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Abstract—A linear code equivalence between index coding
and network coding was shown by El Rouayheb et al., which
establishes that for any index-coding instance, there exists a
network-coding instance for which any index code can be mapped
to a suitable network code, and vice versa. Similarly, for any
network-coding instance, there exists an index-coding instance
for which a similar code equivalence can be constructed. Effros
et al. extended the equivalence to include non-linear codes.
Subsequently, we extended the code equivalence to the secure
communication setting in the presence of an eavesdropper, in
which we impose perfect decodability and secrecy. In this paper,
we generalise the equivalence between secure index coding and
secure network coding to include non-zero decoding error and
non-zero leakage.

I. INTRODUCTION

In this paper, we investigate an equivalence between secure
index coding and secure network coding. Ong et al. [1]
proved an equivalence between secure index coding and secure
network coding in the special case when there is no decoding
error (that is, perfect message reconstruction at the receivers)
and no leakage (that is, zero mutual information between what
the eavesdroppers observe and what they attempt to get). In
general, moving from zero decoding error and leakage scenar-
ios to the non-zero counterpart (for example, diminishing error
and leakage as the codelength is allowed to grow) changes the
underlying problem significantly. Results in these two regimes
are often significantly different. In this paper, we show an
equivalence between secure index coding and secure network
coding for non-zero decoding error and non-zero leakage. To
this end, we show that the probability distribution function of
the messages in the network-coding instance is close to that
in the index-coding instance.

A. Background

Index coding [2] considers a one-hop network where
a sender conveys multiple messages to multiple receivers
through a noiseless broadcast medium, where each receiver
wants some messages from the sender, but already knows some
other messages. On the other hand, network coding [3] con-
siders a network of interconnected links with fixed capacities,
where multiple senders send multiple messages to multiple
receivers through these links.

This work is supported by the ARC grant FT140100219, and US NSF
grants CNS-1526547 and CCF-1439465.

Although these two problems appear different prima facie,
the following equivalence between them has been demon-
strated [4, 5]: for any index-coding instance (specified by what
each receiver has and wants), one can construct an equivalence
network-coding instance (specified by how the links are con-
nected, their capacities, and all sender and receiver locations),
such that any index code (specified by the encoding function of
the sender and the decoding functions of all the receivers) for
the index-coding instance can be mapped to a network code
for the same message sizes (specified by the encoding function
of every node, and the decoding functions of all receivers)
for the network-coding instance, and vice versa. Similarly, for
any network-coding instance, we can construct an equivalent
index-coding instance with code mapping in both directions.

The equivalence was first shown for linear codes [4] and
then for non-linear codes (which include linear codes as a
special case) [5]. Furthermore, the equivalence has been shown
for any codelength and (zero and non-zero) decoding error
probability, that is, if the probability of decoding error for the
network code is bounded above by a given value, the mapped
index code also has this property, and vice versa.

The secure version of index coding [6] includes a number of
eavesdroppers each of whom (i) knows a subset of messages;
(ii) listens to the sender’s broadcast; and (iii) attempts to decode
some messages. The secure version of network coding [7]
includes a number of eavesdropper each of whom (i) can
listen to a subset of links; and (ii) attempts to decode some
messages. A secure index code or a secure network code
must prevent eavesdroppers from knowing the messages that
they attempt to decode (where knowing is quantified by the
information-theoretic security measure [8, Ch 22]), in addition
to guaranteeing that all receivers can obtain their requested
messages (by bounding the probability of decoding error).

Recently, Ong et al. [1] showed an equivalence between
secure index coding and secure network coding for zero
decoding error and leakage (that is, the information gained
by the eavesdroppers about the messages they attempt to
decode) by constructing a mapping between secure index and
network coding instances and using the existing (non-secure)
translation between index and network codes.by Effros et al.

B. Main contributions

In this paper, we extend the code equivalence between
secure index and network coding to non-zero error and leakage
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by showing that the instance mapping by Ong et al. and the
code translation by Effros et al. preserve both decoding and
leakage criteria (which can be non-zero) to a certain extent.

