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PERSON-CENTERED TECHNOLOGIES FOR INDIVIDUALS
WITH DISABILITIES: EMPOWERMENT THROUGH ASSISTIVE
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Human-Centered Computing (HCC) focuses on a tight coupling of humans in the design of
technologies. While HCC has advanced computing research, a new paradigm is needed to
better address not only interpersonal variations but also intrapersonal variations that occur
over time in order to design more useful and usable solutions for individual users. We pro-
pose Person-Centered Computing (PCC) to address users’ distinct and ever-changing needs,
preferences, expectations, behaviors, and abilities due to aging, geographical location, and
contextual factors. There is no greater need for PCC than among individuals with disabilities,
where we often find unique requirements that necessitate a person-centric approach. Through
co-adaptation, PCC offers a bridge between the development of assistive and rehabilitative
applications and design opportunities for the broader population. Our hope is that PCC will
motivate accessible and inclusive designs for today’s technologies rather than requiring indi-
viduals with disabilities to force-fit and modify existing solutions with marginal success. Here
we present our PCC paradigm along with two innovative multimedia solutions, the Social
Interaction Assistant and Autonomous Training Assistant, to demonstrate how the proposed
design strategy not only empowers the target user groups but also impacts the broader popu-
lation by revealing implicit, unseen needs.
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INTRODUCTION

As the complexity of computing research advances,
technology is becoming increasingly capable of recog-
nizing, adapting to, and accommodating many facets
of human behavior. Human-Centered Computing
(HCC) is a prominent product of this evolution. HCC
has established itself as a field of considerable modern
research that focuses on the requirements, tenden-
cies, needs, characteristics, and behaviors of human
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beings during the research, design, and development
of computing solutions (1). For example, solutions
that take into account human-centeredness consider
and address differences among human cultures and
societies within their designs (2). This deeper level
of human understanding distinguishes HCC from
traditional human-computer interaction practices
that treat the user as a static entity and instead focus
on general usability. While HCC design has elevated
computing research to a new level of compatibility
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within differing populations, an even deeper level
of understanding is necessitated by the existence of
individual variance even within small populations.

Person-Centered Computing (PCC) is a novel
paradigm, previously introduced by Panchanathan et
al. (3,4), that further enhances the leading principles
of HCC (that human populations vary and that tech-
nology should adapt to these variations) by applying
them at the level of the individual. This strategy dic-
tates that an individual’s ideal technological solution
is one designed for that particular person, given that
he or she is wholly unique. For technology to achieve
this level of individualization and, at the same time,
be broadly useful and usable to others, PCC hinges
upon co-adaptation. Co-adaptation occurs when the
user and technology adapt to each other through
continual use, with the onus being on the technology
to learn and cater to the unique attributes of each
individual user.

The paradigm of PCC is inspired by disability
research, particularly assistive and rehabilitative
applications, where large interpersonal variations
in ability are not uncommon among individuals with
sensory, cognitive, and/or physical impairments.
Large intrapersonal variations over time are also not
uncommon. For example, depending on the disease
or condition, the impairment may alter with time,
changing the way the disability manifests itself. This
article presents two examples of technological solu-
tions designed under the PCC paradigm to address
the unique needs of individuals with disabilities.
The Social Interaction Assistant (SIA) is a real-time
vision-based wearable and tabletop social assistive
device for recognizing and delivering an interaction
partner’s non-verbal cues (e.g., facial expressions)
to an individual who is blind or visually impaired.
The Autonomous Training Assistant (ATA) is a
highly-adaptable, individually-aware hardware and
software interface capable of delivering multimodal
instructions and feedback for at-home rehabilitative
training to individuals with varying motor capabil-
ity and functional goals. The SIA and ATA systems
demonstrate that, through deep exploration of the
needs of an individual or a few individuals, require-
ments for design arise that could not otherwise be
explored in studies that treat large groups of users
as a homogeneous entity; these requirements inspire
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the creation of more adaptive solutions, as is shown
in the examples below.

This paper demonstrates how key findings related
to the SIA and ATA support PCC. First, the challenges
and perspectives emphasized within the disability
space and their implications for modern technology
are considered. Next, the research and design pro-
cess of the SIA are described, as well as some of the
key findings and contributions of the project toward
improving social interaction for a broader population.
The third section highlights the challenges and design
underlying the ATA and its novel contributions in
motor rehabilitation using a case study application.
Finally, thoughts based on the results of these projects
and paths for future research in PCC are discussed.

