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INTRODUCTION

	 As the complexity of computing research advances, 
technology is becoming increasingly capable of recog-
nizing, adapting to, and accommodating many facets 
of human behavior. Human-Centered Computing 
(HCC) is a prominent product of this evolution. HCC 
has established itself as a field of considerable modern 
research that focuses on the requirements, tenden-
cies, needs, characteristics, and behaviors of human 

beings during the research, design, and development 
of computing solutions (1). For example, solutions 
that take into account human-centeredness consider 
and address differences among human cultures and 
societies within their designs (2). This deeper level 
of human understanding distinguishes HCC from 
traditional human-computer interaction practices 
that treat the user as a static entity and instead focus 
on general usability. While HCC design has elevated 
computing research to a new level of compatibility 

Human-Centered Computing (HCC) focuses on a tight coupling of humans in the design of 
technologies. While HCC has advanced computing research, a new paradigm is needed to 
better address not only interpersonal variations but also intrapersonal variations that occur 
over time in order to design more useful and usable solutions for individual users. We pro-
pose Person-Centered Computing (PCC) to address users’ distinct and ever-changing needs, 
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contextual factors. There is no greater need for PCC than among individuals with disabilities, 
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within differing populations, an even deeper level 
of understanding is necessitated by the existence of 
individual variance even within small populations.
	 Person-Centered Computing (PCC) is a novel 
paradigm, previously introduced by Panchanathan et 
al. (3,4), that further enhances the leading principles 
of HCC (that human populations vary and that tech-
nology should adapt to these variations) by applying 
them at the level of the individual. This strategy dic-
tates that an individual’s ideal technological solution 
is one designed for that particular person, given that 
he or she is wholly unique. For technology to achieve 
this level of individualization and, at the same time, 
be broadly useful and usable to others, PCC hinges 
upon co-adaptation. Co-adaptation occurs when the 
user and technology adapt to each other through 
continual use, with the onus being on the technology 
to learn and cater to the unique attributes of each 
individual user.
	 The paradigm of PCC is inspired by disability 
research, particularly assistive and rehabilitative 
applications, where large interpersonal variations 
in ability are not uncommon among individuals with 
sensory, cognitive, and/or physical impairments. 
Large intrapersonal variations over time are also not 
uncommon. For example, depending on the disease 
or condition, the impairment may alter with time, 
changing the way the disability manifests itself. This 
article presents two examples of technological solu-
tions designed under the PCC paradigm to address 
the unique needs of individuals with disabilities. 
The Social Interaction Assistant (SIA) is a real-time 
vision-based wearable and tabletop social assistive 
device for recognizing and delivering an interaction 
partner’s non-verbal cues (e.g., facial expressions) 
to an individual who is blind or visually impaired. 
The Autonomous Training Assistant (ATA) is a 
highly-adaptable, individually-aware hardware and 
software interface capable of delivering multimodal 
instructions and feedback for at-home rehabilitative 
training to individuals with varying motor capabil-
ity and functional goals. The SIA and ATA systems 
demonstrate that, through deep exploration of the 
needs of an individual or a few individuals, require-
ments for design arise that could not otherwise be 
explored in studies that treat large groups of users 
as a homogeneous entity; these requirements inspire 

the creation of more adaptive solutions, as is shown 
in the examples below.
	 This paper demonstrates how key findings related 
to the SIA and ATA support PCC. First, the challenges 
and perspectives emphasized within the disability 
space and their implications for modern technology 
are considered. Next, the research and design pro-
cess of the SIA are described, as well as some of the 
key findings and contributions of the project toward 
improving social interaction for a broader population. 
The third section highlights the challenges and design 
underlying the ATA and its novel contributions in 
motor rehabilitation using a case study application. 
Finally, thoughts based on the results of these projects 
and paths for future research in PCC are discussed.

A PARADIGM INSPIRED BY NOVEL 
PERSPECTIVES FROM DISABILITY
	 Technology solutions today are still focused on 
addressing the needs of the ‘able’ population. The 
needs of the disabled population are often addressed 
through modifications and temporary fixes to exist-
ing solutions designed for the broader population. 
For example, although devices like smart phones 
have been made highly accessible to individuals who 
are blind, the features of accessibility are built on 
top of existing platforms rather than the other way 
around. It is surprising that even though 12.6% (39 
million) of the population within the U.S. live with 
some form of disability (http://disabilitystatistics.
org/), technology is still largely designed without 
them in mind. Economic viability is understood to 
be the major reason for the lack of innovation in 
the disability space. To address this issue, there have 
been efforts over the last decade to make innovation 
inclusive and accessible. For example, the ‘Design 
for All’ paradigm in the context of information and 
communications technology is a systematic effort 
to promote universal design in computer and inter-
net-based technologies to avoid standard posterior 
adaptation procedures that attempt to accommodate 
the needs of those with disabilities through force fits, 
workarounds, and afterthoughts (5). 
	 At the Center for Cognitive Ubiquitous 
Computing, we take inspirations from disabilities 
to design innovative assistive multimedia solutions 
where users’ needs wholly drive decision-making at 
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every stage (6). Explicit needs are often cognizant 
and readily available, and therefore straightforward 
to gather through survey methods such as interviews 
and questionnaires. Implicit needs are subconscious 
and represent tacit knowledge, and therefore are more 
difficult to extract. Our work and experiences in 
disability research have shown that designing tech-
nologies to address the explicit needs of individuals 
with disabilities paves the way to uncovering address-
able implicit needs of the broader population and, 
through co-adaptation, potentially achieving broader 
impact and economic viability.

