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Abstract— The minimum pseudoweight is an important param-
eter related to the decoding performance of LDPC codes with
iterative message-passing decoding. In this paper, we consider
ensembles of periodically time-varying spatially coupled LDPC
(SC-LDPC) codes and the pseudocodewords arising from their
finite graph covers of a fixed degree. We show that for certain
(J,K)-regular SC-LDPC code ensembles and a fixed cover
degree, the typical minimum pseudoweight of the unterminated
(and associated tail-biting/terminated) SC-LDPC code ensembles
grows linearly with the constraint (block) length as the constraint
(block) length tends to infinity. We prove that one can bound the
the free pseudodistance growth rate over a BEC from below
(respectively, above) using the associated tail-biting (terminated)
SC-LDPC code ensemble and show empirically that these bounds
coincide for a sufficiently large period, which gives the exact
free pseudodistance growth rate for the SC-LDPC ensemble
considered.

I. INTRODUCTION

Pseudocodewords have been shown to play a key role in

understanding the decoding performance of low-density parity-

check (LDPC) codes with message-passing iterative decoders

[1], [2], [3]. In [1] and [2], it was shown that an iterative

decoder cannot distinguish between the original Tanner graph

and any of its finite graph covers. As a consequence, the

performance of iterative decoders is characterized by the

pseudocodewords associated with all of the finite covers.

In particular, the minimum pseudoweight (or pseudodistance)

plays, in iterative decoding, the role that the minimum distance

does for maximum likelihood (ML) decoding [4], [2], [5]. For

certain protograph-based LDPC code ensembles, it has been

shown in [6] that the minimum pseudoweight, typical of most

ensemble members, obtained from graph covers for a fixed

degree grows linearly with the block length n as n → ∞. A

large pseudodistance growth rate (or typical relative minimum

pseudoweight) means that, asymptotically, most pseudocode-

words from the ensemble are “good pseudocodewords”.

Spatially coupled LDPC (SC-LDPC), or LDPC convolu-

tional (LDPCC), codes [7] are constructed by coupling to-

gether a sequence of L uncoupled (or disjoint) Tanner graphs

into a single coupled chain, thus introducing memory into

the encoding process. SC-LDPC codes have been shown to

have excellent iterative decoding thresholds [8], [9] and good

asymptotic minimum distance properties [10], [11]. In [11]

and [12], Mitchell et al. showed how to bound the free

distance growth rate of an SC-LDPC code ensemble from

above and below, resulting in an exact free distance growth

rate of the code ensemble. In [13], Smarandache et al. studied

the pseudocodeword problem from the perspective of convo-

lutional codes. They proved that for a class of quasi-cyclic

(QC) based time-invariant LDPCC codes [14], the minimum

pseudoweight of an LDPCC code is lower bounded by the

minimum pseudoweight of its “wrapped” QC code.

In this paper, we consider ensembles of protograph-based

periodically time-varying SC-LDPC codes and their resulting

pseudocodewords obtained as projections of codewords from

their finite-degree graph covers. We show that for certain

(J,K)-regular SC-LDPC code ensembles, the typical mini-

mum pseudoweight obtained from graph covers for a fixed de-

gree of the unterminated (and associated tail-biting/terminated)

SC-LDPC code ensembles grows linearly with the constraint

(block) length as the constraint (respectively, block) length

tends to infinity. We prove that a similar approach to that

from [11] and [12] can be used to obtain the exact free

pseudodistance growth rate of the periodically time-varying

SC-LDPC code ensembles over a binary erasure channel

(BEC). More specifically, we first prove that, on average, the

ensemble free pseudodistance can be bounded below by the

pseudodistance of an associated tail-biting ensemble and above

by the pseudodistance of an associated terminated ensemble,

and we derive the upper and lower bounds for the free

pseudodistance growth rate of the ensemble.

To demonstrate empirically these theoretical analyses, we

perform numerical experiments for degree-2 and degree-3
graph covers.1 Besides obtaining the aforementioned bounds,

we show that these bounds coincide for a sufficiently large

period thus give the exact free pseudodistance growth rate

of the ensemble considered. We observe that the free pseu-

dodistance growth rate of the unterminated (J,K)-regular SC-

LDPC code ensemble is much larger than the underlying

(J,K)-regular LDPC code ensemble. Also, by comparing to

the results in [11], we find that the free pseudodistance growth

rate is smaller than the free distance growth rate, as expected.2

The paper is structured as follows. In Section II, we describe

the necessary background including the protograph construc-

1We limit our consideration in this paper to degree-2 and degree-3 covers
due to the high computational complexity required to evaluate graph covers
of larger degrees.