A PARADIGM INSPIRED BY NOVEL
PERSPECTIVES FROM DISABILITY

Technology solutions today are still focused on
addressing the needs of the ‘able’ population. The
needs of the disabled population are often addressed
through modifications and temporary fixes to exist-
ing solutions designed for the broader population.
For example, although devices like smart phones
have been made highly accessible to individuals who
are blind, the features of accessibility are built on
top of existing platforms rather than the other way
around. It is surprising that even though 12.6% (39
million) of the population within the U.S. live with
some form of disability (http://disabilitystatistics.
org/), technology is still largely designed without
them in mind. Economic viability is understood to
be the major reason for the lack of innovation in
the disability space. To address this issue, there have
been efforts over the last decade to make innovation
inclusive and accessible. For example, the ‘Design
for All’ paradigm in the context of information and
communications technology is a systematic effort
to promote universal design in computer and inter-
net-based technologies to avoid standard posterior
adaptation procedures that attempt to accommodate
the needs of those with disabilities through force fits,
workarounds, and afterthoughts (5).

At the Center for Cognitive Ubiquitous
Computing, we take inspirations from disabilities
to design innovative assistive multimedia solutions
where users’ needs wholly drive decision-making at
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every stage (6). Explicit needs are often cognizant
and readily available, and therefore straightforward
to gather through survey methods such as interviews
and questionnaires. Implicit needs are subconscious
and represent tacit knowledge, and therefore are more
difficult to extract. Our work and experiences in
disability research have shown that designing tech-
nologies to address the explicit needs of individuals
with disabilities paves the way to uncovering address-
able implicit needs of the broader population and,
through co-adaptation, potentially achieving broader
impact and economic viability.

PROTOTYPE STUDY #1: SOCIAL INTERACTION
ASSISTANT

Human social interactions are made up of both
verbal (speech) and non-verbal (e.g., facial expres-
sions, hand gestures, and body language) cues. A
large percentage of interaction (65% or more) is
non-verbal (7). Individuals who are blind have lim-
ited access to non-verbal communicative cues given
their inherent visual nature. The SIA is an assistive aid
to help individuals who are blind or visually impaired
during dyadic or group interactions by providing
access to non-verbal information. The SIA consists of
three components: sensing, processing, and delivery.
Sensing involves capturing information of the inter-
acting partner(s) and their surroundings through
sensors (e.g., visual and audio) embedded on the user
and in the environment. The processing component
mines the data gathered from the sensors for patterns
of non-verbal information. The interaction phase
discreetly delivers the processed information in the
form of cues that are relevant and useful to the user.
Rather than interfere with an ongoing social inter-
action, these cues augment the user’s awareness of
their interaction partner.

Role of Non-verbal Cues in Social Interaction

Social interactions play an important role in help-
ing us communicate effectively. They form an integral
part of our everyday communication that enables us
to convey our emotions and feelings in an efficient
manner. Besides facilitating communication, they
also help us socially connect with friends, family, and
peers. It is well understood that such social connect-
edness aids in reducing stress by providing emotional
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and psychological needs, which has major health
benefits. Hence, social interaction is essential for a
higher quality of living. Given the visual nature of
non-verbal social cues, individuals who are blind
are at a disadvantage when interacting with their
sighted peers and colleagues. It is not uncommon for
this population to feel awkward or embarrassed in
certain social situations due to miscommunications
that could have been avoided if they had had access
to visual information. Such situations can lead to
social avoidance and, eventually, social isolation,
which can be detrimental to a person’s productivity,
health, and wellbeing (8).

Components of the SIA

The SIA, depicted in Figure 1, consists of sun-
glasses with a discreetly embedded camera (a tabletop
web cam may be used for social settings at a table); a
computing device (i.e., mobile phone) to process the
images captured by the camera; and haptic devices
for information delivery, including a vibrotactile belt
when user is mobile as well as the haptic face display
when user is stationary and seated at a table. The
haptic face display (9) consists of a two-dimensional
array of vibrotactile actuators that are driven by the
processing device. In Figure 1, the haptic face display
has the form factor of an ergonomic mesh chair. The
user seated in the chair experiences vibrotactile stim-
ulation on his or her back, and it is the dimensions of
the vibrations that encode the non-verbal cues. We
are currently exploring other form factors for two-di-
mensional vibrotactile displays, including a wearable
vest for mobile use as well as a tabletop display for
active exploration. The chair’s vibrotactile display
consists of 3.3 volt DC eccentric rotating mass (ERM)
pancake motors arranged in the form of an array of
six rows and eight columns. The ERM motors are
spaced 2 cm apart horizontally (center-to-center) and
4 cm apart vertically (center-to-center). The SIA also
has a haptic waist belt (10) to provide cues regard-
ing position and proximity of interaction partners
to augment situational awareness in mobile con-
texts. The belt consists of seven ERM motors placed
equidistantly along the length of the belt, ending at
the left and right sides of the torso, with the middle
vibration motor aligned with the midline of the body.
The motors vibrate discreetly to indicate the relative
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orientation of the interaction partner using body site
and interpersonal distance (proximity) using vibra-
tion duration or rhythm. These cues assist users in
orienting themselves to face their interaction partners
and maintain the appropriate distance from them. To
allow this system design to serve the needs of each
individual, both the complexity of tactile feedback
and the capture of facial features are adapted using
swappable mapping formats and domain adaptation,
respectively, as described below.

