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ABSTRACT
As demand for medical services increases, it may become necessary to centralize provision of
medical care, particularly specialty services, to certain locations within a geographic region. Due to
tradeoffs between operating costs, the risk of limited access, and decreased availability of patient-
centered care, there is a need to help healthcare administrators make informed decisions. This art-
icle examines the issue of staffing clinician care in a region of locally distributed patient-centered
clinics. As previous literature suggests, there are some benefits, as well as drawbacks, to centraliz-
ing the provision of care. Therefore, an administrator must understand the tradeoffs between the
risk of not meeting patient demand while considering staffing expenses, patient travel time, and
lack of continuity with large centralized clinics. We propose a multi-objective mixed-integer pro-
gram to minimize the risk of insufficient staffing as well as minimize an aggregated penalty func-
tion that incorporates staffing expenses, patient travel time, and a discontinuity penalty term. The
methodology provides an efficient frontier of risk versus penalty and we demonstrate the
approach with numerical results using data sampled from a typical demand distribution.
Furthermore, the numerical examples demonstrate how optimal decisions could vary, depending
on the distribution that characterizes demand, particularly when the demand distribution has non-
normal or heavy-tailed effects.
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1. Introduction

Modern healthcare management struggles with staffing med-
ical services in a way that satisfies patient demand while
providing patient-centered care that makes an efficient use
of resources in a healthcare network (Smith-Daniels et al.,
1988; Rais and Viana, 2011). The specific staffing choices
that health systems have (e.g. the ratio of primary to spe-
cialty care providers and the division of staff among clinic
locations) are driven by a number of factors that include:
the health care needs of the population, the relative supply
of physician and non-physician personnel in the community,
and the financial cost of hiring additional staff. Although
specialist location is influenced by reimbursement models
and individual provider strategies, there is no consensus
within research communities about the optimal strategy to
staff clinics or how to decide on a provider mix that
achieves the best outcomes within a patient-centered frame-
work (Smith-Daniels et al., 1988; Rais and Viana, 2011).
Moreover, variation in patient demand often leaves clini-
cians unable to treat patients promptly (Bodenheimer and
Pham, 2010).

Clinics face the challenge of paying for excess capacity
during low demand periods and, worse, having unmet or
inadequately addressed patient needs during high demand

periods (Smith-Daniels et al., 1988). This challenge is exa-
cerbated when patient care requires interaction among mul-
tiple specialists. The problem of highly variable demand is
compounded when the demand for specialty service exhibits
high kurtosis or “heavy” tails (e.g. when rare or infrequent
events drive a significant amount of the overall weekly spe-
cialty demand). We consider weekly specialty demand distri-
butions with heavy tails and quantify the risk of insufficient
staffing during demand spikes.

One approach to handle high variation within a popula-
tion’s need for specialty care is to redirect patients to large
facilities that are able to handle fluctuations in demand. In
these circumstances, patients typically served by local neigh-
borhood clinics are redirected to large healthcare centers for
certain types of specialty care. Similarly, weekly staffing lev-
els associated with those specialty care types are allocated to
those large healthcare centers to serve the combined neigh-
borhood demand.

Under this centralized provision of care, large specialty
centers with expanded panels of patients would have less
risk of being under- or over-staffed. Moreover, a centralized
provision of care benefits from economies of scale, including
sharing supplies and administration expenses while reducing
overhead and increasing care coordination (Luft and Crane,
1980; Cohen and Lee, 1985).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

CONTACT David Linz ddlinz@uw.edu Industrial Engineering, University of Washington, 3900 Northeast Stevens Way Mechanical Engineering Building,
Room G6, Seattle, WA 98105, USA.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uhse.
! 2019 “IISE”

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING
https://doi.org/10.1080/24725579.2019.1567629



Centralizing provision of care may also have significant
drawbacks. Increased transportation times could be prohibi-
tively high for some patient communities and could present
a significant burden to provision of care. Also, centralized
provision of care could have large impacts on the
“continuity” patients experience, as some patients will be
much less likely to be scheduled with the same specialist in
large clinics than in smaller clinics closer to their own
neighborhoods (Saha et al., 2008). Patients may also be
unfamiliar with a large clinic, which could discourage them
from seeking the specialist care they need.

An administrator of a healthcare network must, therefore,
weigh the advantages and disadvantages of centralized versus
distributed staffing. Their considerations would include: (1)
patient’s reliable access to specialists in a timely fashion; (2)
direct cost of staffing; (3) increased burden on patients trav-
eling for care; and (4) lack of familiarity and possible dis-
continuity of care that patients experience in large
centralized clinics.

Objectives fall into two types: those that pertain to aver-
age costs incurred by the clinics and patients, and the
objective to avoid under-staffing when demand spikes occur.
For instance, both patient travel time and staffing costs are
experienced every day and, therefore, can be measured well
by weekly averages or expected values. Conversely, ensuring
reliable access to care in a timely manner requires a policy
that avoids circumstances where a spike in patient demand
for a week exceeds the capacity of staff at a clinic. This
objective is better represented with a “risk” metric that
emphasizes the infrequent events in the tail of the demand
distribution.

To address these two different types of considerations, we
develop a model that considers two objective functions and
borrows methods popular in portfolio analysis (where aver-
age return is optimized relative to risk of loss). Our model
uses a weighted combination of weekly average “penalty
cost” along with a “risk” measurement that captures conse-
quences from the entire weekly demand distribution. This
formulation with two objectives should give an administra-
tor an effective tool to weigh the risk of being understaffed
with the average cost of operation. To aid in such a deci-
sion, this article proposes a multi-objective mathematical
optimization model that balances the tradeoffs between a
risk function and a penalty function.

There are several possible risk measures that measure
aversion to being understaffed relative to patient demand.
These common risk measures include: expected value, quan-
tile or “Value-at-Risk” (VaR), and the “Conditional Value-
at-Risk” (CVaR). The expected value provides a measure of
central tendency, which in the context of staffing represents
the average number of weekly hours of demand that exceed
staffed hours. Our model includes a constraint to ensure
average weekly demand is met. However, exclusively using
averages in this situation may not provide enough protec-
tion against being understaffed.

The quantile metric VaR provides more information
about extreme behavior at some given level c. For example,
considering a distribution of unmet demand, X, if the VaR

measure at level c ¼ 0:20; equals zero, VaR0:20ðXÞ ¼ 0; then
demand is satisfied 80% of the time, and not satisfied 20%
of the time. However, a quantile metric does not capture the
impact of scenarios beyond the quantile level. In these cir-
cumstances, a given quantile will ignore significant impact
of scenarios beyond the quantile level.