PROTOTYPE STUDY #1: SOCIAL INTERACTION 
ASSISTANT
	 Human social interactions are made up of both 
verbal (speech) and non-verbal (e.g., facial expres-
sions, hand gestures, and body language) cues. A 
large percentage of interaction (65% or more) is 
non-verbal (7). Individuals who are blind have lim-
ited access to non-verbal communicative cues given 
their inherent visual nature. The SIA is an assistive aid 
to help individuals who are blind or visually impaired 
during dyadic or group interactions by providing 
access to non-verbal information. The SIA consists of 
three components: sensing, processing, and delivery. 
Sensing involves capturing information of the inter-
acting partner(s) and their surroundings through 
sensors (e.g., visual and audio) embedded on the user 
and in the environment. The processing component 
mines the data gathered from the sensors for patterns 
of non-verbal information. The interaction phase 
discreetly delivers the processed information in the 
form of cues that are relevant and useful to the user. 
Rather than interfere with an ongoing social inter-
action, these cues augment the user’s awareness of 
their interaction partner. 

Role of Non-verbal Cues in Social Interaction
	 Social interactions play an important role in help-
ing us communicate effectively. They form an integral 
part of our everyday communication that enables us 
to convey our emotions and feelings in an efficient 
manner. Besides facilitating communication, they 
also help us socially connect with friends, family, and 
peers. It is well understood that such social connect-
edness aids in reducing stress by providing emotional 

and psychological needs, which has major health 
benefits. Hence, social interaction is essential for a 
higher quality of living. Given the visual nature of 
non-verbal social cues, individuals who are blind 
are at a disadvantage when interacting with their 
sighted peers and colleagues. It is not uncommon for 
this population to feel awkward or embarrassed in 
certain social situations due to miscommunications 
that could have been avoided if they had had access 
to visual information. Such situations can lead to 
social avoidance and, eventually, social isolation, 
which can be detrimental to a person’s productivity, 
health, and wellbeing (8).

Components of the SIA
	 The SIA, depicted in Figure 1, consists of sun-
glasses with a discreetly embedded camera (a tabletop 
web cam may be used for social settings at a table); a 
computing device (i.e., mobile phone) to process the 
images captured by the camera; and haptic devices 
for information delivery, including a vibrotactile belt 
when user is mobile as well as the haptic face display 
when user is stationary and seated at a table. The 
haptic face display (9) consists of a two-dimensional 
array of vibrotactile actuators that are driven by the 
processing device. In Figure 1, the haptic face display 
has the form factor of an ergonomic mesh chair. The 
user seated in the chair experiences vibrotactile stim-
ulation on his or her back, and it is the dimensions of 
the vibrations that encode the non-verbal cues. We 
are currently exploring other form factors for two-di-
mensional vibrotactile displays, including a wearable 
vest for mobile use as well as a tabletop display for 
active exploration. The chair’s vibrotactile display 
consists of 3.3 volt DC eccentric rotating mass (ERM) 
pancake motors arranged in the form of an array of 
six rows and eight columns. The ERM motors are 
spaced 2 cm apart horizontally (center-to-center) and 
4 cm apart vertically (center-to-center). The SIA also 
has a haptic waist belt (10) to provide cues regard-
ing position and proximity of interaction partners 
to augment situational awareness in mobile con-
texts. The belt consists of seven ERM motors placed 
equidistantly along the length of the belt, ending at 
the left and right sides of the torso, with the middle 
vibration motor aligned with the midline of the body. 
The motors vibrate discreetly to indicate the relative 
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orientation of the interaction partner using body site 
and interpersonal distance (proximity) using vibra-
tion duration or rhythm. These cues assist users in 
orienting themselves to face their interaction partners 
and maintain the appropriate distance from them. To 
allow this system design to serve the needs of each 
individual, both the complexity of tactile feedback 
and the capture of facial features are adapted using 
swappable mapping formats and domain adaptation, 
respectively, as described below.

Adaptation of Information Delivery for Person-
centeredness
	 Discussions with individuals who are blind and 
visually impaired revealed a desire to virtually explore 
the faces of their interaction partners to experience 
and understand facial expressions first hand. Other 
users were merely content with an assistive aid that 
recognizes and conveys to them the emotions of their 
interaction partners. It was clear that each user’s 
needs were unique, and a one-size-fits-all policy was 
not going to be universally acceptable to the blind 

community. It was necessary to build a system that 
could adapt to the needs of each individual user. Since 
the delivery component of the SIA is the interface 
between the user and the system, it also has the max-
imum scope for adaptation. The delivery phase of the 
SIA incorporates person-centeredness by providing 
the user with output cues of varying granularities. 
We outline three adaptive delivery mechanisms for 
the SIA that enhance person-centeredness.

