−

1 /22−m+κm. (5.46)

To estimate |IIn,2
k,k1,k2

(s)| we need an additional L∞ bound, namely

‖e−isΛkg,ι1Pk1(∂sV
kg,ι1)(s)‖L∞ � ε12−2m+κm2−N(1)k+

1 +5k+
1 , (5.47)

which follows from (4.7)–(4.8) and the identity e−isΛkg(∂sV
kg)(s) = N kg(s). Using also the L2

bounds in the first two lines of (5.45), together with Lemma 3.3 (ii), we estimate

2m|II2
k,k1,k2

(s)| � ε312
−k−/22−m+2κm.

Using also the bounds (5.46) and the formula (5.11), it follows that

|Im;k,k1,k2 | � ε312
−k−/22−m+2κm,

for triplets (k, k1, k2) as in (5.44). The desired bound (5.44) follows.

Step 3 Finally we show that if m ∈ [1/δ, L] then
∑

k,k1,k2∈Z, k≥−m, k≥−0.6m, k≥4κm

2−k(22N(n)k+
+ 2e(n)2N(n)k+

2 2e(n)k+
1 )|Im;k,k1,k2 |

� ε312
2H(n)δm. (5.48)

Using (5.14) with (p, p1, p2) = (2,∞, 2) and the bounds (4.2) and (4.8), we have

2−k|Im;k,k1,k2 | � ε312
10δm22H(n)δm2−k/22k−

1 /22−N(n)k+−N(n)k+
2 2−N0k+

1 +(d+2)k+
1 . (5.49)

Notice the factor 2−k/2 in (5.49), which is favorable when k is large. These bounds clearly suffice
to control the contribution of the triplets (k, k1, k2) in (5.48) for which k1 = min(k, k1, k2).

We consider now the sum over triplets (k, k1, k2) as in (5.48) for which k2 = min(k, k1, k2).
We use (5.14) with (p, p1, p2) = (2, 2,∞) and (4.8), so

2−k|Im;k,k1,k2 | � ε312
κm22H(n)δm2−k/22−N(n)k+−N(0)k+

1 2−|k2|/2, (5.50)

provided that n ≤ N1−1. The estimates (5.49) suffice to bound the contribution of the triplets
(k, k1, k2) for which k2 = min(k, k1, k2) if n ≥ 2, while the estimates (5.50) suffice in the
remaining cases n ∈ {0, 1}.

Finally, we consider the sum over triplets (k, k1, k2) as in (5.48) for which k = min(k, k1, k2).
We use (5.14) with (p, p1, p2) = (∞, 2, 2) and (4.7), so

2−k|Im;k,k1,k2 | � ε312
κm22H(n)δm2−N(n)k+

2 −N(0)k+
1 2−4k+

, (5.51)

provided that n ≤ N1 − 1. This suffices to complete the proof of (5.48) if n ≤ N1 − 1. After
these reductions, for (5.48) it remains to show that if n = N1 then

∑

k,k1,k2∈Z, k=k≥−0.6m, k≥4κm

2−k22N(n)k+
2 2k+

1 |Im;k,k1,k2 | � ε312
2H(n)δm. (5.52)
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This follows by the same integration by parts argument as in Step 2 above, using Lemma 3.3
(ii) and the bounds (5.45) and (5.47). This completes the proof of the lemma. �

6 Bounds on the Profiles, I: Weighted L2 Norms

In this section we prove the bounds in (2.18). These bounds will be derived by elliptic estimates
from the bounds (2.17) proved in the previous two sections. We also need two identities that
connect the vector-fields Γl with weighted norms on the profiles.

Lemma 6.1 Assume μ ∈ {wa, kg} and

(∂t + iΛμ)U = N , (6.1)

on R
3 × [0, T ]. If V (t) = eitΛμU(t) and l ∈ {1, 2, 3} then, for any t ∈ [0, T ],

Γ̂lU(ξ, t) = i(∂ξl
N̂ )(ξ, t) + e−itΛμ(ξ)∂ξl

[Λμ(ξ)V̂ (ξ, t)]. (6.2)

Proof We calculate

Γ̂lU(ξ, t) = F{xl∂tU + t∂lU}(ξ, t)
= i(∂ξl

N̂ )(ξ, t) + ∂ξl
[Λμ(ξ)Û(ξ, t)] + itξlÛ(ξ, t)

= i(∂ξl
N̂ )(ξ, t) + e−itΛμ(ξ)∂ξl

[Λμ(ξ)V̂ (ξ, t)]

− it(∂ξl
Λμ)(ξ)e−itΛμ(ξ)Λμ(ξ)V̂ (ξ, t) + itξlÛ(ξ, t).

This gives (6.2) since (∂ξl
Λμ)(ξ)Λμ(ξ) = ξl. �

We prove now the bounds (2.18).

Proposition 6.2 With the hypothesis in Proposition 2.2, for any t ∈ [0, T ], n ∈ [0, N1 − 1],
k ∈ Z, L ∈ Vn, and l ∈ {1, 2, 3} we have

2N(n+1)k+{2k/2‖ϕk(ξ)(∂ξl
V̂ wa
L )(ξ, t)‖L2

ξ
+ 2k+‖ϕk(ξ)(∂ξl

V̂ kg
L )(ξ, t)‖L2

ξ
} � ε0〈t〉H(n+1)δ. (6.3)

Proof The identity (6.2) for Uwa
L gives

Γ̂lUwa
L (ξ, t) = i(∂ξl

N̂wa
L )(ξ, t) + e−itΛwa(ξ)∂ξl

[Λwa(ξ)V̂ wa
L (ξ, t)].

Therefore

e−itΛwa(ξ)Λwa(ξ)(∂ξl
V̂ wa
L )(ξ) = Γ̂lUwa

L (ξ) − i(∂ξl
N̂wa

L )(ξ) + e−itΛwa(ξ)(ξl/|ξ|)V̂ wa
L (ξ).

We multiply all the terms by 2−k/2ϕk(ξ) and take L2 norms to show that

2k/2‖ϕk(ξ)(∂ξl
V̂ wa
L )(ξ)‖L2

ξ
� 2−k/2‖ϕk(ξ)Γ̂lUwa

L (ξ)‖L2

+ 2−k/2‖ϕk(ξ)(∂ξl
N̂wa

L )(ξ)‖L2 + 2−k/2‖ϕk(ξ)V̂ wa
L (ξ)‖L2 . (6.4)

It follows from (4.16) and Proposition 5.1 that

2−k/2‖ϕk(ξ)(∂ξl
N̂wa

L )(ξ)‖L2 � ε21〈t〉H
′′
wa(n)δ2−N(n)k++5k+

,

2−k/2‖ϕk(ξ)Γ̂lUwa
L (ξ)‖L2 � ε0〈t〉H(n+1)δ2−N(n+1)k+

,

2−k/2‖ϕk(ξ)V̂ wa
L (ξ)‖L2 � ε0〈t〉H(n)δ2−N(n)k+

.

