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Abstract— The minimum pseudoweight is an important param-
eter related to the decoding performance of LDPC codes with
iterative message-passing decoding. In this paper, we consider
ensembles of periodically time-varying spatially coupled LDPC
(SC-LDPC) codes and the pseudocodewords arising from their
finite graph covers of a fixed degree. We show that for certain
(J, K)-regular SC-LDPC code ensembles and a fixed cover
degree, the typical minimum pseudoweight of the unterminated
(and associated tail-biting/terminated) SC-LDPC code ensembles
grows linearly with the constraint (block) length as the constraint
(block) length tends to infinity. We prove that one can bound the
the free pseudodistance growth rate over a BEC from below
(respectively, above) using the associated tail-biting (terminated)
SC-LDPC code ensemble and show empirically that these bounds
coincide for a sufficiently large period, which gives the exact
free pseudodistance growth rate for the SC-LDPC ensemble
considered.

I. INTRODUCTION

Pseudocodewords have been shown to play a key role in
understanding the decoding performance of low-density parity-
check (LDPC) codes with message-passing iterative decoders
[11, [2], [3]. In [1] and [2], it was shown that an iterative
decoder cannot distinguish between the original Tanner graph
and any of its finite graph covers. As a consequence, the
performance of iterative decoders is characterized by the
pseudocodewords associated with all of the finite covers.
In particular, the minimum pseudoweight (or pseudodistance)
plays, in iterative decoding, the role that the minimum distance
does for maximum likelihood (ML) decoding [4], [2], [5]. For
certain protograph-based LDPC code ensembles, it has been
shown in [6] that the minimum pseudoweight, typical of most
ensemble members, obtained from graph covers for a fixed
degree grows linearly with the block length n as n — co. A
large pseudodistance growth rate (or typical relative minimum
pseudoweight) means that, asymptotically, most pseudocode-
words from the ensemble are “good pseudocodewords”.

Spatially coupled LDPC (SC-LDPC), or LDPC convolu-
tional (LDPCC), codes [7] are constructed by coupling to-
gether a sequence of L uncoupled (or disjoint) Tanner graphs
into a single coupled chain, thus introducing memory into
the encoding process. SC-LDPC codes have been shown to
have excellent iterative decoding thresholds [8], [9] and good
asymptotic minimum distance properties [10], [11]. In [11]
and [12], Mitchell et al. showed how to bound the free
distance growth rate of an SC-LDPC code ensemble from
above and below, resulting in an exact free distance growth

rate of the code ensemble. In [13], Smarandache et al. studied
the pseudocodeword problem from the perspective of convo-
Iutional codes. They proved that for a class of quasi-cyclic
(QC) based time-invariant LDPCC codes [14], the minimum
pseudoweight of an LDPCC code is lower bounded by the
minimum pseudoweight of its “wrapped” QC code.

In this paper, we consider ensembles of protograph-based
periodically time-varying SC-LDPC codes and their resulting
pseudocodewords obtained as projections of codewords from
their finite-degree graph covers. We show that for certain
(J, K)-regular SC-LDPC code ensembles, the typical mini-
mum pseudoweight obtained from graph covers for a fixed de-
gree of the unterminated (and associated tail-biting/terminated)
SC-LDPC code ensembles grows linearly with the constraint
(block) length as the constraint (respectively, block) length
tends to infinity. We prove that a similar approach to that
from [11] and [12] can be used to obtain the exact free
pseudodistance growth rate of the periodically time-varying
SC-LDPC code ensembles over a binary erasure channel
(BEC). More specifically, we first prove that, on average, the
ensemble free pseudodistance can be bounded below by the
pseudodistance of an associated tail-biting ensemble and above
by the pseudodistance of an associated terminated ensemble,
and we derive the upper and lower bounds for the free
pseudodistance growth rate of the ensemble.

