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Abstract—Generalized low-density parity-check (GLDPC)
codes are a class of LDPC codes in which the standard single
parity check (SPC) constraints are replaced by more general
constraints, viz., constraints defined by a linear block code.
These stronger constraints typically result in improved error floor
performance, due to better minimum distance and trapping set
properties, at a cost of some increased decoding complexity. In
this paper, we summarize some recent results on spatially coupled
generalized low-density parity-check (SC-GLDPC) codes. Results
are compared to GLDPC block codes and the advantages and
disadvantages of SC-GLDPC codes are discussed.

I. INTRODUCTION

Low-density parity-check (LDPC) block codes, with iter-
ative belief propagation (BP) decoding, were introduced by
Gallager in 1963 [1] as a class of codes whose decoder
implementation complexity grows only linearly with block
length, in contrast to maximum likelihood (ML) and maxi-
mum a posteriori (MAP) decoding methods whose complexity
typically has exponential growth. As a result of the low-
density constraint on the parity-check matrix H, the minimum
distance of LDPC block codes is sub-optimal. However, Gal-
lager showed that regular constructions, where the variable
and check node degrees of the Tanner graph representation
of H are fixed, maintain linear minimum distance growth
with block length, i.e., they are asymptotically good, although
their iterative decoding thresholds are bounded away from
capacity. Irregular constructions, introduced by Luby et al.
in 2001 [2], where the node degrees are not fixed and can be
numerically optimized, have capacity-approaching thresholds,
but linear distance growth is sacrificed. As a result, irregular
codes perform best in the waterfall, or low signal-to-noise ratio
(SNR), portion of the bit-error-rate (BER) performance curve,
while regular codes perform better at high SNRs, i.e., in the
error floor region of the BER curve.

Generalized LDPC (GLDPC) block codes, first proposed by
Tanner in 1981 [3], are constructed by replacing some/all of
the single parity-check (SPC) constraint nodes in the Tanner
graph of a conventional LDPC code by more powerful gener-
alized constraint (GC) nodes corresponding to an (n, k) linear
block code. The n variable nodes connected to a GC node in
the Tanner graph of a GLDPC code are then considered as the
code bits of the corresponding (n, k) code, and the sub-code
associated with each GC node is referred to as a constraint
code. In message passing decoding of GLDPC codes, the
constraint codes are decoded using standard block code soft-in,

soft-out decoders which, in the case of simple constraint codes
such as Hamming codes [4], can be ML or MAP decoders.
GLDPC codes have several potential advantages compared
to conventional SPC/LDPC codes, such as large minimum
distance [4], [5] and low error floors [6].

Spatially coupled LDPC (SC-LDPC) codes, also known
as LDPC convolutional codes, were introduced by Jimenez-
Felstrom and Zigangirov in 1999 [7]. SC-LDPC codes can
be viewed as a sequence of LDPC block codes whose graph
representations are coupled together over time, resulting in
a convolutional structure with block-to-block memory. A re-
markable property of SC-LDPC codes, established numerically
in [8] and analytically in [9], is that their BP decoding thresh-
old is equal to the MAP decoding threshold of the underlying
LDPC block code ensemble, a phenomenon known as thresh-
old saturation. In other words, the (exponential complexity)
MAP decoding performance of the underlying block code can
be achieved by its coupled version with (linear complexity)
message passing decoding. This provides us with motivation
to examine the performance of spatially coupled versions
of GLDPC codes, denoted SC-GLDPC codes, in order to
combine the threshold improvement of spatial coupling with
the improved distance properties of generalized constraints.1

In this paper, we review some recent publications on SC-
GLDPC codes and introduce a few new results. Protograph-
based constructions and terminated SC-GLDPC codes, both of
which are reviewed in Section II, are assumed throughout the
paper. In Section III, we summarize the threshold analysis of
terminated SC-GLDPC codes first presented in [11], followed
by a review of the minimum distance analysis from [12] in
Section IV. Section V begins by summarizing the approach
taken to analyzing the finite-length behavior of GLDPC block
codes over the binary erasure channel (BEC) with peeling
decoding (PD) [13] and then presents some new results on
applying the analysis to terminated SC-GLDPC codes. Con-
cluding remarks are given in Section VI.