The desired inequality for the wave component in (6.3) follows using (6.4), since N(n + 1) ≤
N(n) − d and H(n+ 1) ≥ max(H ′′

wa(n), H(n)).
The inequality for the Klein–Gordon component in (6.3) follows similarly, using the iden-

tity (6.2) for μ = kg, the energy estimates in Proposition 5.2, and the bounds (4.42). �
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7 Bounds on the Profiles, II: the Klein–Gordon Z Norm

In this section we prove the bounds in (2.19) for the Klein–Gordon component. We notice that,
unlike the energy norms, the Z norms of the two profiles are not allowed to grow slowly in time.
Because of this we need to renormalize the Klein–Gordon profile.

7.1 Renormalization

We start from the equation ∂tV
kg = eitΛkgN kg for the profile V kg = V kg,+, where N kg =

uBαβ∂α∂βv + Euv. In the Fourier space this becomes

∂tV̂ kg(ξ, t) =
1

(2π)3

∫

R3
eitΛkg(ξ)û(η, t)[Bαβ ∂̂α∂βv(ξ − η, t) + Ev̂(ξ − η)] dη.

Recall that B00 = 0. The formulas in the second line of (2.6) show that

Bαβ ∂̂α∂βv(ρ, t) = (−Bjkρjρk)
i[e−itΛkg(ρ)V̂ kg,+(ρ, t) − eitΛkg(ρ)V̂ kg,−(ρ, t)]

2Λkg(ρ)

+ (2B0kρk)
i[e−itΛkg(ρ)V̂ kg,+(ρ, t) + eitΛkg(ρ)V̂ kg,−(ρ, t)]

2
.

Therefore

∂tV̂ kg(ξ, t) =
1

(2π)3

∫

R3
ieitΛkg(ξ)û(η, t){e−itΛkg(ξ−η)V̂ kg,+(ξ − η, t)q+(ξ − η)

+ eitΛkg(ξ−η)V̂ kg,−(ξ − η, t)q−(ξ − η)} dη,
(7.1)

where

q±(ρ) := ∓B
jkρjρk

2Λkg(ρ)
+B0kρk ± E

2Λkg(ρ)
. (7.2)

We would like to eliminate the bilinear interaction between u and V kg,+ in the first line
of (7.1) corresponding to |η| � 1. To extract the main term we approximate, heuristically,

1
(2π)3

∫

|η|�〈t〉−1/2
ieitΛkg(ξ)û(η, t)e−itΛkg(ξ−η)V̂ kg,+(ξ − η, t)q+(ξ − η) dη

≈ iV̂ kg,+(ξ, t)q+(ξ)
1

(2π)3

∫

|η|�〈t〉−1/2
eitη·∇Λkg(ξ)û(η, t) dη

≈ iV̂ kg(ξ, t)q+(ξ)ulow(tξ/Λkg(ξ), t),

where ulow is a suitable low-frequency component of u.
In view of this calculation we set p0 := 0.68 and define the phase correction

Θ(ξ, t) := q+(ξ)
∫ t

0

ulow(sξ/Λkg(ξ), s) ds, ûlow(ρ, s) := ϕ≤0(〈s〉p0ρ)û(ρ, s). (7.3)

Then we define the modified Klein–Gordon profile V kg
∗ by

V̂ kg
∗ (ξ, t) := e−iΘ(ξ,t)V̂ kg(ξ, t). (7.4)

We notice that both the function ulow and the multiplier q+ are real-valued, thus Θ is real-
valued. With uhigh = u− ulow, the formula (7.1) shows that

∂tV̂
kg
∗ (ξ, t) = e−iΘ(ξ,t){∂tV̂ kg(ξ, t) − iV̂ kg(ξ, t)q+(ξ)ulow(tξ/Λkg(ξ), t)}

= R1(ξ, t) + R2(ξ, t) + R3(ξ, t),
(7.5)
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where

R1(ξ, t) :=
e−iΘ(ξ,t)

(2π)3

∫

R3
ieitΛkg(ξ)ûlow(η, t)eitΛkg(ξ−η)V̂ kg,−(ξ − η, t)q−(ξ − η) dη, (7.6)

R2(ξ, t) :=
e−iΘ(ξ,t)

(2π)3

∫

R3
iûlow(η, t) × {eit(Λkg(ξ)−Λkg(ξ−η))V̂ kg(ξ − η, t)q+(ξ − η)

− eit(ξ·η)/Λkg(ξ)V̂ kg(ξ, t)q+(ξ)} dη, (7.7)

and

R3(ξ, t) :=
e−iΘ(ξ,t)

(2π)3
∑

ι1∈{+,−}

∫

R3
ieitΛkg(ξ)ûhigh(η, t)e−itΛkg,ι1(ξ−η)V̂ kg,ι1(ξ − η, t)qι1(ξ − η) dη. (7.8)

7.2 Improved Control

We prove now our main Z-norm estimate for the profile V kg.

Proposition 7.1 For any t ∈ [0, T ] we have

‖V kg(t)‖Zkg
� ε0.

The rest of this section is concerned with the proof of this proposition. Since |V̂ kg(ξ, t)| =

|V̂ kg
∗ (ξ, t)|, in view of the definition (2.11) it suffices to prove that

‖ϕk(ξ){V̂ kg
∗ (ξ, t2) − V̂ kg

∗ (ξ, t1)}‖L∞
ξ

� ε02−δm/22−k−/2+κk−
2−N0k++d′k+

(7.9)

and

‖ϕk(ξ){V̂ kg
∗ (ξ, t2) − V̂ kg

∗ (ξ, t1)}‖L2
ξ

� ε02−δm/22k−+κk−
2−N0k+−(3d−2)k+

, (7.10)

for any k ∈ Z, m ≥ 1, and t1, t2 ∈ [2m − 2, 2m+1] ∩ [0, T ].

Lemma 7.2 The bounds (7.9) and (7.10) hold if k ≥ κm/100 − 10 or if k ≤ −κm.

Proof Notice that the bound (7.10) follows from Proposition 5.2 if 2k � 22δm. It remains to
show that if k /∈ [−κm, κm/100 − 10] and t ∈ [2m − 2, 2m+1] ∩ [0, T ] then

‖ϕk(ξ)V̂ kg(ξ, t)‖L∞
ξ

� ε02−δm/22−k−/2+κk−
2−N0k++d′k+

. (7.11)

Step 1 It follows from Proposition 6.2 that

2k+‖ϕk(ξ)(∂ξl
V̂ kg
L )(ξ, t)‖L2

ξ
� ε0〈t〉H(n+1)δ2−N0k++(n+1)dk+

,

for any t ∈ [0, T ], k ∈ Z, l ∈ {1, 2, 3}, and L ∈ Vn, n ∈ [0, N1 − 1]. Using Lemma 3.5, we have

sup
j≥−k−

2j‖QjkV
kg
L (t)‖L2 � ε0〈t〉H(n+1)δ2−N0k+−k++(n+1)dk+

. (7.12)

Using this and (3.23) it follows that

‖P̂kV kg(t)‖L∞ � ε0〈t〉H(2)δ2−k−/22−N0k+−k+/2+(3d/2)k+
. (7.13)

The bound (7.11) follows if 2k � 24H(2)δm, since d′ = 3d/2.
It remains to prove (7.11) when k ≤ −κm. We use again (7.12) and (3.23) to estimate