The CVaR metric addresses the issues of both the
expected value and the quantile metric, since it measures the
amount of unsatisfied demand in scenarios beyond a quan-
tile level. For example, given the previous distribution of
unmet demand, X, if CVaR0:20ðXÞ ¼ 100; then in the 20% of
time demand is not met, there is an average of 100 h of
unsatisfied demand. This measure allows decision makers to
consider scenarios where high demand exceeds staffed time
by a significant number of hours. The CVaR measure of
risk is conservative in nature, which may be appropriate for
risk-averse decision makers. The measure also has useful
properties (e.g. coherence and convexity) for optimization
(Rockafellar and Uryasev, 1999). The risk measure CVaR
has been used in sample average approximation for stochas-
tic optimization (Kleywegt et al., 2002; Wang and Ahmed,
2008). CVaR is a popular way to quantify the risk of poor
outcomes and has been used widely in financial applications
(Alexander and Baptista, 2004; Zhu and Fukushima, 2009;
Yu, 2011) as well as medical decision making (Zheng
et al., 2015).

We use CVaR to measure the amount of demand per week
that exceeds the specialist capacity staffed. Given that decision
makers will consider this risk measurement along with a gen-
eral concern for average system performance, the problem is
posed with two objective functions: the first objective is a sum
of CVaR over all clinics characterizing the number of unsatis-
fied weekly demand hours; the second is a “penalty” function
that combines the scaled linear cost of staffing, patient travel
time, and patient discontinuity factor for large centralized
facilities. Using the proposed model, a decision maker can
assess the tradeoffs implicit in locating specialty care and
examine the impact of heavy-tailed demand distributions on
the optimal staffing recommendations.

We propose and solve a multi-objective stochastic opti-
mization problem that incorporates both the location of the
specialist staff and the staffing levels (in hours per week) to
account for the combined risk interactions. We contrast our
approach with a deterministic model, which is a common
method to determine the location and demand fulfillment
decisions. We compare the risk exposure (in terms of unmet
demand) of a solution generated by the deterministic formu-
lation with our multi-objective stochastic method and dem-
onstrate that our handling of specialist location and demand
fulfillment leads to lower risk exposure than the determinis-
tic method. We also present solutions on the efficient fron-
tier to illustrate tradeoffs between the penalty formulation
and risk with the multi-objective stochastic method.

2. Background

Staffing healthcare systems is a critical issue in the manage-
ment and provision of cost-effective medical services
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(Gaynor and Anderson, 1995; Li and Benton, 2003; Abri
et al., 2006; Jack and Powers, 2009). Reviews (Smith-Daniels
et al., 1988; Rais and Viana, 2011) describe various opti-
mization models directed at improving hospital capacity
management and emphasize the importance of strategies to
reduce costs. In particular, Smith-Daniels et al. (1988) point
to the importance of economies of scale within networks of
healthcare facilities and the benefits of consolidating services
within geographic regions to eliminate redundancy and opti-
mally locate staff and resources. Following Smith-Daniels
et al. (1988), our article provides a data-driven numerical
model that addresses the question of optimal staffing with
respect to care consolidation.

The benefit of consolidating care to improve efficiency
has been well established in the literature (Parker and
DeLay, 2008; Jack and Powers, 2009; Sikka et al., 2009;
Trinh et al., 2014). Benefits of consolidation include remov-
ing redundancy, economies of scale, and increased commu-
nication between specialists. Other research demonstrates
that consolidating patient volume can result in improved
healthcare quality and health outcomes (Halm et al., 2002;
Huckman and Pisano, 2006). Rohleder et al. (2006) present
a model that demonstrates the advantage of care-consolida-
tion to reduce the impact of uncertainty in patient demand
and the risk of disruption. Reducing uncertainty by pooling
patients together into large groups, also referred to as “risk-
pooling,” is a key benefit to consolidating care.

Another critical element to providing efficient, patient-
centered medical care is locating professionals and resources
close to patients. Research has shown the importance of
locating care provision near patients (Kohli et al., 1995;
Payne et al., 2000; Jordan et al., 2004; Woods et al., 2005;
Exworthy and Peckham, 2006; Cook et al., 2007; Saha et al.,
2008). There is a large literature on optimal medical facility
location (Calvo and Marks, 1973; Shuman et al., 1973;
Oliveira and Bevan, 2006; Griffin et al., 2007; Baray and
Cliquet, 2013) (for a review, see Daskin and Dean (2004)),
which broadly applies facility location models to a med-
ical context.

The use of risk measures to optimize the provision of ser-
vice and care has been shown to be effective. Value-at-Risk
(VaR) is used as a risk measure, incorporated as chance
constraints, when optimizing quality of service across net-
works (Shen and Chen, 2013). Furthermore, the incorpor-
ation of a risk-based perspective (through chance constraints
again), is used in stochastic programing models for setting
nurse-to-patient ratios (Maass et al., 2017). Chen et al.
(2006) used a measurement of risk based on the “Mean
Excess Regret” or CVaR for facility location, which is the
same risk measurement we examine for allocating staff-
ing resources.

A multi-stage stochastic program with recourse (Birge
and Louveaux, 1997; Shapiro et al., 2009) is an optimiza-
tion approach that accounts for uncertainty. The models
in Maass et al. (2017) and Shen and Chen (2013) are for-
mulated as two-stage stochastic programs with recourse,
where the first stage decision is at strategic level, and the
second stage is at an operational level once the

uncertainty has been revealed. Our model considers both
location and staffing levels of specialists at a strategic
level, so we do not have a recourse decision at the oper-
ational level. It is also common for a multi-stage stochas-
tic program with recourse to merge cost considerations
into a measure of risk. In this article, we keep the penalty
measure (including patient travel time, lack of familiarity
and possible discontinuity of care, and direct cost of staff-
ing) separate from the risk measure (the CVaR of under-
staffing and contributing to lack of access to care). By
considering both objectives, we can explore solutions
along an efficient frontier to aid a decision maker in
understanding tradeoffs between penalty and risk. We also
demonstrate the impact that probability distributions of
demand with heavy tails versus light tails have on the
decisions and subsequent risk of under-staffing.

Less research exists concerning the allocation of resources
inside of existing clinic facilities. Deterministic models, such
as Ruth (1981), explore the possibility of allocating beds
within a group of facilities while Stummer et al. (2004)
address the location of capacity within pre-existing facilities,
using a multi-objective optimization problem to determine a
location and size of medical departments relative to service
objectives. Benneyan et al. (2012) use a deterministic math-
ematical model to optimize staffing inside a geographically
distributed network of facilities. In Benneyan et al. (2012), a
decision maker makes a series of staffing and demand allo-
cation decisions to minimize a combination of non-coverage
cost, staff cost, and travel cost.