2Note that this paper analyzes the free pseudodistance growth rate which
is an important indicator of the decoding performance of iterative decoding,
while in [11], the free distance growth rate is derived mainly as a performance
indicator for ML decoding.



tion method, graph-cover pseudocodewords, and convolutional

protographs including a discussion of two different ways of

terminating SC-LDPC codes which will be used to obtain

lower and upper bounds in the following section. In Section

III, we conduct the free pseudodistance analysis of SC-LDPC

code ensembles with finite-degree covers over a BEC. We first

prove bounds for the ensemble average free pseudodistance

in Section III-A and then derive related bounds for the free

pseudodistance growth rates of the code ensembles considered

in Section III-B. Numerical results for the pseudodistance

growth rates of a (3, 6)-regular SC-LDPC code ensemble are

presented in Section III-C. Finally, concluding remarks are

given in Section IV.

II. BACKGROUND

A protograph [15] is a small bipartite graph that is used

to derive a larger graph by “lifting”, i.e., taking an N -fold

graph cover of the protograph. The lifted graph preserves the

graph neigbourhood structure and degree distribution of the

protograph. The protograph can be represented by a base bc×
bv biadjacency matrix B = [bx,y], where bx,y, 1 ≤ x ≤ bc, 1 ≤
y ≤ bv , is the number of edges connecting variable node vy
to check node cx. The parity-check matrix H of a protograph-

based LDPC block code can be constructed by replacing each

non-zero entry in B by a sum of bx,y permutation matrices

of size N × N and each zero entry by the N × N all-zero

matrix. The ensemble of protograph-based LDPC block codes

with block length n = Nnv is defined by the set of matrices

H that can be derived from a given protograph by choosing

all possible combinations of N ×N permutation matrices.

A. Graph-Cover Pseudocodewords

Let m be an integer. Given a Tanner graph G with n variable

nodes, consider an m-fold graph cover of G, denoted as Gm.

Let c = (c1,1, . . . , c1,m, . . . , cn,1, . . . , cn,m) be a codeword

of Gm, then w = [w1, . . . , wn] is a pseudocodeword of G,

where wi =
∑m

k=1 ci,k, i = 1, . . . , n [6]. The pseudoweight

of w over a BEC is | Supp(w)|, the number of nonzeros in

w, denoted as p(w). The pseudodistance, wm
min, for finite

covers of a fixed degree m of G is defined as the minimum

pseudoweight among all non-zero pseudocodewords from the

degree-m covers. Without danger of ambiguity, we will use

wmin instead; however, it should be emphasized that in our

paper wmin is not defined for all possible finite-degree covers

of G. In addition, we will use the term pseudodistance and

minimum pseudoweight interchangeably.

B. Convolutional protographs

An ensemble of unterminated SC-LDPC codes can be

described by a convolutional protograph [10] with base matrix

B[0,∞] =

















B0

B1 B0... B1
. . .

Bms

...
. . .

Bms . . .

















, (1)

where ms denotes the syndrome former memory of the

convolutional codes and the bc × bv component base matrices

Bi, i = 0, . . . ,ms, represent the edge connections from the

bv variable nodes at time t to the bc check nodes at time

t+ i. An ensemble of time-varying SC-LDPC codes can then

be formed from B[0,∞] using the protograph construction

method described above, resulting in the associated parity-

check matrix

H[0,∞] =






















H0(0)
H1(1) H0(1)

.

.

.

.

.

.
. . .

Hms
(ms) Hms−1(ms) · · · H0(ms)

Hms
(ms + 1) Hms−1(ms + 1) · · · H0(ms + 1)

. . .
. . .

. . .























.

A rate R = 1 − Nbc/Nbv = 1 − bc/bv time-varying SC-

LDPC code with parity-check matrix H[0,∞] is periodically

time-varying with period T if Hi(t) is periodic, i.e.,

Hi(t) = Hi(t+ T ), ∀ i, t, and if Hi(t) = Hi, ∀ i, t, the code

is time-invariant. We call νs = N(ms + 1)bv the decoding

constraint length.

Starting from the base matrix B of a block code ensemble,

one can construct SC-LDPC code ensembles with the same

computation trees. This is achieved by an edge spreading

procedure (see [10] for details) that divides the edges from

each variable node in the base matrix B among ms + 1
component base matrices Bi, i = 0, . . . ,ms, such that the

condition B0+B1+ · · ·+Bms
= B is satisfied. For example,

a (3,6)-regular SC-LDPC ensemble with ms = 2 can be

formed from the block base matrix B = [ 3 3 ] by defining

the component base matrices B0 = [ 1 1 ] = B1 = B2 .

