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Abstract—It has been shown that a class of spatially coupled
low-density generator-matrix (SC-LDGM) code ensembles dis-
plays distortion saturation for the lossy binary symmetric source
coding problem with the belief propagation guided decimation
(BPGD) algorithm, i.e., the BPGD distortion approaches the
optimal expected distortion of the underlying ensemble asymp-
totically in code length. Here, we investigate the distortion perfor-
mance of a practical class of protograph-based SC-LDGM code
ensembles and demonstrate distortion saturation numerically.
Moreover, taking advantage of the convolutional structure of the
SC-LDGM codes, we propose an efficient windowed encoding
(WE) algorithm with two decimation techniques for lowering the
WE complexity that maintain distortion performance close to the
rate-distortion bound.

Index Terms—Lossy source coding, spatial coupling, LDGM
codes, belief propagation guided decimation, rate distortion
bound.

I. INTRODUCTION

Compared to lossless compression, where the source must
be reconstructed identically from its compressed version, the
lossy source compression problem requires the reconstructed
data to be correct only up to some specified distortion measure.
Applying linear codes for lossy source compression of discrete
sources is a classical idea [1], and various bounds on distortion
performance have been proposed for different types of linear
codes, e.g., trellis codes [2], [3], turbo-codes [4], LDPC codes
[5], and polar codes [6], [7], [8]. Excellent reconstruction
performance can be obtained with such approaches. For ex-
ample, polar codes were shown to have optimal lossy source
coding performance for the binary symmetric source [8], and
it was shown that it is possible to approach the binary rate-
distortion (RD) limit using LDPC codes if the node degrees of
the ensemble grow logarithmically with the block length [5].
Moreover, compound LDPC and low-density generator matrix
(LDGM) codes have been shown to achieve the RD limit with
bounded node degrees [9].

Low-density generator matrix block codes (LDGM-BCs),
the duals of LDPC block codes (LDPC-BCs), were shown to
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achieve the RD limit under optimal encoding as the average
node degrees increase [10], and lower bounds on the distortion
have been derived both for random ensembles [11] and for
specific code constructions [12]. Like LDPC-BCs, LDGM-
BCs can be defined on a sparse graph and are amenable to
low complexity message passing algorithms. Unfortunately,
this approach typically fails because the lossy source coding
problem has multiple optimal (or near-optimal) solutions and
one cannot find the relevant fixed point without reducing
the solution space. Heuristic decimation algorithms based on
belief propagation (BP) [10], [13], [14], [15] and survey
propagation [10], [16], [17], [18] have been proposed for
lossy data compression for both linear and non-linear codes
and have been successfully applied to k-satisfiability (k-SAT)
constraint problems [13], [19], [20]. Also, good LDGM-BCs
have been designed for the binary erasure source [21], [22],
[23]; however, to the best of our knowledge, there have been no
constructive LDGM-BC designs proposed with performance
guarantees for general binary discrete sources. Indeed, the best
known code designs are heuristic in nature and typically use
dual codes to LDPC-BCs that were optimized for the binary
symmetric channel (see, e.g., [10], [24], [25]).

Spatially coupled LDGM (SC-LDGM) codes can be ob-
tained by coupling together (connecting) a series of L
LDGM-BC graphs to make a larger connected graph with a
convolutional-like structure. In [26], [27], a belief propagation
guided decimation (BPGD) algorithm was applied for lossy
source compression of the binary symmetric source to a class
of SC-LDGM codes with regular check node degrees and
both Poisson distributed [26] and regular [27] variable node
degrees. It was demonstrated there that the SC-LDGM code
ensembles achieve distortion saturation, in the sense that the
distortion of the SC-LDGM code ensemble approaches the
optimal distortion for the underlying LDGM-BC ensemble as
the coupling length and code length tend to infinity, which, in
turn, approaches the RD limit as the node degrees increase.
As a result, SC-LDGM codes have great promise for the lossy
source coding problem, but the large code lengths required for
distortion saturation with the standard BPGD algorithm make
them unattractive in practice.

Motivated by the theoretical results of [26], [27], this paper
investigates several fundamental practical issues related to SC-
LDGM codes. In particular, the main contributions are as
follows:

1) We present a practically interesting (J,K)-regular SC-
LDGM code construction based on protographs, which
are amenable to efficient implementation (see, e.g.,
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[28]). We demonstrate distortion saturation numerically
for these protograph-based code ensembles and show
that this effect is the result of a “wave-like” encoding
behavior. Note that, even for the well studied SC-
LDPC channel coding problem, it has not been proven
that protograph-based SC-LDPC codes achieve thresh-
old saturation and channel capacity. Thus demonstrating
that practically interesting protograph-based SC-LDGM
codes empirically achieve distortion saturation is a valu-
able result;

2) To reduce the latency and thus combat the need for
very long code lengths, as is desirable in practice, we
propose a novel windowed encoding (WE) scheme and
demonstrate distortion performance close to the RD
limit with moderate encoding latency for the binary
symmetric source. To the best of our knowledge, regular
SC-LDGM codes with the proposed WE scheme are
the first regular LDGM constructions that perform close
to the RD limit with low complexity encoding and
moderate latency;

3) We propose a combined soft and hard decimation al-
gorithm that allows the wave-like encoding to progress
through the chain and reduces the average distortion
compared to soft only decimation algorithms. Moreover,
we present two further decimation approaches for WE
that can significantly lower computational complexity
(measured as the number of node updates). The first
decimates a fixed number of nodes per iteration and
the second decimates all nodes with sufficiently large
confidence at each iteration. For both approaches, we
study the trade-offs in terms of performance vs. com-
plexity and show that the complexity can be significantly
decreased with little loss in performance compared to
decimating a single node per iteration;

4) We discuss the latency, complexity, and performance
trade-offs of WE and compare the results with an opti-
mized irregular LDGM-BC. Moreover, we demonstrate
that a min-sum formulation can be used during the BP
updates that further reduces the complexity at the cost
of a slight loss in performance;

5) Finally, we demonstrate robust performance over a vari-
ety of compression rates for different (J,K)-regular SC-
LDGM codes. Since there are many parameters involved
in the code construction and encoding algorithms, one
of our goals is to explain their effect on performance
with respect to the distortion/latency/complexity trade-
offs and to give a system designer guidance in choosing
reasonable parameter sets for implementation.