An approach to locating specialist staff that addresses
stochastic demand is proposed by Mahar et al. (2011).
Assuming normally distributed demand, Mahar et al.
(2011) develop an integer program based on a weight pen-
alty for expected unmet demand and a cost for transporta-
tion and staffing at each potential location. Mahar’s model
improved upon more basic location based models (such as
set-covering) by accounting for economies of scale and a
stochastic model of demand. Using separate terms for
flexible and inflexible demand (demand that cannot be
moved to another facility), Mahar et al. (2011) were the
first to rigorously demonstrate how specialty care can be
optimally allocated to benefit from resource pooling with
minimal transport costs. The model described by Mahar
et al. (2011) is limited to normally distributed demand;
moreover, the model is restricted to minimizing expected
costs and does not directly deal with patient demand that
will naturally follow the re-location of other specialist
services. In this article, we expand the perspective to
include a measure of risk that emphasizes tail-effects that
might not be otherwise captured when examining
expected cost of staffing shortfall under normally distrib-
uted demand as well as describe demand, created by
patient co-morbidity.

There are advantages to using a model for staffing that
takes into account tail-effects and non-normal demand.
Without these considerations, there is a distinct possibility
that a solution may underestimate the needed staffing in
clinics with infrequent but critical spikes in demand. In
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some circumstances, medical demand has been shown to
have high kurtosis and effects that are dominated by
extreme values (Mihaylova et al., 2010). In these cases, it is
important to use a model that takes into account the effects
of distributions that are not normal. In absence of a model
that can measure the effects of extreme events, there is a
chance that an optimization model will provide staffing
strategies based on an underestimation of the risk of insuffi-
cient staff. Therefore, an optimization model that does not
account for non-normal or heavy-tailed distributions in
demand would provide sub-optimal solutions to a risk-
averse decision maker.

This article proposes a multi-objective optimization
model that does not rely on the assumption of demand nor-
mality (or any specific demand distribution). Instead, our
approach employs data to model the risk due to tail effects
for a general distribution. With a measurement of risk based
on CVaR, as in Chen et al. (2006), our article introduces a
method for optimizing the specialist care staffing among
geographically located patient-centered clinics. The results
allow a decision maker to understand the risk and penalty
tradeoffs, even in the case where demand distributions
exhibit non-normal behavior. Decisions could, therefore, be
better made with regard to spikes in demand that might
nonetheless impact a staffing strategy’s optimality.

3. Optimization model

Our model optimizes staffing within a geographic region
with multiple patient-centered healthcare outpatient clinics
where specialists might be located.

This research was motivated in part by questions raised
by the leadership of Group Health Cooperative, an inte-
grated health system Q4that operates primarily in the Puget
Sound region of western Washington, which includes metro-
politan Seattle. Group Health leadership has considered vari-
ous ways to organize its care system to meet patient
demand for all services, from co-locating primary and spe-
cialty providers in the same facility to creating larger, cen-
tralized specialty centers. This may involve re-balancing
staffing hours inside existing clinics that staff care or re-
grouping clinics into different clusters that share the provi-
sion of care at one central location.

For example, seven pre-existing clinics in the greater
Seattle area (labeled 1–7) are shown in Fig. 1. Patients typic-
ally use their nearest clinic for primary care and may either
obtain specialty care locally, or at another clinic where the
required type of specialist is staffed. We consider the admin-
istrative decision of determining the optimal way to staff
specialists in various locations. The example in Fig. 1 has
four clusters: Cluster 1 includes demand from both clinics 1
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Figure 1. An example of seven clinics in the greater Seattle area, marked with circles and labeled 1–7. Clusters where specialist care is shared between clinics are
marked with the shaded circles. The arrows indicate the central clinic inside the cluster that provides specialist care.
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and 2 with specialists located at clinic 1; Cluster 3 consists
only of clinic 3, which provides its own specialist care;
Cluster 6 handles demand from clinics 4, 5, and 6 with spe-
cialist care provided at clinic 6; Cluster 7 consists of clinic 7,
which provides its own specialist care.

Our model assigns weekly specialist hours to staff the
clinic that serves each cluster (our convention is that the
cluster number will take the name of the supporting clinic).
By solving both the clustering problem and the service
assignment problem in the same optimization model, we
address the considerations of healthcare management.

The model also takes into consideration the interaction
between different types of specialists as some specialties
must be co-located. For example, a portion of endocrinology
patients will also need oncology care; therefore, there must
be sufficient allocation of endocrinologists and oncologists
at the same clinic to serve patients needing both types
of care.

The model makes use of quantifiable patient “demand”
for specialty services at each clinic. We measure this demand
as the time required to serve all patients who use that clinic
and are seeking care within a given time frame (e.g. weekly).
Demand has a corresponding probability distribution over a
given period of time. Based on this observed demand, an
administrator will want to optimally cluster and staff special-
ists throughout a set of clinics.

The model assigns each clinic to a cluster for each spe-
cialty type. Since there may be priorities in how different
specialties are centralized (e.g. patients needing both oncol-
ogy and endocrinology will prefer to have endocrinology
located with their oncologist and not vice versa), the model
imposes a “hierarchy” such that clinics that act as centers
for one type of specialist care will have to provide specialist
care of a lower priority. Staffing levels have to take into
account the additional demand attributed to “co-morbidity”
(e.g. demand coming from patients being referred to that
clinic for another type of care who would also like to receive
care of the lower priority type).

Since the model is concerned with the strategic decision
to consolidate care, the method focuses on staffing specialist
hours rather than the individual specialists. This perspective
allows decision makers to look at the strategic allocation of

staffing resources rather than the more operational problem
of scheduling a group of professionals.

3.1. Model formulation

The key task of the model is to determine the optimal staff-
ing allocation that minimizes specified functions for risk
and penalty. This involves choosing the location of clinics
within clusters as well as selecting the number of staff hours
per cluster.

We consider C clinics where each clinic is indexed by c,
c ¼ 1; :::;C: Let there be C potential clusters indexed by l,
l ¼ 1; :::;C: We model I healthcare professional types
indexed by i, i ¼ 1; :::; I:

The decision variables are described relative to the speci-
fied indices. To represent the assignment of clinic c to clus-
ter l, for each specialty type i, let

Xc;l;i ¼
1; if clinic cis incluster l for specialty type i
0; otherwise

!

for c ¼ 1; :::;C; l ¼ 1; :::;C and i ¼ 1; :::; I: Note that for
Xc;l;i ¼ 1; if l¼ c then clinic l staffs specialists for itself and
the other clinics assigned to cluster l.