‖P̂kV kg(t)‖L∞ � 2−3k/2{ sup
j≥−k−

‖QjkV
kg(t)‖H0,1

Ω
}(1−δ)/2{ε0〈t〉H(2)δ2k}(1+δ)/2.
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Therefore, recalling that κ2 = 400δ, for (7.11) it suffices to prove that

‖PkV
kg(t)‖H0,1

Ω
� ε0〈t〉4H(2)δ2k+10κk

if k ≤ −κm and t ∈ [2m − 2, 2m+1] ∩ [0, T ]. In view of (3.60), for this is suffices to prove that

‖PlV
kg
Ω (t)‖L2 +

3∑

a=1

‖ϕl(ξ)(∂ξa
V̂ kg

Ω )(ξ, t)‖L2 � ε0〈t〉4H(2)δ210κl, (7.14)

for any l ∈ Z and t ∈ [0, T ], where Ω ∈ {Id,Ω23,Ω31,Ω12}.
The bound on the first term in the left-hand side of (7.14) follows from (7.12). To bound

the remaining terms we use the identities (6.2). For (7.14) it suffices to prove that

‖PlΓaU
kg
Ω (t)‖L2 + ‖ϕl(ξ)(∂ξa

N̂ kg
Ω )(ξ, t)‖L2 � ε0〈t〉4H(2)δ210κl, (7.15)

for any l ∈ Z, t ∈ [0, T ], and a ∈ {1, 2, 3}. The term ‖PlΓaU
kg
Ω (t)‖L2 is bounded as claimed due

to (7.12) (with n = 2). Therefore, it remains to prove the bilinear estimates

‖PkN kg
Ω (ξ, t)‖L2 � ε0〈t〉4H(2)δ210κk min(〈t〉−1, 2k−

)2−2k+
,

‖ϕk(ξ)(∂ξa
N̂ kg

Ω )(ξ, t)‖L2 � ε0〈t〉4H(2)δ210κk,
(7.16)

for any k ∈ Z, t ∈ [0, T ], and a ∈ {1, 2, 3}.
Step 2 The bounds (7.16) are similar to the bounds in Lemma 4.3. The only issue is to gain
the factors 210κk and we are allowed to lose small powers 〈t〉Cδ. We may assume k ≤ 0 and
define I as in (4.18)–(4.19). For (7.16) it suffices to prove that

∑

(k1,k2)∈Xk

2k+
1 −k2‖PkI[Pk1U

kg,ι1
L1

, Pk2U
wa,ι2
L2

](t)‖L2 � ε21〈t〉4H(2)δ210κk min(〈t〉−1, 2k−
) (7.17)

and
∑

(k1,k2)∈Xk

2k+
1 −k2‖ϕk(ξ)(∂ξa

F{I[Pk1U
kg,ι1
L1

, Pk2U
wa,ι2
L2

]})(ξ, t)‖L2
ξ

� ε21〈t〉4H(2)δ210κk, (7.18)

for any ι1, ι2 ∈ {+,−}, a ∈ {1, 2, 3}, L1 ∈ Vn1 , L2 ∈ Vn2 , n1 + n2 ≤ 1.
Using the L2 estimates (4.6) and (4.2), we bound

2k+
1 −k2‖PkI[Pk1U

kg,ι1
L1

, Pk2U
wa,ι2
L2

](t)‖L2

� 2k+
1 −k223 min(k,k1,k2)/2‖Pk1U

kg
L1

(t)‖L2‖Pk2U
wa
L2

(t)‖L2

� ε21〈t〉2H(2)δ2k1−k2/223 min(k,k1,k2)/22−4(k+
1 +k+

2 ).

(7.19)

This suffices to prove (7.17) when 2k− � 〈t〉−1. On the other hand, if 2k− ≥ 〈t〉−1 then we
estimate, using also (4.7),

2k+
1 −k2‖PkI[Pk1U

kg,ι1
L1

, Pk2U
wa,ι2
L2

](t)‖L2

� 2k+
1 −k2‖Pk1U

kg
L1

(t)‖L2‖Pk2U
wa
L2

(t)‖L∞

� ε212
k−
1 〈t〉−1+2H(2)δ min(1, 2k−

2 〈t〉)2−4(k+
1 +k+

2 ).

This suffices to bound the contribution of the pairs (k1, k2) ∈ Xk in (7.17) for which 2k1 � 2k/10.
For the remaining pairs we have min(k1, k2) ≥ k/10 + 10, |k1 − k2| ≤ 4, and we use the
decomposition (4.29) to estimate

2k+
1 −k2‖PkI[Pk1U

kg,ι1
L1

, Pk2U
wa,ι2
L2

](t)‖L2 � ε212
−k1/22−k2/2〈t〉−3/2+κ2−4(k+

1 +k+
2 ).
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This suffices to complete the proof of (7.17).
To prove (7.18) we write Ukg,ι1

L1
= e−itΛkg,ι1V kg,ι1

L1
and notice that the ∂ξa

derivative can hit

either the phase e−itΛkg,ι1 (ξ−η), or the multiplier m1(ξ − η), or the profile ̂
Pk1V

kg,ι1
L1

(ξ − η). In
the first case the derivative effectively corresponds to multiplying by factors � 〈t〉, and changing
the multiplier m1, in a way that still satisfies (4.18). The desired estimates follow from (7.17).

In the case when the ∂ξa
derivative hits the function m1(ξ − η) ̂

Pk1V
kg,ι1
L1

(ξ − η), it suffices to
prove that

∑

(k1,k2)∈Xk

2k+
1 −k2‖PkI[U

kg,ι1
L1,∗a,k1

, Pk2U
wa,ι2
L2

](t)‖L2 � ε21〈t〉4H(2)δ210κk,

where, as in the proof of Lemma 4.3, ̂
Ukg,ι1
L1,∗a,k1

(ξ, t) = e−itΛkg,ι1 (ξ)∂ξa
{ϕk1 · m1 · ̂

V kg,ι1
L1

}(ξ, t).
This follows from the L2 bounds (4.37) and (4.2). �

We return now to the proof of the main estimates (7.9)–(7.10). In view of the identity (7.5),
it suffices to prove that, for a ∈ {1, 2, 3},

∥∥
∥
∥ϕk(ξ)

∫ t2

t1

Ra(ξ, s) ds
∥∥
∥
∥

L∞
ξ

� ε02−δm/22−k−/2+κk−
2−(N0+4d)k+

, (7.20)

if k ∈ [−κm, κm/100 − 10]. These bounds are proved in Lemmas 7.3–7.5 below.
In some estimates we need to use integration by parts in time (normal forms). For any

s ∈ [0, T ] we define the bilinear operators T kg
μν by

T kg
μν [f, g](ξ, s) :=

∫

R3

eisΦ(kg,+)μν(ξ,η)

Φ(kg,+)μν(ξ, η)
m1(ξ − η)f̂(ξ − η, s) ·m2(η)ĝ(η, s) dη, (7.21)

where Φ(kg,+)μν(ξ, η) = Λkg(ξ) − Λμ(ξ − η) − Λν(η) (see (2.9)) and m1,m2 are as in (4.18).