Informally, in Theorem 1, we show that any secure index-
coding instance I1 can be mapped to a secure network-coding
instance N1, such that any code for I1 can be translated to a
code for N1 (and vice versa) with the same error decoding and
security criteria.

In Theorem 2 and Corollary 2.1, we show that any secure
network-coding instance N2 can be mapped to a secure index-
coding instance I2 such that

1) any code for N2 can be translated to a code for I2 with
the same error decoding and security criteria;

2) any code for I2 that has
a) zero decoding error can be translated to code for N2

with the same error decoding and security criteria,
b) non-zero decoding error and is linear can be translated

to a linear code for N2 with a security criterion
that grows linearly in the codelength, and a decod-
ing criterion that does not grow with the codelength.
This implies that strongly-secure index codes map to
weakly-secure network codes.

For all cases except 2b, we establish an equivalence that
preserves both the decodability and security criteria.

The challenge in obtaining an equivalence for non-zero error
and leakage arises due to the fact that the eavesdroppers in
both instances observe different signals, i.e., messages for
index coding and functions of messages transmitted on links
for network coding. If decoding error at the receivers is
allowed, these two types of messages do not necessarily match,
making it difficult to guarantee the same amount of leakage.

This problem is even more severe for case 2b, in which
we need to select certain parameters for the index code to
obtain the required network code, and the parameters must
simultaneously satisfy both error and leakage criteria. To
obtain the above equivalence result, we use the hypothesis that
decoding is correct (1− ε) fraction of the time for I2 to bound
the distance between the probability mass functions (pmf) of
the messages in both instances.

II. CHANNEL MODEL, EXISTING INSTANCE MAPPING,
AND EXISTING CODE TRANSLATION

Notation: For a set S, XS
def
= (Xi : i ∈ S). Consider a

directed graph G = (V, E) with node set V and edge set E.
For an edge e = (u→ v) ∈ E, its tail is tail(e) def

= u, and its
head is head(e) def

= v. For any node v ∈ V, the set of incoming
edges is denoted by in(v)

def
= {e ∈ E : head(e) = v}, and the

set of outgoing edges by out(v)
def
= {e ∈ E : tail(e) = v}.

For two ordered sets of discrete random variables XS1 and
YS2 , XS1

d
= YS2 means that they have the same pmfs, and

all corresponding pairs of random variables (one with index
from S1 and another from S2) have the same range. For any
N ∈ Z+ def

= {1, 2, . . . }, [N] def
= {1, 2, . . . , N}.

In randomised codes, at least one node i will include a ran-
dom key Zi in its encoding function. This key is independent

of all messages and other random keys, and is not known to
all other nodes.

A. Secure network coding
A network coding [9] instance N = (G,C,W) consists of

the following: (i) a directed graph G with node set V and
edge set E, where each edge e ∈ E has a link capacity ce ∈
R+0

def
= [0,∞), meaning that node tail(e) can send a message

xe ∈ [2 bcenc] to node head(e) without error in n link uses;
(ii) a connection requirement C = (S,O,D), where the source
messages {Xs : s ∈ S} are independent but can be arbitrarily
distributed, O(s) ∈ V is the originating node of message Xs ,
and D(s) ⊆ V is the set of destination nodes requesting Xs;
(iii) W = ((Ar,Br ) : r ∈ R) defines a set of eavesdroppers R,
where each eavesdropper r ∈ R observes the links Br ⊆ E
and wants to obtain messages XAr , Ar ⊆ S.