Let Yl;i be a decision variable specifying the number of
hours per week of specialist type i staffed at cluster l, for l ¼
1; :::;C and i ¼ 1; :::; I:

The optimization problem depends on one basic random
vector Dc;i which represents the weekly demand at clinic c
for service type i. The probability distribution for Dc;i is
allowed to be a general distribution, as long as it has finite
mea; e.g. EðDc;iÞ ¼ lc;i <1: The probability distribution
may be based on an empirical model of demand. Although
a closed form cumulative distribution function is not
required, the optimization model assumes that the demand
distribution Dc;i has a computable lc;i as well as a method
for generating an arbitrary number of random samples
denoted dc;i;k for k ¼ 1; :::;K:

The decision variables, random variables, and parameters
are summarized in Table 1.

The optimization problem in (1)–(9) is formulated as a
two-objective mixed integer program. Section 3.2 discusses
how we construct the efficient frontier for the two objectives
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Table 1. System indices, parameters, decision variables, and random variables.

Indices
C Number of clinics, indexed by c ¼ 1; :::; C
C Number of potential clusters, indexed by l ¼ 1; :::; C
I Number of specialty types, indexed by i ¼ 1; :::; I

Parameters
mi;i0 Fraction of demand of specialty type i that should be served at the same location where specialty type i0 is provided
hl;i Penalty cost of staffing one hour of specialty type i at cluster l
tc;l;i Penalty cost of transporting an hour of demand of type i between clinic c and cluster l
vl;i Threshold for a large cluster l for specialty type i
sl;i Penalty for exceeding threshold for a large cluster by one hour at cluster l for type i
wi Scaling index for risk-aversion from specialty type i
bl;i Maximum capacity at each cluster l for specialty type i
ci Threshold for risk for specialty type i

Decision variables
Xc;l;i Binary variable indicating if clinic c is assigned to cluster l and offers specialty service of type i.
Yl;i Real variable showing the hours of specialty type i staffed at cluster l

Random variables
Dc;i Random variable representing the demand at clinic c for specialty type i, with mean lc;i and random samples dc;i;k for k ¼ 1; :::; K
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using the !-method (Deb et al., 2016). Section 3.3 details
how we approximate the risk function, Riskci written in
terms of the random variable Dc;i; with K demand samples
dc;i;l; :::; dc;i;K from the demand distribution for Dc;i :

Minimize:

XI

i¼1

wi $ Riskci
XC

l¼1

XC

c¼1

XI

i0
mi;i0 $ Dc;i $ Xc;l;i0

 !

% Yl;i

 !þ
2

4

3

5

0

@

1

A

Risk (1)

XI

i¼1

 
XC

l¼1

Yl;i $ hl;i þ
XC

c¼1

XC

l¼1

 
XI

i0
mi0;i $ lc;i0 $ tc;l;i0

!

$ Xc;l;i

þ
XC

l¼1

½Yl;i % vl;i(þ $ sl;iÞ

Penalty (2)

Subject to:

XC

c¼1

 
XI

i0
mi;i0 $ lc;i $ Xc;l;i0

!

%Yl;i ) 0 8l; i

Average demand satisfaction (3)

Yl;i ) bl;i 8l; i Capacity (4)

XC

l¼1
Xc;l;i ¼ 1 8c; i Complete allocation (5)

Xl;l;i%Xc;l;i * 0 8c; l; i; s:t: c 6¼ l

Clusters provide own care (6)

Xl;l;i0%Xl;l;i * 0 8l; i; i0 s:t: i0>i

Hierarchy for centralizing specialist types (7)

Xc;l;i 2 0; 1f g 8c; l; i (8)

Yl;i * 0 8l; i (9)

The first objective function (1) characterizes a linear
combination of the risk of patient demand exceeding the
staffed hours at clusters for each specialist type. Here, Riskci
represents CVaRci ; as detailed in Section 3.3. The argument
of the risk function, also called the “loss function,” is

XC

l¼1

XC

c¼1

XI

i0
mi;i0 $ Dc;i $ Xc;l;i0

 !

% Yl;i

 !þ

and makes the use of the positive portion of the argument
to determine unmet demand. The risk of insufficient staff is,
therefore, a function of this expression for loss. Since some
demand for specialist type i also requires other types of spe-
cialist care of type i0 at the same location due to co-

morbidity, the total demand includes the product of the
variable Xc;l;i0 with the co-morbidity factor, mi;i0 ; summed
over all other specialist types i0 to account for the total
demand at a cluster. To ensure that the clustering of spe-
cialty care follows the specified hierarchy (e.g. clustering
low-priority specialist types does not cause high-priority
demand to change location), the parameter mi;i0 ¼ 0
for i0>i:

The second objective function (2) characterizes a system-
wide penalty incurred from (i) paying for staffing, (ii) forc-
ing patients to travel, and (iii) impacting patient familiarity
and possible discontinuity with the clinics. The first term in
(2) penalizes the hours of specialty type i staffed at each
cluster i weighted by hourly cost

P
l Yl;i $ hl;i:

The second term in (2) describes the linear travel penalty
for transporting an hour of demand from its local clinic to
any other clinic designated as its regional cluster. We
express the travel penalty in terms of the average demand
transported from clinic c as

PC
c¼1

PC
l¼1ð
PI

i0 mi0;i $ lc;i0 $
tc;l;i0Þ $ Xc;l;i for each specialty type i. This accounts for one
type of demand following the re-direction of another type of
demand due to co-morbidity. This formulation assumes that
all transport costs are common to a region served by an
existing clinic. Furthermore, we set the transportation pen-
alty to zero if the clinic belongs to its own cluster, so by def-
inition tc;l ¼ 0 when c¼ l.

The third term in the aggregated penalty function is a
piecewise linear expression that accumulates penalty after a
cluster’s staffing level exceeds a threshold considered “large.”
Therefore, the penalty for having more than a threshold
number of specialist-hours is

P
l ½Yl;i%vl;i(þ $ sl;i:

Constraint (3) ensures that each staffing allocation in a
cluster exceeds the expected weekly demand in that clus-
ter. Constraint (4) ensures that each cluster l never
exceeds a maximum number of hours that can be staffed.
Every clinic is assigned to one and only one cluster as
required by Constraints (5) and (8). Constraint (6) pre-
vents clinics that provide care to a cluster from redirect-
ing local demand to other clinics. Constraint (7) enforces
the hierarchy of staffing specialist care, such that support-
ing specialist care with a low priority (high index i) is
always staffed in clinics that support higher-priority spe-
cialist types. The last two constraints enforce binary val-
ues for cluster allocation, and non-negativity with respect
to specialist hours.