We will sometimes need L∞ bounds on the localized profiles ̂V kg,±
j,k , ̂V wa,±

j,k , and the time

derivative ̂Pk∂sV kg,±. Since 2j‖Qj,kV
kg(s)‖H0,1

Ω
� ε12H(2)δm2−N0k++2dk+

, see (4.5), it follows
from (3.18) that

‖̂V kg,±
j,k (s)‖L∞ � ε12H(2)δm2−j/22−k2δ(j+k)2−N0k++2dk+

, (7.22)

for any s ∈ [t1, t2]. Similarly

‖ ̂V wa,±
j,k (s)‖L∞ � ε12H(2)δm2−j/22−3k/22δ(j+k)2−N0k++2dk+

. (7.23)

Finally, to bound ̂Pk∂sV kg,±, recall that

sup
j≥−k−

‖Qjk(∂tV
kg,±)(t)‖H0,1

Ω
� ε21〈t〉−1+H′′

kg(1)δ2−N(2)k+−5k+
,

sup
j≥−k−

2j+k‖Qjk(∂tV
kg,±)(t)‖H0,1

Ω
� ε212

k〈t〉H′′
kg(1)δ2−N(2)k+−5k+

,
(7.24)

if 2k � 〈t〉−1, see Lemmas 4.3 and 3.5. In particular, using (3.23),

‖ ̂Pk(∂tV kg,±)(t)‖L∞ � ε21〈t〉−1/2+H(2)δ2−k−
2−N(2)k+

. (7.25)

Lemma 7.3 The bounds (7.20) hold if a = 1, m ≥ 1/κ, and k ∈ [−κm, κm/100].
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Proof We examine the formula (7.6), substitute u = iΛ−1
wa(Uwa,+ −Uwa,−)/2, and decompose

the input functions dyadically in frequency. Let Ûwa,ι2
low (ξ, s) := ϕ≤0(〈s〉p0ξ)Ûwa,ι2(ξ, s) and

V̂ wa,ι2
low (ξ, s) := ϕ≤0(〈s〉p0ξ)V̂ wa,ι2(ξ, s). With I as in (4.19) and ι2 ∈ {+,−}, it suffices to prove

that
∑

(k1,k2)∈Xk

2k+
1 −k2

∥∥
∥
∥ϕk(ξ)

∫ t2

t1

eisΛkg(ξ)−iΘ(ξ,s)F{I[Pk1U
kg,−, Pk2U

wa,ι2
low ]}(ξ, s) ds

∥∥
∥
∥

L∞
ξ

� ε212
−δm/22−k−/2+κk−

2−(N0+4d)k+
. (7.26)

We estimate first, using (4.10),

2k+
1 −k2‖F{I[Pk1U

kg,−, Pk2U
wa,ι2
low ]}(ξ, s)‖L∞

ξ

� 2k+
1 −k2‖ ̂Pk1U

kg,−‖L∞‖ ̂Pk2U
wa,ι2
low ‖L1

� ε212
k22−k−

1 /22−N0k+
1 +(d′+1)k+

1 . (7.27)

This suffices to control the contribution of the pairs (k1, k2) for which k2 ≤ −1.01m. Thus it
remains to prove that

∣∣
∣∣

∫ t2

t1

∫

R3
eisΛkg(ξ)−iΘ(ξ,s)m1(ξ − η)eisΛkg(ξ−η) ̂Pk1V

kg,−(ξ − η, s)

×m2(η)e−isΛwa,ι2(η) ̂Pk2V
wa,ι2
low (η, s) dηds

∣∣
∣
∣ � ε212

−κm2k2 , (7.28)

for any ξ with |ξ| ∈ [2k1−4, 2k1+4], provided that

k2 ∈ [−1.01m,−p0m+ 10], k1 ∈ [κm− 10, κm/100 + 10]. (7.29)

To prove (7.28) we integrate by parts in time. Notice that Φσμν(ξ, η) � 1 in the support of
the integral if σ = (kg,+), μ = (kg,−), ν = (wa, ι2).5) The left-hand side of (7.28) is dominated
by C(J1 + J2 + J3), where, with μ = (kg,−) and ν = (wa, ι2) and T kg

μν defined as in (7.21),

J1 :=
∑

s∈{t1,t2}
|T kg

μν [Pk1V
μ, Pk2V

ν
low](ξ, s)| +

∫ t2

t1

|Θ̇(ξ, s)| · |T kg
μν [Pk1V

μ, Pk2V
ν
low](ξ, s)| ds,

J2 :=
∫ t2

t1

|T kg
μν [∂s(Pk1V

μ), Pk2V
ν
low](ξ, s)| ds,

J3 :=
∫ t2

t1

|T kg
μν [Pk1V

μ, ∂s(Pk2V
ν
low)](ξ, s)| ds. (7.30)

Assuming k1, k2 as in (7.29), we estimate, as in (7.27),

|T kg
μν [Pk1V

μ, Pk2V
ν
low](ξ, s)| � ε212

2k22κm,

2m|T kg
μν [Pk1V

μ, ∂s(Pk2V
ν
low)](ξ, s)| � ε212

2k22κm.

Here we used the bounds ‖P̂k2V
ν
low‖L1 � 22k22δm and ‖∂sP̂k2V

ν
low‖L1 � 22k22−m+10δm, see

(4.2) and (4.14). Since Θ̇(ξ, s) = q+(ξ)ulow(sξ/Λkg(ξ), s), see (7.3), it follows from (4.7) that
|Θ̇(ξ, s)| � 2k+

1 2−m+12δm. The desired bounds for the terms J1 and J3 follow.

5) Here it is important that µ �= (kg, +), so the phase is nonresonant. The nonlinear correction (7.4) was done

precisely to weaken the corresponding resonant contribution of the profile V kg,+.
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To estimate J2 we use (7.25). Therefore

|T kg
μν [∂s(Pk1V

μ), Pk2V
ν
low](ξ, s)| � ε212

−m/2+κm22k2 ,

and the desired estimates follow since 2k2 � 2−p0m. This completes the proof of the lemma. �

Lemma 7.4 The bounds (7.20) hold if a = 2, m ≥ 1/κ, and k ∈ [−κm, κm/100].

Proof We decompose V kg =
∑

(k1,j1)∈J V
kg,+
j1,k1

as in (4.1). For (7.20) it suffices to prove that
∑

(k1,j1)∈J
|Ak;j1,k1(ξ, s)| � ε212

−1.005m (7.31)

for any s ∈ [2m−1, 2m+1] ∩ [0, T ] and k ∈ [−κm, κm/100], where

Ak;j1,k1(ξ, s) := ϕk(ξ)
∫

R3
ûlow(η, t){eis(Λkg(ξ)−Λkg(ξ−η)) ̂V kg,+

j1,k1
(ξ − η, s)q+(ξ − η)

− eis(ξ·η)/Λkg(ξ) ̂
V kg,+

j1,k1
(ξ, s)q+(ξ)} dη.