Literal Mapping
	 In this design, there is a direct mapping between 
the 49 landmark features displayed in Figure 2 and the 
vibrotactile actuators (regions of the haptic face dis-
play). In this setting, users passively explore the faces 
of their interaction partners in a virtual manner and 
gather information about the facial expressions first 
hand. The vibration motors in a region are actuated 
based on the change in the position of key landmarks 
relative to other landmarks. Tracking the relative 
change helps to account for overall movements of 
the face, which, in turn, changes the position of all 

Figure 1: Social Interaction Assistant components and technologies. 

 

 

Figure 2: Facial landmarks for literal mapping of features. 
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Figure 1: Social Interaction Assistant components and technologies. 

 

 

Figure 2: Facial landmarks for literal mapping of features. 

 

Figure 3: Semi-literal mapping of facial action units to vibrotactile patterns. The array of dots 
below the action unit represents the six by eight two-dimensional vibrotactile display of the 
haptic face display. The darkened dots indicate actuated vibration motors, and their temporal 
sequence is from left to right, which encode the action unit represented by the face images. Three 
example patterns from a larger set are shown. 

 

 

 

 

 

 

 

 

 

Figure 3. Semi-literal mapping of facial action units to vibrotactile patterns. The array of dots below the action unit represents the six 
by eight two-dimensional vibrotactile display of the haptic face display. The darkened dots indicate actuated vibration motors, and 
their temporal sequence is from left to right, which encode the action unit represented by the face images. Three example patterns 
from a larger set are shown.

Figure 2. Facial landmarks for literal mapping of features.
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the landmarks. The landmark movements arising 
from external factors such as camera movement and 
head movement need to be accounted for to capture 
only relative landmark movement. A minimum set 
of landmarks is chosen to encode facial expressions. 
This is the most direct mapping of facial expressions 
into vibrotactile patterns, and the onus of recognition, 
interpretation, and decision making is on the user.

Semi-literal Mapping
	 In this mapping, a layer of abstraction is intro-
duced, compared to the direct mapping of facial 
landmarks, by using facial action units. The Facial 
Action Unit Coding System is a categorization of 
facial muscle movements commonly used by psy-
chologists to study human facial expressions (11). 
In earlier work (12), we designed and evaluated 
vibrotactile spatio-temporal patterns to intuitively 
communicate a subset of facial action units that are 
most prominently featured in the six basic emotions 
(13): happiness, sadness, surprise, anger, fear, and 
disgust. The haptic face display was divided into three 
regions: upper region to transmit eyebrow move-
ments; middle region to convey movements of the 
nose and cheek; and lower region to map the move-
ments of the lips. From an initial set of vibro-tactile 
patterns, pilot testing allowed the selection of a sub-
set of distinct and intuitive mappings, which were 
then further evaluated to more deeply explore their 
naturalness and distinctness. This study yielded 
recognition accuracies in the range of 80% to 96% 
(with a trial average 91%). It was estimated that the 
vibration pulse length, ranging from 250 ms to 1,000 
ms, had little effect on recognition accuracy. With 
no significant difference found between different 
pulse durations, it was concluded that the perception 
of the proposed spatio-temporal patterns was not 
affected by the variation in individual pulse widths. 
As a result, pulses of short duration could be used to 
enable higher throughput and improved communica-
tion rates. Figure 3 depicts a few of these action units 
and the corresponding vibration patterns. During 
real-time presentation, when multiple action units 
are detected, the haptic face display will convey these 
sequentially or, alternatively, will convey the most 
confident (intense) action unit.

Symbolic Mapping
	 This mapping provides the highest level of 
abstracted information to the user in the form of 
emotions. Whereas in the previous mappings, the 
user made the final decision about the emotion of 
their interaction partner, in this representation, the 
SIA processes the sensory information from the cam-
era to determine the basic emotion of the partner 
and subsequently conveys a symbolic representation 
of the emotion to the user. This mode of operation 
can be useful when the user is overloaded with sen-
sory information from other sources and is merely 
interested in knowing the emotional state of the user 
without having to devote any cognitive processing to 
gather and analyze such information.
	 To select effective and efficient patterns to convey 
emotional states, we explored a large design space of 
spatio-temporal vibrotactile stimulations that could 
potentially elicit emotions of happiness, sadness, 
surprise, anger, fear, and disgust in the user (9). 
Beginning with a design space of 150 patterns, pilot 
testing revealed 54 patterns as distinct and poten-
tially useful. These remaining patterns, which also 
included timing variations (various pulse widths) 
and saltation versions (14) of selected patterns, were 
evaluated for their effectiveness at evoking emotions. 
A study of consensus among participants yielded 20% 
to 30% agreement for certain patterns. The results 
were averaged across gender and vibration duration. 
This yielded a consensus of 26% for anger when using 
the Six Motor Burst pattern; 28.1% for happiness 
when using the Snake pattern; and 22.9% for neu-
trality when using the Spiral pattern—that is, the 
absence of emotion, which may be useful to convey 
between long periods absent of emotional content 
(Figure 4). We hypothesize that the Snake pattern was 
interpreted as playful because it feels like someone 
running a finger across the user’s back in a winding 
pattern and that the Six Motor Burst pattern angered 
participants due to its intensity and randomness. 
Moreover, it was observed that patterns that lasted 
longer elicited sadness, and patterns that were shorter 
were more likely to evoke happier emotions.