From a convolutional protograph with base matrix B[0,∞],

we can form a periodically time-varying N -fold graph cover

with period T by choosing, for the bc × bv submatrices

B0,B1, . . . ,Bms
in the first T columns of B[0,∞], a set of

N ×N permutation matrices randomly and independently to

form Nbc×Nbv submatrices H0(t),H1(t+1), . . . ,Hms
(t+

ms), respectively, for t = 0, 1, . . . , T − 1. These submatrices

are then repeated periodically (indefinitely) to form H[0,∞]

such that Hi(t + T ) = Hi(t), ∀i, t. An ensemble of periodi-

cally time-varying SC-LDPC codes with period T , rate R =
1−Nbc/Nbv = 1−bc/bv, and decoding constraint length νs =
N(ms + 1)bv can then be derived by letting the permutation

matrices used to form H0(t),H1(t+1), . . . ,Hms
(t+ms), for

t = 0, 1, . . . , T − 1, vary over the N ! choices of permutation

matrix.

C. Termination of SC-LDPC codes

Suppose that we start the convolutional code with parity-

check matrix defined in (1) at time t = 0 and terminate it

after L time instants. The resulting finite-length base matrix

is then given by

B[0,L−1] =

















B0

...
. . .

Bms
B0

. . .
...

Bms

















(L+ms)bc×Lbv

. (2)

The matrix B[0,L−1] can be considered as the base matrix

of a terminated protograph-based SC-LDPC code ensemble.



Termination in this fashion results in a rate loss. The design

rate of the terminated code ensemble is given as

RL = 1−

(

L+ms

L

)

bc
bv

= 1−

(

L+ms

L

)

(1−R) , (3)

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of

the unterminated convolutional code ensemble. Note that,

as the termination factor L increases, the rate increases

monotonically and approaches the rate of the unterminated

convolutional code ensemble.

The convolutional base matrix B[0,∞] can also be terminated

using tail-biting [16], [17]. Here, for any λ ≥ ms, the last

bcms rows of the terminated parity-check matrix B[0,λ−1]

are removed and added to the first bcms rows to form the

λbc × λbv tail-biting parity-check matrix B
(λ)
tb with tail-

biting termination factor λ. Terminating B[0,∞] in such a

way preserves the design rate of the ensemble, i.e., Rλ =

1 − λbc/λbv = 1 − bc/bv = R, and we see that B
(λ)
tb has

exactly the same degree distribution as the original block base

matrix B.

III. FREE PSEUDODISTANCE ANALYSIS OF

SC-LDPC CODE ENSEMBLES WITH

FINITE-DEGREE COVERS OVER THE BEC

In this section, we investigate the free pseudodistance of pe-

riodically time-varying SC-LDPC code ensembles with finite-

degree covers over a BEC by deriving bounds for the ensemble

average free pseudodistance using terminated and tail-biting

SC-LDPC code ensembles.

A. Free pseudodistance bounds for SC-LDPC code ensembles

with degree-m covers

Let E(T ) denote the ensemble of unterminated periodically

time-varying SC-LDPC codes as described in Section II-B. Let

Etb(λ) denote the associated ensemble of tail-biting SC-LDPC

codes derived from the base matrix B
(λ)
tb with termination

factor λ = T , referred to simply as the tail-biting ensemble.

Let Et(L) denote the associated ensemble of terminated SC-

LDPC codes derived from the base matrix B[0,L−1] with block

length n = LNbv and termination factor L = T , referred to

as the terminated ensemble. For a fixed integer m, consider

the degree-m graph covers of a code ensemble, i.e., for each

code in the ensemble, consider all of its degree-m covers. We

define the ensemble average minimum pseudoweight over all

of the pseudocodewords from all of the degree-m covers of

all of the codes in the ensemble. Let w̄free(T ), w̄min,tb(λ)
and w̄min,t(L) denote the ensemble average pseudodistance

of E(T ), Etb(λ), and Et(L), respectively.

Lemma 1: Let C be an arbitrary SC-LDPC code drawn

from ensemble E(T ) and consider a degree-m cover Cm of C.