(7.32)

As a consequence of (7.22), without using the cancellation of the two terms in the integral,

|Ak;j1,k1(ξ, s)| � ε12−j1/2+δj12H(2)δm2−k1‖ûlow(s)‖L1 � ε12−j1/2+δj12H(2)δm2−k12−p0m+δm.

Since 2−k1 � 2κm/4, this suffices to control the contribution of the terms in (7.31) corresponding
to large values of j1, i.e. 2j1/2 � 2(1.01−p0)m.

On the other hand, if j1/2 ≤ (1.01 − p0)m = 0.33m then we estimate

|eis(Λkg(ξ)−Λkg(ξ−η)) − eis(ξ·η)/Λkg(ξ)| � 2−2p0m+m,

|̂V kg,+
j1,k1

(ξ, s)q+(ξ) − ̂
V kg,+

j1,k1
(ξ − η, s)q+(ξ − η)| � ε12j1/22κm2−p0m,

(7.33)

provided that |ξ| ≈ 2k and |η| � 2−p0m. Indeed, the first bound follows from the observation
that ∇Λkg(ξ) = ξ/Λkg(ξ). The second bound follows from (7.22), once we notice that differ-

entiation in ξ of the localized profile ̂
V kg,+

j1,k1
(ξ, s) corresponds essentially to multiplication by a

factor of 2j1 . Therefore, since ‖ûlow(s)‖L1 � 2−p0m+δm and 2j1/2 � 20.33m,

|Ak;j1,k1(ξ, s)| � ‖ûlow(s)‖L1ε12−p0m+κm(2j1/2 + 2−p0m+m2−j1/2) � ε12−2p0m+2κm20.33m.

The contribution of the pairs (k1, j1) for which 2j1/2 ≤ 20.33m is therefore bounded as claimed
in (7.31). This completes the proof of the lemma. �

Lemma 7.5 The bounds (7.20) hold if a = 3, m ≥ 1/κ, and k ∈ [−κm, κm/100].

Proof We examine the formula (7.8), write u = iΛ−1
wa(Uwa,+ − Uwa,−)/2, and decompose

the input functions dyadically in frequency. Let Uwa,ι2
high := Uwa,ι2 − Uwa,ι2

low and V wa,ι2
high :=

V wa,ι2 − V wa,ι2
low . As in the proof of Lemma 7.3, after simple reductions it suffices to prove that

2k+
1 −k2

∥∥
∥
∥ϕk(ξ)

∫ t2

t1

eisΛkg(ξ)−iΘ(ξ,s)F{I[Pk1U
kg,ι1 , Pk2U

wa,ι2
high ]}(ξ, s) ds

∥∥
∥
∥

L∞
ξ

� ε212
−κm (7.34)

for any ι1, ι2 ∈ {+,−} and k1, k2 ∈ [−p0m− 10,m/10].
We integrate by parts in time to estimate

∣
∣∣
∣

∫ t2

t1

eisΛkg(ξ)−iΘ(ξ,s)F{I[Pk1U
kg,ι1 , Pk2U

wa,ι2
high ]}(ξ, s) ds

∣
∣∣
∣ � J ′

1(ξ) + J ′
2(ξ) + J ′

3(ξ),
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where, with μ = (kg, ι1) and ν = (wa, ι2) and T kg
μν defined as in (7.21),

J ′
1(ξ) :=

∑

s∈{t1,t2}
|T kg

μν [Pk1V
μ, Pk2V

ν
high](ξ, s)| +

∫ t2

t1

|Θ̇(ξ, s)| · |T kg
μν [Pk1V

μ, Pk2V
ν
high](ξ, s)| ds,

J ′
2(ξ) :=

∫ t2

t1

|T kg
μν [∂s(Pk1V

μ), Pk2V
ν
high](ξ, s)| ds,

J ′
3(ξ) :=

∫ t2

t1

|T kg
μν [Pk1V

μ, ∂s(Pk2V
ν
high)](ξ, s)| ds.

Since |Θ̇(ξ, s)| � 2−m+4δm for (7.34) it suffices to prove that for any s ∈ [2m−1, 2m+1],

|ϕk(ξ)T kg
μν [Pk1V

μ, Pk2V
ν
high](ξ, s)| � ε212

−2κm2k−
2 , (7.35)

2m|ϕk(ξ)T kg
μν [∂s(Pk1V

μ), Pk2V
ν
high](ξ, s)| � ε212

−2κm2k−
2 , (7.36)

2m|ϕk(ξ)T kg
μν [Pk1V

μ, ∂s(Pk2V
ν
high)](ξ, s)| � ε212

−2κm2k−
2 , (7.37)

provided that k ∈ [−κm, κm/100], k1, k2 ∈ [−pm − 10,m/10], μ = (kg, ι1), ν = (wa, ι2),
ι1, ι2 ∈ {+,−}.
Step 1 Proof of (7.35) If k1 ≤ −4κm (so k2 ≥ −κm − 20) then we can just use L2

bounds (4.2)–(4.6) on both inputs and Lemma 3.3 (i) to prove (7.35). On the other hand, if
k1 ≥ −4κm then we decompose Pk1V

μ =
∑

j1
V μ

j1,k1
and Pk2V

ν =
∑

j2
V ν

j2,k2
as in (4.1). Let

k := max(k, k1, k2) and recall that |Φ(kg,+)μν(ξ, η)| � 2k22−2k
+

in the support of the integrals
defining the operators T kg

μν (see (3.5)).

The contribution of the pairs (V μ
j1,k1

, V ν
j2,k2

) for which 2max(j1,j2) ≤ 20.99m2−6k
+

is negligible,

|T kg
μν [V μ

j1,k1
, V ν

j2,k2
](ξ, s)| � ε212

−2m if 2max(j1,j2) ≤ 20.99m2−6k
+

. (7.38)

Indeed, this follows by integration by parts in η (using Lemma 3.1), the bounds (3.17), and the
observation that the gradient of the phase admits a suitable lower bound |∇η{sΛkg,ι1(ξ − η) +
sΛwa,ι2(η)}| � 〈s〉2−2k+

1 in the support of the integral. On the other hand, we estimate

|T kg
μν [V μ

j1,k1
, V ν

j2,k2
](ξ, s)| � 2−k222k

+

23k2/2‖V̂ μ
j1,k1

(s)‖L∞‖V̂ ν
j2,k2

(s)‖L2

� ε212
κm2k2/222k+

1 +2k+
2 · 2−k12−j1/22δ(j1+k1)2−10k+

1 · 2−j22−k−
2 /22−10k+

2

� ε212
2κm2−k12−j1/2+δj12−j22−6k

+

,

using (4.10), (7.22), and Lemma 3.3 (i). Recalling that k1 ≥ −4κm, this suffices to estimate the
contribution of the pairs (V μ

j1,k1
, V ν

j2,k2
) for which 2max(j1,j2) ≥ 20.99m2−6k

+

. The bound (7.35)
follows.