The reminder of the paper is organized as follows. Sec-
tion II contains necessary background material on lossy source
coding and introduces protograph-based SC-LDGM codes.
In Section III, the proposed source compression algorithm
for SC-LDGM codes is presented along with experimental
results showing distortion saturation and a discussion of the
wave-like encoding behavior. In Section IV, we present the
windowed encoding algorithms, including a study of the dis-
tortion/latency/complexity trade-offs. We conclude the paper

in Section V.

II. SC-LDGM CODE ENSEMBLES FOR LOSSY
COMPRESSION

A. Lossy Source Compression

In this paper, we consider compressing the symmetric
Bernoulli source [29], where the source sequence s =

(s1, s2, ..., sn) ∈ Fn
2 consists of independent and identically

distributed (i.i.d.) random variables with P(si = 1) = 1/2,
i = 1, 2, . . . , n. We wish to represent a given source sequence
by some codeword z ∈ Fm

2 from a given code C containing
2m = 2nR codewords, where m � n and R = m

n is the
compression rate. The codeword z is used to reconstruct the
source sequence as ŝ, where the mapping z → ŝ(z) depends
on the code C. The quality of reconstruction is measured
by a distortion metric d : s × ŝ → R+ and the resulting
source encoding problem is to find the codeword with minimal
distortion, i.e., ẑ = arg minz d(s, ŝ). For a symmetric Bernoulli
source, the typical measure of distortion is the Hamming
metric dH (s, ŝ) = 1

n

∑n
i=1 |si − ŝi |, and thus the average quality

of the reconstruction is measured as D̄ = Es[dH (s, ŝ)]. For
any encoding scheme, the average distortion is bounded below
by Shannon’s RD limit DSh , defined implicitly by the rate-
distortion function h (DSh) = 1− R,DSh ∈ [0, 0.5], where h (·)
is the binary entropy function [30]. The goal is to find an
encoding scheme that achieves the rate-distortion bound for a
given R.

B. Protograph-based SC-LDGM Codes

An LDGM-BC ensemble can be represented by means of a
protograph [31], a small bipartite graph that connects a set of
n source (information) and m code (compressed) nodes to a set
of n generator nodes by a set of edges. It can be represented
by a generator or base biadjacency matrix B, where Bx,y is
taken to be the number of edges connecting generator node
gy to code node zx . The generator matrix G of a protograph-
based LDGM-BC can then be created by expanding B using
a lifting factor M , where each non-zero entry in B is replaced
by a sum of Bx,y non-overlapping permutation matrices of size
M ×M and each zero entry is replaced by the M ×M all-zero
matrix. Fig. 1 depicts the protograph representation of a (3, 6)-
regular LDGM-BC ensemble with the all-ones base matrix B
of size 3 × 6. The white and black circles represent source
(information) and code (compressed) symbols, respectively.
After compression, the reconstructed source symbols ŝi are
obtained by a modulo 2 summation at the generator nodes.

Protograph-based SC-LDGM codes are constructed by cou-
pling together a series of L disjoint, or uncoupled, LDGM-BC
graphs into a single coupled chain. Starting from a bc × br
block base matrix B, an “edge-spreading” construction [32]
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Fig. 1. Protograph representing a (3, 6)-regular LDGM-BC ensemble.

can be used to form the base matrix of an SC-LDGM code
ensemble with coupling length L as

B[0,L−1] =



B0
B1 B0
... B1

. . .

Bw

...
. . . B0

Bw B1
. . .

...
Bw

 (L+w)bc×Lbr

, (1)

where B0 +B1 + · · · +Bw = B, w denotes the coupling width,
and the bc × br matrices Bi are referred to as component
base matrices, i = 0, 1, . . . ,w. An ensemble of SC-LDGM
codes can then be formed from B[0,L−1] using the protograph
construction method described above. The design compression
rate of the ensemble of SC-LDPC codes is

RL =
(
1 +

w

L

) bc
br
, (2)

where we note that RL is monotonically decreasing and
approaches bc/br as L →∞.

For convenience we focus most of our attention on (J, 2J)-
regular SC-LDGM code ensembles, where B = [J, J] and the
component base matrices are chosen as B0 = B1 = · · · = Bw =

[1, 1] for w = J − 1, although some results for general (J,K)-
regular ensembles are given in Section IV-B, and an extension
to irregular ensembles is straightforward. In order to improve
distortion performance for BP algorithms, as in [26] we found
it necessary to reduce the generator node degrees at the start
of the chain (this will be explained in Section III). This was
achieved for the (J, 2J)-regular ensembles by deleting the
first J − 2 rows of (1).1 The resulting ensembles are denoted
SC(J, 2J) and have modified design compression rate

RL =

(
1 +

w − J + 2
L

)
bc
br
−−−−→
L→∞

bc
br
. (3)

1Note that removing code nodes by deleting rows of the protograph actually
makes the encoding problem harder, since the compression rate decreases.
However, as we show in Section III-C5, the reduced generator node degrees
and associated improved convergence of the algorithm at the start of the chain
more than compensates for the added difficulty of encoding.

 1  2  L

Fig. 2. Protograph of the (3, 6)-regular SC-LDGM ensemble SC(3, 6).

Fig. 2 depicts the protograph representation of the SC(3, 6) SC-
LDGM code ensemble with coupling length L and coupling
width w = J − 1 = 2.

III. SOURCE RECONSTRUCTION USING SC-LDGM CODES

In this section, we first review some relevant message
passing decimation algorithms in Section III-A. We then intro-
duce a new “soft-hard” decimation algorithm in Section III-B
and investigate its encoding dynamics and performance in
Section III-C.