To demonstrate empirically these theoretical analyses, we
perform numerical experiments for degree-2 and degree-3
graph covers.! Besides obtaining the aforementioned bounds,
we show that these bounds coincide for a sufficiently large
period thus give the exact free pseudodistance growth rate
of the ensemble considered. We observe that the free pseu-
dodistance growth rate of the unterminated (J, K')-regular SC-
LDPC code ensemble is much larger than the underlying
(J, K)-regular LDPC code ensemble. Also, by comparing to
the results in [11], we find that the free pseudodistance growth
rate is smaller than the free distance growth rate, as expected.2

The paper is structured as follows. In Section II, we describe
the necessary background including the protograph construc-

'We limit our consideration in this paper to degree-2 and degree-3 covers
due to the high computational complexity required to evaluate graph covers
of larger degrees.

2Note that this paper analyzes the free pseudodistance growth rate which
is an important indicator of the decoding performance of iterative decoding,
while in [11], the free distance growth rate is derived mainly as a performance
indicator for ML decoding.



tion method, graph-cover pseudocodewords, and convolutional
protographs including a discussion of two different ways of
terminating SC-LDPC codes which will be used to obtain
lower and upper bounds in the following section. In Section
III, we conduct the free pseudodistance analysis of SC-LDPC
code ensembles with finite-degree covers over a BEC. We first
prove bounds for the ensemble average free pseudodistance
in Section III-A and then derive related bounds for the free
pseudodistance growth rates of the code ensembles considered
in Section III-B. Numerical results for the pseudodistance
growth rates of a (3, 6)-regular SC-LDPC code ensemble are
presented in Section III-C. Finally, concluding remarks are
given in Section IV.

II. BACKGROUND

A protograph [15] is a small bipartite graph that is used
to derive a larger graph by “lifting”, i.e., taking an NN-fold
graph cover of the protograph. The lifted graph preserves the
graph neigbourhood structure and degree distribution of the
protograph. The protograph can be represented by a base b, x
b, biadjacency matrix B = [b, , ], where b, ,,, 1 < x < b., 1 <
y < by, is the number of edges connecting variable node v,
to check node c¢,.. The parity-check matrix H of a protograph-
based LDPC block code can be constructed by replacing each
non-zero entry in B by a sum of b, , permutation matrices
of size N x N and each zero entry by the N x N all-zero
matrix. The ensemble of protograph-based LDPC block codes
with block length n = Nn, is defined by the set of matrices
H that can be derived from a given protograph by choosing
all possible combinations of N x N permutation matrices.

A. Graph-Cover Pseudocodewords

Let m be an integer. Given a Tanner graph G with n variable
nodes, consider an m-fold graph cover of GG, denoted as G™.
Let ¢ = (¢1,1,-++,Clims-+sCn1s---5Cnm) be a codeword
of G™, then w = [wy,...,w,] is a pseudocodeword of G,
where w; = >7" ¢k @ = 1,...,n [6]. The pseudoweight
of w over a BEC is | Supp(w)|, the number of nonzeros in
w, denoted as p(w). The pseudodistance, w, . for finite
covers of a fixed degree m of GG is defined as the minimum
pseudoweight among all non-zero pseudocodewords from the
degree-m covers. Without danger of ambiguity, we will use
Wpmin instead; however, it should be emphasized that in our
paper Wy, is not defined for all possible finite-degree covers
of (. In addition, we will use the term pseudodistance and
minimum pseudoweight interchangeably.

B. Convolutional protographs

An ensemble of unterminated SC-LDPC codes can be
described by a convolutional protograph [10] with base matrix

By
B, Bo
: B
Boo)=| g & : (1)
B

s

where ms denotes the syndrome former memory of the
convolutional codes and the b. X b, component base matrices

B;, i = 0,...,ms, represent the edge connections from the
b, variable nodes at time ¢ to the b. check nodes at time
t 4+ 4. An ensemble of time-varying SC-LDPC codes can then
be formed from By using the protograph construction
method described above, resulting in the associated parity-
check matrix

Hpp.oc) =
H(0)
Hl(l) Ho(l)
Ho.(m.) Ho, 1(m.) Ho (m.)

ms
H,,,(ms+1) Hp,_1(ms+1) Ho(ms + 1)

A rate R = 1 — Nb./Nb, = 1 — b./b, time-varying SC-
LDPC code with parity-check matrix Hjy o is periodically
time-varying with period 7 if H;(¢) is periodic, i.e.,
H,(t) =H;(t+7T),Y i,t, and if H;(t) = H;,V i, t, the code
is time-invariant. We call vy = N(ms + 1)b, the decoding
constraint length.