II. PROTOGRAPH-BASED SC-GLDPC CODES

A protograph [14] is a small bipartite graph that connects
a set of nv variable nodes V = {v1, v2, . . . , vnv

} to a set

1In a recent paper [10], the authors found that, for certain doubly-
generalized LDPC codes, in which both variable and check nodes have
generalized constraints, the BP threshold is numerically indistinguishable from
the MAP threshold. Hence, in these cases, no BP threshold improvement will
be observed from spatial coupling.



of nc constraint nodes C = {c1, c2, . . . , cnc
} by a set of

edges E. In a protograph-based GLDPC code ensemble, each
constraint node ci can represent an arbitrary block constraint
code of length nci with mci linearly independent parity-check
equations. The design rate of the GLDPC code ensemble is
then given by

R = 1−
∑nc

i=1m
ci

nv
. (1)

A protograph can be represented by means of an nc × nv
bi-adjacency matrix B, which is called the base matrix of the
protograph. The nonnegative integer entry Bij in row i and
column j of B is equal to the number of edges that connect
nodes ci and vj . In order to construct ensembles of protograph-
based GLDPC codes, a protograph can be interpreted as a
template for the Tanner graph of a derived code, which can
be obtained by a copy-and-permute or graph lifting operation
[14]. In matrix form, the protograph is lifted by replacing
each nonzero entry Bij of B with a summation of Bij non-
overlapping permutation matrices of size M × M , thereby
creating an Mnc×Mnv parity-check matrix H of a GLDPC
code. Each row in the ith set of M rows of H must satisfy
the constraint associated with constraint node ci, where the
length nci of the ith constraint code equals the number of
nonzero entries in the ith row of B, and the constraint applies
to the positions in a row with nonzero entries.2 Allowing the
permutations to vary over all M ! possible choices results in
an ensemble of GLDPC block codes.

Example 1: Fig. 1 displays the protograph of a (2, 7)-regular
GLDPC block code with base matrix

B =

[
1 1 1 1 1 1 1
1 1 1 1 1 1 1

]
. (2)

If we suppose both the constraint nodes are (7, 4) Hamming
codes with parity-check matrix

Hc1 =

 1 0 0 1 1 1 0
0 1 0 1 1 0 1
0 0 1 1 0 1 1

 , (3)

where the constraint code length is nc1 = 7 and the row rank is
mc1 = 3, then the resulting ensemble has design rate R = 1/7.
Note that even though both constraints are defined by the same
(7, 4) Hamming code, a different ordering of columns can be
used. In Fig. 1, the column of Hc1 that the variable node is
connected to is shown on the edge. 2

A. Convolutional Protographs
An unterminated SC-GLDPC code can be described by a

convolutional protograph [15] with base matrix

B[0,∞] =



B0

B1 B0... B1
. . .

Bw

...
. . .

Bw . . .

 , (4)

2Strictly speaking, H is not a true parity-check matrix, since each row in
the ith set of M rows of H corresponds to mci parity checks.
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Fig. 1: Protograph of a (2, 7)-regular GLDPC block code. The white circles
represent generalized constraint nodes and the black circles represent variable
nodes.

where w denotes the syndrome former memory or coupling
width of the code and the bc × bv component base matrices
Bi, i = 0, 1, . . . , w, represent the edge connections from the
bv variable nodes at time t to the bc (generalized) constraint
nodes at time t+ i. An ensemble of (in general) time-varying
SC-GLDPC codes can then be formed from B[0,∞] using the
protograph construction method described above with lifting
factor M . The decoding constraint length of the resulting en-
semble is given by νs = (w+1)Mbv , and at each time instant
t the encoder creates a block vt of Mbv symbols resulting in
the unterminated code sequence v = [v0,v1, . . . ,vt, . . .].

Starting from the base matrix B of a block code ensemble,
one can construct SC-GLDPC code ensembles with the same
variable and check node degrees as B. This is achieved by
an edge spreading procedure (see [15] for details) that divides
the edges connected to each variable node in the base matrix
B among w+1 component base matrices Bi, i = 0, 1, . . . , w,
such that the condition B0 +B1 + · · ·+Bw = B is satisfied.

Example 2: For w = 1, we can apply the edge spreading
technique to the (2, 7)-regular block base matrix in (2) to
obtain the following component base matrices

B0 =

[
0 0 0 0 1 1 1
1 1 1 0 0 0 0

]
, (5)

B1 =

[
1 1 1 1 0 0 0
0 0 0 1 1 1 1

]
. (6)

The convolutional protograph associated with the resulting
base matrix B[0,∞] defined in (4) is shown in Fig. 2. We
choose the upper and lower constraint nodes at each time
instant to correspond to the (7, 4) Hamming codes with parity
check matrix Hc1 from (3). Note that the column ordering is
different for c1 and c2 as indicated on the edges. 2

B. Terminated SC-GLDPC Codes
Suppose that we start the convolutional code with parity-

check matrix defined in (4) at time t = 0 and terminate it
after L time instants (corresponding to t = L in Fig. 2). The
resulting finite-length base matrix is then given by

B[0,L−1] =



B0

B1 B0

... B1
. . .