A. Message Passing Decimation Algorithms

Although the sum product algorithm (SPA) can achieve
excellent performance for channel coding problems, directly
applying it to the lossy source coding problem does not
give satisfactory results, since the approximate marginal
calculated by the SPA does not provide reliable information
for optimal encoding [10]. Modified BP algorithms, which
include a decimation step, have been proposed and can be
characterized as hard-decimation [10] or soft-decimation [25]
algorithms. According to [10], hard-decimation involves two
phases: 1) message passing, which approximates the marginal
distributions, and 2) decimation, where some code nodes
are assigned values and the graph is reduced by removing
decimated code nodes. The procedure runs until the algorithm
assigns a value to all code nodes. In soft-decimation [25],
the decimation process is performed by modifying the BP
equations at each iteration to assign appropriate bias values
to the code nodes, whereby large bias values effectively
decimate nodes but the graph is not reduced. The BP update
equations for soft decimation at iteration t are given as
follows [25]:

Code to generator node messages:

R(t+1)
i =

∑
a∈G(i)

R(t)a→i, R(t+1)
i→a =

∑
b∈G(i)\a

R(t)
b→i

; (4)

Generator to code node messages:

R(t+1)
a→i =

1
µ

R(t)i→a + 2(−1)sa+ |Z(a) | tanh−1 ©­«β
∏

j∈Z(a)\i
B(t)j→a

ª®¬ ;

(5)
Code node bias update:

B(t)i = tanh

(
R(t)i
2

)
, B(t)i→a = tanh

(
R(t)i→a

2

)
, (6)
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where R(t)i→a, R(t)a→i , and B(t)i→a denote the message sent from
code node i to generator node a, the message sent from genera-
tor node a to code node i, and the bias associated with R(t)i→a at
iteration t, respectively, and β and µ are parameters. Then R(t)i
and B(t)i denote the likelihood ratio of code node i and the bias
associated with R(t)i , repectively. Also, for an LDGM graph
Γ with code nodes Z and generator nodes G, Z(a) denotes
the set of all code node indices connected to generator node
a, |Z(a)| is its cardinality, and G (i) denotes the set of all
generator node indices connected to code node i, ∀i ∈ Z and
∀a ∈ G. Without the term 1

µ R(t)i→a in (5), equations (4)-(6) are
equivalent to BP with no decimation. Including the first term
in (5) incorporates soft-decimation via the “soft-indicator”
function [25] Iso f t (B(t)i→a) =

2
µ tanh−1(B(t)i→a) =

1
µ R(t)i→a, which

approximates the “hard-indicator” function

Ihard
(
B(t)i→a

)
=


−∞ B(t)i→a = −1
0 −1 < B(t)i→a < 1,
+∞ B(t)i→a = 1

(7)

where µ controls the “softness” of the approximation. For
further details, see [25]. Since β and µ are free parameters,
they can be optimized independently; however, here we choose
them as β = (1− ξ)/(1+ ξ) and µ = 1/ξ for simplicity, where
ξ is called the tuning parameter. This choice simplified the
optimization and was shown to yield good numerical results
in [25].

B. Soft-Hard Decimation

The BP algorithm used in this paper is a mixture of both
hard and soft decimation. The algorithm uses the soft decima-
tion equations given above, but after each iteration it searches
for a code node with maximum bias value. This code node
is then decimated (permanently fixed) and the current graph
reduced following the hard decimation rule. This modification
is applied to force decimation to occur in designated areas of
the code graph in order to take advantage of the convolutional
structure of SC-LDGM codes. The procedure is described
in detail as Algorithm A, where t indicates the iteration
number, Γ(t) is the LDGM code graph at iteration t, and zi
represents the binary value assigned to code node i. The initial
code to generator node messages, R(0)i→a, are set to ±0.1 with
P(R(0)i→a = 0.1) = 0.5, and reset to 0 at iteration 1.

C. Analysis and Dynamics of Encoding SC-LDGM Codes

In this subsection, the results of various experiments of a
C++-based implementation of Algorithm A are reported for
different SC-LDGM code parameters. Codes were obtained by
randomly lifting the protograph and all results were obtained
by averaging over 1000 trials.

1) Effect of the tuning parameter ξ: Fig. 3 shows the
average distortion versus ξ for SC(3, 6), SC(4, 8), and SC(5, 10)
codes with code length n = 102400, coupling length L = 100,
and compression rate RL = 0.5050. By running the pro-
posed algorithm for SC(3, 6), SC(4, 8), and SC(5, 10) codes,
choosing the (experimentally determined to three decimal
places) optimum ξ, denoted ξ∗, and averaging over 1000 trials,

Algorithm A: Soft-Hard Decimation

1) At iteration t = 0, initialize graph instance Γ(t=0)

2) Update equations (4), (5), and (6)
3) Find the maximum bias B(t ) = maxi { |B(t )i | | i not fixed}
4) If B(t ) > 0 then

zi ← ′1′

else
zi ← ′0′

5) Decimate graph as
a) ∀a ∈ G (i), sa ← sa ⊕ zi (update source symbols)
b) reduce the graph as Γ(t+1) = Γ(t )\{i } (remove code

node i and all its edges)
6) If there exist any unassigned code symbols zi

go to 2)
else

exit algorithm and return code symbols

ξ
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Fig. 3. The performance of Algorithm A as a function of ξ for SC(3, 6),
SC(4, 8), and SC(5, 10) code with length n = 102400, coupling length L =
100, and compression rate RL = 0.5050.

average distortion values D̄ = 0.116609, D̄ = 0.113463, and
D̄ = 0.113137 are obtained, respectively. Fig. 3 shows that the
performance of the algorithm depends on the choice of ξ. We
note that the optimum value of ξ for the SC(3, 6), SC(4, 8), and
SC(5, 10) codes is different and that by increasing the encoder
node degrees from 3 to 5, the optimum value of ξ decreases.
Moreover, Fig. 3 indicates that the sensitivity of the algorithm
with respect to ξ, i.e., the sharpness of the minima tends to
increase with increasing density J.

2) Effect of increasing the coupling length L: We now
consider SC-LDGM codes with fixed lifting factor M = 512
and L ranging from 4 to 100. Fig. 4 presents the average
distortion gap to the RD limit δ̄

4
= D̄ − DSh obtained

with respect to codeword length for SC(3, 6), SC(4, 8), and
SC(5, 10) codes. It can be seen from Fig. 4 that the average
distortion gap decreases roughly exponentially with L and
saturates to a value close to the RD limit; moreover, for fixed
M , the gap decreases with increasing density J.2

2Note that the compression rate varies according to (2). Each point was
compared to the RD limit for the given rate.
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Fig. 4. Average distortion gap to the RD limit obtained for SC(3, 6), SC(4, 8),
and SC(5, 10) codes with fixed M = 512 and increasing L.

TABLE I
EFFECT OF THE LIFTING FACTOR M ON SC(4, 8) CODES IN TERMS OF

AVERAGE DISTORTION D̄ AND AVERAGE GAP TO THE RD LIMIT δ̄ WITH
FIXED L = 16 AND COMPRESSION RATE RL = 0.5313.