Step 2 Proof of (7.36) Recall that e−itΛkg,ι1∂tV
kg,ι1(t) = N kg(t) for any t ∈ [0, T ]. Notice

that F{Pk1N kg}(s) can be written as a sum of terms of the form

ϕk1(γ)
∫

R3
|ρ|−1〈γ − ρ〉m3(γ − ρ)Ûkg,ι3(γ − ρ)Ûwa,ι4(ρ) dρ,

where ι3, ι4 ∈ {+,−} and m3 is a symbol as in (4.18). We combine this with the formula (7.21).
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For (7.36) it suffices to prove that, for any ξ ∈ R
3,

∣
∣
∣∣ϕk(ξ)

∫

R3×R3

ϕk1(ξ − η)m1(ξ − η)
Λkg(ξ) − Λμ(ξ − η) − Λν(η)

m2(η)e−isΛν(η) ̂Pk2V
wa,ι2(η, s)

×m3(ξ − η − ρ)〈ξ − η − ρ〉|ρ|−1Ûkg,ι3(ξ − η − ρ, s)Ûwa,ι4(ρ, s) dηdρ
∣∣
∣
∣

� ε212
k−
2 2−1.005m,

provided that μ = (kg, ι1), ν = (wa, ι2), ι1, ι2, ι3, ι4 ∈ {+,−}, and k1, k2 ∈ [−p0m− 10,m/10].
We decompose the solutions Ukg,ι3 , Uwa,ι4 , and Pk2V

wa,ι2 dyadically in frequency and space
as in (4.1). Then we notice that the contribution when one of the parameters j3, k3, j4, k4, j2 is
large can be bounded using just L2 estimates. It suffices to prove that

2−k−
2 2k+

3 −k4 |Ckg[e−isΛθV kg,ι3
j3,k3

(s), e−isΛνV wa,ι2
j2,k2

(s), e−isΛϑV wa,ι4
j4,k4

(s)](ξ)| � ε312
−1.01m (7.39)

for any k2 ∈ [−p0m − 10,m/10], k3, k4 ≤ m/10, and j2, j3, j4 ≤ 2m, where θ = (kg, ι3),
ϑ = (wa, ι4), and, with m1,m2,m3,m4 as in (4.18),

Ckg[f, g, h](ξ) :=
∫

R3×R3

ϕk(ξ)ϕk1(ξ − η)m1(ξ − η)m2(η)
Λkg(ξ) − Λμ(ξ − η) − Λν(η)

×m3(ξ − η − ρ)m4(ρ) · f̂(ξ − η − ρ)ĝ(η)ĥ(ρ) dηdρ.
(7.40)

Substep 2.1 Assume first that

j3 ≥ 0.99m− 3k+
3 . (7.41)

Let Y denote the left-hand side of (7.39). Using Lemma 3.3 and 3.2 (i) we estimate

Y � 2k+
3 −k42−2k2+5 max(k+,k+

2 )‖V kg,ι3
j3,k3

(s)‖L2‖e−isΛνV wa,ι2
j2,k2

(s)‖L∞‖V wa,ι4
j4,k4

(s)‖L2

� ε312
κm2−j3−dk+

3 2−m2−k22−k4/2,
(7.42)

where in the last line we used bounds from Lemma 4.1. Since 2−k2 � 20.68m and j3 + 3k+
3 ≥

0.99m, this suffices to prove (7.39) when k4 ≥ −0.56m. On the other hand, if k4 ≤ −0.56m,
then we estimate in the Fourier space. Using (3.5), (7.22), and (4.2)

Y � 2k+
3 −k42−2k2+3 max(k+,k+

2 )‖̂
V kg,ι3

j3,k3
(s)‖L∞23k2/2‖V̂ wa,ι2

j2,k2
(s)‖L223k4/2‖V̂ wa,ι4

j4,k4
(s)‖L2

� ε312
κm2−j3/2+δj32k42−k3 .

(7.43)

Since k4 ≤ −0.56m, this suffices to prove (7.39) when k3 ≥ −0.01m. Finally, if k4 ≤ −0.56m
and k3 ≤ −0.01m then k2 ≥ −κm−10 (due to the assumption k ≥ −κm) and a similar estimate
gives

Y � 2k+
3 −k42−2k2+3 max(k+,k+

2 )23k3/2‖̂V kg,ι3
j3,k3

(s)‖L2‖V̂ wa,ι2
j2,k2

(s)‖L∞23k4/2‖V̂ wa,ι4
j4,k4

(s)‖L2

� ε312
0.01m2−j32k4 . (7.44)

This completes the proof of (7.39) when j3 ≥ 0.99m− 3k+
3 .

Substep 2.2 Assume now that j3 ≤ 0.99m−3k+
3 . We notice that the η gradient of the phase

−sΛθ(ξ − η − ρ) − sΛν(η) is � 2m2−2k+
3 in the support of the integral in (7.40). Similarly, the

ρ gradient of the phase −sΛθ(ξ − η − ρ) − sΛϑ(ρ) is � 2m2−2k+
3 in the support of the integral.

Using Lemma 3.1 (integration by parts in η or ρ), the contribution is negligible unless

j2 ≥ 0.99m− 3k+
3 and j4 ≥ 0.99m− 3k+

3 . (7.45)
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Given (7.45), we estimate first, as in (7.43),

Y � 2k+
3 −k42−2k2+3 max(k+,k+

2 )‖̂
V kg,ι3

j3,k3
(s)‖L∞23k2/2‖V̂ wa,ι2

j2,k2
(s)‖L223k4/2‖V̂ wa,ι4

j4,k4
(s)‖L2

� ε312
κm2−j2−j42−k22−k32−10k+

3 .

This suffices if k3 ≥ −0.2m. On the other hand, if k3 ≤ −0.2m then we may assume that
max(k2, k4) ≥ −κm− 10 (due to the assumption k ≥ −κm) and estimate as in (7.42),

Y � 2k+
3 −k42−2k2+5 max(k+,k+

2 )‖e−isΛθV kg,ι3
j3,k3

(s)‖L∞‖V wa,ι2
j2,k2

(s)‖L2‖V wa,ι4
j4,k4

(s)‖L2

� ε312
κm2−m2−j2−j42−5k2/22−3k4/22−10k+

3 .

This suffices to prove (7.39) when k4 ≥ −0.1m. Finally, if k3, k4 ≤ −0.1m and k2 ≥ −κm− 10
then we estimate, as in (7.44) and using also (7.23),

Y � 2k+
3 −k42−2k2+3 max(k+,k+

2 )23k3/2‖̂
V kg,ι3

j3,k3
(s)‖L2‖V̂ wa,ι2

j2,k2
(s)‖L∞23k4/2‖V̂ wa,ι4

j4,k4
(s)‖L2

� ε312
0.01m2−j42−j2/2+κj22−10k+

3 ,

which suffices. This completes the proof of the the bounds (7.36).