A secure network-coding instance N is said to be (S∗, (pXs :
s ∈ S∗), ε, η, n)-feasible, for a subset S∗ ⊆ S of messages
XS∗ with a joint pmf pXS∗ =

∏
s∈S∗ pXs , if and only if there

exists a joint pmf pXS\S∗ =
∏

s∈S\S∗ pXs for the remaining
messages XS\S∗ and a secure network code,1 which uses
each link n ∈ Z+ times to satisfy a decoding-error criterion
Pe = Pr

{
∃u ∈ U s.t. X (u)

{s∈S:u∈D(s)} , X{s∈S:u∈D(s)}

}
≤ ε ,

and security criteria I(XAr ; XBr ) ≤ η for every eavesdrop-
per r ∈ R. Here, U is the set of destination nodes, and
X (u)
{s∈S:u∈D(s)} are the messages decoded by node u.
Note that the feasibility definition applies to a subset of

messages S∗. The reason will become clear in Section II-D
when we map a randomised network code C1 to a deterministic
network code C2, where the messages in C2 consists of all
messages and random keys in C1. S∗ for C2 then corresponds
to the original messages of interest in C1.

B. Secure index coding
A secure index-coding [6] instance I = (Ŝ, T̂ , {(Ŵt, Ĥt ) :

t ∈ T̂ }, Ŵ) consists of the following: (i) a sender having a set
of messages {X̂s : s ∈ Ŝ}, which are mutually independent but
arbitrarily distributed; (ii) a set of receivers T̂ ; (iii) receiver t ∈
T̂ requests messages X̂

Ŵt
and knows messages X̂

Ĥt
a priori;

(iv) Ŵ = ((Âr, B̂r ) : r ∈ R̂) defines a set of eavesdroppers R̂,
where each eavesdropper r ∈ R̂ has messages X̂Br and wants
to obtain messages X̂Ar . We assume that B̂r ∩Ar = ∅. Note
Ŵt, Ĥt, Âr, B̂r ⊆ Ŝ.

Similar to network coding, a secure index-coding instance
I is said to be (Ŝ∗, (pX̂s

: s ∈ Ŝ∗), ε, η, n)-feasible, for a subset
Ŝ∗ ⊆ Ŝ of messages X̂

Ŝ∗
with a joint pmf pX̂

Ŝ∗
=

∏
s∈Ŝ∗ pX̂s

,
if and only if there exists a joint pmf pX̂

Ŝ\Ŝ∗
=

∏
s∈Ŝ\Ŝ∗ pX̂s

for

the remaining messages X̂
Ŝ\Ŝ∗

and a secure index code2 sat-
isfying a decoding-error criterion P̂e = Pr{∃t ∈ T̂ s.t. X̂ (t)

Ŵt
,

1A network code consists of a local encoding function Xe =

ee (Xin(tail(e)), XO−1(tail(e))) ∈ [2
bcenc ] for each edge e ∈ E and a

decoding function du (Xin(u), XO−1(u)) for each destination node u ∈ U.
Each ee (or du ) is a function of all incoming messages to and messages
originating at tail(e) (or u), respectively.

2An index code consists of an encoding function X̂b = ê(X̂
Ŝ
) ∈ [2n] at

the sender and a decoding function d̂t (X̂b, X̂Ĥt
) at each receiver t ∈ T̂.
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X̂1, X̂2, X̂3, X̂4

X̂b

2X̂31X̂2 X̂1, X̂4 3 X̂4 r̂

X̂1 X̂2, X̂4 X̂3 X̂2

(a) A secure index-coding instance I, where an eavesdropper r̂
has access to the broadcast message X̂b, side information X̂4,
and tries to reconstruct X̂2

1

2

1

t1 t2 t3 r

s1

X1

s2

X2

s3

X3

s4

X4

X1 (X2, X4) X3 X2

1
1 1

(b) A secure network-coding instance N, where an eavesdrop-
per r has access to link (1→ 2), all outgoing links from node
s4, and tries to reconstruct X2. The capacity of all links given
by thick arrows is 1 bit per channel use

Fig. 1: A secure index-coding instance I and its corresponding secure network-coding instance N [1]

X̂
Ŵt
} ≤ ε , and security criteria I(X̂Âr

; X̂b, X̂B̂r ) ≤ η for every
eavesdropper r ∈ R̂. X̂ (t)

Ŵt
is the receiver t’s decoded messages.