Adaptation of Information Delivery for Person-
centeredness

Discussions with individuals who are blind and
visually impaired revealed a desire to virtually explore
the faces of their interaction partners to experience
and understand facial expressions first hand. Other
users were merely content with an assistive aid that
recognizes and conveys to them the emotions of their
interaction partners. It was clear that each user’s
needs were unique, and a one-size-fits-all policy was
not going to be universally acceptable to the blind
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community. It was necessary to build a system that
could adapt to the needs of each individual user. Since
the delivery component of the SIA is the interface
between the user and the system, it also has the max-
imum scope for adaptation. The delivery phase of the
SIA incorporates person-centeredness by providing
the user with output cues of varying granularities.
We outline three adaptive delivery mechanisms for
the SIA that enhance person-centeredness.

Literal Mapping

In this design, there is a direct mapping between
the 49 landmark features displayed in Figure 2 and the
vibrotactile actuators (regions of the haptic face dis-
play). In this setting, users passively explore the faces
of their interaction partners in a virtual manner and
gather information about the facial expressions first
hand. The vibration motors in a region are actuated
based on the change in the position of key landmarks
relative to other landmarks. Tracking the relative
change helps to account for overall movements of
the face, which, in turn, changes the position of all
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Figure 1. Social Interaction Assistant components and technologies.
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Figure 2. Facial landmarks for literal mapping of features.
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Figure 3. Semi-literal mapping of facial action units to vibrotactile patterns. The array of dots below the action unit represents the six
by eight two-dimensional vibrotactile display of the haptic face display. The darkened dots indicate actuated vibration motors, and
their temporal sequence is from left to right, which encode the action unit represented by the face images. Three example patterns
from a larger set are shown.
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the landmarks. The landmark movements arising
from external factors such as camera movement and
head movement need to be accounted for to capture
only relative landmark movement. A minimum set
of landmarks is chosen to encode facial expressions.
This is the most direct mapping of facial expressions
into vibrotactile patterns, and the onus of recognition,
interpretation, and decision making is on the user.

Semi-literal Mapping

In this mapping, a layer of abstraction is intro-
duced, compared to the direct mapping of facial
landmarks, by using facial action units. The Facial
Action Unit Coding System is a categorization of
facial muscle movements commonly used by psy-
chologists to study human facial expressions (11).
In earlier work (12), we designed and evaluated
vibrotactile spatio-temporal patterns to intuitively
communicate a subset of facial action units that are
most prominently featured in the six basic emotions
(13): happiness, sadness, surprise, anger, fear, and
disgust. The haptic face display was divided into three
regions: upper region to transmit eyebrow move-
ments; middle region to convey movements of the
nose and cheek; and lower region to map the move-
ments of the lips. From an initial set of vibro-tactile
patterns, pilot testing allowed the selection of a sub-
set of distinct and intuitive mappings, which were
then further evaluated to more deeply explore their
naturalness and distinctness. This study yielded
recognition accuracies in the range of 80% to 96%
(with a trial average 91%). It was estimated that the
vibration pulse length, ranging from 250 ms to 1,000
ms, had little effect on recognition accuracy. With
no significant difference found between different
pulse durations, it was concluded that the perception
of the proposed spatio-temporal patterns was not
affected by the variation in individual pulse widths.
As aresult, pulses of short duration could be used to
enable higher throughput and improved communica-
tion rates. Figure 3 depicts a few of these action units
and the corresponding vibration patterns. During
real-time presentation, when multiple action units
are detected, the haptic face display will convey these
sequentially or, alternatively, will convey the most
confident (intense) action unit.
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Symbolic Mapping

This mapping provides the highest level of
abstracted information to the user in the form of
emotions. Whereas in the previous mappings, the
user made the final decision about the emotion of
their interaction partner, in this representation, the
SIA processes the sensory information from the cam-
era to determine the basic emotion of the partner
and subsequently conveys a symbolic representation
of the emotion to the user. This mode of operation
can be useful when the user is overloaded with sen-
sory information from other sources and is merely
interested in knowing the emotional state of the user
without having to devote any cognitive processing to
gather and analyze such information.