Step 3 Proof of (7.37) Recall that e−itΛwa,ι2∂tV
wa,ι2(t) = Nwa(t) for any t ∈ [0, T ]. If

k1 ≤ −0.01m then we may assume that k2 ≥ −κm − 10 (due to the assumption k ≥ −κm).
Using (4.14) we estimate the left-hand side of (7.37) by

C2m2−k222 max(k+
1 ,k+

2 )‖P̂k1V
μ‖L2‖ ̂Pk2Nwa‖L2 � ε212

k−
1 22κm,

which suffices. We can also decompose Pk1V
kg,ι1 =

∑
j1≥−k−

1
V kg,ι1

j1,k1
, and notice that the

contribution of the localized profiles for which j1 ≥ 0.1m can be bounded in a similar way,
using (7.22). After these reductions it remains to prove that

|ϕk(ξ)T kg
μν [V kg,ι1

j1,k1
(s), eisΛwa,ι2Pk2Nwa(s)](ξ)| � ε212

−1.005m2k−
2 , (7.46)

for any s ∈ [2m−1, 2m+1], k2 ∈ [−p0m− 10,m/10], k1 ≥ −0.01m, and j1 ≤ 0.1m.
We examine now the quadratic nonlinearities Nwa in (2.7). We define the trilinear operators

C′
kg[f, g, h](ξ) :=

∫

R3×R3

ϕk(ξ)ϕk2(η)m1(ξ − η)m2(η)
Λkg(ξ) − Λμ(ξ − η) − Λν(η)

×m3(η − ρ)m4(ρ) · f̂(ξ − η)ĝ(η − ρ)ĥ(ρ) dηdρ,
(7.47)

where m1,m2,m3,m4 are as in (4.18). For (7.46) it suffices to prove that

2−k−
2 |C′

kg[e
−isΛμV kg,ι1

j1,k1
(s), e−isΛkg,ι3V kg,ι3

j3,k3
(s), e−isΛkg,ι4V kg,ι4

j4,k4
(s)](ξ)| � ε212

−1.01m, (7.48)

where s, k1, k2, j1 are as in (7.46) and (k3, j3), (k4, j4) ∈ J .
Using Lemma 3.3 (ii) and (4.12), we estimate the left-hand side of (7.48) by

2−2k2+5max(k+,k+
1 )‖e−isΛμV kg,ι1

j1,k1
(s)‖L∞‖V kg,ι3

j3,k3
(s)‖L2‖V kg,ι4

j4,k4
(s)‖L2 � ε312

−1.49m2−j32−j42−2k2 .

This suffices if 2−0.48m2−j32−j42−2k2 � 1. Otherwise, if j3 + j4 + 0.48m ≤ −2k2 − 120 then we
may assume that j3 ≤ j4 (so j3 ≤ 0.45m− 50 since k2 ≥ −0.68m− 10) and use (4.12) again to
estimate the left-hand side of (7.48) by

C2−2k2+3 max(k+,k+
1 )‖̂V kg,ι1

j1,k1
(s)‖L∞23k2/2‖e−isΛkg,ι3V kg,ι3

j3,k3
(s)‖L∞‖V kg,ι4

j4,k4
(s)‖L2

� ε312
−1.49m2−k−

2 /22−k−
3 /22−j4 .
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Since 2−k−
3 /22−j4 � 2j3/3−j4 � 1, the bounds (7.48) follow. This completes the proof. �

8 Bounds on the Profiles, III: the Wave Z Norm

We prove now our main Z-norm estimate for the profile V wa.

Proposition 8.1 For any t ∈ [0, T ] we have

‖V wa(t)‖Zwa
� ε0.

The rest of the section is concerned with the proof of this proposition. In view of the
definition (2.10) it suffices to prove that for any m ≥ 1 and k ∈ Z we have

∑

j≥max(−k,0)

2j‖QjkV
wa(t2) −QjkV

wa(t1)‖L2 � ε02−δm2−k−(1/2+κ)2−(N0−d′)k+
(8.1)

for any t1, t2 ∈ [2m − 2, 2m+1] ∩ [0, T ]. This follows from Lemmas 8.2–8.4 below.

Lemma 8.2 For any m ≥ 1 and k ∈ Z let J0 := m(1 + κ) + 2|k| + 10. Then, for any
t1, t2 ∈ [2m − 2, 2m+1] ∩ [0, T ]

∑

j≥J0

2j‖QjkV
wa(t2) −QjkV

wa(t1)‖L2 � ε02−δm2−k−(1/2+κ)2−(N0−d′)k+
. (8.2)

Proof This is a bound on the contribution of large j in the sum in (8.1). To prove it we use
an approximate finite speed of propagation argument. Since ∂tV

wa = eitΛwaNwa, for (8.2) it
suffices to prove that

2j(1+δ)+m‖ϕj · eitΛwaPkNwa(t)‖L2 � ε02−δm2−k−(1/2+κ)2−N0k++d′k+
,

for any t ∈ [2m − 2, 2m+1] ∩ [0, T ] and j ≥ J0. With I as in (4.19), it suffices to show that
∑

(k1,k2)∈Xk

‖ϕj · eitΛwaPkI[Pk1U
μ, Pk2U

ν ](t)‖L2 � ε212
−j(1+δ)2−m(1+δ)2−N0k++d′k+

, (8.3)

for any m ≥ 1, k ∈ Z, j ≥ J0, t ∈ [2m − 2, 2m+1] ∩ [0, T ], and μ, ν ∈ {(kg,+), (kg,−)}.
Notice first that the contribution of the pairs (k1, k2) with max(k1, k2) ≥ j or min(k1, k2) ≤

−j can be controlled easily using just the L2 bounds (4.2) and (4.6). On the other hand, if
k1, k2 ∈ [−j, j] then we decompose

Pk1U
μ =

∑

j1≥−k−
1

e−itΛμV μ
j1,k1

, Pk2U
ν =

∑

j2≥−k−
2

e−itΛνV ν
j2,k2

as in (4.1). For (8.3) it suffices to prove that

‖ϕj · eitΛwaPkI[e−itΛμV μ
j1,k1

(t), e−itΛνV ν
j2,k2

(t)]‖L2

� ε212
−j(1+δ)2−m(1+δ)2−δj12−δj22−N(1)k++2k+

,
(8.4)

for any m, k, j, t, μ, ν as before, and any (k1, j1), (k2, j2) ∈ J with k1, k2 ∈ [−j, j].
If min(j1, j2) ≥ j(1 − δ) then we estimate the left-hand side of (8.4) by

C23k/2‖V μ
j1,k1

(t)‖L2‖V ν
j2,k2

(t)‖L2 � ε212
3k/22−j1−j22−N(1)k+

1 −N(1)k+
2 220δm,

using (4.5). This gives the desired bound (8.4), since j ≥ J0 ≥ m(1 + κ).
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On the other hand, if min(j1, j2) ≤ j(1 − δ) then the left-hand side of (8.4) is negligible.
Indeed, we may assume that j1 ≤ j(1 − δ) and write

ϕj(x) · eitΛwaPkI[e−itΛμV μ
j1,k1

(t), e−itΛνV ν
j2,k2

(t)](x)

= Cϕj(x)
∫

R3×R3
ϕk(ξ)eix·ξ

× eit(Λwa(ξ)−Λμ(ξ−η)−Λν(η))m1(ξ − η)V̂ μ
j1,k1

(ξ − η, t)m2(η)V̂ ν
j2,k2

(η, t) dξdη.

We integrate by parts in ξ many times, using Lemma 3.1; at each integration by parts we gain
a factor of |x| ≈ 2j and lose a factor � 2m +2|k| +2j1 . It follows that the left-hand side of (8.4)
is bounded by C2−100j2−j2 if j1 ≤ j(1 − δ). The desired bounds (8.4) follow, which completes
the proof of the lemma. �

We prove now the bounds (8.1) when k is not close to 0, using Proposition 6.2.