Figure 4: Symbolic mapping of three emotions to vibrotactile patterns. This approach aims to 
effectively and efficiently convey an interaction partner’s emotions by evoking those same 
emotions in the user. This strategy is to enhance communication by enabling the user and his or 
her partner to share non-verbal emotional experiences. 

 

 

Figure 5: Intelligent Stick early prototype design sketch. 
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Figure 4. Symbolic mapping of three emotions to vibrotactile patterns. This approach aims to effectively and efficiently convey an 
interaction partner’s emotions by evoking those same emotions in the user. This strategy is to enhance communication by enabling 
the user and his or her partner to share non-verbal emotional experiences.

Adaptation of the Algorithms for Person-
centeredness
	 Based on a user’s needs, they may switch between 
the different levels of abstraction (literal, semi-literal, 
or symbolic) of the SIA. The delivery phase of the SIA 
receives its inputs from the processing phase of the 
SIA. At the core of the SIA is the processing algorithm 
that analyzes the data captured through the sensors. 
The processing algorithm outputs landmarks, action 
units, and emotions of the interaction partner, which 
are conveyed by the delivery phase to the user on 
an as-needed basis. The processing phase consists 
of computer vision algorithms for face detection, 
facial landmark extraction, action unit recognition, 
and facial expression recognition. These algorithms 
analyze the face of the partner to extract this infor-
mation in real time. The computer vision algorithms 
are trained to make these predictions using a large 
pool of labeled data using supervised learning—a 
paradigm of machine learning. Algorithms trained in 
this manner can then be applied to make predictions 
on test data consisting of previously unseen faces. 
	 Supervised learning algorithms often make the 
implicit assumption that the test data is drawn from 
the same distribution as the training data. Such algo-
rithms become ineffective when these assumptions 
regarding the data are violated. For example, a facial 
expression recognition algorithm trained on white 
facial images is likely to degrade in performance when 
tested on facial images from a different ethnic group, 
say African American. This is because of the change 
in data distributions of the train and test data—the 
facial features are different, the facial expressions 

could be different based on cultural dissimilarities, 
etc. In addition, the paucity and/or poor quality of 
data from a distribution also limits the efficacy of 
the classifier. When the number of samples or their 
quality is limited, supervised learning algorithms 
fall short in learning a well-generalized classifier. 
These kinds of problems are addressed using transfer 
learning and domain adaptation techniques. Transfer 
learning and domain adaptation algorithms extract 
knowledge from one or more tasks or domains and 
utilize (transfer) that knowledge to design a solution 
for a new task or domain. These adaptation pro-
cedures transfer knowledge from a source domain 
(distribution) to a target domain (distribution), in 
the form of learned models and efficient feature rep-
resentations, to train well-generalized classifiers for 
the target domain (15,16).
	 In designing the SIA, we have applied domain 
adaptation to make the processing of action unit and 
facial expression recognition robust across a wide 
range of face types. Facial image data can vary due to 
the following reasons: differences in image resolution, 
brightness, occlusion, changes in camera point-of-
view, and inherent diversity of the sample space. It is 
impractical to train individual recognition models for 
every kind of distribution due to a paucity in labeled 
data, the cost involved in training, and the wide vari-
ety of distributions that arise from vision-based data. 
Therefore, domain adaptation-based solutions are 
applied to adapt models trained on one domain (dis-
tribution) to other domains (distributions). In the 
SIA project, we have explored domain adaptation at 
the classification stage with the use of linear models. 
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In the Coupled Support Vector Machine (C-SVM) 
algorithm (17), we train a pair of SVMs–one for the 
source domain and another for the target domain–
with limited labeled data in the target domain. In 
the Nonlinear Embedding algorithm (18), we learn 
to adapt the two domains by projecting the features 
into a common subspace using a nonlinear embed-
ding model. We test the facial expression recognition 
algorithms using standard datasets, such as CKPlus 
(19) and MMI (20), and demonstrate how domain 
adaptation improves the accuracies of prediction on 
the target domain when there is very limited or no 
labeled data. The algorithms for the processing unit of 
the SIA are trained on standard existing datasets, such 
as CKPlus and MMI, but will be made robust with 
domain adaptation to recognize the facial expressions 
of a wide range of faces and adapt to the social group 
of the user.