Starting from the base matrix B of a block code ensemble,
one can construct SC-LDPC code ensembles with the same
computation trees. This is achieved by an edge spreading
procedure (see [10] for details) that divides the edges from
each variable node in the base matrix B among m, + 1
component base matrices B;, ¢ = 0,...,mg, such that the
condition Bo+B1+---+B,,, = B is satisfied. For example,
a (3,6)-regular SC-LDPC ensemble with ms; = 2 can be
formed from the block base matrix B = [3 3] by defining
the component base matrices Bo=[1 1] =B; = Bs.

From a convolutional protograph with base matrix Big o],
we can form a periodically time-varying N-fold graph cover
with period 7' by choosing, for the b. x b, submatrices
Bo,By1,..., By, in the first 7' columns of By ), a set of
N x N permutation matrices randomly and independently to
form Nb. x Nb, submatrices Ho(¢), Hy(t+1),...,H,, (t+
ms), respectively, for t = 0,1,...,T — 1. These submatrices
are then repeated periodically (indefinitely) to form Hp
such that H;(t + T') = H;(t), Vi, t. An ensemble of periodi-
cally time-varying SC-LDPC codes with period T, rate R =
1-Nb./Nb, = 1—b./b,, and decoding constraint length v; =
N(ms + 1)b, can then be derived by letting the permutation
matrices used to form Ho(¢), Hq (¢+1), ..., H,,, (t+ms), for
t=0,1,...,7 — 1, vary over the N! choices of permutation
matrix.

C. Termination of SC-LDPC codes

Suppose that we start the convolutional code with parity-
check matrix defined in (1) at time ¢ = 0 and terminate it
after L time instants. The resulting finite-length base matrix
is then given by

By

Bio,r-11= | Bm, By )

B, (L+ma)bex Lb,

The matrix B[O, r—1) can be considered as the base matrix
of a terminated protograph-based SC-LDPC code ensemble.



Termination in this fashion results in a rate loss. The design
rate of the terminated code ensemble is given as

L+ mg\ b L+ mg

R =1 ( i3 >bu1 < )(1 R), (3)
where R = 1 — Nb./Nb, = 1 — b./b, is the rate of
the unterminated convolutional code ensemble. Note that,
as the rermination factor L increases, the rate increases
monotonically and approaches the rate of the unterminated
convolutional code ensemble.

The convolutional base matrix By ] can also be terminated
using tail-biting [16], [17]. Here, for any A > my, the last
bems rows of the terminated parity-check matrix B x_1
are removed and added to the first b.ms rows to form the
Abe X Ab, tail-biting parity-check matrix B with tail-
biting termination factor A. Terminating By o) in such a
way preserves the design rate of the ensemble, ie., Ry =
1 — Abe/Ab, = 1 — b./b, = R, and we see that B!, has
exactly the same degree distribution as the original block base
matrix B.

III. FREE PSEUDODISTANCE ANALYSIS OF
SC-LDPC CODE ENSEMBLES WITH
FINITE-DEGREE COVERS OVER THE BEC

In this section, we investigate the free pseudodistance of pe-
riodically time-varying SC-LDPC code ensembles with finite-
degree covers over a BEC by deriving bounds for the ensemble
average free pseudodistance using terminated and tail-biting
SC-LDPC code ensembles.

A. Free pseudodistance bounds for SC-LDPC code ensembles
with degree-m covers

Let F(T') denote the ensemble of unterminated periodically
time-varying SC-LDPC codes as described in Section II-B. Let
E () denote the associated ensemble of tail-biting SC-LDPC
codes derived from the base matrix BE{)\) with termination
factor A = T, referred to simply as the tail-biting ensemble.
Let E¢(L) denote the associated ensemble of terminated SC-
LDPC codes derived from the base matrix Bg 7,1} with block
length n = LND, and termination factor L = T, referred to
as the terminated ensemble. For a fixed integer m, consider
the degree-m graph covers of a code ensemble, i.e., for each
code in the ensemble, consider all of its degree-m covers. We
define the ensemble average minimum pseudoweight over all
of the pseudocodewords from all of the degree-m covers of
all of the codes in the ensemble. Let Wyee(T'), Winin,tb(N)
and Wyin,¢(L) denote the ensemble average pseudodistance
of E(T), Ey()), and Ey(L), respectively.