Bw

...
. . . B0

Bw B1

. . .
...

Bw


(L+w)bc×Lbv

. (7)
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Fig. 2: Protograph of a (2, 7)-regular SC-GLDPC code ensemble.

The matrix B[0,L−1] is then the base matrix of a terminated
SC-GLDPC code. This terminated protograph is slightly irreg-
ular, with lower constraint node degrees at each end.

The reduced degree constraint nodes at each end of the con-
volutional protograph are associated with shortened constraint
codes, in which the symbols corresponding to the missing
edges are removed. Such a code shortening is equivalent
to fixing these removed symbols and assigning an infinite
reliability to them. Note that the variable node degrees are
not affected by termination.

The parity-check matrix H[0,L−1] of the terminated SC-
GLDPC code derived from B[0,L−1] by lifting with some
factor M has MbvL columns and (L+w)Mbc rows. It follows
that the rate of the terminated SC-GLDPC code is equal to

RL = 1− (L+ w)bcm
c −∆

Lbv
, (8)

where mc denotes the (constant) number of parity-checks of
each constraint code and ∆ ≥ 0 accounts for a slight rate
increase due to the shortened constraint codes.3 If H[0,L−1]
has full rank, the rate increase parameter is ∆ = 0. However,
the shortened constraint codes at the ends of the graph can
cause a reduced rank for H[0,L−1], which slightly increases
RL. In this case, ∆ > 0 and depends on both the particular
constraint code chosen and the assignment of edges to the
columns of Hci . As L → ∞, the rate RL converges to the
design rate R = 1−bcmc/bv of the underlying GLDPC block
code with base matrix B.4

III. THRESHOLD ANALYSIS OF TERMINATED SC-GLDPC
CODES

Assume that we start encoding at time t = 0 and termi-
nate after L time instants. As a result we obtain the block
protograph B[0,L−1] from (7). These terminated SC-GLDPC
codes can be interpreted as GLDPC block codes that inherit
the structure of the convolutional codes. The length of these
codes depends not only on the lifting factor M but also on
the termination factor L. For a fixed L, the BEC density
evolution thresholds εL,BP corresponding to codes with base
matrix B[0,L−1] can be estimated using the methods of [11]
for different channel parameters ε. The resulting thresholds

3We assume here that each generalized constraint node ci in the block
protograph has mc parity-checks.

4We note here that the (L+w)Mbc rows of H[0,L−1] should be viewed
as (L+w)bc groups of rows, with M entries in each group, that are decoded
according to the same constraint code with mc rows.
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Fig. 3: (a) BP decoding thresholds as functions of the termination factor L
and (b) BP decoding thresholds versus code rate RL.

for the (2, 7)-regular w = 1 ensemble with (7, 4) Hamming
constraint codes from Example 2 are shown in Fig. 3(a) for
different termination factors L, and the thresholds versus code
rate RL are shown in Fig. 3(b). Analogously to SC-LDPC
codes (see [15]) with SPC constraints, we observe that as
L→∞ the BP threshold numerically coincides with the upper
bound on the ML decoding threshold of the corresponding
block code ensemble, thus exhibiting the threshold saturation
phenomenon (see [8], [9]). Large L can be realistic in con-
junction with window based decoders, like those suggested in
[16], where decoding delay and storage requirements depend
on the window size W , which is independent of the length
L (typically W � L) of the transmitted code sequences.
For shorter L, which introduces rate loss, BP decoding of
terminated SC-GLDPC codes is suboptimal but still provides
a flexible adjustment between code rate and threshold (see
Fig. 3(b)).