PROTOTYPE STUDY #2: AUTONOMOUS
TRAINING ASSISTANT

Need for Person-centeredness in Rehabilitative 
Motor Learning
	 Motor rehabilitation is perhaps one of the most 
well-aligned domains for person-centric computing. 
In this field of research, new devices, systems, and 
techniques for the enhancement of rehabilitative exer-
cise are in constant development. This is no surprise, 
as rehabilitative care is one of the most expensive 
fields of medical expenditure in the U.S. every year 
(21). Technologies researched in this field are often 
intended to assist the user with rehabilitative exer-
cise by assessing performance, providing feedback, 
and creating an interactive space more conducive 
to motor training than interacting with ordinary 
equipment in a household or clinical environment. 
This technology may also be responsible for detecting 
and reacting to changes in user state, including fatigue 
or compensatory behavior while exercising. Results 
reported related to the usage of this technology often 
include an increased sense of autonomy, improved 
motivation to exercise, higher levels of dedication 
to regular exercise, and, by consequence, improved 
health outcomes. 
	 However, most of the technologies designed 
for these purposes often fall short of achieving 

significantly positive outcomes outside of a very nar-
row group of test users and subjects. A significant 
cause of this shortcoming is that an overwhelming 
majority of research efforts in the field treat users of 
rehabilitative technology as a homogeneous entity. 
Quite to the contrary, rehabilitation is a field brim-
ming with individual variance. Each individual case 
involves a variety of experiential, physical, and human 
factors, including an individual’s motor ability, level 
of impairment, location of impairment, functional 
goals, muscle strength, progression through therapy, 
age, gender, motor exercise regimen, and training 
environment, among many others, all of which 
directly affect design choices necessary to create an 
effective solution for that individual (22). Each indi-
vidual, based on these factors, should be considered 
a unique entity. 
	 Therefore, it is argued that research can more effec-
tively be conducted in rehabilitation when it begins 
with a single person and a real challenge posed by 
that person. One of the most immediately apparent 
flaws with this approach is that, by focusing on a 
single individual, an effective solution may be created 
for that individual, but it would be too specialized 
to be useful for other individuals with significantly 
different challenges. Fortunately, using the principle 
of co-adaptation, technologies that begin with a single 
individual can mold themselves to meet the varying 
needs of other individuals, as is demonstrated in the 
design process of the ATA system, which is detailed 
below. 

Supervised vs. Unsupervised Motor Learning and 
the Role of the Physical Trainer
	 As the range of application areas for rehabilitative 
technology is rather broad, it is important to establish 
the scope of the work presented here. Two forms of 
rehabilitative training are considered for this purpose: 
supervised and unsupervised training. In supervised 
motor training, a physical trainer, therapist, or other 
expert is present to perform some (or all) of the fol-
lowing functions during an individual’s training 
(23): assess the individual’s performance at a motor 
task; provide feedback to the individual on his or her 
performance, clearly distinguishing between what 
is done well and what needs improvement; adjust 
characteristics of the motor task so that it matches 
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the individual’s current level of skill; maintain and 
update goals for performance on the task; respond 
to an individual’s emotional status, including interest 
in the task, boredom, or frustration; correct unsafe 
behavior such as overexertion or compensatory 
motion; react to potentially dangerous changes in 
the individual’s physical state, including fatigue or 
dizziness; and encourage and motivate the subject.
	 While these tasks are common among physical 
trainers during supervision of rehabilitative exercise, 
there is no universally accepted standard for the way 
in which these practices are implemented. As such, 
trainers use a myriad of techniques, across a variety 
of interaction channels, to deliver interactive, mean-
ingful rehabilitative exercise to subjects. In addition, 
the amount of weekly exercise required for an indi-
vidual to maintain steady progress in a rehabilitative 
program typically exceeds the availability of a trainer 
or therapist, which leads to the assignment of unsu-
pervised training (often in the individual’s home 
environment). In this form of training, an individual 
is typically expected to complete a set of rehabilitative 
exercises without expert supervision. Accordingly, 
the above services that an expert would provide in 
supervised training are missing in many of the tra-
ditional forms of unsupervised training, wherein 
the subject either uses simple training equipment 
or exercises without any equipment or interface. In 
unsupervised training, an automated solution for 

the delivery of supervisory tasks is therefore highly 
desirable and is the focus of this work. 

Introduction and Overview of the ATA 
	 The ATA is an interactive system for guided motor 
training in the home environment. It consists of the 
following components:

•	 The Intelligent Stick, a rod-shaped training 
device equipped with various components for 
sensing and feedback, including vibrotactile 
motors, an accelerometer, and a gyroscope. 
The design of the device is modular, allow-
ing for various parts to be swapped in and out 
freely. This design strategy follows Universal 
Design principles, allowing the device to adapt 
itself to the needs of users with a variety of 
grip strength, form factor, exercise task, and 
feedback requirements. A design sketch of this 
device is featured in Figure 5.