Lemma 1: Let C' be an arbitrary SC-LDPC code drawn
from ensemble E(T') and consider a degree-m cover C" of C.
Let Cy,(A\) and Cjj'(Am) be the associated tail-biting codes of
C and C™, respectively, with tail-biting termination factor A,
A€ {T,2T,3T,..}, T >ms+ 13 Let w = [wy,ws,...] be
an arbitrary pseudocodeword of C obtained from a degree-
m cover, where w; = Y, Cig @ = 1,2,..., and ¢ =

3Note that we must select a multiple of the period 7" as the termination
factor so that the wrapped word is a codeword in the tail-biting code. For
more details, see [12].

(C1,15-+-5Clm, €215+, C2m,-..)is acodeword of C"™. Then
the “wrapped” vector w = [wW1, W2, . .., WrNp, |, Where w; =
Z;Cn:l(z;io Ci+jANb, .k mod 2), T = 1, 2, ceey )\Nbv, is a
pseudocodeword of Cly,(A) obtained from a degree-m cover.
Furthermore, we have pseudoweight p(w) < p(w) over a
BEC.

Sketch of Proof. Following the argument in [12],
given a codeword c¢ in C™, the wrapped vector
¢ = (Z;io Cl+j/\Nbv,1a-'-aZ;io C14+jANb,,ms - - 5

D 70 CANby+jAND, s+ + - D20 CANby +ANby m ) where
all sums are performed modulo 2, is a codeword in
Cip(Am). By summing every m entries in ¢, we obtain w,
a pseudocodeword from a degree-m cover of Ct(;‘ ), Clearly,
| Supp(w)| < | Supp(w)|, i.e., over a BEC, the pseudoweight
p(W) < p(w). |
Example 1: To illustrate the idea in Lemma 1, consider
an ensemble £ of time-invariant SC-LDPC codes constructed
from the block base matrix B = [2 2] with component base
matrices Bo = B; = [1 1].* Then we have the base matrix
of the convolutional protograph
11
11 11
Bio,o] = 11
For the purpose of illustration, let’s consider the trivial ensem-

ble with 1-fold cover, so By o) = E. Consider pseudocode-
words from a degree-2 cover Pjg oo} of Bjg o],

L I
LT, L L
P[O,oo] = I 1/2 I, I, ,
L I,
where I, = [} 9] and I}, = [{}]. When the tail-biting

termination factor A = 2, we have

N _ne |11 11
Btb _Btb - |: 1 1 1 1
and I I, I, I
N _ p@2) _ 2 12 2 1o
Pi Ptb|:12 I, I, IQ:|.
Here, m = 2 and By defines C, P defines

cm, BE{)\) defines Cy()A), and PEI/)\) defines CJp(Am)
in Lemma 1. Consider a 2-cover pseudocodeword
of C which is constructed by summing every two

bits of a codeword (in general not unique) of the
code C™, eg., w = [1,1,2,0,1,1,1,1,1,1,0,..] is
constructed from ¢ = (c¢11,¢1,2,.-.,¢10,1,¢10,2,0,...) =
(1,0}, [1,0], (1, 1],10,0], [0,1], [1, 0], [0, 1], [0, 1], [0, 1], [1, O],
0,...) € C? Note that we grouped the associated
two bits together for easy interpretation. Since
AND, = 2 x 1 x 2 = 4, by “wrapping” the

“Note that we drop the notation of period 7" for time invariant codes.



codeword c, we obtain a vector of length 8 (= 4m)
¢ = (G1,1,61,2,---,Ca1,¢42) = ([1,0],[L,0],[1,0],[0,1]),
where for example, ¢1; = (¢1,1 + ¢5.1 + ¢9,1) mod 2 = 1
and ¢ 2 = (c12 + 52+ c92) mod 2 = 0. It is easy to check
that ¢ is a codeword of Pg By summing every two bits of

¢, we obtain w = [1,1,1, 1] a 2-cover pseudocodeword of
Ci(2). Lastly, (W) < |Supp(w)| =9,
i.e., over a BEC, the pseudoweight p(w) < p(w). O

We now use Lemma 1 to prove our first result, that the
ensemble average free pseudodistance of the unterminated
SC-LDPC code ensemble can be bounded below by the
pseudodistance of an associated tail-biting ensemble.