The model provided in ð1Þ%ð9Þ determines an optimal
policy that balances penalty versus the risk of demand for
care exceeding staffed hours. We contrast this method of
modeling the problem with an alternative method that
treats the demand as deterministic. The decision variables
are the same; the staffing levels (Yl;i) and location of the
staff (Xc;l;i).

To model the staffing problem deterministically, we
replace the random variable of demand Dc;i with its corre-
sponding mean lc;i: With this substitution, the risk of not
meeting the expected demand in (1) is zero since Constraint
(3) ensures the expected demand is satisfied. This simplifies
the optimization problem, since minimizing the cost of
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staffing ð
PI

i¼1

PC
l¼1 Yl;i $ hl;iÞ; while ensuring that average

demand is met (Constraint (3)), resulting in setting total
staffing levels equal to the associated expected demand, such
that

XC

c¼1

XI

i0
mi;i0 $ lc;i $ Xc;l;i0

 !

¼ Yl;i 8l; i: (10)

To locate staff, we then set Yl;i according to (10) and sub-
stitute the expression, in terms of Xc;l;i; into the penalty
function. This results in the following minimiza-
tion problem:

Minimize:

XI

i¼1

 
XC

l¼1

XC

c¼1

 
XI

i0
mi;i0 $ lc;i $ Xc;l;i0

!

$ hl;i

þ
XC

c¼1

XC

l¼1

 
XI

i0
mi0;i $ lc;i0 $ tc;l;i0

!

$ Xc;l;i

þ
XC

l¼1

"
XC

c¼1

 
XI

i0
mi;i0 $ lc;i $ Xc;l;i0

!

% vl;i

#þ
$ sl;i

!
(11)

Subject to:

Constraints 4ð Þ % 8ð Þ

Note (3) is naturally satisfied by the substitution in (10)
and the constraints are re-written in terms of the decision
variables Xc;l;i: This provides staffing levels and cluster
organization in a deterministic model. In Section 4.4, we
compare this deterministic formulation with the multi-
objective stochastic formulation given in ð1Þ%ð9Þ: We dem-
onstrate that the risk exposure using the deterministic model
is greater than the risk associated with the solutions to the
multi-objective stochastic formulation.

3.2. Constructing an efficient frontier

To demonstrate the tradeoffs between risk and penalty and
provide optimal strategies to an administrator, a Pareto set
of optimal points is generated. To construct this set, the
multi-objective program listed in (1)–(9) is converted into a
single objective optimization problem, with the second
objective function (2) converted into a constraint with a
variable right hand side spenalty. This is referred to as the
!-method (Deb et al., 2016) and creates an optimization
problem with a single objective function and an add-
itional constraint.

For large values of spenalty, it is possible for the program
to find unnecessarily large values of Yc;l that do not directly
contribute to lowering the objective function. It is, therefore,
important to include an exogenous term (Yl;i multiplied
times a small constant ni) to the objective function to ensure
that excess staffing hours are not allocated. The single
objective optimization problem is written as follows:

Minimize:

XI

i¼1

 

wi $ Riskci
XC

l¼1

XC

c¼1

XI

i0
mi;i0 $ Dc;i $ Xc;l;i0

 !

% Yl;i

" #þ0

@

1

A

þ ni $
XC

l¼1

Yl;i

!

(12)

Subject to:

XI

i¼1

 
XC

l¼1

Yl;i $ hl;i þ
XC

c¼1

XC

l¼1

XI

i0
mi0;i $ lc;i0 $ tc;l;i0

 !

$ Xc;l;i

þ
XC

l¼1

Yl;i % vl;ið Þþ $ sl;i

!

) spenalty

(13)

Constraints (3)–(9).
An efficient frontier for the multi-objective program in

(1)–(9) can be created by solving a series of linear mixed-
integer programs with different values of spenalty.

We next find an approximation for the risk object-
ive function.

3.3. Quantifying risk of staffing shortfall

The risk measure used to quantify under-staffing can take a
variety of forms. In this article, we use CVaR as a measure
of risk in the first objective function while ensuring that
average weekly demand is met with Constraint (3). We esti-
mate the risk function in (1) by using K-sampled values
dc;i;1; :::; dc;i;K from the demand Dc;i distribution.

The most straightforward measure of risk is to measure
the average demand that exceeds the number of staffed
hours at any clinic cluster. Constraint (3) uses average
demand expressed in terms of lc;i; however, it could be
expressed in terms of the K sample values

XI

i¼1

 

wi $
1
K

XK

k¼1

XC

l¼1

XC

c¼1

XI

i0
mi;i0 $ dc;i;k $ Xc;l;i0

 !

% Yl;i

" #þ0

@

1

A

þ ni $
XC

l¼1

Yl;i

!

:

However, the expected value of unsatisfied demand is a
simple measure of risk that only represents central tendency
and does not reflect the impact of the tail of the
distribution.

An alternative to looking at expected staffing shortfall is
using the VaR measure. The VaR at a given level ci repre-
sents the upper quantile of demand for specialist care
exceeding staffed hours with probability ci. VaR (at level ci)
provides a useful measure and is closely related to a chance
constraint that specifies the probability of demand exceeding
supply. For instance, if a decision maker required that
demand not exceed supply with probability 1%c0; then this
would be the equivalent of VaRc0 ¼ 0:
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The objective function in Risk (1) can be written in terms
of VaR as (Riskci ¼ VaRci)

XI

i¼1

 

wi $ VaRci

XC

l¼1

XC

c¼1

XI

i0
mi;i0 $ Dc;i $ Xc;l;i0

 !

% Yl;i

" #þ0

@

1

A

þ ni $
XC

l¼1

Yl;i

!

:

This, combined with Constraints (3)–(9) and (13), results
in a non-convex program. However, a heuristic approxima-
tion for the minimization of this quantity can be taken from
solving successive lower bounds as outlined in Larsen et al.
(2002). However, the “VaR” measure does not account for
tail-end behavior past a specified threshold, and the measure
can be not “sub-additive” and can miss opportunities where
more consolidation could lead to less risk.

Lastly, the risk measure of “CVaR ” at a given level ci
(CVaRci) can be used to quantify an aversion to under-staff-
ing. The CVaR risk measure can be seen as the expected
amount of loss in the worst ci% of scenarios, or the average
number of hours of specialist care in excess to the number
of hours staffed in the worst ci% of scenarios.