To select effective and efficient patterns to convey
emotional states, we explored a large design space of
spatio-temporal vibrotactile stimulations that could
potentially elicit emotions of happiness, sadness,
surprise, anger, fear, and disgust in the user (9).
Beginning with a design space of 150 patterns, pilot
testing revealed 54 patterns as distinct and poten-
tially useful. These remaining patterns, which also
included timing variations (various pulse widths)
and saltation versions (14) of selected patterns, were
evaluated for their effectiveness at evoking emotions.
A study of consensus among participants yielded 20%
to 30% agreement for certain patterns. The results
were averaged across gender and vibration duration.
This yielded a consensus of 26% for anger when using
the Six Motor Burst pattern; 28.1% for happiness
when using the Snake pattern; and 22.9% for neu-
trality when using the Spiral pattern—that is, the
absence of emotion, which may be useful to convey
between long periods absent of emotional content
(Figure 4). We hypothesize that the Snake pattern was
interpreted as playful because it feels like someone
running a finger across the user’s back in a winding
pattern and that the Six Motor Burst pattern angered
participants due to its intensity and randomness.
Moreover, it was observed that patterns that lasted
longer elicited sadness, and patterns that were shorter
were more likely to evoke happier emotions.
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Figure 4. Symbolic mapping of three emotions to vibrotactile patterns. This approach aims to effectively and efficiently convey an
interaction partner’s emotions by evoking those same emotions in the user. This strategy is to enhance communication by enabling
the user and his or her partner to share non-verbal emotional experiences.

Adaptation of the Algorithms for Person-
centeredness

Based on a user’s needs, they may switch between
the different levels of abstraction (literal, semi-literal,
or symbolic) of the SIA. The delivery phase of the SIA
receives its inputs from the processing phase of the
SIA. At the core of the SIA is the processing algorithm
that analyzes the data captured through the sensors.
The processing algorithm outputs landmarks, action
units, and emotions of the interaction partner, which
are conveyed by the delivery phase to the user on
an as-needed basis. The processing phase consists
of computer vision algorithms for face detection,
facial landmark extraction, action unit recognition,
and facial expression recognition. These algorithms
analyze the face of the partner to extract this infor-
mation in real time. The computer vision algorithms
are trained to make these predictions using a large
pool of labeled data using supervised learning—a
paradigm of machine learning. Algorithms trained in
this manner can then be applied to make predictions
on test data consisting of previously unseen faces.

Supervised learning algorithms often make the
implicit assumption that the test data is drawn from
the same distribution as the training data. Such algo-
rithms become ineffective when these assumptions
regarding the data are violated. For example, a facial
expression recognition algorithm trained on white
facial images is likely to degrade in performance when
tested on facial images from a different ethnic group,
say African American. This is because of the change
in data distributions of the train and test data—the
facial features are different, the facial expressions

could be different based on cultural dissimilarities,
etc. In addition, the paucity and/or poor quality of
data from a distribution also limits the efficacy of
the classifier. When the number of samples or their
quality is limited, supervised learning algorithms
fall short in learning a well-generalized classifier.
These kinds of problems are addressed using transfer
learning and domain adaptation techniques. Transfer
learning and domain adaptation algorithms extract
knowledge from one or more tasks or domains and
utilize (transfer) that knowledge to design a solution
for a new task or domain. These adaptation pro-
cedures transfer knowledge from a source domain
(distribution) to a target domain (distribution), in
the form of learned models and efficient feature rep-
resentations, to train well-generalized classifiers for
the target domain (15,16).

In designing the SIA, we have applied domain
adaptation to make the processing of action unit and
facial expression recognition robust across a wide
range of face types. Facial image data can vary due to
the following reasons: differences in image resolution,
brightness, occlusion, changes in camera point-of-
view, and inherent diversity of the sample space. It is
impractical to train individual recognition models for
every kind of distribution due to a paucity in labeled
data, the cost involved in training, and the wide vari-
ety of distributions that arise from vision-based data.
Therefore, domain adaptation-based solutions are
applied to adapt models trained on one domain (dis-
tribution) to other domains (distributions). In the
SIA project, we have explored domain adaptation at
the classification stage with the use of linear models.
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In the Coupled Support Vector Machine (C-SVM)
algorithm (17), we train a pair of SVMs-one for the
source domain and another for the target domain-
with limited labeled data in the target domain. In
the Nonlinear Embedding algorithm (18), we learn
to adapt the two domains by projecting the features
into a common subspace using a nonlinear embed-
ding model. We test the facial expression recognition
algorithms using standard datasets, such as CKPlus
(19) and MMI (20), and demonstrate how domain
adaptation improves the accuracies of prediction on
the target domain when there is very limited or no
labeled data. The algorithms for the processing unit of
the SIA are trained on standard existing datasets, such
as CKPlus and MMI, but will be made robust with
domain adaptation to recognize the facial expressions
of a wide range of faces and adapt to the social group
of the user.