Lifting factor (M) D̄ δ̄
128 0.112675 0.0128
192 0.110917 0.0110
256 0.110074 0.0102
320 0.109571 0.0097
640 0.108645 0.0087
832 0.108478 0.0086
1024 0.108396 0.0085
1760 0.108225 0.0083
2048 0.108168 0.0082

3) Effect of increasing the lifting factor M: Table I shows
the effect of increasing M . Here we consider SC(4, 8) codes
with fixed L = 16, RL = 0.5313, and RD limit DSh =

0.09992. We observe that, as expected, increasing M reduces
the average distortion and we obtain saturating values that
approach the RD limit. Since SC-LDGM codes experience
saturation in their distortion values both for increasing L and
M , combining these results (by letting M → ∞ and L → ∞)
implies that SC(J,K) codes numerically approach the optimal
distortion values of the underlying (J,K)-regular LDGM-BCs.
For example, for a relatively large SC(4, 8) code with L = 100,
M = 512, and RL = 0.5050, we obtained an average distortion
of D̄ = 0.113463, where the optimal average distortion of a
(4, 8)-regular LDGM-BC of RL = 0.5 is D̄opt = 0.1111 [27].

4) Wave-like encoding: Fig. 5 shows the average distortion
evolution over each section of the graph of an SC(3, 6) code
with L = 45, M = 512, and a total of 23552 code nodes
for various numbers of iterations t of Algorithm A. Note
that the behavior is similar to the wave-like decoding of
SC-LDPC codes for channel coding [32], where the code
nodes at the left end of the graph generate large bias values
(reliable information, thereby starting the decimation process),
which then propagate through the graph from left to right
with increasing iterations. Initially, the average distortion is
around 0.5, but after a few iterations the degree two generator
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Fig. 5. Average distortion evolution of an SC(3, 6) code with L = 45 and
M = 512 for various numbers of iterations of Algorithm A.

nodes (at the left side of the graph) facilitate convergence
of the attached code nodes, thereby generating large bias
values and starting an “encoding wave” (see also the following
subsection). Note that if we decimate a single code node per
iteration, the algorithm requires 23552 iterations to terminate,
but Fig. 5 shows that after decimating only 1500 code nodes,
the bias values have already saturated and the algorithm can
be stopped.

The wave-like encoding phenomenon and propagation of
reliable bias values from left to right motivates the use of a
windowed encoding scheme, where we modify the decimation
progress during the encoding wave, thereby reducing both
computational complexity and encoding latency. For example,
the complexity can be reduced by decimating multiple code
nodes per iteration. This could be done in a fixed way, i.e., by
decimating x nodes per iteration, or by using threshold values,
i.e., by decimating nodes only when a sufficiently large bias
value is obtained. Both approaches are discussed in Section IV.

5) Effect of the generator node degrees at the ends of the
code graph: As mentioned in Section II, we choose to modify
the SC-LDGM protograph in (1) to reduce the generator node
degrees at the left end of the graph to facilitate propagation
of reliable information via wave-like encoding. In this section,
we demonstrate how the choice of the generator node degrees
affects the initialization and propagation of the encoding wave.
As an example, we construct a (4, 8)-regular SC-LDGM base
matrix in the form of (1) with B0 = B1 = B2 = B3 = [1, 1] and
consider deleting the first j = 0, 1, and 2 rows. For j = 0, all
generator nodes (columns of (1)) in the graph have degree 4,
while the code nodes (rows of (1)) have degrees 2, 4, 6, 8, 8, . . . ;
for j = 1, the generator nodes in Section 1 (column 1 of (1))
have a reduced degree of 3 and the code node degrees are
4, 6, 8, 8, . . . ; finally, for j = 2, the generator nodes in Sections
1 and 2 (columns 1 and 2 of (1)) have degrees 2 and 3,
respectively, while the code nodes have degrees 6, 8, 8, . . . .

Fig. 6 shows snapshots of the encoding process with soft-
hard decimation at t = 500, 1500, and 3500 iterations (from
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Fig. 6. Average distortion distribution among coupled sections of SC(4, 8)
codes with L = 32, M = 512, and the first j rows deleted.

top to bottom) for the 3 constructions obtained with j = 0, 1,
and 2 rows deleted and with code parameters L = 32 and
M = 512. We observe that, by iteration t = 500, the average
distortion of the leftmost sections of the j = 2 construction has
decreased faster than the other constructions and the wave-like
behavior has begun. On the other hand, the j = 1 construction
shows only a slight improvement, while the j = 0 construction
has not shown any improvement and has average distortion
D̄ = 0.5 over all sections. By iteration t = 1500, the encoding
of Section 5 of the j = 2 construction is almost complete
(the code nodes in this section have almost reached their final
values) and the wave has reached Section 12; meanwhile, for
j = 1, we observe the distortion has now improved at the
leftmost end and the wave-like behavior is visible; however,
we still see no improvement for j = 0. Finally, by iteration
t = 3500, we observe that the encoding wave for j = 1 and
j = 2 are now steadily moving through the chain, with the
j = 2 construction reaching further due to its earlier advantage;
however, there is still no significant distortion improvement for
j = 0.

The reduced generator nodes not only increase conver-
gence/wave propagation speed, they also have an impact on
the resulting distortion. Fig. 7 shows the average distortion
results per graph section obtained for the j = 0, 1, and 2 con-
structions after encoding is completed. The poor performance
of the j = 0 construction with soft-hard decimation can be
explained by investigating the encoding progress across the
graph sections at different iterations t. We saw in Fig. 6 that
the distortion decreases slowly at the right end of the graph;
however, algorithm A still enforces decimation at each itera-
tion. We observed experimentally that roughly the first one-
sixth of decimated code nodes occurred randomly throughout
the graph with low reliability (bias values near 0). Eventually,
though, the distortion decreases at the ends and the wave-
like encoding begins; however, those initial decimated code
nodes with low reliability result in a high overall distortion,
as seen in Fig. 7. For j = 1, by around iteration t = 1000,
the code nodes decimated by Algorithm A at the left end
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Fig. 7. Average distortion performance of SC(4, 8) codes with L = 32, M =
512, and the first j rows deleted.

of the graph have reasonably good reliability (bias values
about 0.7) and low distortion values; after that, the encoding
wave proceeds, decimating code nodes with high reliability
(bias values about 0.9). Note that the initial improvement in
convergence compared to the j = 0 case significantly lowers
the overall distortion as the encoding wave travels through
the graph. For j = 2, the algorithm quickly converges, with
distortion decreasing rapidly over the leftmost sections of the
graph as code nodes are decimated with high reliability (bias
values about 0.9) by around iteration t = 40. This generates
an encoding wave that propagates through the graph from left
to right. Thus the j = 2 construction outperforms the others
with Algorithm A as a result of better “seeding” of the wave,
with more reliable information generated at the ends of the
graph. Moreover, as the wave reaches the right end of the (non-
symmetric) graph, all nodes are decimated with high reliability
and the distortion is low.