•	 A Microsoft Kinect sensor for real-time skeletal 
joint tracking and facial tracking for affective 
response detection. Motion data from this sen-
sor is fused with data from the Intelligent Stick 
accelerometer and gyroscope in real time to 
track and assess a user’s motion during exercise, 
thus alleviating the occlusion problem posed 
by the static camera sensor.

•	 An audiovisual training interface designed as 
a serious game using stealth assessment. The 

Figure 5. Intelligent Stick early prototype design sketch.
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type of game as well as the design depends on 
the interests and motion tasks of the subject. 
An example implementation of a game (Island 
Fruit) is covered in previous work by Tadayon 
(24), wherein the game adapts not only to the 
subject’s motor performance but also to the 
subject’s emotional response (affect) seamlessly 
in real time.

	 To facilitate at-home training, the system requires 
the participation of a subject and trainer. The system 
is deployed in the subject’s home environment and 
tracks the performance of the subject during use, 
which it reports automatically in regular intervals to 
the subject’s trainer. Based on this report, the trainer 
then assigns new exercises and performance goals 
to the subject via a remote interface, which are then 
uploaded back to the system through cloud storage. 
The system updates itself and implements the latest 
motor tasks and goals on the next use. Adaptation for 
person-centeredness in the ATA is implemented in 
three phases: the creation of a flexible motor assess-
ment model that can account for trainer variability; 
the implementation of multimodality through the 
audio, visual, and haptic channel in feedback; and 
the interweaving of a variety of game archetypes with 
an individual’s specific training protocol using stealth 
assessment.

Case Study Design, Individual Attributes of
Learner
	 The design of the ATA study stemmed from a 
case study involving a single subject. The subject is 
hemiparetic, having full usage of one arm with par-
tial physical impairment in the other. The subject’s 
physical trainer utilizes martial arts training as a 
context for rehabilitative therapy. The challenge was 
to develop a system that could allow the subject to 
receive guided martial arts training at home using 
the trainer’s expertise and training regimen. In other 
words, the system would need to provide the services 
of supervised training highlighted above while also 
meeting the following requirements specific to the 
subject: The subject should use the nonparetic arm 
to guide the paretic arm; the subject should be able 
to easily use the system without complex or difficult 
setup; the subject should be allowed to freely move 

the arms during the exercise; the subject’s equipment 
should include a mechanism to secure the subject’s 
grip; and the interface should include some form of 
gameplay related to the subject’s martial arts exercise 
to help motivate the subject. Our approach in this 
case consisted of several phases, which are described 
next.

Phase 1: Assessment
	 In this phase, supervised training sessions between 
the subject and trainer were observed to determine 
the training protocol and trainer’s method for assess-
ment and feedback delivery. This process is detailed 
in prior work by Tadayon et al. (25). Based on these 
observations, it was determined that the subject 
would be assessed on motor performance using 
three metrics: posture (body positioning), pacing 
(rate of motion), and progression (degree of motion). 
The targeted values for each of these categories were 
provided by the trainer, as well as a series of motion 
exercises ranging from simple tasks (elbow flexion/
extension) to more complex tasks (swing motions 
using stick equipment). To capture these motions 
in real time at home, the Intelligent Stick device 
described above was created. The stick form fac-
tor was chosen, as it matched the form factor of the 
stick equipment the subject was already using in live 
training, but the design was modularized to adapt to 
other individuals and training regimens. The acceler-
ometer and gyroscope on the Intelligent Stick track 
and report the user’s motion (progression) and rate 
of motion (pacing) to the system in real time, while 
the added Kinect sensor tracks joint motion across 
the body (posture). Combined, these two devices are 
used to assess the subject on the same criteria used 
by the individual’s trainer. 
	 The three-category framework for assessment 
used in the case study (posture, progression, and 
pacing) captures both the temporal and spatial prop-
erties of an individual’s motor performance during 
training and was derived from the observation of 
a single trainer’s protocol. Similarly, the Intelligent 
Stick design was inspired by the equipment used 
by the case study subject and included a wrist strap 
mechanism to ensure that the subject’s paretic arm 
remains fastened to the device despite weak grip 
strength. In both design and implementation, this 
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Figure 6. Island fruit game interface.

system was entirely developed from the observation 
and interaction with these two individuals, yet it is 
evident that the framework and technology can adapt 
to various other cases of motor training. Swappable 
components ensure that the Intelligent Stick’s length, 
width, onboard sensing features, onboard feedback 
features, and other details can be adapted to match 
other cases of rehabilitative training. The components 
of the assessment framework described above can 
map to various assessment standards commonly used 
in practice, such as the Wolf Motor Function Test 
(26) or the Barthel Index (27). Hence, person-cen-
tric research need not restrict the applicability of a 
solution across the breadth of a problem space.