PROTOTYPE STUDY #2: AUTONOMOUS
TRAINING ASSISTANT

Need for Person-centeredness in Rehabilitative
Motor Learning

Motor rehabilitation is perhaps one of the most
well-aligned domains for person-centric computing.
In this field of research, new devices, systems, and
techniques for the enhancement of rehabilitative exer-
cise are in constant development. This is no surprise,
as rehabilitative care is one of the most expensive
fields of medical expenditure in the U.S. every year
(21). Technologies researched in this field are often
intended to assist the user with rehabilitative exer-
cise by assessing performance, providing feedback,
and creating an interactive space more conducive
to motor training than interacting with ordinary
equipment in a household or clinical environment.
This technology may also be responsible for detecting
and reacting to changes in user state, including fatigue
or compensatory behavior while exercising. Results
reported related to the usage of this technology often
include an increased sense of autonomy, improved
motivation to exercise, higher levels of dedication
to regular exercise, and, by consequence, improved
health outcomes.

However, most of the technologies designed
for these purposes often fall short of achieving

VENKATESWARA ET AL.

significantly positive outcomes outside of a very nar-
row group of test users and subjects. A significant
cause of this shortcoming is that an overwhelming
majority of research efforts in the field treat users of
rehabilitative technology as a homogeneous entity.
Quite to the contrary, rehabilitation is a field brim-
ming with individual variance. Each individual case
involves a variety of experiential, physical, and human
factors, including an individual’s motor ability, level
of impairment, location of impairment, functional
goals, muscle strength, progression through therapy,
age, gender, motor exercise regimen, and training
environment, among many others, all of which
directly affect design choices necessary to create an
effective solution for that individual (22). Each indi-
vidual, based on these factors, should be considered
a unique entity.

Therefore, it is argued that research can more effec-
tively be conducted in rehabilitation when it begins
with a single person and a real challenge posed by
that person. One of the most immediately apparent
flaws with this approach is that, by focusing on a
single individual, an effective solution may be created
for that individual, but it would be too specialized
to be useful for other individuals with significantly
different challenges. Fortunately, using the principle
of co-adaptation, technologies that begin with a single
individual can mold themselves to meet the varying
needs of other individuals, as is demonstrated in the
design process of the ATA system, which is detailed
below.

Supervised vs. Unsupervised Motor Learning and
the Role of the Physical Trainer

As the range of application areas for rehabilitative
technology is rather broad, it is important to establish
the scope of the work presented here. Two forms of
rehabilitative training are considered for this purpose:
supervised and unsupervised training. In supervised
motor training, a physical trainer, therapist, or other
expert is present to perform some (or all) of the fol-
lowing functions during an individual’s training
(23): assess the individual’s performance at a motor
task; provide feedback to the individual on his or her
performance, clearly distinguishing between what
is done well and what needs improvement; adjust
characteristics of the motor task so that it matches
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Figure 5. Intelligent Stick early prototype design sketch.

the individual’s current level of skill; maintain and
update goals for performance on the task; respond
to an individual’s emotional status, including interest
in the task, boredom, or frustration; correct unsafe
behavior such as overexertion or compensatory
motion; react to potentially dangerous changes in
the individual’s physical state, including fatigue or
dizziness; and encourage and motivate the subject.
While these tasks are common among physical
trainers during supervision of rehabilitative exercise,
there is no universally accepted standard for the way
in which these practices are implemented. As such,
trainers use a myriad of techniques, across a variety
of interaction channels, to deliver interactive, mean-
ingful rehabilitative exercise to subjects. In addition,
the amount of weekly exercise required for an indi-
vidual to maintain steady progress in a rehabilitative
program typically exceeds the availability of a trainer
or therapist, which leads to the assignment of unsu-
pervised training (often in the individual’s home
environment). In this form of training, an individual
is typically expected to complete a set of rehabilitative
exercises without expert supervision. Accordingly,
the above services that an expert would provide in
supervised training are missing in many of the tra-
ditional forms of unsupervised training, wherein
the subject either uses simple training equipment
or exercises without any equipment or interface. In
unsupervised training, an automated solution for

the delivery of supervisory tasks is therefore highly
desirable and is the focus of this work.