IV. MINIMUM DISTANCE ANALYSIS OF TERMINATED
SC-GLDPC CODES

From the convolutional protograph with base matrix B[0,∞]

in (4), we can form a periodically time-varying M -fold graph
cover with period T by choosing, for the bc × bv submatrices
B0,B1, . . . ,Bw in the first T columns of B[0,∞], a set of M×
M permutation matrices randomly and independently to form
Mbc×Mbv submatrices H0(t),H1(t+1), . . . ,Hw(t+w), re-
spectively, for t = 0, 1, . . . , T −1. These submatrices can then



be repeated periodically (indefinitely) to form a convolutional
parity-check matrix H[0,∞] such that Hi(t + T ) = Hi(t),
∀i, t. An ensemble of periodically time-varying SC-GLDPC
codes with period T , design rate R = 1 −Mmcbc/Mbv =
1−mcbc/bv , and decoding constraint length νs = M(w+1)bv
can then be derived by letting the permutation matrices used to
form H0(t),H1(t+1), . . . ,Hw(t+w), for t = 0, 1, . . . , T−1,
vary over the M ! choices of an M ×M permutation matrix.

In [17], Abu-Surra, Divsalar, and Ryan presented a tech-
nique to calculate the average weight enumerator and asymp-
totic spectral shape function for protograph-based GLDPC
block code ensembles. The spectral shape function can be
used to test if an ensemble is asymptotically good, i.e., if the
minimum distance typical of most members of the ensemble is
at least as large as δminn, where δmin is the minimum distance
growth rate of the ensemble and n is the block length.

Example 3: Consider the (2, 7)-regular GLDPC block code
protograph with the all-ones base matrix B from (2) and
the two generalized constraint nodes shown in Fig. 1. If the
constraint codes are (7, 4) Hamming codes with parity-check
matrix Hc1 from (3), then the resulting ensemble has design
rate R = 1/7, is asymptotically good, and has growth rate
δmin = 0.186 [17]. 2

We now consider the associated (2, 7)-regular terminated
SC-GLDPC code ensemble from Example 2, whose proto-
graph is shown in Fig. 2. Since terminated SC-GLDPC codes
can be viewed as block codes of length MbvL and rate
given by (8), the methods of [17], properly modified, can
be used to evaluate their asymptotic weight enumerators (see
[12] for details). Fig. 4 shows the asymptotic spectral shape
functions for the SC-GLDPC code ensembles with termination
factors L = 7, 8, 10, 12, 14, 16, 18, and 20. Also shown are the
asymptotic spectral shape functions for “random” codes with
the corresponding rates RL calculated using (see [1])

r(δ) = H(δ)− (1−RL) ln(2), (9)

where H(δ) = −(1− δ) ln(1− δ)− δ ln(δ). We observe that
the SC-GLDPC code ensembles are asymptotically good and
have relatively large minimum distance growth rates, ranging
from about 25% to 65% of the random coding growth rates.
This indicates that long codes chosen from these ensembles
have, with probability near one, a large minimum distance.
As L increases, RL approaches the design rate R = 1/7 of
the underlying GLDPC block code and the minimum distance
growth rate decreases, as was also observed in the case of
SC-LDPC codes with SPC constraints (see [15]).

While large minimum distance growth rates are indicative
of good ML decoding performance, when predicting the
iterative decoding performance of a code ensemble in the high
SNR region other graphical objects such as pseudocodewords,
trapping sets, absorbing sets, etc., come into effect. Based on
results from the SPC case [18], we expect SC-GLDPC codes
with large minimum distance growth rates to also have large
trapping set growth rates, indicating good iterative decoding
performance in the high SNR region.
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Fig. 4: Spectral shape functions of SC-GLDPC code ensembles and random
linear codes of the corresponding rate.

V. FINITE-LENGTH ANALYSIS OF TERMINATED
SC-GLDPC CODES

Peeling decoding (PD) is a simple algorithm for LDPC
codes over the BEC that iteratively removes a degree-one
check node in the graph along with the variable node attached
to it and all the edges connected to these two nodes. We now
briefly describe an extension of PD to GLDPC codes, referred
to as generalized peeling decoding (GPD) (see [13]).

Initially, variable nodes of H and their attached edges
are removed from the graph with probability (1 − ε). After
initialization, the residual graph contains constraint nodes with
types that are not included in Fc, the set of constraint node
types in the original graph, but the set of variable node types
Fv remains the same. Given a constraint node of type c ∈ Fc,
define D(c) as the set of all residual constraint node types
that might appear in the graph when edges are removed from
a constraint node of type c (c ∈ D(c)). The extended set
of all possible constraint node types which are present in
the residual graph after GPD initialization is then given by
Fc

.
=
⋃

c∈Fc
D(c).