Let Ctb(λ) and Cm
tb (λm) be the associated tail-biting codes of

C and Cm, respectively, with tail-biting termination factor λ,

λ ∈ {T, 2T, 3T, . . .}, T ≥ ms + 1.3 Let w = [w1, w2, . . .] be

an arbitrary pseudocodeword of C obtained from a degree-

m cover, where wi =
∑m

k=1 ci,k, i = 1, 2, . . ., and c =

3Note that we must select a multiple of the period T as the termination
factor so that the wrapped word is a codeword in the tail-biting code. For
more details, see [12].

(c1,1, . . . , c1,m, c2,1, . . . , c2,m, . . .) is a codeword of Cm. Then

the “wrapped” vector ŵ = [ŵ1, ŵ2, . . . , ŵλNbv ], where ŵi =
∑m

k=1(
∑∞

j=0 ci+jλNbv ,k mod 2), i = 1, 2, . . . , λNbv , is a

pseudocodeword of Ctb(λ) obtained from a degree-m cover.

Furthermore, we have pseudoweight p(ŵ) ≤ p(w) over a

BEC.

Sketch of Proof. Following the argument in [12],

given a codeword c in Cm, the wrapped vector

ĉ = (
∑∞

j=0 c1+jλNbv ,1, . . . ,
∑∞

j=0 c1+jλNbv ,m, . . . ,
∑∞

j=0 cλNbv+jλNbv ,1, . . . ,
∑∞

j=0 cλNbv+jλNbv ,m), where

all sums are performed modulo 2, is a codeword in

Cm
tb (λm). By summing every m entries in ĉ, we obtain ŵ,

a pseudocodeword from a degree-m cover of C
(λ)
tb . Clearly,

| Supp(ŵ)| ≤ | Supp(w)|, i.e., over a BEC, the pseudoweight

p(ŵ) ≤ p(w). ✷

Example 1: To illustrate the idea in Lemma 1, consider

an ensemble E of time-invariant SC-LDPC codes constructed

from the block base matrix B = [ 2 2 ] with component base

matrices B0 = B1 = [ 1 1 ].4 Then we have the base matrix

of the convolutional protograph

B[0,∞] =













1 1
1 1 1 1

1 1 1 1

1 1
. . .
. . .













.

For the purpose of illustration, let’s consider the trivial ensem-

ble with 1-fold cover, so B[0,∞] = E. Consider pseudocode-

words from a degree-2 cover P[0,∞] of B[0,∞],

P[0,∞] =













I2 I2

I2 I
′
2 I2 I2

I2 I
′
2 I2 I2

I2 I
′
2

. . .

. . .













,

where I2 = [ 1 0
0 1 ] and I

′
2 = [ 0 1

1 0 ]. When the tail-biting

termination factor λ = 2, we have

B
(λ)
tb = B

(2)
tb =

[

1 1 1 1
1 1 1 1

]

and

P
(λ)
tb = P

(2)
tb =

[

I2 I2 I2 I
′
2

I2 I
′
2 I2 I2

]

.

Here, m = 2 and B[0,∞] defines C, P[0,∞] defines

Cm, B
(λ)
tb defines Ctb(λ), and P

(λ)
tb defines Cm

tb (λm)
in Lemma 1. Consider a 2-cover pseudocodeword

of C which is constructed by summing every two

bits of a codeword (in general not unique) of the

code Cm, e.g., w = [1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 0, . . .] is

constructed from c = (c1,1, c1,2, . . . , c10,1, c10,2, 0, . . .) =
([1, 0], [1, 0], [1, 1], [0, 0], [0, 1], [1, 0], [0, 1], [0, 1], [0, 1], [1, 0],
0, . . .) ∈ C2. Note that we grouped the associated

two bits together for easy interpretation. Since

λNbv = 2 × 1 × 2 = 4, by “wrapping” the

4Note that we drop the notation of period T for time invariant codes.



codeword c, we obtain a vector of length 8 (= 4m)

ĉ = (ĉ1,1, ĉ1,2, . . . , ĉ4,1, ĉ4,2) = ([1, 0], [1, 0], [1, 0], [0, 1]),
where for example, ĉ1,1 = (c1,1 + c5,1 + c9,1) mod 2 = 1
and ĉ1,2 = (c1,2 + c5,2 + c9,2) mod 2 = 0. It is easy to check

that ĉ is a codeword of P
(2)
tb . By summing every two bits of

ĉ, we obtain ŵ = [1, 1, 1, 1], a 2-cover pseudocodeword of

Ctb(2). Lastly, we have 4 = | Supp(ŵ)| ≤ | Supp(w)| = 9,

i.e., over a BEC, the pseudoweight p(ŵ) ≤ p(w). ✷

We now use Lemma 1 to prove our first result, that the

ensemble average free pseudodistance of the unterminated

SC-LDPC code ensemble can be bounded below by the

pseudodistance of an associated tail-biting ensemble.