Introduction and Overview of the ATA

The ATA is an interactive system for guided motor
training in the home environment. It consists of the
following components:

o The Intelligent Stick, a rod-shaped training
device equipped with various components for
sensing and feedback, including vibrotactile
motors, an accelerometer, and a gyroscope.
The design of the device is modular, allow-
ing for various parts to be swapped in and out
freely. This design strategy follows Universal
Design principles, allowing the device to adapt
itself to the needs of users with a variety of
grip strength, form factor, exercise task, and
feedback requirements. A design sketch of this
device is featured in Figure 5.

« A Microsoft Kinect sensor for real-time skeletal
joint tracking and facial tracking for affective
response detection. Motion data from this sen-
sor is fused with data from the Intelligent Stick
accelerometer and gyroscope in real time to
track and assess a user’s motion during exercise,
thus alleviating the occlusion problem posed
by the static camera sensor.

o An audiovisual training interface designed as
a serious game using stealth assessment. The
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type of game as well as the design depends on
the interests and motion tasks of the subject.
An example implementation of a game (Island
Fruit) is covered in previous work by Tadayon
(24), wherein the game adapts not only to the
subject’s motor performance but also to the
subject’s emotional response (affect) seamlessly
in real time.

To facilitate at-home training, the system requires
the participation of a subject and trainer. The system
is deployed in the subject’s home environment and
tracks the performance of the subject during use,
which it reports automatically in regular intervals to
the subject’s trainer. Based on this report, the trainer
then assigns new exercises and performance goals
to the subject via a remote interface, which are then
uploaded back to the system through cloud storage.
The system updates itself and implements the latest
motor tasks and goals on the next use. Adaptation for
person-centeredness in the ATA is implemented in
three phases: the creation of a flexible motor assess-
ment model that can account for trainer variability;
the implementation of multimodality through the
audio, visual, and haptic channel in feedback; and
the interweaving of a variety of game archetypes with
an individual’s specific training protocol using stealth
assessment.

Case Study Design, Individual Attributes of
Learner

The design of the ATA study stemmed from a
case study involving a single subject. The subject is
hemiparetic, having full usage of one arm with par-
tial physical impairment in the other. The subject’s
physical trainer utilizes martial arts training as a
context for rehabilitative therapy. The challenge was
to develop a system that could allow the subject to
receive guided martial arts training at home using
the trainer’s expertise and training regimen. In other
words, the system would need to provide the services
of supervised training highlighted above while also
meeting the following requirements specific to the
subject: The subject should use the nonparetic arm
to guide the paretic arm; the subject should be able
to easily use the system without complex or difficult
setup; the subject should be allowed to freely move

VENKATESWARA ET AL.

the arms during the exercise; the subject’s equipment
should include a mechanism to secure the subject’s
grip; and the interface should include some form of
gameplay related to the subject’s martial arts exercise
to help motivate the subject. Our approach in this
case consisted of several phases, which are described
next.

Phase 1: Assessment

In this phase, supervised training sessions between
the subject and trainer were observed to determine
the training protocol and trainer’s method for assess-
ment and feedback delivery. This process is detailed
in prior work by Tadayon et al. (25). Based on these
observations, it was determined that the subject
would be assessed on motor performance using
three metrics: posture (body positioning), pacing
(rate of motion), and progression (degree of motion).
The targeted values for each of these categories were
provided by the trainer, as well as a series of motion
exercises ranging from simple tasks (elbow flexion/
extension) to more complex tasks (swing motions
using stick equipment). To capture these motions
in real time at home, the Intelligent Stick device
described above was created. The stick form fac-
tor was chosen, as it matched the form factor of the
stick equipment the subject was already using in live
training, but the design was modularized to adapt to
other individuals and training regimens. The acceler-
ometer and gyroscope on the Intelligent Stick track
and report the user’s motion (progression) and rate
of motion (pacing) to the system in real time, while
the added Kinect sensor tracks joint motion across
the body (posture). Combined, these two devices are
used to assess the subject on the same criteria used
by the individual’s trainer.

The three-category framework for assessment
used in the case study (posture, progression, and
pacing) captures both the temporal and spatial prop-
erties of an individual’s motor performance during
training and was derived from the observation of
a single trainer’s protocol. Similarly, the Intelligent
Stick design was inspired by the equipment used
by the case study subject and included a wrist strap
mechanism to ensure that the subject’s paretic arm
remains fastened to the device despite weak grip
strength. In both design and implementation, this
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Figure 6. Island fruit game interface.

system was entirely developed from the observation
and interaction with these two individuals, yet it is
evident that the framework and technology can adapt
to various other cases of motor training. Swappable
components ensure that the Intelligent Stick’s length,
width, onboard sensing features, onboard feedback
features, and other details can be adapted to match
other cases of rehabilitative training. The components
of the assessment framework described above can
map to various assessment standards commonly used
in practice, such as the Wolf Motor Function Test
(26) or the Barthel Index (27). Hence, person-cen-
tric research need not restrict the applicability of a
solution across the breadth of a problem space.