Theorem 1 (Lower bound): The ensemble average free
pseudodistance Wyee(T) of E(T) is bounded below by
Wnin,tb(A) for tail-biting termination factor A = T, i.e.,

Bpree(T) = @) . @)

Proof. By Lemma 1, for A = T, each degree-m pseudocode-
word w for C' € E(T) induces a degree-m pseudocodeword
w for Cip(\) € Ew(\) with pseudoweight p(w) < p(w).
Hence w'”) w and on avera < T
min,tb — % free ge wmzn th — wfree( )

O

We now use the terminated ensemble to prove an upper
bound on the ensemble average free pseudodistance of the
unterminated SC-LDPC code ensemble.

Theorem 2 (Upper bound): The ensemble average free
pseudodistance Wye.(T) of E(T) is bounded above by
Win,t(L) for termination factor L =T, i.e.,

Wiree(T) < w;nl)n ¢ (5)
Proof. For every code C' = [¢1,¢a,...,¢LNb,,--.| in E(T),
there corresponds a terminated code Ct = [c1,¢2,...,cLND,]

in Fy(L) with L = T, and every terminated code C; =

[c1,¢2,...,conp,] In Ey(L) with L = T automatically
induces a code C' = [c1,¢o,...,¢LNb,,0,0,...] in E(T).
Consequently, for every given pair of C' and CY, each degree-
m pseudocodeword of Cy, wy = [wy,wa,...,wLNp,]|, au-

tomatically induces a degree-m pseudocodeword wig o] =

[wy,wa,...,wLN,,0,0,...] of C. Hence wgie < wf,fgm
and on average Wyree(T') < wﬁm)n 4 O

Without loss of clarity, we will drop the overline notation in
the following discussion of ensemble average pseudodistances.

B. Free pseudodistance growth rates of SC-LDPC code en-
sembles

It has been shown in [6] how to calculate the asymptotic en-
semble pseudoweight enumerator for protograph-based LDPC
code ensembles for a finite-degree cover. If the asymptotic
pseudoweight curve has a positive zero crossing ™, then
it indicates that the minimum pseudoweight typical of most
members of the ensemble is close to d,,;,n as n — oo, where
Omin 18 the pseudodistance growth rate of the ensemble, which
equals to 7", and n is the code length. A large pseudodistance
growth rate means that, asymptotically, most pseudocodewords
from the ensemble are “good pseudocodewords”.

Similar to the definition of free distance growth rate in
[11], for SC-LDPC code ensembles, we define the free pseu-

dodistance growth rate, (51%6, to be the ratio of the free

(T)

pseudodistance wy,.c.

i.e.,

to the decoding constraint length v,

(1)

wf'r‘ee
Vs

5(T) _

free =
Then by (4), we obtain lower bound

free = (ms + 1)’

where anTz)n = w7’ w/m = wT(nTl)n w/(NTb,) is the pseu-
dodistance growth rate of Ey,(A) with A = T and base matrix
Bg;‘). Finally, by (5), we obtain upper bound

3 T

free—(ms+1>’ ()

where 5(T) = gl)n J/n = wgi)n,t (NTb,) is the pseudodis-

tance growth rate of E, (L) with L = T and base matrix
B, -1

C. Numerical results

Consider, as an example, the (3, 6)-regular SC-LDPC code
ensemble E(T) with ms = 1 defined by (1) with base matrices
By = [1 2] and B; = [2 1]. Further, consider E?(T")
and E3(T), the degree-2 covers and degree-3 covers of the
ensemble. Since our terminated protographs are finite, we can
use the same approach from [6] to calculate 5,(2‘2,1 and 6(Ll)n 3
Then, by (6) and (7), we calculate the lower bound 5( 751
5(T)n/2 for A = T and the upper bound 5(T)e < S(T) T/2 for