Theorem 1 (Lower bound): The ensemble average free

pseudodistance w̄free(T ) of E(T ) is bounded below by

w̄min,tb(λ) for tail-biting termination factor λ = T , i.e.,

w̄free(T ) ≥ w̄
(T )
min,tb. (4)

Proof. By Lemma 1, for λ = T , each degree-m pseudocode-

word w for C ∈ E(T ) induces a degree-m pseudocodeword

ŵ for Ctb(λ) ∈ Etb(λ) with pseudoweight p(ŵ) ≤ p(w).

Hence w
(T )
min,tb ≤ w

(T )
free and on average w̄

(T )
min,tb ≤ w̄free(T ).

✷

We now use the terminated ensemble to prove an upper

bound on the ensemble average free pseudodistance of the

unterminated SC-LDPC code ensemble.

Theorem 2 (Upper bound): The ensemble average free

pseudodistance w̄free(T ) of E(T ) is bounded above by

w̄min,t(L) for termination factor L = T , i.e.,

w̄free(T ) ≤ w̄
(T )
min,t. (5)

Proof. For every code C = [c1, c2, . . . , cLNbv , . . .] in E(T ),
there corresponds a terminated code Ct = [c1, c2, . . . , cLNbv ]
in Et(L) with L = T , and every terminated code Ct =
[c1, c2, . . . , cLNbv ] in Et(L) with L = T automatically

induces a code C = [c1, c2, . . . , cLNbv , 0, 0, . . .] in E(T ).
Consequently, for every given pair of C and Ct, each degree-

m pseudocodeword of Ct, wt = [w1, w2, . . . , wLNbv ], au-

tomatically induces a degree-m pseudocodeword w[0,∞] =

[w1, w2, . . . , wLNbv , 0, 0, . . .] of C. Hence w
(T )
free ≤ w

(T )
min,t

and on average w̄free(T ) ≤ w̄
(T )
min,t. ✷

Without loss of clarity, we will drop the overline notation in

the following discussion of ensemble average pseudodistances.

B. Free pseudodistance growth rates of SC-LDPC code en-

sembles

It has been shown in [6] how to calculate the asymptotic en-

semble pseudoweight enumerator for protograph-based LDPC

code ensembles for a finite-degree cover. If the asymptotic

pseudoweight curve has a positive zero crossing r+, then

it indicates that the minimum pseudoweight typical of most

members of the ensemble is close to δminn as n → ∞, where

δmin is the pseudodistance growth rate of the ensemble, which

equals to r+, and n is the code length. A large pseudodistance

growth rate means that, asymptotically, most pseudocodewords

from the ensemble are “good pseudocodewords”.

Similar to the definition of free distance growth rate in

[11], for SC-LDPC code ensembles, we define the free pseu-

dodistance growth rate, δ
(T )
free, to be the ratio of the free

pseudodistance w
(T )
free to the decoding constraint length νs,

i.e.,

δ
(T )
free =

w
(T )
free

νs
.

Then by (4), we obtain lower bound

δ
(T )
free ≥

δ̌
(T )
minT

(ms + 1)
, (6)

where δ̌
(T )
min = w

(T )
min,tb/n = w

(T )
min,tb/(NTbv) is the pseu-

dodistance growth rate of Etb(λ) with λ = T and base matrix

B
(λ)
tb . Finally, by (5), we obtain upper bound

δ
(T )
free ≤

δ̂
(T )
minT

(ms + 1)
, (7)

where δ̂
(T )
min = w

(T )
min,t/n = w

(T )
min,t/(NTbv) is the pseudodis-

tance growth rate of Et(L) with L = T and base matrix

B[0,T−1].

C. Numerical results

Consider, as an example, the (3, 6)-regular SC-LDPC code

ensemble E(T ) with ms = 1 defined by (1) with base matrices

B0 = [ 1 2 ] and B1 = [ 2 1 ]. Further, consider E2(T )
and E3(T ), the degree-2 covers and degree-3 covers of the

ensemble. Since our terminated protographs are finite, we can

use the same approach from [6] to calculate δ̌
(λ)
min and δ̂

(L)
min.5

Then, by (6) and (7), we calculate the lower bound δ
(T )
free ≥

δ̌
(T )
min/2 for λ = T and the upper bound δ

(T )
free ≤ δ̂

(T )
minT/2 for

L = T . Figure 1 shows the pseudodistance growth rate δ̌
(λ)
min

(respectively, δ̂
(L)
min) of the tail-biting (terminated) ensembles

defined by base matrix B
(λ)
tb for λ = 2, 3, 4, . . . , 20 (B[0,L−1]

for L = 2, 3, 4, . . . , 20) and the associated lower (upper)

bound on the free pseudodistance growth rate δ
(T )
free.