Phase 2: Feedback

In the second phase, feedback delivery mecha-
nisms were incorporated so that the system could
deliver real-time guidance to the subject during exer-
cise. Three modalities of feedback were observed
during live training between the subject and trainer:
audio, visual, and haptic. Audio feedback was deliv-
ered as verbal instruction from the trainer, while
visual feedback was given by demonstrating the
correct postural form to the subject. Haptic feed-
back consisted primarily of the use of “push” and
“pull” cues from the trainer to guide the subject’s
joints to the correct positioning during motion.
The system’s on-screen game interface is capable of
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providing audio-visual feedback, and haptic feedback
was incorporated via the addition of a vibrotactile
response module to the intelligent stick. This module
includes several onboard vibrotactile motors, which
were added to the stick in the areas gripped by the
subject during motion. These motors could deliver
haptic cues to imitate the guiding hand of the trainer
when the system deems it necessary during at-home
training. The specific patterns delivered across this
vibrotactile band were determined by the trainer to
ensure that they were consistent with the individual’s
training.

Phase 3: Game Design

In the final phase of the project, the research
team worked closely with the subject and trainer to
determine a game design that would best fit both the
interests of the subject and the motion tasks. It is well
known that there is no one-size-fits-all approach to
the design of a serious game; just as individuals have
varying tastes in art, music, or other mediums, inter-
ests in game type vary greatly. Hence, the selection of
a best-fit game type and gameplay elements is very
much a person-centric process. In this case, factors
that contributed to the choice of game included the
subject’s preferences (determined via interview), age,
and motor ability, as well as the specific motor tasks
chosen by the trainer (stick swing motions). Based
on these criteria, an Island Fruit game depicted in
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Figure 6 was chosen, wherein the subject slices fruit
using a virtual sword representation of the Intelligent
Stick. In general, to utilize a person-centric approach,
the design of the game interface consists of the fol-
lowing phases requiring the participation of both
the subject and trainer: a selection of motor tasks
to be performed, a selection of metrics that serve as
evidence for the completion of those tasks, a selection
of game archetype that fits the level of complexity of
the task that needs to be performed, and a mapping
from the motor task performance evidence to game
evidence within gameplay objectives.

Once the game’s context was chosen, the next
step was to incorporate the assessment and feed-
back frameworks above into its design. A critical
requirement here is that the system’s assessment and
feedback should not interfere or distract the subject
from gameplay, as this would increase cognitive load
and deter player engagement (28). To accomplish
this, motor feedback is interwoven with gameplay in
an invisible manner using Shute’s method of stealth
assessment (29). Fruit objects in the game represent
critical points along a motion trajectory that a sub-
ject must contact to satisfy the trainer’s requirement
for progression. The subject must hold both hands
on the stick during the game so that the nonparetic
arm can guide the paretic arm in a bimanual swing
motion; if this is not the case, the in-game virtual
sword wobbles in place and cannot be used, satis-
tying the requirement for posture. Finally, the fruit
objects move through the air at a speed dictated by
the trainer’s requirement in pacing, and, to strike
the fruit, the subject must move at the correct pace.
Haptic feedback from the Intelligent Stick is given
when the subject contacts the center of a fruit object,
indicating an optimal swing trajectory. Visual obser-
vation of the virtual sword’s movement through the
screen allows the subject to form the correct posture.
A sound effect on contact between fruit and sword
indicates that the user’s pacing is accurate. Using the
subject’s contact with fruit objects, as well as the data
from the Kinect and Intelligent Stick, the system can
seamlessly assess and provide feedback to the user
without distracting from gameplay.

Furthermore, adaptation is implemented to
maintain a level of optimal challenge for subject
engagement. Dynamic Difficulty Adaptation is
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critical in serious games because it helps account
for skill variability both within a single-subject over
time, as in the case study here, and between different
subjects, if applicable. In this case, using metrics
provided by the trainer, the system maintains a per-
formance profile of the subject, which is updated in
real-time. Based on this performance measure, as well
as the subject’s emotional response to the gameplay
(estimated using facial emotion tracking from the
Kinect’s video feed), the system adapts game difficulty
by means of adjustment of the size and speed of fruit
objects.

Studies on Assessment, Feedback, and Stealth
Assessment/Adaptation

Throughout each phase of the case study, evalua-
tions were conducted to determine how well the ATA
system matched the requirements of the subject and
trainer in that phase. The results of these evaluations
directly resulted in design decisions at each phase
to improve the system’s fit to the individual’s motor
ability and the trainer’s exercise program. Two of
these evaluations are summarized as follows.