The conditional value at risk has a number of qualities
that make it preferable to the other measures of risk under
consideration. CVaR has the advantage of being a convex
and coherent measure of risk (Rockafellar, 2007). In our
context, it ensures that the total system-wide risk of being
understaffed is less than the sum of the risk at each cluster.
Moreover, the use of CVaR allows the optimization problem
to be sensitive to “tail-effects” that are an important compo-
nent in staffing and clustering decisions that balance risk-
pooling with minimizing the penalty objective function.

Additionally, CVaR is a natural upper bound for the VaR
measure, making it a more conservative means to measure
deviation from a given chance constraint. In fact, in many
reliability applications “CVaR” is used as an equivalent to a
“buffered chance constraint” (or buffered probability of fail-
ure in reliability contexts) (Rockafellar and Royset, 2010).
This allows consideration of chance constraints to be
accounted for without discounting large downsides that
could result from rare scenarios on the tail-end of the
distribution.

To estimate the Riskci function in (1), we use a CVaR
approximation method outlined by Rockafellar and Uryasev
(1999) for the loss function,

XC

l

"XC

c

#XI

i0
mi;i0 $ Dc;i $ Xc;l;i0

$
% Yl;i

%þ
: The CVaR

term, CVaRci

&XC

l

"XC

c

#XI

i0
mi;i0 $ Dc;i $ Xc;l;i0

$
% Yl;i

%þ$
;

can be approximated using K demand samples,
dc;i;1; :::; dc;i;K ; from each Dc;i and determining a threshold
value, !i; that minimizes the average loss function values
that exceed that threshold. The approximation from
Rockafellar and Uryasev (1999) is given by

CVaRci

 
XC

l

"
XC

c

 
XI

i0
mi;i0 $Dc;i $Xc;l;i0

!

%Yl;i

#þ!

+min!i !iþ
1

K $ci
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"
XC
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"
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i0
mi;i0 $dc;i;k $Xc;l;i0

!

%Yl;i

#þ
%!i(þ

0

@

1

A:

(14)

As shown in Rockafellar and Uryasev (1999), the
approximation in (14) is close to the CVaRci of the loss
function for sufficiently large values of K. The idea is that
the value of !i that minimizes (14) approaches VaRci as K
goes to infinity.

For an intuitive explanation of the approximation on the
right-hand side of (14), consider two threshold values, !1i ; !

2
i ;

such that !1i>VaRci>!2i : Looking at the first term in the
approximation, we see that !1i>!2i : Conversely, the second
term in the approximation has fewer terms above the thresh-
old, !1i ; than the number of terms above the threshold !2i :
Therefore, the second term is smaller under !1i than under !2i :
There is a similar tradeoff between the first and second terms
of the approximation when !i ¼ VaRci : The argument that the
sum of both terms is minimized at the point where !i ¼ VaRci
depends on the convexity of CVaRci ; as detailed in the proof
of Theorem 1 from Rockafellar and Uryasev (1999).

We substitute the approximation in (14) for Riskci in
(12), since the decision variables !i can be selected inde-
pendently for each i. This yields the following optimization
problem with additional decision variables !i :

Minimize :
XI

i¼1

wi

 
!i þ

1
K $ ci

XK

k¼1

XC

l¼1

XC

c¼1

XI

i0
mi;i0 $ dc;i;k $ Xc;l;i0

 !

% Yl;i

" #þ
% !i

2
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3

5
þ

þni $
XC

l¼1

Yl;i

!

Subject To :
Constraints 3ð Þ% 9ð Þ and 13ð Þ:

(15)
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Table 2. p-Values, Anderson–Darling test.

Care type Clinic 1 Clinic 2 Clinic 3 Clinic 4 Clinic 5 Clinic 6

Ambulatory care 4.12e% 26 1.11e% 05 3.92e% 04 3.92e% 06 6.41e% 12 4.38e% 12
Radiology 3.13e% 13 8.14e% 09 1.03e% 43 8.14e% 09 1.35e% 02 2.03e% 54
Lab only 9.02e% 61 2.61e% 49 1.11e% 46 8.76e% 50 5.70e% 57 5.80e% 58

Table 3. p-Values, Bonett–Seier test.

Care type Clinic 1 Clinic 2 Clinic 3 Clinic 4 Clinic 5 Clinic 6

Ambulatory care 1.41e% 26 1.21e% 04 7.21e%01 7.76e%01 5.26e% 18 1.35e% 16
Radiology 5.72e% 08 6.16e%01 1.43e% 14 2.01e% 06 1.00e% 03 6.84e%01
Lab only 1.05e% 04 8.77e% 04 1.97e% 03 6.71e% 04 8.04e% 05 7.08e% 05
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Since the objective function in (15) is piecewise linear
and is monotonic relative to all positive-portion arguments,
a change of variables can convert (15) into a lin-
ear equation.

4. Optimization on sample data

4.1. Evidence of non-normal demand

Using a dataset from Group Health, we demonstrate an ini-
tial motivation for a model to consider non-normal demand
distributions. We use the Relative Value Unit (RVU) as a
proxy for physician effort. It is a common way of measuring
the time and effort of a physician for purposes of reimburse-
ment. It is designed to account for the “time, technical
skill,… and stress to provide a service” (Coberly, 2015).

The Group Health databases containing RVUs at various
clinics provide insight into the fluctuation of patient
demand. Initially tabulated by interaction, we aggregate the
RVUs, by week for time period between January 2009 and
December 2012, the RVU-score is totaled for each of six
clinics and three categories of care (Ambulatory Visit, Lab
Only Encounter, and Radiology). This creates an initial

dataset of 208 values (each week for 4 years) that can be
analyzed as a distribution.

Given the 208 weekly RVU totals, we apply some com-
mon statistical tests to demonstrate that the demand data
does not follow a normal distribution. Using the null
hypothesis that the observed data are taken from a normal
distribution with unknown mean and variance, we generate
p-values, the probability of observing sampled data under
the null hypothesis, with the Anderson–Darling test and the
Bonett–Seier test (Shapiro, 1990; Bonett and Seier, 2002).
These values are listed in Tables 2 and 3. The null hypoth-
esis of normality can be rejected in all 18 cases with 95%
confidence using the Anderson-Darling test, and all but 4 of
the 18 cases can be rejected with 95% confidence via the
Bonett–Seier test (exceptions italicized).

We examine the behavior of three distributions (radi-
ology at clinic 6, lab-only in clinic 3 and radiology in clinic
5) for illustration purposes (left, middle, and right in Figs. 2
and 3). The deviation from normal behavior of the three
distributions can be visualized with a qq-plot (see Fig. 2) as
well as in a histogram (see Fig. 3). The first two cases, radi-
ology at clinic 6 and lab-only in clinic 3, show heavy tailed
or skewed distributions that depart from normal behavior at
the high and low quantiles. However, as seen in the third

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Figure 2. Three qq-plots that show the range of quantiles versus a normal behavior (straight line). Radiology in clinic 5 (on the right) follows the normal behavior
for distributed weekly total RVUs, whereas radiology in clinic 6 (on the left) and lab-only in clinic 3 (in the middle) depart significantly at the lower and
upper quantiles.