Phase 2: Feedback
	 In the second phase, feedback delivery mecha-
nisms were incorporated so that the system could 
deliver real-time guidance to the subject during exer-
cise. Three modalities of feedback were observed 
during live training between the subject and trainer: 
audio, visual, and haptic. Audio feedback was deliv-
ered as verbal instruction from the trainer, while 
visual feedback was given by demonstrating the 
correct postural form to the subject. Haptic feed-
back consisted primarily of the use of “push” and 
“pull” cues from the trainer to guide the subject’s 
joints to the correct positioning during motion. 
The system’s on-screen game interface is capable of 

providing audio-visual feedback, and haptic feedback 
was incorporated via the addition of a vibrotactile 
response module to the intelligent stick. This module 
includes several onboard vibrotactile motors, which 
were added to the stick in the areas gripped by the 
subject during motion. These motors could deliver 
haptic cues to imitate the guiding hand of the trainer 
when the system deems it necessary during at-home 
training. The specific patterns delivered across this 
vibrotactile band were determined by the trainer to 
ensure that they were consistent with the individual’s 
training.

Phase 3: Game Design
	 In the final phase of the project, the research 
team worked closely with the subject and trainer to 
determine a game design that would best fit both the 
interests of the subject and the motion tasks. It is well 
known that there is no one-size-fits-all approach to 
the design of a serious game; just as individuals have 
varying tastes in art, music, or other mediums, inter-
ests in game type vary greatly. Hence, the selection of 
a best-fit game type and gameplay elements is very 
much a person-centric process. In this case, factors 
that contributed to the choice of game included the 
subject’s preferences (determined via interview), age, 
and motor ability, as well as the specific motor tasks 
chosen by the trainer (stick swing motions). Based 
on these criteria, an Island Fruit game depicted in 
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Figure 6 was chosen, wherein the subject slices fruit 
using a virtual sword representation of the Intelligent 
Stick. In general, to utilize a person-centric approach, 
the design of the game interface consists of the fol-
lowing phases requiring the participation of both 
the subject and trainer: a selection of motor tasks 
to be performed, a selection of metrics that serve as 
evidence for the completion of those tasks, a selection 
of game archetype that fits the level of complexity of 
the task that needs to be performed, and a mapping 
from the motor task performance evidence to game 
evidence within gameplay objectives.
	 Once the game’s context was chosen, the next 
step was to incorporate the assessment and feed-
back frameworks above into its design. A critical 
requirement here is that the system’s assessment and 
feedback should not interfere or distract the subject 
from gameplay, as this would increase cognitive load 
and deter player engagement (28). To accomplish 
this, motor feedback is interwoven with gameplay in 
an invisible manner using Shute’s method of stealth 
assessment (29). Fruit objects in the game represent 
critical points along a motion trajectory that a sub-
ject must contact to satisfy the trainer’s requirement 
for progression. The subject must hold both hands 
on the stick during the game so that the nonparetic 
arm can guide the paretic arm in a bimanual swing 
motion; if this is not the case, the in-game virtual 
sword wobbles in place and cannot be used, satis-
fying the requirement for posture. Finally, the fruit 
objects move through the air at a speed dictated by 
the trainer’s requirement in pacing, and, to strike 
the fruit, the subject must move at the correct pace. 
Haptic feedback from the Intelligent Stick is given 
when the subject contacts the center of a fruit object, 
indicating an optimal swing trajectory. Visual obser-
vation of the virtual sword’s movement through the 
screen allows the subject to form the correct posture. 
A sound effect on contact between fruit and sword 
indicates that the user’s pacing is accurate. Using the 
subject’s contact with fruit objects, as well as the data 
from the Kinect and Intelligent Stick, the system can 
seamlessly assess and provide feedback to the user 
without distracting from gameplay.
	 Furthermore, adaptation is implemented to 
maintain a level of optimal challenge for subject 
engagement. Dynamic Difficulty Adaptation is 

critical in serious games because it helps account 
for skill variability both within a single-subject over 
time, as in the case study here, and between different 
subjects, if applicable. In this case, using metrics 
provided by the trainer, the system maintains a per-
formance profile of the subject, which is updated in 
real-time. Based on this performance measure, as well 
as the subject’s emotional response to the gameplay 
(estimated using facial emotion tracking from the 
Kinect’s video feed), the system adapts game difficulty 
by means of adjustment of the size and speed of fruit 
objects. 

Studies on Assessment, Feedback, and Stealth 
Assessment/Adaptation 
	 Throughout each phase of the case study, evalua-
tions were conducted to determine how well the ATA 
system matched the requirements of the subject and 
trainer in that phase. The results of these evaluations 
directly resulted in design decisions at each phase 
to improve the system’s fit to the individual’s motor 
ability and the trainer’s exercise program. Two of 
these evaluations are summarized as follows.

Multimodal Feedback Evaluation
	 For this evaluation, detailed in Tadayon’s work 
(24), the goal was to determine how well the sub-
ject was able to perform a two-minute task under 
three different multimodal feedback environments. 
After the optimum form for a motor task (umbrella 
motion) was demonstrated by the trainer, the goal of 
the subject was to consistently maintain this optimal 
trajectory while repeating the motor task using the 
Intelligent Stick device. In the control condition, no 
feedback was given by the system, and the subject 
simply swung the Intelligent Stick repeatedly in an 
umbrella pattern. In the “Sigrist” condition, the sub-
ject received haptic guidance from the stick, audio 
feedback on pacing errors, and visual feedback on 
posture, as inspired by a review from Sigrist et al. 
(30). In the final condition, the subject was allowed to 
choose how feedback was given by the system. In this 
case, the subject chose to receive only haptic feedback 
on motion trajectory (progression). The subject’s 
error in each session was determined as the devia-
tion of the centroid of the stick from the expected 
location in space-time, estimated in accelerometric 
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Figure 4: Island fruit game interface. 