Although our primary interest is to take advantage of the
convolutional structure of the code and track the propagation
of the encoding wave from left to right with a sliding window
(see Section IV), where the right end of the graph is not
involved until the end of the encoding process, it is also
interesting to investigate the effect of modifying the right end
of the chain when using Algorithm A. Suppose we remove
the first j1 rows and the last j2 rows of (1). In the previous
j = 2 case, now denoted j = ( j1 = 2, j2 = 0), the degree
4 generator nodes at the right do not create a wave (as we
saw in the j = 0 case above) and a single encoding wave
propagates from left to right, but this is not the case if we
also reduce the generator degrees at the right, i.e., we choose
j2 > 0. For example, consider j = (2, 2), (2, 1), and (1, 1), for
the (4, 8)-regular construction. In the j = (2, 2) and j = (1, 1)
cases, encoding waves propagate from both sides of the graph
(much like they do in the j = 2 and j = 1 cases above),
but, interestingly, when the waves meet in the center there is
disagreement and the average distortion increases, since this
disagreement ripples out from the center back to the ends via
undecimated nodes. In general, we find that symmetric codes
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(a) SC-LDGM code: time T

W = 3
target
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(b) SC-LDGM code: time T + 1

encoded

symbols

Fig. 8. The WE procedure operating on the protograph of an SC(3, 6) code.

result in higher distortion for the reasons discussed above. In
the j = (2, 1) case, the encoding waves start independently
from both ends of the graph, but the left wave moves faster,
resulting in higher distortion at the right side of the code
graph. As an interesting aside, we note that this behavior
is not observed in the case of BP decoding of SC-LDPC
codes, where there are not multiple optimal solutions and the
decoding waves are typically in agreement.

IV. WINDOWED ENCODING

For the practical implementations of SC-LDGM codes with
large coupling length L, it is essential to reduce the encoding
latency. To this end, we propose a novel sliding window
encoder, where a window of size W (containing W sections
of the graph) slides over the graph from left to right. This is
a similar concept to the sliding window decoder for channel
coding with SC-LDPC codes [33]. At each window position,
a modified BP algorithm (e.g., Algorithm A) is applied to the
code nodes in the window and all their neighboring generator
nodes in order to encode one set of code symbols, called target
symbols. After encoding the set of target symbols (i.e., when
they are all decimated), the window slides one section to the
right and again executes the modified BP algorithm to encode
the next set of target symbols, using both the nodes in the
window and some previously encoded target symbols. Fig. 8
shows the WE procedure on the protograph of a SC(3, 6) code
with window size W = 3 (covering 3 graph sections, or 3M
code symbols). Here 2M source symbols enter the window
at each window position and M code symbols leave (are
encoded). In this paper, we refer to the latency of a WE scheme
as the number of source symbols in the window, i.e., how many
source symbols we need to process before we can encode a set
of target symbols. Full details of WE with two modifications
for efficiency, termed Algorithms B and C, follow in the next
two sections.

A. Multiple Node Decimations per Iteration (Algorithm B)

To reduce the number of required iterations, thereby re-
ducing complexity, we consider modifying the algorithm to
decimate the N ≥ 1 code nodes with the highest bias values.
In order to generate reliable messages and low distortion at
the left end of the graph (initial nodes), (4), (5), and (6) are
applied for a fixed number of iterations, I f , to build reliable
bias values before decimation begins. Details of this process
are given in Algorithm B. In addition to the previous notation,
W (t) denotes the window at iteration t, W (t)Z denotes the set

Algorithm B: Multiple Node Decimation

1) At iteration t = 0, initialize the graph to Γ(t=0)

2) ∀i ∈ W (t)
Z
, a ∈ W (t)

G
update (4), (5), and (6) for I f − 1

iterations such that
a) there is no incoming or outgoing message ∀a ∈

W (t)
G f

b) there are incoming messages ∀i ∈ W (t)
Zp

and ∀a ∈
W (t)

Gp
, but no outgoing messages to those nodes

3) ∀i ∈ W (t)
Z
, a ∈ W (t)

G
update (4), (5), and (6) according to

2a) and 2b)
4) Find the N largest bias values among the remaining target

symbols B(t) = {B(t)
i
| i not fixed, i ∈ T(W (t))}

5) For each of the N selected biases i, do:
a) if B(t)

i
> 0 then

zi ← ′1′
else

zi ← ′0′
end if

b) decimate graph as
i) ∀a ∈ G (i), sa ← sa ⊕ zi (update source

symbols)
ii) reduce the graph as Γ(t+1) = Γ(t)\{i} (remove

code node i and all its edges)
6) if there exist any unassigned code symbols i ∈ T(W (t)), go

to 3)
else if all source symbols are not encoded, shift window
to the next position, go to 3)
else exit algorithm
end if

of code nodes inside the window, W (t)
G

denotes the set of
generator nodes inside the window, and T(W (t)) denotes the
set of target symbols inside the window. Finally, we use W (t)Zp

and W (t)Z f
to denote the set of past code nodes (to the left of the

window) and future code nodes (to the right of the window),
respectively, and W (t)

Gp
and W (t)

G f
are defined similarly. The

initial code to generator node messages, R(0)i→a, are set to ±0.1,
with P(R(0)i→a = 0.1) = 0.5 and reset to 0 at iteration 1.

1) Windowed encoding results for N = 1: In this section,
we present numerical results for WE of SC(4, 8) codes with
N = 1 and I f = 0 as an example. (Similar results were also
obtained for other values of J and K .) Note that, by setting
N = 1, Algorithm B can be thought of as the application of
Algorithm A within a window. Also, like Algorithm A, the
performance of the WE algorithm is sensitive to the choice of
ξ, which was determined numerically for each code ensemble.