Figure 3. The histograms illustrating the distribution of RVUs for radiology in clinic 6 (on the left) and for lab-only in clinic 3 (middle) and radiology in clinic 5 (on
the right). The leftmost graphs show non-normal bulges at the tail of the distribution whereas the rightmost graph shows demand consolidated around the mean
(more normal behavior).
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case, radiology in clinic 5, some RVU distributions exhibit
more normal behavior (rightmost graphs of Figs. 2 and 3).

As indicated by the data, the aggregated weekly demand
does not seem to converge to a normal distribution, most
likely because demand between weeks is not independent or
is weakly dependent. This indicates that there is a diverse
pattern behavior of demand such that a normal distribution
might either over-estimate or under-estimate the tail effect
of a distribution. Decision makers must be aware of cases
where specialist demand exhibits heavy-tailed or skewed
behavior and build these considerations into their optimiza-
tion models.

Although there may be unobserved factors that account
for the non-normality in these cases, the observations pro-
vide an initial motivation for testing cases involving non-
normal distributions with both strong and weak tail-effects.

4.2. Seven clinic scenario with three specialties

To demonstrate the utility of our model, we examine a
hypothetical scenario that emulates the behavior of a real-
world network of healthcare providers. Although the infor-
mation used to specify this scenario does not specifically fit
the data discussed in Section 4.1, it is an example that dem-
onstrates the optimization of specialist care allocation in a
network, specifically demonstrating the utility of modeling a
variety of demand distributions that can account for heavy-
tailed and skewed demand distributions.

We compare two models that minimize the CVaR meas-
ure of risk based on two different demand distribution
assumptions, normal and Weibull. For each of the model

assumptions, both models will be fit to a common initial set
of generated data points. For the initial generation of
demand points, we specifically select the Weibull distribu-
tion as an example of a non-normal distribution that sup-
ports heavy-tail effects (similar to the behavior of the
demand graphed in Section 4.1).

We investigate a hypothetical scenario with three special-
ist types: oncology, endocrinology, and behavior care (corre-
sponding to morbidities of cancer, diabetes, and depression)
across a seven-clinic network. We compare the allocation of
these three types of specialists to the seven clinics under
normal and Weibull demand distributions. The system par-
ameter values are based, in part, on observations taken from
literature and conjecture. In a real-world scenario, values
would be determined through statistical analysis and an
understanding of specific management priorities.

Starting with a seven clinic scenario similar to the
example in Fig. 1, we model a network with two large clinics
and five smaller clinics. From Group Health data, we
observed that demand between larger and smaller clinics
(based on RVU proxy) differs by a factor of 7. We also
assume that the demand for specialist time differs between
specialist types, since oncology care tends to be more time
intensive than endocrinology, and endocrinology more
intensive than behavioral care. Therefore, we scale the initial
Weibull demand distribution for each clinic and specialist
type such that large clinics have approximately seven times
the demand of the smaller clinics and such that the demand
for oncology, endocrinology, and behavioral demand differ
by a factor of 1.5, respectively. At each clinic, the capacity is
approximately twice the average demand with the exception
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Table 4. The staffing allocations for Scenario (I). Each of the percentages represents the distribution of the staffing across each of the seven clinics for each
model, respectively. The bottom row contains the total weekly staffed hours for each specialist type.

Oncology Endocrinology Behavioral care

Normal Weibull Normal Weibull Normal Weibull

Clinic 1 36.99% 44.75% 36.09% 37.78% 29.11% 32.55%
Clinic 2 10.41% – 10.65% – 11.24% 11.34%
Clinic 3 8.89% 12.20% 10.65% 11.31% 11.24% 11.34%
Clinic 4 – – – – – 5.23%
Clinic 5 – – – – – 5.23%
Clinic 6 43.71% 43.05% 42.60% 45.25% 43.22% 29.07%
Clinic 7 – – – 5.66% 5.19% 5.23%

Total staffed hours in network 17,110 18,773 18,777 17,679 11,567 11,467

Table 5. The staffing allocations for Scenario 2. Each of the percentages represents the distribution of the staffing across each of the seven clinics for each
model respectively. The bottom row contains the total weekly staffed hours for each specialist type.

Oncology Endocrinology Behavioral Care

Normal Weibull Normal Weibull Normal Weibull

Clinic 1 79.67% 77.71% 67.51% 78.77% 68.32% 78.30%
Clinic 2 – – – – – –
Clinic 3 – – – – 8.34% –
Clinic 4 – – – – – –
Clinic 5 – – – – – –
Clinic 6 20.33% 22.29% 32.49% 21.23% 23.34% 21.70%
Clinic 7 – – – – – –

Total staffed hours in network 31,355 27,977 24,625 24,572 15,591 15,187
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of the largest clinic (clinic 1), which we assume to be a large
medical center with totally elastic staffing (arbitrarily large
capacity). The threshold for considering a clinic “large” for
the purpose of applying the discontinuity penalty is estab-
lished as the capacity of a smaller clinic (for each spe-
cialty type).

We assume oncology and endocrinology to be more
expensive to staff and they are therefore assigned a higher
staffing cost. We understand the relative aversion to the risk
of under-staffing as a function of patients’ capacity to toler-
ate care disruptions. Based on the literature, we evaluate
oncology patients to be less sensitive to disruptions in care
than endocrinology and behavioral care (Reid et al., 2005;
Cho et al., 2015). Travel penalties are multiplied by the
physical distance between clinics, as shown on the map in
Fig. 1. We understand that patients have a high aversion to
traveling for endocrinology and behavioral care (Provost
et al., 2015), so that the penalties for these specialties are
high. Similarly, patients are likely to prefer more familiarity
for behavioral care than oncology and endocrinology
(Provost et al., 2015).

Finally, the matrix determining how a percentage of a
given specialty should follow another specialty allocation is
developed from an understanding of patients’ co-morbidity
and the prevalence of conditions in the specific population
in question. In the absence of specific data, we use a base-
line of 10% to represent the percent of each demand for cer-
tain type of specialist care that comes from patients already
demanding another type of care (assuming that endocrin-
ology follows oncology, and behavioral care follows both
oncology and endocrinology).