In Figure 1, we observe that for degree-2 covers (solid

lines) the tail-biting and terminated ensembles have mini-

mum pseudoweights that grow linearly with block length,

i.e., asymptotically most pseudocodewords are good. We find

that the calculated tail-biting pseudodistance growth rate δ̌
(λ)
min

stays constant until the termination factor λ = 7 and then de-

creases to zero as λ → ∞. Whereas the calculated terminated

pseudodistance growth rate δ̂
(L)
min decreases monotonically to

zero as L tends to infinity (and coincides with δ̌
(λ)
min as L ≥ 7).

More importantly, we observe that the lower and upper bounds

on the free pseudodistance growth rate δ
(T )
free, derived by (6)

and (7), coincide for T ≥ 8, and hence gives the exact

free pseudodistance growth rate, δ
(T )
free = 0.074. A similar

observation can be made for the degree-3 covers (dashed

lines) in Figure 1 with exact free pseudodistance growth rate,

δ
(T )
free = 0.056. This implies that for degree-2 and degree-3

covers, most pseudocodewords in the unterminated SC-LDPC

code ensemble are asymptotically good, and the two growth

5Note that with our optimization framework, it was not necessary to
employ the conjecture used in [6] to simplify the numerical calculations.
We used MOSEK [18] as the inner optimization solver to solve the entropy
maximization problems, the most time-consuming subroutines. For the outer
optimization, we used the conjugate gradient method as the subproblem
algorithm in MATLAB.
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Fig. 1. Minimum pseudodistance growth rates of degree-2 covers (solid
lines) and degree-3 covers (dashed lines) of terminated and tail-biting SC-
LDPC code ensembles with calculated upper and lower bounds on the free
pseudodistance growth rate of the associated periodically time-varying SC-
LDPC code ensembles over a BEC.

rates are significantly larger than the pseudodistance growth

rates, δmin = 0.023 and 0.018, of the (3, 6)-regular LDPC

block code ensemble with degree-2 and degree-3 covers,

respectively.

By comparing to [11], we see that the exact free pseu-

dodistance growth rate is smaller than the exact free distance

growth rate, δ
(T )
free = 0.086. This makes sense, as explained in

[6], since the asymptotic ensemble pseudoweight enumerator

is bounded below by the asymptotic ensemble weight enu-

merator, the positive zero crossing of the former is then no

larger than the latter, i.e., the ensemble free pseudodistance

growth rate is bounded above by the ensemble free distance

growth rate. Although here the free pseudodistance growth rate

is only calculated for the degree-2 and degree-3 covers of the

ensemble, it is already a better indicator of the iterative decod-

ing performance than the classical free distance growth rate.

Lastly, it was observed in [6] that the ensemble pseudodistance

growth rate decreases as the pseudocodeword cover degree

m increases. We see that the ensemble free pseudodistance

growth rate also decreases as the pseudocodeword cover

degree increases.

IV. CONCLUSIONS

In this paper we considered pseudocodewords of period-

ically time-varying SC-LDPC code ensembles with finite-

degree covers over a BEC. We proved that if the typical

pseudodistance of the tail-biting/terminated SC-LDPC code

ensemble grows linearly with the block length as the block

length tends to infinity, then the typical free pseudodistance of

the unterminated SC-LDPC code ensemble grows linearly as

the constraint length tends to infinity. This result follows from

the fact that the ensemble average minimum pseudoweight can

be bounded from below (above) by the associated tail-biting

(terminated) ensemble average minimum pseudoweight. We

numerically evaluated the upper and lower bounds of the free

pseudodistance growth rate for a (3, 6)-regular ensemble of

periodically time-varying SC-LDPC codes and found that the

two bounds coincide as the period becomes sufficiently large

and gives the exact free pseudodistance growth rate for the

code ensemble considered. Moreover, the free pseudodistance

growth rate is significantly larger than the underlying LDPC

block code pseudodistance growth rate for the degree-2 and

degree-3 covers considered.
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