We considered an SC(4, 8) code with L = 100, M = 512,
rate RL = 0.5050, and RD limit DSh = 0.1084. Applying
Algorithm B (windowed encoding with N = 1) with W = 10
and ξ = 0.02, the average distortion is D̄ = 0.1172, while
applying Algorithm A (block encoding) gives D̄ = 0.1135,
indicating there is only a slight loss in performance for a
sufficiently large W . Fig. 9 shows the average distortion gap
to the RD limit δ̄ (adjusted for the compression rate) for
several SC(4, 8) LDGM code lengths L and window sizes
W = 4, 5, . . . , 16, with fixed M = 512, where the encoding
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Fig. 9. Average distortion gap to the RD limit for various SC(4, 8) codes
with increasing latency (window size W ).

latency is equal to 2MW . We observe that by increasing
the code length and latency, the average distortion saturates
to a value close to the RD limit for the given rate. We
also see that increasing W (latency) beyond a certain value
improves the distortion only slightly. For example, we note
that only moderate improvements in distortion are obtained
by increasing W beyond 8.

Fig. 10 plots the average distortion as a function of latency
obtained by applying Algorithm B (with N = 1) to SC(4, 8)
codes with L = 32, compression rate R = 0.5156, and W =
4, 5, . . . , 12 for M = 512, 1024, and 2048, respectively. Also
plotted for comparison is the average distortion of an irregular
LDGM-BC (optimized for the soft decimation algorithm) with
compression rate R = 0.5 and degree distribution [25]

λ(x) = x6, (8)

ρ(x) = 0.275698x+0.25537x2+0.076598x3+0.39233x8. (9)

Note that the latency of the LDGM-BC is its total block length,
and each point on the LDGM-BC curve corresponds to a code
drawn from the irregular ensemble with a particular latency.
We observe that the regular SC-LDGM codes outperform the
irregular LDGM-BC as long as W is not too small and that
performance tradeoffs can be achieved for SC-LDGM codes
by varying M and W . In particular, increasing W improves the
performance of the encoder, while increasing M improves the
performance of the code.

2) Windowed encoding results for N > 1: Instead of
decimating one code node at each iteration, we now set
Algorithm B to decimate the N > 1 code nodes with the largest
bias values. All numerical results presented are obtained by
averaging over 1000 trials using an SC-LDGM code SC(4, 8)
with coupling length L = 55, lifting factor M = 512, and
window size W = 8, so the latency 2MW = 8192 symbols
and the compression rate RL = 0.5091. For reference, the
average distortion using Algorithm A (block encoding) is
D̄A = 0.112767 after performing 28672 iterations.

We measure the complexity of the algorithm as the average
number of updates Ī that a code node receives, averaged
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Fig. 10. Average distortion versus latency of (4, 8)-regular SC-LDGM codes
with different lifting factors and L = 32 compared to optimized, irregular
LDGM-BCs. Latency for the SC-LDGM code corresponds to the window size,
whereas the latencies for the LDGM-BCs correspond to their block lengths.

TABLE II
AVERAGE DISTORTION AND COMPLEXITY RESULTS FOR ALGORITHM B

COMPARED TO ALGORITHM A.

N D̄
Distortion
Loss (%) Ī Īss

Complexity
savings (%)

1 0.116905 3.6704 3975.80 4352.40 69.6422
2 0.117226 3.9542 1991.80 2176.50 84.8185
3 0.117680 4.3568 1332.30 1453.80 89.8594
4 0.118159 4.7815 999.75 1088.50 92.4075
8 0.119842 6.2740 503.75 544.50 96.2020
10 0.120622 6.9657 409.81 442.11 96.9162
20 0.122804 8.9007 208.51 221.28 98.4565
40 0.125296 11.1105 107.86 110.89 99.2265

over the entire graph. Since these codes will typically operate
in a regime with moderate to large L, we also present the
average number of updates per node for nodes outside the
initial window position, referred to as the average “steady-
state” number of updates Īss , which is constant and larger
than Ī, since the nodes in the initial window position typically
(depending on I f ) require fewer updates. We note that both Ī
and Īss depend on W , but, while Īss is independent of L, Ī
depends (slightly) on L. Consequently, we use Īss to compare
with Algorithm A, for which the average number of updates
per code node is given by ĪA =

m(m+1)
2m = m+1

2 , where m is the
number of code nodes. In this example, ĪA = 14337.

Table II shows the performance of Algorithm B compared to
Algorithm A, in terms of the average distortion loss (measured
as D̄−D̄A

D̄A
) and the average complexity savings (measured as

ĪA−Īss
ĪA

), both given as percentage values, for the SC(4, 8)
example with I f = 10 and various values of N . We note
that by increasing the number N of decimated code nodes at
each iteration the complexity decreases accordingly; however,
the distortion increases. For example, by decimating N = 2
code nodes per iteration, the algorithm complexity reduces
to 84.82% at a cost of only 3.95% in distortion, whereas
decimating N = 10 nodes per iteration results in a complexity
reduction of 96.92% at a cost of 6.97% in distortion. By
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further increasing N to 20 (resp. 40) we obtain an average
complexity savings of 98.46% (resp. 99.23%), but this costs
8.90% (resp. 11.11%) in distortion. We also note that, for
I f = 10, the savings in total complexity Ī is even larger, and
that the complexity savings grows with increasing L. We will
see in the next subsection that such reductions in complexity
can be achieved with much smaller losses in distortion by
implementing a thresholding scheme.

B. Thresholding (Algorithm C)

Instead of decimating a fixed number of nodes per iteration,
the thresholding algorithm decimates all code nodes that have
bias values greater than a pre-selected threshold θ after Ih
iterations. The details are given in Algorithm C. Similar to
Algorithm B, it is necessary to update the nodes in the first
window position a sufficient number of times (I f iterations)
in order to generate bias values large enough to propagate
through the chain. To insure termination, if no unassigned
target node achieves a bias value larger than θ for 10 consec-
utive iterations, all remaining target nodes are decimated and
the window shifts to the next position. Also, the parameter
Ih , which can be used to control the speed of decimation,
is normally set to 1, i.e., we decimate after each iteration.3

(Unless otherwise noted, we set Ih = 1 in the remainder of
the paper.)

1) Numerical results and encoder dynamics of thresholding:
Table III shows the performance of Algorithm C compared to
Algorithm A for various threshold values θ and I f = 100. We
observe that the thresholding scheme provides a significant
complexity savings compared to the benchmark case (more
than 98% for all threshold values). Also, as expected, we
observe that large threshold values θ provide good average
distortion D̄ but require more iterations (large Īss), whereas
decreasing θ results in fewer iterations at a cost of larger
distortion. We further note that decimation with thresholding
can achieve similar reductions in complexity as decimating
the best N nodes, but with better distortion. For example,
both N = 40 (Algorithm B) and θ = 0.90 (Algorithm C)
have Īss ≈ 110, but with average distortion losses of 11.11%
and 6.19%, respectively. The improvement is also significant
when comparing N = 20, with Īss ≈ 220, to θ = 0.9999,
with Īss ≈ 200, resulting in distortion losses of 8.90% and
4.19%, respectively. Moreover, it is simpler to compare each
remaining target bias value to a threshold θ (Alg. C) than
to find the N largest bias values (Alg. B); however, Alg.
B provides a fixed complexity and run-time, whereas the
complexity of Alg. C can vary.