Multimodal Feedback Evaluation

For this evaluation, detailed in Tadayon’s work
(24), the goal was to determine how well the sub-
ject was able to perform a two-minute task under
three different multimodal feedback environments.
After the optimum form for a motor task (umbrella
motion) was demonstrated by the trainer, the goal of
the subject was to consistently maintain this optimal
trajectory while repeating the motor task using the
Intelligent Stick device. In the control condition, no
feedback was given by the system, and the subject
simply swung the Intelligent Stick repeatedly in an
umbrella pattern. In the “Sigrist” condition, the sub-
ject received haptic guidance from the stick, audio
feedback on pacing errors, and visual feedback on
posture, as inspired by a review from Sigrist et al.
(30). In the final condition, the subject was allowed to
choose how feedback was given by the system. In this
case, the subject chose to receive only haptic feedback
on motion trajectory (progression). The subject’s
error in each session was determined as the devia-
tion of the centroid of the stick from the expected
location in space-time, estimated in accelerometric
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Progression Error Comparison for Game Condition
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Figure 7. Progression error over 2-minute umbrella task.
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units. Interestingly, the results, as shown in Figure
7, indicate that the highest reduction in error, or
the greatest improvement in performance over the
two-minute session, occurred for progression when
the subject chose the feedback to be received. While
these results may not necessarily transfer to other
individuals, they indicate that individual preference
may play a role in the optimal mapping of modalities
to feedback in a multimodal exercise environment, a
notion that merits future evaluation among a variety
of subjects.

Stealth Adaptation Evaluation

In this evaluation, also detailed in Tadayon’s
previous work (24), several different adaptation
strategies were implemented for the Island Fruit
game described above. The goal was to determine
which adaptation strategy yielded the best affective
response from the subject. The first approach, hit-rate
targeting, attempted to maintain a certain number
of fruits sliced by the user for each deployment in
the game. Out of three fruit objects, for example,
the system tuned the difficulty to ensure that the
user could slice two. If the user sliced less than two,
difficulty was lowered, while if the user sliced more,
difficulty was increased. The clustering approach
observed the user’s performance in multiple catego-
ries (posture, progression, and pacing), and grouped
the user into a mastery level or cluster based on this
performance. The system then adapted the difficulty
to match the user’s level of mastery based on the
assigned cluster. The Bayes Net adaptation strategy
used a Bayes net to maintain belief states about the
user’s performance independently in each of the three
performance categories and adapted the game for
each category independently (for example, if the user
was only lacking in pacing performance, only the
speed of the fruit objects was lowered while other
parameters remained the same). Finally, the control
condition incorporated no adaptation strategies.

Using the Kinect camera and Visage library, an
estimate of the user’s facial expression was captured
at each ten-second interval. Facial expressions corre-
sponding to the state of flow (31), anxiety/frustration,
boredom, and unknown expressions, are captured in
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Figure 8. Flow-state ratio corresponds to the portion
of the time that the subject was considered to be in
flow. Each adaptation strategy was incorporated in
a five-minute session during which the user played
the Island Fruit game. As shown in Figure 8, the
highest flow-state ratio was yielded by Bayes Net
adaptation at 0.3, followed by hit-rate stabilization
at 0.233, clustering at 0.2, and control at 0.067. A
separate study by Tadayon (24) indicated that the
Bayes Net approach also yielded the highest overall
player performance, validating the notion that higher
engagement via flow leads to better learning (32).

CONCLUSIONS

Our interaction with individuals with disabilities
has inspired a person-centric computing paradigm
to address the unique needs of this target popula-
tion within the context of assistive and rehabilitative
applications. We have found that through targeting
the explicit needs of this community, solutions that
address the implicit needs of the broader population
may be advanced; for example, here we presented
two person-centric multimedia solutions, the Social
Interaction Assistant and Autonomous Training
Assistant, which could potentially augment remote
communications across long distances and exercise
or sport applications, respectively, for the general
population. While the terms abilities and disabilities
have been used throughout this paper, it is our view
that ability is a continuum, ranging from disability
to ability to super-ability. In other words, we are all
disabled to some extent and fall somewhere on the
aforementioned continuum. Therefore, person-cen-
teredness not only facilities the design of more
useful and usable technologies for disabilities but
also empowers individuals throughout all degrees of
ability. The case study approach utilized here reflects
the idea that person-centric research must begin with
the needs of the individual while adapting itself to
the needs of the many. These individual needs are
highlighted as well as an evaluation that serves as a
proof of concept. Future work in this space will apply
the approach toward a larger variety of individuals
to indicate how the adaptation mechanisms present
in the systems can perform as these needs change.
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