Example 4: In the (2, 7)-regular protograph of Fig. 1, we
have two constraint node types: c1, denoting the set of edges
connecting constraint node 1 to each of the 7 variable nodes,
and c2, denoting the set of edges connecting constraint node 2
to each of the 7 variable nodes. Corresponding to each of these
types, 27 = 128 residual types can appear in the graph when
edges are removed. Thus, in total, Fc contains 256 residual
types. 2

According to the above definitions, the expected degree dis-
tribution (DD) after initialization can be expressed as follows:

Ld(0) = εLd, Rc(0) =
∑
q∈Fc

c′∈ D(q)

Rqε
|c′|(1− ε)|q|−|c

′|,

for d ∈ Fv and c ∈ Fc, where Ld (respectively Rc) is
the number of variable (constraint) nodes of type d (c) in
the original graph, Ld(0) (Rc(0)) is this number after GPD
initialization, and |c′| is the number of edges in c′.



We now define the normalized DD at time τ as follows:

τ
.
=

`

M
, rc(τ)

.
=
Rc(τ)

M
, ld(τ)

.
=
Ld(τ)

M
, (10)

where ` is the GPD iteration index, Rc(τ) (Ld(τ)) is the
number of constraint (variable) nodes in the graph of type
c(d) at time τ , and M is the lifting factor. Following the
methodology developed in [19] to analyze the BEC finite-
length performance of LDPC block codes, we can investigate
the BEC finite-length performance of GLDPC codes by ana-
lyzing the statistical evolution of the DD in (10) during the
decoding process. As shown in [19], the GPD threshold is
defined as the maximum value of ε for which the expected
fraction of decodable constraint nodes

â(τ)
.
=
∑
c∈A

r̂c(τ), (11)

is positive for any τ ∈ [0, ε), where r̂c(τ) is the expected
value of rc(τ), â(τ) is the mean of the random process

a(τ)
.
=
∑
c∈A

rc(τ), (12)

and A is the set of all decodable constraint node types, which
depends on the erasure correcting capability of the constraint
codes. Similarly, we can compute the expected fraction of
variable nodes in the graph at any time τ , denoted by v̂(τ),
as follows:

v̂(τ)
.
=
∑
d∈Fv

l̂d(τ), (13)

where l̂d(τ) is the expected value of ld(τ). r̂c(τ) and l̂d(τ)
can be computed as the solution to a system of differential
equations (see [19] for details) and then used to determine the
quantities needed to assess the finite-length performance of
the code. We refer to critical points as the points in time for
which â(τ) has a local minima. As shown in [19], the average
(over the ensemble of codes) error probability is dominated by
the probability that the process a(τ) survives, i.e., does not go
to zero around the critical points. Therefore, characterizing
the critical points and the expected fraction of decodable
constraint nodes in the graph at those points in time are the
parameters needed to determine the GLDPC code finite-length
performance.

With the tools described above, we can now investigate the
asymptotic and finite-length performance of GLDPC block
code and terminated SC-GLDPC code ensembles.

Example 5: Consider the (2, 7)-regular GLDPC block code
ensemble of Fig. 1 with ML-decoded Hamming (7, 4) con-
straint codes. The design rate of this ensemble is R = 1/7.
All constraint node types with one or two erasures can be
decoded, as well as some constraint node types with three
erasures. Fig. 5 shows the evolution of the expected fraction of
decodable constraint nodes â(τ) versus the expected fraction
of variable nodes v̂(τ) in the graph for different ε values.5

5Note that the time variable τ runs backwards in this figure (right to left),
in the sense that small values of τ correspond to v̂(τ) on the right, where
the graph still contains a relatively large fraction of variable nodes, whereas
large values of τ correspond to small values of v̂(τ) on the left.
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Fig. 5: Evolution of the expected fraction of decodable constraint nodes â(τ)
in the residual graph during iterations of the GPD for the (2, 7)-regular
GLDPC block code ensemble with (7, 4) Hamming constraint codes decoded
using an ML decoder. The dotted curves represent simulated trajectories for
a(τ) computed for ε = 0.69 with lifting factor M = 4000.