Fig. 11 shows the cumulative number of decimated code
nodes at each iteration for various θ. We observe that the
algorithm has three phases:

1) the initialization phase, where we perform I f iterations
without hard decimation;

3In certain cases, e.g., for large windows or high degree codes, thresholding
can generate large bias values quickly, which can cause the algorithm to
decimate too fast. In this case, complexity is low but the distortion can be
unacceptably large. This can be controlled by increasing Ih .

Algorithm C: Threshold Decimation

1) At iteration t = 0, initialize the graph to Γ(t=0) and set a
counter ← 10

2) ∀i ∈ W (t)
Z
, a ∈ W (t)

G
update (4), (5), and (6) for I f − 1

iterations such that
a) there is no incoming or outgoing message ∀a ∈

W (t)
G f

b) there are incoming messages ∀i ∈ W (t)
Zp

and ∀a ∈
W (t)

Gp
, but no outgoing messages to those nodes

3) ∀i ∈ W (t)
Z
, a ∈ W (t)

G
update (4), (5), and (6) for Ih iterations,

under the same conditions as 2)
4) For each remaining bias value B(t)

i
, i not fixed, i ∈ T(W (t)),

do
If |B(t)

i
| ≥ θ then

a) if B(t)
i

> 0 then
zi ← ′1′

else
zi ← ′0′

end if
b) decimate graph as

i) ∀a ∈ G (i), sa ← sa ⊕ zi (update source
symbols)

ii) reduce the graph as Γ(t+1) = Γ(t)\{i} (remove
code node i and all its edges)

c) counter ← 10
end if

5) If no nodes were decimated in Step 4) then
counter ← counter − 1
If counter = 0

For {B(t)
i
| ∀i not fixed, i ∈ T(W (t))}, decimate B(t)

i
according to 4a) and 4b)

counter ← 10
else go to 3)
end if

end if
6) if there exist any unassigned code symbols i ∈ T(W (t)), go

to 3)
else if all source symbols are not yet encoded, shift window
to the next position, go to 3)
else exit algorithm
end if

TABLE III
AVERAGE DISTORTION AND COMPLEXITY RESULTS FOR ALGORITHM C

COMPARED TO ALGORITHM A.

Threshold
value θ

D̄
Distortion
Loss (%) Īss

Complexity
savings (%)

0.9999 0.117495 4.1927 202.37 98.5884
0.999 0.117977 4.6201 167.21 98.8337
0.99 0.118411 5.0050 137.04 99.0441
0.90 0.119747 6.1898 112.40 99.2160
0.80 0.120408 6.7759 105.71 99.2627

2) the steady-state phase, where the window moves at a
constant speed over the graph (seen as an approximate
straight line with slope ∆ in Fig. 11); and

3) the termination phase, where the window reaches the
end of the graph and the number of decimated nodes
per iteration decreases to zero.

In particular, we see that the slope ∆ in the steady-state phase
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TABLE IV
PERFORMANCE OF ALGORITHM C IN THE STEADY-STATE PHASE.

Threshold
value θ ∆ D̄ss Īss

0.9999 20.3918 0.1181 202.3663
0.999 24.6209 0.1184 167.2043
0.99 30.1674 0.1191 137.0379
0.90 36.7937 0.1204 112.3921
0.80 39.2504 0.1214 105.7014
0.70 40.1335 0.1216 103.1221

indicates that the algorithm decimates approximately ∆ code
nodes per iteration as the window moves over the graph and
that ∆ is larger for lower thresholds θ. The values of ∆ are
shown in Table IV, where we note that the decimation rate
roughly doubles from θ = 0.9999 to θ = 0.70 and, assuming
that a large L will be used in practice, the performance is dom-
inated by the steady-state phase. Also given in Table IV are
the values obtained for the average steady-state distortion D̄ss ,
obtained as the average distortion over all nodes excluding
those at the ends (initialization and termination phases), along
with the average number of steady-state node updates Īss .
The results indicate that D̄ss approaches the overall average
distortion D̄ for large θ, with relatively low complexity, which
in turn approaches the RD limit for (4, 8)-regular LDGM
codes [27] with increasing M . We also see that relaxing the
threshold results in higher steady-state distortion but lower
complexity.

Due to the initialization phase, the complexity is also
affected by I f . Fig. 12 shows the complexity, measured as
the average number of updates per code node, as a function
of position in the graph, for θ = 0.90 and I f = 10, 50, and 100.
Again, we observe that the encoding can be divided into three
phases: initial, steady-state, and termination. Since W = 8
and M = 512, the first 9 sections (9M = 4608 code nodes)
automatically receive at least I f updates (cf. Fig. 2). This is
evident as the “steps” in Fig. 12. As the algorithm progresses,
we reach the steady-state phase where the complexity and the
decimation rate ∆ are constant (see also Fig. 11). We note
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Fig. 12. Average number of updates per code node for various I f .

TABLE V
AVERAGE DISTORTION RESULTS FOR θ = 0.90 AND VARIOUS I f .

I f D̄ D̄ss I ss
500 0.1197 0.1204 112.6404
100 0.1197 0.1204 112.3921
50 0.1202 0.1205 112.1783
10 0.1232 0.1236 97.4348

that the number of updates in the latter positions of the initial
window exceeds the steady-state values, due to the offset of
I f , but that this behavior is less pronounced for small values
of I f . Finally, we reach the termination phase, where Fig. 12
shows a slight increase in complexity. Table V summarizes
the distortion results for θ = 0.90 and various values of I f .
We observe that, by increasing I f , the distortion decreases and
the complexity increases, and we note that it is important to
have a sufficiently large I f to generate reliable bias values, but
increasing I f further offers diminishing gains.