Remark 1: When each message Xs be uniformly distributed
over Xs , we define Rs

def
= (log2 |Xs |)/n as the average message

rate per network use. Then the above feasibility gives rise
to the following notions of security criteria for fixed RS :
(i) Strong security: limn→∞ I(XAr ; XBr ) = 0, ∀r ∈ R;
(ii) Weak security: limn→∞

1
n I(XAr ; XBr ) = 0, ∀r ∈ R.

Next, we briefly review the mapping between secure net-
work coding and index coding instances, and the code trans-
lation between them. We refer the reader to Effros et al. [5]
and Ong et al. [1] for a more detailed and descriptive account.

C. Mapping a secure index coding instance I to a secure
network coding instance N

Consider I = (Ŝ, T̂ , {(Ŵt, Ĥt ) : t ∈ T̂ }, Ŵ). Let
Ŝ = [k] and T̂ = [`]. We construct an equivalent N =
(G,C,W) as follows: G = (V, E) consists of nodes V =

{s1, s2, . . . , sk, t1, t2, . . . , t`, 1, 2}. Each node si has an outgoing
link with a sufficiently large capacity to node 1 and to each
node in {tj : i ∈ Ĥj}. Node 1 has a link of capacity 1 to
node 2, and node 2 has an outgoing link of capacity 1 to every
node ti . For C, we set S = Ŝ; Xi originates from O(i) = si
and is requested by D(i) = {tj : i ∈ Ŵj} for all i ∈ S. For W ,
R = R̂, Br = {(1→ 2), {out(si) : i ∈ B̂r }} and Ar = Âr for
each r ∈ R̂. Figure 1 depicts an example of such a mapping.

Next, we describe the code translation in both directions:
1) Translating a code for I to a code for N: Let ê(X̂

Ŝ
, Ẑ)

be the sender’s encoding function in I, where Ẑ is the random
key in the randomised encoding function. We translate to the
following code for N: For every outgoing link (si → v) from
every si , we set Xsi→v = esi→v(·) = Xi . For every outgoing
link from nodes 1 and 2, we set X1→2 = ê(XS, Z1) and Xe =

X1→2 for all e ∈ out(2), where Z1
d
= Ẑ .

2) Translating a code for N to a code for I: Suppose the
global encoding function for edge 1→ 2 in N can be written
as g1→2(XS, Z1). We translate to the following code for I:
X̂b = ê(·) = g1→2(X̂Ŝ, Ẑ), where Ẑ d

= Z1.

D. Mapping a secure network coding instance N to a secure
index coding instance I

Consider N = (G,C,W), where without loss of generality,
we assume that each message is requested by at least one
destination. Let S = [S] and V = [V]. We first map N to an
augmented secure network-coding instance N′ = (G′,C ′,W ′)
where G′ = (V ′, E ′) = G = (V, E) with link capacities c′e =
ce, and W ′ = W ; thus R ′ = R, B ′r = Br , and A ′r = Ar ,
for all r ∈ R. Set S′ = S ∪ {S + 1, S + 2, . . . , S + V}. For
s ∈ S, O′(s) = O(s), and D ′(s) = D(s). For the newly added
messages, O′(S+v) = v and D ′(S+v) = ∅, for all v ∈ [V]. This
means each X ′S+v originates at node v, and is not requested
by any node. It takes the role of the random key Zv in the
randomised encoding at node v in N. So for any vertex v ∈ [V]
that has no outgoing edge, we set X ′S+v = α to be a constant.
With this, any (deterministic or randomised) code for N can
be mapped to a deterministic code for N′.