 

 

Figure 5: Progression error over 2-minute umbrella task. 

 

 

 

 

 

 

Figure 6: Flow state progression for case study subject. For flow state, a value of 0 corresponds 
to unknown state, while 1, 2, and 3 correspond to boredom, flow, and anxiety, respectively. For 
difficulty, the value is a normalized representation of the level of difficulty presented to the user 
during each time sample. 

 

Figure 7. Progression error over 2-minute umbrella task.

Figure 8. Flow state progression for case study subject. For flow state, a value of 0 corresponds to unknown state, while 1, 2, and 3 
correspond to boredom, flow, and anxiety, respectively. For difficulty, the value is a normalized representation of the level of difficulty 
presented to the user during each time sample.
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units. Interestingly, the results, as shown in Figure 
7, indicate that the highest reduction in error, or 
the greatest improvement in performance over the 
two-minute session, occurred for progression when 
the subject chose the feedback to be received. While 
these results may not necessarily transfer to other 
individuals, they indicate that individual preference 
may play a role in the optimal mapping of modalities 
to feedback in a multimodal exercise environment, a 
notion that merits future evaluation among a variety 
of subjects.

Stealth Adaptation Evaluation
	 In this evaluation, also detailed in Tadayon’s 
previous work (24), several different adaptation 
strategies were implemented for the Island Fruit 
game described above. The goal was to determine 
which adaptation strategy yielded the best affective 
response from the subject. The first approach, hit-rate 
targeting, attempted to maintain a certain number 
of fruits sliced by the user for each deployment in 
the game. Out of three fruit objects, for example, 
the system tuned the difficulty to ensure that the 
user could slice two. If the user sliced less than two, 
difficulty was lowered, while if the user sliced more, 
difficulty was increased. The clustering approach 
observed the user’s performance in multiple catego-
ries (posture, progression, and pacing), and grouped 
the user into a mastery level or cluster based on this 
performance. The system then adapted the difficulty 
to match the user’s level of mastery based on the 
assigned cluster. The Bayes Net adaptation strategy 
used a Bayes net to maintain belief states about the 
user’s performance independently in each of the three 
performance categories and adapted the game for 
each category independently (for example, if the user 
was only lacking in pacing performance, only the 
speed of the fruit objects was lowered while other 
parameters remained the same). Finally, the control 
condition incorporated no adaptation strategies.
	 Using the Kinect camera and Visage library, an 
estimate of the user’s facial expression was captured 
at each ten-second interval. Facial expressions corre-
sponding to the state of flow (31), anxiety/frustration, 
boredom, and unknown expressions, are captured in 

Figure 8. Flow-state ratio corresponds to the portion 
of the time that the subject was considered to be in 
flow. Each adaptation strategy was incorporated in 
a five-minute session during which the user played 
the Island Fruit game. As shown in Figure 8, the 
highest flow-state ratio was yielded by Bayes Net 
adaptation at 0.3, followed by hit-rate stabilization 
at 0.233, clustering at 0.2, and control at 0.067. A 
separate study by Tadayon (24) indicated that the 
Bayes Net approach also yielded the highest overall 
player performance, validating the notion that higher 
engagement via flow leads to better learning (32).

CONCLUSIONS
	 Our interaction with individuals with disabilities 
has inspired a person-centric computing paradigm 
to address the unique needs of this target popula-
tion within the context of assistive and rehabilitative 
applications. We have found that through targeting 
the explicit needs of this community, solutions that 
address the implicit needs of the broader population 
may be advanced; for example, here we presented 
two person-centric multimedia solutions, the Social 
Interaction Assistant and Autonomous Training 
Assistant, which could potentially augment remote 
communications across long distances and exercise 
or sport applications, respectively, for the general 
population. While the terms abilities and disabilities 
have been used throughout this paper, it is our view 
that ability is a continuum, ranging from disability 
to ability to super-ability. In other words, we are all 
disabled to some extent and fall somewhere on the 
aforementioned continuum. Therefore, person-cen-
teredness not only facilities the design of more 
useful and usable technologies for disabilities but 
also empowers individuals throughout all degrees of 
ability. The case study approach utilized here reflects 
the idea that person-centric research must begin with 
the needs of the individual while adapting itself to 
the needs of the many. These individual needs are 
highlighted as well as an evaluation that serves as a 
proof of concept. Future work in this space will apply 
the approach toward a larger variety of individuals 
to indicate how the adaptation mechanisms present 
in the systems can perform as these needs change.
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