2) SC-LDGM thresholding performance for different com-
pression rates: Although we have focused on SC-LDGM code
ensembles with nominal compression rate R = 0.5, similar
performance can be observed for a variety of compression
rates, with and without WE. Fig. 13 summarizes simulation
results of the average steady-state distortion D̄ss for various
compression rates R compared to the corresponding RD limit.
(J,K)-regular SC-LDGM codes with fixed generator node de-
gree J were constructed, which we denote by LDGM(J). The
constructed codes have lifting factor M = 512, which results in
an overall LDGM code length of approximately 100000. They
were encoded using Algorithm C, with θ = 0.9999, window
size W = 7, ξ optimized to three decimal places, I f = 100, and
Ih = 14 iterations between two successive decimation steps.4

As can be seen from Fig. 13, the distortion is very close
to the RD limit in all cases. We also observe that by increas-
ing the rate, the average distortion gap to the RD limit is

4Ih = 14 was chosen here since it results in good distortion for all cases
considered in Fig. 13. This value can be reduced to Ih = 1 in many cases
without significant loss in distortion, as seen earlier for some (J, 2J)-regular
ensembles.
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Fig. 13. Average steady-state distortion of SC-LDGM codes for three different
generator node degrees J and various compression rates.

diminishing. Furthermore, we note that the distortion of the
LDGM(J) ensembles approaches the RD limit as the generator
node degree J increases. These results were not optimized
on a case-by-case basis (with the exception of ξ∗); indeed,
the simulation parameters were simply chosen such that we
expected “good” performance. Consequently, they can likely
be improved in terms of providing a better latency/complexity
trade-off for a given distortion by optimizing parameters, such
as the protograph structure, further increasing the accuracy
of ξ∗, and adjusting the threshold θ, the number of initial
iterations I f , the number of iterations between decimation
steps Ih , and the window size W .

C. A Complexity and Latency Comparison with LDGM-BCs
This section briefly compares the proposed protograph-

based SC-LDGM codes with an example of a state-of-the-
art, highly irregular LDGM-BC that was optimized for the
soft-decimation algorithm [25]. We showed in Section IV-A
that, on an equal latency basis, the regular SC(4, 8) SC-
LDGM code encoded with WE outperformed an optimized
irregular code. For the purpose of illustration, we now fix the
latency to be 8192 symbols and allow the complexity to vary
for comparison. The irregular LDGM-BC is constructed with
degree distribution as given in (8) and (9) following [25] and
the SC(4, 8) code is constructed with M = 512 and encoded
with W = 8. Comparing Tables IV (for the SC-LDGM code)
and VI (for the LDGM-BC), we see that, for equal rate and
fixed latency, the average steady-state distortion D̄ss of the
regular SC-LDGM code is less than the average distortion D̄ of
the optimized irregular LDGM-BC when the average number
of steady-state node updates Īss of the SC-LDGM code equals
the number of iterations of the LDGM-BC. Further gains for
the SC-LDGM code may be possible by optimizing the code
construction and the windowed encoder parameters.

D. Min-Sum Algorithm
Following well-established procedures from the channel

coding literature to achieve good performance-complexity

TABLE VI
SOFT DECIMATION [25] RESULTS FOR AN IRREGULAR LDGM-BC WITH

n = 8192 AND RATE RL = 0.5 (RD LIMIT 0.11).

Algorithm iterations D̄
202 0.119420
167 0.120095
137 0.120855
112 0.121955
105 0.122237
103 0.122309

TABLE VII
EFFECT OF THE LIFTING FACTOR M FOR THE MIN-SUM ALGORITHM ON

SC(4, 8) CODES IN TERMS OF AVERAGE DISTORTION D̄ AND AVERAGE GAP
TO THE RD LIMIT δ̄ WITH FIXED L = 16 AND COMPRESSION RATE

RL = 0.5313.

Lifting factor (M) D̄ δ̄
Deviation from

BP Alg. (%)
256 0.111921 0.0120 1.6780
640 0.110373 0.0105 1.5905
832 0.110035 0.0101 1.4353

1024 0.109860 0.0100 1.3506
2048 0.109314 0.0094 1.0595

trade-offs, the proposed decimation algorithm can be sim-
plified by approximating the generator node to code node
message using a simple minimum operation, known as the
min-sum algorithm. For this purpose, (5) is replaced with

R(t+1)
a→i =

1
µ

R(t)i→a + γ(−1)sa+ |Z(a) | ©­«
∏

j∈Z(a)\i
α
(t)
j→a

ª®¬ min{ψ};

(10)
where γ < 1 is a constant scaling factor, α

(t)
j→a =

sign
(
R(t)j→a

)
, and ψ = {|R(t)j→a |}j∈Z(a)\i (see [34] for more

details.)
To obtain results for the min-sum algorithm, we limited

the magnitudes of all messages (code to generator node and
generator to code node) to 20 and used γ = 0.5.5 Then,
replacing (5) with (10) in Alg. A (block encoding) for an
SC(4, 8) code with coupling length L = 55 and lifting factor
M = 512, we obtained distortion D̄ = 0.114440 (compared to
the BP version of Alg. A with D̄A = 0.112767). In addition,
we investigated the effect of the lifting factor M using the
min-sum algorithm for some of the codes given in Table I.
The obtained distortions are shown in the Table VII, where
we see that the performance degradation is very slight (less
than 1.68%) and decreases with increasing lifting factor M for
the min-sum case.

V. CONCLUSION

In this paper, we introduced a new construction of (J,K)
regular SC-LDGM codes based on protographs for lossy
source coding. The proposed “soft-hard” BP-based decimation
algorithm was shown to perform well, giving average distor-
tion values close to the RD limit. We then presented a novel
low-latency WE algorithm with two decimation approaches

5Several approaches could be taken here to improve distortion performance,
such as optimizing the pair (ξ, γ), allowing γ to vary over iterations, or
applying a normalized version of the min-sum algorithm.
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that can significantly lower complexity (measured as the
number of node updates) with little performance degradation
for a sufficiently large window size, allowing good source
reconstruction performance to be obtained for moderate en-
coding latency. The first technique decimates a fixed number
of nodes per iteration and the second decimates all nodes
with sufficiently large confidence at each iteration. We showed
that a significant reduction in complexity (> 90%) can be
achieved compared to decimating a single node per iteration,
with only moderate losses in distortion. Also, we showed that
a min-sum formulation can be used during the BP updates
that further reduces the complexity at the cost of a slight loss
in performance. There are several features of WE approach
that can be improved, such as designing good convolutional
protographs that permit shorter window sizes and optimizing
message passing schedules within an encoding window. This,
along with a study of the performance for more general
sources, is the subject of ongoing work.
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