Then, we map N′ to I as follows: Ŝ = S′ ∪ E ′. T̂ =
{t̂i}i∈U′ ∪ {t̂e}e∈E′ , where U ′ = U is the set of destination
nodes in N′. For each t̂e ∈ T̂ where e ∈ E ′, we set
Ĥt̂e = in(tail(e)) ∪ O′−1(tail(e)), and Ŵt̂e = {e}. For
each t̂i ∈ T̂ where i ∈ U ′, we set Ĥt̂i = in(i) ∪ O′−1(i),
and Ŵt̂i = {s ∈ [S] : i ∈ D ′(s)}. R̂ = R ′. For each r̂ ∈ R̂,
B̂r̂ = B

′
r̂
, and Âr̂ = A

′
r̂
. Figure 2 depicts an example of such

a mapping.
1) Translating a code for N to a code for I: Let {g′e :

e ∈ E} be deterministic global encoding functions in N′. For
I, we set X̂b = [X̂b,e : e ∈ E ′], where X̂b,e = X̂e + g′e(X̂S′)
mod 2 bcenc , and X̂e is independently and uniformly distributed
over [2 bc′enc].

2) Translating a code for I to a code for N: Let
{d̂v(X̂b, X̂Ĥv

) : v ∈ T̂ } be the decoding functions in I. For
N′, we first choose some broadcast message σ, and then set
ee(·) = d̂t̂e (σ, X

′

in(tail(e))∪O′−1(tail(e))
) for each edge e ∈ E ′.

III. RESULTS

The main results of this paper are as follows:
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1

X1

2r1 r2

X1 X1 X1

(a) N with randomised en-
coding

1

X ′1, X ′2

2X ′3r ′1 r ′2

X ′1 X ′1 X ′1

(b) N′ with deterministic
encoding

Sender

X̂1, X̂2, X̂3, X̂e1, X̂e2

X̂b

t̂2X̂e1, X̂e2t̂e2X̂1, X̂2 X̂e1 r̂1 X̂e2 r̂2

X̂e2
X̂1 X̂1 X̂1

t̂e1X̂1, X̂2

X̂e1

(c) I with deterministic encoding

Fig. 2: A secure network-coding instance N, its augmented version N′ (with additional messages X ′2 and X ′3), and the
corresponding secure index-coding instance I [1]

Theorem 1: Let I be a secure index-coding instance, and N
be the corresponding secure network-coding instance. For any
ε, η ∈ R+0 , n ∈ Z+, the instance I is (Ŝ, (pX̂s

: s ∈ Ŝ), ε, η, n)-
feasible if and only if N is (S, (pXs : s ∈ S), ε, η, n)-feasible
with deterministic coding functions for nodes {si : i ∈ Ŝ},
where X̂

Ŝ

d
= XS .

The theorem above preserves the message size, as well as
the decodability and security criteria from a secure index-
coding instance to a secure network-coding instance.

For the other direction, we first define n̂ =
∑

e∈E bcenc. Let
the total variation distance between two pmfs p and q on Ω be
expressed in L1 norms as δ(p, q) = 1

2 ‖p−q‖1 = 1
2
∑
σ∈Ω |p(σ)−

q(σ)|. Also, denote the uniform distribution on a finite set Ω
by unif(Ω).

Theorem 2: Let N be a secure network-coding instance and
I be the corresponding secure index-coding instance. For any
η ∈ R+0 , ε ∈ [0, 0.5], n ∈ Z+, we have the following:

1) If N, in which all messages XS are independent and
uniformly distributed, is (S, (pXs : s ∈ S), ε, η, n)-
feasible, then I is (S, (pX̂s

: s ∈ S), ε, η, n̂)-feasible with

a deterministic code, where X̂S
d
= XS .

2) If I, in which all messages (X̂S, X̂E) are independent and
uniformly distributed, is (S, (pX̂s

: s ∈ S), ε, η, n̂)-feasible
with a deterministic code, then

a) For ε = 0, N is (S, (pXs : s ∈ S), ε, η, n)-feasible; and
b) Otherwise, ε ∈ (0, 0.5], N is (S, (pXs : s ∈ S), |R |η +

ζ, γ, n)-feasible,

where XS
d
= X̂S , ζ is a function of (ε, n), and γ is a

function of (ζ, ε, η, n), defined as follows:

γ
def
= min

{
(|R|η + ζ)

(
1

1 − ε
+

log e + n̂
1 − (|R|η + ζ)

+ log |XS′ |
)

+
1

1 − ε
|R |Hb(ε) − log (1 − (|R|η + ζ)) , n̂

}
,

ζ
def
= min

{
ε[1 + 2δ(pX̂b

,unif([2n]))], ε[1 + ε2n̂], 1
}
.