L=T. F1gure 1 shows the pseudodistance growth rate 6mm
(respectively, mm) of the tail-biting (terminated) ensembles
defined by base matrix ng) for A=2,3,4,...,20 (Bjg,L_q
for L = 2,3,4,...,20) and the associated lower (upper)
bound on the free pseudodistance growth rate 6;{26.
In Figure 1, we observe that for degree-2 covers (solid
lines) the tail-biting and terminated ensembles have mini-
mum pseudoweights that grow linearly with block length,
i.e., asymptotically most pseudocodewords are good. We find
that the calculated tail-biting pseudodistance growth rate ¢ 5N
stays constant until the termination factor A = 7 and then de-
creases to zero as A — oo. Whereas the calculated terminated
pseudodistance growth rate 6mz)n decreases monotonically to
zero as L tends to infinity (and coincides with 6 L, as L >T).
More importantly, we observe that the lower and upper bounds
on the free pseudodistance growth rate s free, derived by (6)
and (7), coincide for T" > 8, and hence gives the exact
free pseudodistance growth rate, 61%6 = 0.074. A similar
observation can be made for the degree-3 covers (dashed
lines) in Figure 1 with exact free pseudodistance growth rate,
5;26 = 0.056. This implies that for degree-2 and degree-3

covers, most pseudocodewords in the unterminated SC-LDPC
code ensemble are asymptotically good, and the two growth

SNote that with our optimization framework, it was not necessary to
employ the conjecture used in [6] to simplify the numerical calculations.
We used MOSEK [18] as the inner optimization solver to solve the entropy
maximization problems, the most time-consuming subroutines. For the outer
optimization, we used the conjugate gradient method as the subproblem
algorithm in MATLAB.
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Fig. 1. Minimum pseudodistance growth rates of degree-2 covers (solid
lines) and degree-3 covers (dashed lines) of terminated and tail-biting SC-
LDPC code ensembles with calculated upper and lower bounds on the free
pseudodistance growth rate of the associated periodically time-varying SC-
LDPC code ensembles over a BEC.

rates are significantly larger than the pseudodistance growth
rates, 0min = 0.023 and 0.018, of the (3,6)-regular LDPC
block code ensemble with degree-2 and degree-3 covers,
respectively.

By comparing to [11], we see that the exact free pseu-
dodistance growth rate is smaller than the exact free distance
growth rate, 5;28 = 0.086. This makes sense, as explained in
[6], since the asymptotic ensemble pseudoweight enumerator
is bounded below by the asymptotic ensemble weight enu-
merator, the positive zero crossing of the former is then no
larger than the latter, i.e., the ensemble free pseudodistance
growth rate is bounded above by the ensemble free distance
growth rate. Although here the free pseudodistance growth rate
is only calculated for the degree-2 and degree-3 covers of the
ensemble, it is already a better indicator of the iterative decod-
ing performance than the classical free distance growth rate.
Lastly, it was observed in [6] that the ensemble pseudodistance
growth rate decreases as the pseudocodeword cover degree
m increases. We see that the ensemble free pseudodistance
growth rate also decreases as the pseudocodeword cover
degree increases.

IV. CONCLUSIONS

In this paper we considered pseudocodewords of period-
ically time-varying SC-LDPC code ensembles with finite-
degree covers over a BEC. We proved that if the typical
pseudodistance of the tail-biting/terminated SC-LDPC code
ensemble grows linearly with the block length as the block
length tends to infinity, then the typical free pseudodistance of
the unterminated SC-LDPC code ensemble grows linearly as
the constraint length tends to infinity. This result follows from
the fact that the ensemble average minimum pseudoweight can
be bounded from below (above) by the associated tail-biting
(terminated) ensemble average minimum pseudoweight. We
numerically evaluated the upper and lower bounds of the free
pseudodistance growth rate for a (3, 6)-regular ensemble of

periodically time-varying SC-LDPC codes and found that the
two bounds coincide as the period becomes sufficiently large
and gives the exact free pseudodistance growth rate for the
code ensemble considered. Moreover, the free pseudodistance
growth rate is significantly larger than the underlying LDPC
block code pseudodistance growth rate for the degree-2 and
degree-3 covers considered.
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