Lemma 8.3 The bounds (8.1) hold if k ≥ κm/100 − 10 or k ≤ −κm.

Proof It follows from Proposition 6.2 that

2k/2‖ϕk(ξ)(∂ξl
V̂ wa)(ξ, t)‖L2

ξ
� ε0〈t〉H(1)δ2−N0k++dk+

,

for any t ∈ [0, T ], k ∈ Z, l ∈ {1, 2, 3}. Using Lemma 3.5, we have

sup
j≥−k−

2j‖QjkV
wa(t)‖L2 � ε0〈t〉H(1)δ2−N0k++dk+

2−k/2. (8.5)

Given the assumption on k, this suffices to control the contribution of the sum over j ≤ J0

in (8.1). The remaining part of the sum is suitably bounded because of Lemma 8.2. �
Finally, we also prove the bounds (8.1) when k is close to 0.

Lemma 8.4 The bounds (8.1) hold if m ≥ 1/κ and k ∈ [−κm, κm/100].

Proof In view of Lemma 8.2, it suffices to show that

2J0‖PkV
wa(t2) − PkV

wa(t1)‖L2 � ε02−δm2−k−(1/2+κ)2−(N0−d′)k+
.

Recall that ∂tV
wa = eitΛwaNwa and k ∈ [−κm, κm/100]. It remains to show that

∑

(k1,k2)∈Xk

∥∥
∥
∥ϕk(ξ)

∫ t2

t1

eisΛwa(ξ)F{I[Pk1U
kg,ι1 , Pk2U

kg,ι2 ]}(ξ, s) ds
∥∥
∥
∥

L2
ξ

� ε212
−m−3κm (8.6)

for any t1, t2 ∈ [2m−1, 2m+1] ∩ [0, T ] and ι1, ι2 ∈ {+,−}, where I is as in (4.19).
It is easy to bound the contribution of the pairs (k1, k2) in (8.6) for which either min(k1, k2) ≤

−0.9m or max(k1, k2) ≥ m/10, using just the L2 estimates in (4.10). For the remaining pairs
we would like to integrate by parts in time. We define the bilinear operators Twa

μν by

Twa
μν [f, g](ξ, s) :=

∫

R3

eisΦ(wa,+)μν(ξ,η)

Φ(wa,+)μν(ξ, η)
m1(ξ − η)f̂(ξ − η, s) ·m2(η)ĝ(η, s) dη, (8.7)

where s ∈ [0, T ], μ, ν ∈ {(kg,+), (kg,−)}, Φ(wa,+)μν(ξ, η) = Λwa(ξ) − Λμ(ξ − η) − Λν(η)
(see (2.9)), and m1,m2 are as in (4.18). Compare with the definition (7.21). We integrate by
parts in time to estimate

∣
∣∣
∣

∫ t2

t1

eisΛwa(ξ)F{I[Pk1U
μ, Pk2U

ν ]}(ξ, s) ds
∣
∣∣
∣ � J ′′

1 (ξ) + J ′′
2 (ξ)
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where, with μ = (kg, ι1), ν = (nu, ι2), and T kg
μν defined as in (8.7),

J ′′
1 (ξ) :=

∑

s∈{t1,t2}
|Twa

μν [Pk1V
μ, Pk2V

ν ](ξ, s)|,

J ′′
2 (ξ) :=

∫ t2

t1

|Twa
μν [∂s(Pk1V

μ), Pk2V
ν ](ξ, s)| ds+

∫ t2

t1

|Twa
μν [Pk1V

μ, ∂s(Pk2V
ν)](ξ, s)| ds.

Using also the symmetry in k1, k2, for (8.6) it suffices to prove that for

‖ϕk(ξ)Twa
μν [Pk1V

μ, Pk2V
ν ](ξ, s)‖L2

ξ
� ε212

−m−4κm, (8.8)

2m‖ϕk(ξ)Twa
μν [Pk1V

μ, (∂sPk2V
ν)](ξ, s)‖L2

ξ
� ε212

−m−4κm, (8.9)

provided that s ∈ [2m−1, 2m+1], k ∈ [−κm, κm/100], k1, k2 ∈ [−0.9m,m/10], μ = (kg, ι1),
ν = (kg, ι2), and ι1, ι2 ∈ {+,−}.

To prove (8.8)–(8.9) we notice that, as a consequence of (3.6) and Lemma 3.2 (ii),

‖ϕl(ξ)Twa
μν [Pl1f, Pl2g](ξ, s)‖L2

ξ
� 2−l24max(l+1 ,l+2 )‖e−isΛμPl1f‖Lp1 ‖e−isΛνPl2g‖Lp2 (8.10)

for any f(s), g(s) ∈ L2(R3), l, l1, l2 ∈ Z, and (p1, p2) ∈ {(2,∞), (∞, 2)}. Therefore

‖ϕk(ξ)Twa
μν [Pk1V

μ, Pk2V
ν ](ξ, s)‖L2

ξ
+ 2m‖ϕk(ξ)Twa

μν [Pk1V
μ, (∂sPk2V

ν)](ξ, s)‖L2
ξ

� ε212
−k2k−

1 /22−m+κm

using also (4.8), (4.2), and (4.40). This suffices to prove (8.8)–(8.9) if k1 ≤ −0.1m.
On the other hand, if k1 ∈ [−0.1m, 0.1m] then we set 2J = 2k−

1 −302m and decompose
Pk1V

kg,ι1 = V kg,ι1
≤J,k1

+ V kg,ι1
>J,k1

, as in (4.1). We have, see (4.33),

‖e−isΛkg,ι1V kg,ι1
≤J,k1

(s)‖L∞ � ε12−k−
1 /22−3m/22−10k+

1 ,

‖V kg,ι1
>J,k1

(s)‖L2 � ε12−k−
1 2−m+κm2−10k+

1 .
(8.11)

Therefore, using (8.10) with (p1, p2) = (∞, 2), and the bounds (4.2) and (4.40),

‖ϕk(ξ)Twa
μν [V μ

≤J,k1
, Pk2V

ν ](ξ, s)‖L2
ξ
+ 2m‖ϕk(ξ)Twa

μν [V μ
≤J,k1

, (∂sPk2V
ν)](ξ, s)‖L2

ξ

� ε212
−k2−k−

1 /22−3m/2+κm. (8.12)

In addition, using (8.10) with (p1, p2) = (2,∞), and the L∞ bounds (4.8) and (5.47),

‖ϕk(ξ)Twa
μν [V μ

>J,k1
, Pk2V

ν ](ξ, s)‖L2
ξ
+ 2m‖ϕk(ξ)Twa

μν [V μ
>J,k1

, (∂sPk2V
ν)](ξ, s)‖L2

ξ

� ε212
−k2−k−

1 2−2m+3κm. (8.13)

The desired bounds (8.8)–(8.9) follow if |k1| ≤ 0.1m from (8.12)–(8.13). This completes the
proof of the lemma. �
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