In Part 2b of Theorem 2, the upper bounds on decoding error
and leakage increase exponentially with n. We can tighten the
bounds for linear codes:

Corollary 2.1: Let N be a secure network-coding instance
and I be the corresponding secure index-coding instance.
For any η ∈ R+0 , ε ∈ (0, 0.5], n ∈ Z+, we have the
following: If I is (S, (pX̂s

: s ∈ S), ε, η, n̂)-feasible using
a linear deterministic index code with cardinality 2n̂, where
(X̂S, X̂E) are independent and uniformly distributed, then N
is (S, (pXs : s ∈ S), |R |η + ε, γ′, n)-feasible, where

γ′
def
= min

{
(|R|η + ε)

(
1

1 − ε
+

log e + n̂
1 − (|R|η + ε)

+ log |XS′ |
)

+
1

1 − ε
|R |Hb(ε) − log (1 − (|R|η + ε)) , n̂

}
.

Note here that, for linear codes, the error probability for N
is independent of n, and is solely a function of ε , η, and the
number of eavesdroppers |R |; the leakage for N is a linear
function of n, and the coefficient of n can be made arbitrarily
small by choosing arbitrarily small η and ε . This means
a sequence of strongly-secure index codes for I translates
to a sequence of weakly-secure network codes for N (with
appropriate rate scaling).

Proof of Corollary 2.1: Using linear codes for I,
if the messages are uniformly distributed, then the code-
word X̂b is uniformly distributed over its support. So,
δ(pX̂b

,unif([2n])) = 0, which implies ζ = ε , and Corol-
lary 2.1 follows directly from Part 2b of Theorem 2.

IV. SKETCH OF PROOFS FOR THEOREMS 1 AND 2

Due to space constraints, we present here the sketch of
proofs for Theorems 1 and 2, and refer the reader to the longer
version of this paper [10] for complete proofs.

A. For Theorem 1 – the forward direction

The proof for the forward direction, that is I is (Ŝ, (pX̂s
: s ∈

Ŝ), ε, η, n)-feasible ⇒ N is (S, (pXs : s ∈ S), ε, η, n)-feasible,
is rather straightforward and is omitted here.

B. For Theorem 1 – the backward direction

For the other direction, the decodability criteria is also
straightforward. Here, we prove the security criteria. Recall
that we have chosen (X̂

Ŝ
, Ẑ) d
= (XS, Z1).
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From the hypothesis, we have the security condition
I(XAr ; XBr ) < η for N. Showing that the index code also
satisfy a similar security condition is not trivial, as the eaves-
droppers in I can access the messages themselves, instead
of just functions of the messages as in N. These functions
may not necessarily allow one to recover the messages, as we
allow non-zero error decoding probability. So, it seems that
the eavesdroppers in I have “better” observations, which may
lead to a larger leakage in the code.

We will show that this is not the case. First, note the follow-
ing: (i) {XS, Z1} are mutually independent; (ii) Xout(si ), for
each i ∈ S, is a deterministic function of Xi; (iii) B̂r ∩Ar = ∅.
With these, we have the following Markov chain for every r ,
XB̂r −X{out(si ):i∈B̂r } −(Z1, XAr , XS\(Ar∪B̂r )

), from which we
can then establish I(XB̂r ; XAr |XBr ) = 0. This means that
eavesdropper r , having observed the links XBr , does not gain
any more information about XAr even if it can further observe
the sources messages XB̂r . With this, we get

I(XB̂r , X1→2; XAr ) = I(XB̂r , X1→2, X{out(si ):i∈B̂r }; XAr )

= I(XB̂r , XBr ; XAr ) = I(XBr ; XAr ) + I(XB̂r ; XAr |XBr )

= I(XBr ; XAr ) ≤ η.