We also include a set of 10 simulated trajectories for a(τ)
for ε = 0.69 to demonstrate that they concentrate around the
predicted mean. Note first that â(τ) has a single critical point
at v̂(τ∗) ≈ 0.43. Indeed, we can compute the threshold ε∗ as
the maximum ε value for which the minimum is exactly zero.
In this case we obtain ε∗ ≈ 0.7025. 2

The finite-length error probability is dominated by the
statistics of a(τ) around τ∗. Following [19], for each n and ε
pair, we can estimate the finite-length error rate as

PBlock ∼ Q

(
â(τ∗)√

Var(a[τ∗])

)
, (14)

where â(τ∗) is the expected value of a(τ) at τ∗, Var[a(τ∗)]
represents its variance, and we use Monte Carlo simulation
to estimate Var(a[τ∗]) for a particular (n, ε) pair. In [19],
the authors showed that the ratio of the expected number of
degree-one constraint nodes to the standard deviation at the
critical point approximately scales as α

√
n(ε∗ − ε), where α

is a scaling parameter that only depends on the DD. In the
GLDPC case, the simulated trajectories for a(τ) suggest that
the same scaling holds and that the performance for any pair
(n, ε) can be estimated as PBlock ∼ Q (α

√
n(ε∗ − ε)).

Following a similar procedure, we can analyze the finite-
length behavior of terminated SC-GLDPC codes. Once the SC-
GLDPC base matrix B[0,L−1] is defined, we can use the same
analysis described above, including the computation of the
expectations â(τ) and v̂(τ) in (11) and (13). In Figure 6, we
show the evolution of the expected fraction â(τ) of decodable
check nodes during iterations of the GPD for the (2, 7)-regular
terminated SC-GLDPC code ensemble (corresponding to the
GLDPC block code ensemble of Example 5) with L = 20, 30,
and 50 for a channel parameter ε = 0.75. Unlike the GLDPC
block code, the expected evolution â(τ) displays a constant
evolution or critical phase of decoding that corresponds to a
decoding wave traveling towards the central positions of the
graph. Further, the critical value â(τ∗) during such a phase



does not depend on L, and the length of the critical phase is
roughly proportional to L. Similar effects were first described
in [20] for non-generalized terminated SC-LDPC codes. Based
on this evidence, it is expected that the survival probability of
the a(τ) process during the critical phase follows a scaling
law of the same form as the one proposed in [20], and thus
the block error probability PBlock can be estimated as follows

PBlock ≈ 1− exp

− νL∫ α
√
M(ε∗−ε)

0

Φ(z)e
1
2 z

2

dz

 , (15)

where Φ(z) is the c.d.f. of the standard Gaussian distribu-
tion, N (0, 1), νL is the length of the critical phase, and
α
√
M(ε∗−ε) corresponds to the ratio of the expected number

of decodable constraint nodes during the critical phase to the
standard deviation of a(τ). Both ν and α are parameters that
depend on the underlying GLDPC block code and the edge
spreading.
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Fig. 6: Evolution of the expected fraction of decodable constraint nodes â(τ)
in the residual graph during iterations of the GPD for the (2, 7)-regular SC-
GLDPC code ensemble with L = 20, 30, and 50 and (7, 4) Hamming
constraint codes decoded using an ML decoder.

VI. CONCLUDING REMARKS

In this paper we summarized both asymptotic and finite-
length results for SC-GLDPC codes. Specifically, terminated
SC-GLDPC code ensembles were shown to achieve threshold
saturation, thus assuring them of having better waterfall perfor-
mance than their underlying GLDPC block codes. They were
then shown to be asymptotically good and to possess large
minimum distance growth rates, thus assuring them of also
having excellent error floor performance. Finally, terminated
SC-GLDPC codes were shown to outperform their GLDPC
block code counterparts in the finite length regime. These
improvements are achieved at the expense of a modest increase
in decoding complexity, depending on the particular constraint

codes and decoders chosen, albeit with the advantage of a
typically smaller number of message passing iterations.

ACKNOWLEDGMENT

This material is based on work supported in part by the
National Science Foundation under Grant No. ECCS-1710920
and in part by the Spanish Ministry of Science, Innovation and
University under grant TEC2016-78434-C3-3-R (AEI/FEDER,
EU).

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 1963.

[2] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs,” IEEE
Trans. on Inf. Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.

[3] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. on Inf. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[4] M. Lentmaier and K. Sh. Zigangirov, “On generalized low-density
parity-check codes based on Hamming component codes,” IEEE Comm.
Letters, vol. 8, no. 8, pp. 248–250, Aug. 1999.

[5] J. J. Boutros, O. Pothier, and G. Zémor, “Generalized low density Tanner
codes,” in Proc. IEEE Int. Conf. Comm., Vancouver, Canada, June 1999.

[6] G. Liva, W. E. Ryan, and M. Chiani, “Quasi-cyclic generalized LDPC
codes with low error floors,” IEEE Trans. on Comm., vol. 56, no. 1, pp.
49–57, Jan. 2008.
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