Since we set X̂b = g1→2(X̂Ŝ, Ẑ), we have (X̂
Ŝ
, Ẑ, X̂b)

d
=

(XS, Z1, X1→2). Recalling that Ar = Âr and Br = {(1 →
2), {out(si) : i ∈ B̂r }}, we have I(X̂B̂r , X̂b; X̂Âr

) ≤ η, which
is the required security criteria for I.

C. For Theorem 2 – Part 1 (the forward direction)

Due to space constraints, we omit the proof of this part. The
proof mainly relies on the observations that {X̂b(e) : e < B̂r̂ }
are independent of (X̂Âr̂

, {X̂b,e : e ∈ B̂r̂ }, {X̂e′ : e′ ∈ B̂r̂ }) and
that X̂b,e is a deterministic function of (X̂e, g′e(X̂S′)).

D. For Theorem 2 – Part 2 (the backward direction)

Recall that for this direction, we need to choose a fixed σ
for all the encoding functions in N′.

When ε = 0 (for Part 2a), any σ for N′ must guarantee
perfect decoding for N′, and we only need to select a good σ
to guarantee the security criterion. We can show that such a
candidate exists.

When ε > 0 (for Part 2b), we need to choose a good σ that
simultaneously guarantees the decodability and the security
criteria. This requires us to express both the security and
decodability expressions for I in terms of X̂b. Then we need
to relate the random variables in the two instances I and N′

through ε and η. Our solution consists of the following steps:
S.1 We relate security expressions for N′ (in which the

messages are denoted by X ′i , i ∈ S′ ∪ E ′) to that for
I. We show that for any σ ∈ [2n̂],

I(X ′
A′r

; X ′
B′r
) ≤ I(X̂Âr

; X̂B̂r |D̂ = 1, X̂b = σ)

+ ε ′ log |XS′ | − log(1 − ε ′) +
ε ′

1 − ε ′
(log e + n̂)), (2)

where D̂ = 1 denotes the event of correct decoding in I,
and XS′ =

∏
s∈S′ Xs is the set of all message realisations.

S.2 We express security in I in terms of the expression
obtained in S.1 (in the RHS of (2)) averaged over X̂b:

|R |η ≥
∑

σ∈[2n̂]

pX̂b
(σ)

∑
r ∈R

[
I(X̂Âr

; D̂| X̂b = σ)

− I(X̂Âr
; D̂|X̂B̂r , X̂b = σ)

+
∑

i∈{0,1}
pD̂(i)I(X̂Âr

; X̂B̂r |D̂ = i, X̂b = σ)

def
=

∑
σ∈[2n̂]

pX̂b
(σ)Γ(σ). (3)

S.3 We relate the decoding criterion in N′ to that in I: We
derive ε ≥

∑
σ∈[2n̂] unif([2n̂])

|Gc
σ |

|XS′ |
and Pe,σ ≤

|Gc
σ |

|XS′ |
,

where Pe,σ is the probability of decoding error in N′

when σ is chosen, Gc
σ

def
= XS′ \ Gσ , and Gσ is the set

of all message realisations XS′ in I that result in both
correct decoding and the broadcast message x̂b = σ.

S.4 Using S.3, we express decodability in I as an average
over X̂b:∑
σ∈[2n̂]

pX̂b
(σ)
|Gc
σ |

|XS′ |
≤ min

{
ε[1 + 2δ(pX̂b

,unif([2n]))],

ε[1 + ε2n̂], 1
}

def
= ζ . (4)

S.5 We combine the results from S.2 and S.4 to find a σ
that is simultaneously good for security and decodability.
Combining (4) and (3), there exists a σ such that

|R |η + ζ ≥
|Gc
σ |

|XS′ |
+ Γ(σ), (5)

which, when combined with (2), leads to the required
decodability constraint Pe,σ ≤

|Gc
σ |

|XS′ |
≤ |R|η + ζ and

security constraint I(X ′
A′

r′
; X ′
B′
r′
) ≤ γ.
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