With these considerations, we can populate the parameter
values for both the normal and Weibull models. However,
for a given situation, these parameters will have to be indi-
vidually determined or weighed against the priorities of
management. All parameter values are listed in Appendix A.

For the generation of the initial data, we model each
clinic, for each specialty type i with a Weibull distribution
Dc;i,Weibullðac;i; bc;iÞ with the shape parameter denoted as
ac;i and scale parameter as bc;i: The scenario has two high-
demand clinics (clinics 1 and 6) surrounded by five clinics
(clinics 2; 3; 4; 5; and 7) with lower demand. We assign clin-
ics 1 and 6 a shape parameter that will result in light-tails
(a>1) and clinics 2; 3; 4; 5; and 7 a shape parameter that
will result in heavy tails (a ) 1). See Table 6 in Appendix A.

Given the seven clinic demand distributions, we generate
a set of 1000 sample data points for each specialty. We then
fit each clinic’s data with both a normal and Weibull distri-
bution for comparison purposes. Based on the initial sample
of 1000 points for each clinic we determine both Weibull
(âc;i; b̂c;i) and normal (l̂c;i; r̂c;i) parameters using maximum-
likelihood estimators (MLEs) (see Table 7 in Appendix A for
fit parameters). We use each model to generate the K¼ 1000
sample points for the approximation of the object-
ive function.

Based on all specified sample demands and system
parameters, we examine the differences in recommended
strategy when modeling the clinic demand as a normal

distribution (which typically has a light tail) and modeling
the clinic demand as Weibull distribution (which can have
heavy tails based on the shape parameter). Given identical
system parameters and constraints, these solutions are com-
pared to demonstrate the importance of using a non-normal
distribution for demand, when indicated by the data, for
generating optimal staffing strategies.

4.3. Numerical results

To characterize the difference between demand modeling
assumptions and optimal staffing, we solve the optimization
problem with objective function specified in (15) and con-
straints in (3)–(9) and (13), based on each demand sample
from the normal and Weibull models, respectively. For each
comparison, we prepare an efficient frontier to demonstrate
the tradeoff between the risk and penalty measures under
each model, as well as a more detailed examination of opti-
mal staffing recommendations for two specific scenarios cor-
responding to spenalty thresholds.

To illustrate the efficient frontier for both models, we
select 10 discrete penalty threshold points, spenalty 2
f100000; 116000, 132000, 148000, 164000, 180000, 196000,
212000, 228000, 244000g: The values selected for spenalty
range from the level where the program just becomes feas-
ible (spenalty ¼ 100000) to where the optimal risk is no lon-
ger significantly changed (spenalty ¼ 244000). For each value
of spenalty, the optimization problem provides the minimum
risk subject to the specified constraints.

Fig. 4 shows the tradeoff between risk and penalty for
non-dominated solutions on the efficient frontiers both for
the normal model (left) and the Weibull model (right).
Here, the horizontal-axis represents the aggregated penalty
whereas the vertical-axis represents the weighted linear com-
bination of weekly demand hours that exceed supply
(weighted CVaR in (15)). In each case, the graphed curves
represent the tradeoff between the two model objectives.
The number of clusters for each specialist type (oncology,
endocrinology, and behavioral care) is given in the figure
for each optimal solution.

Under the normal model, there is a large reduction in
risk as spenalty increases beyond 100,000 with diminishing
reductions in risk for further increase in spenalty beyond
180,000. Conversely, the Weibull model shows steeper drop-
offs before spenalty exceeds 140,000 and does not flatten out
as quickly. In both cases, we observe a tendency for fewer
clusters to be used in the optimal solution of each specialist
as the penalty allowance spenalty increases and the clinics are
allowed to consolidate the risk into fewer high-capacity spe-
cialty centers.

To further compare the recommendations from the opti-
mization, we explore the detailed solutions at two particular
values of spenalty (as labeled in Fig. 4), (I) spenalty ¼ 116000,
(II) spenalty ¼ 228000 which represent optimal specialist staff-
ing arrangements under low spenalty constraint and high
spenalty, respectively. The Pareto-optimal strategies generated
by the optimization change depending on the distribution
used to fit the sample demand data, as shown in Figs. 5 and
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6. A detailed breakdown of the optimal staffing levels at the
clinics for each model is given in Tables 4 and 5.

Generally, both models show some similarity in their cor-
responding optimal solutions for each scenario. In Scenario
(I), both Weibull and normal models generally recommend
a much more distributed strategy due to the low penalty
value. In contrast, for Scenario (II), both models recommend
a highly centralized strategy (since the larger penalty allow-
ance allows for more risk pooling). This illustrates the trade-
off between risk and penalty representing staffing cost,
patient travel time, and familiarity penalty. The similarity of
strategies between the two scenarios is strongest in oncology
care, where both Weibull and normal models recommend
identical clustering in all but one case.

However, there are distinct differences between the mod-
els’ optimal staffing recommendations. In Scenario (I), the
normal model recommends some consolidation of behav-
ioral care, whereas the Weibull model recommends each
clinic support its own behavior care while at the same time
creating slightly centralized provision of the oncology care.
In Scenario (II), the Weibull model recommends a more
consolidated strategy for behavioral care but, in fact, gener-
ally staffs fewer specialist hours overall.

The difference in these optimal strategies may be due to
under-estimating the risk value with the normal distribution
so that the benefits of risk-pooling are not valued in the
same way as with the Weibull distribution. This again can
be seen in the more consistent clustering of oncology care
where risk aversion is low, to the larger differences between
the models in recommended behavioral care clustering
where risk aversion is higher. The sensitivity to a risk of
care disruption makes an optimal solution more dependent
on the model for demand distribution.

The change in optimal clustering arrangement between
the data fit with a normal model and Weibull model dem-
onstrates the importance of being able to accurately fit a dis-
tribution that represents the tail-behavior of demand. If
heavy or truncated tail behavior in demand is noticed, it

may be important for a decision maker to use a model that
does not assume normally distributed demand in order to
reduce the risk that patients will experience care disruptions
when seeking specialist care.

4.4. Comparing the multi-objective stochastic model to
a deterministic model

The solutions generated by the multi-objective stochastic
model are compared to a solution determined by the alter-
native deterministic model described in Section 3.1. We
compare the solutions in terms of the risk exposure
they produce.

Using the initial sample demand points, we examine the
approximate CVaR risk under each policy solution (note
these values are different than the estimated risk levels gen-
erated from solving the multi-objective problem). Here, we
approximate the risk of staffing shortfall by averaging the
demand in excess of staffed hours at the d ¼ 0:05 quantile
level under each policy solution. Fig. 7 illustrates the
approximated CVaR risk for the policy solution from the
deterministic model, and from Scenarios (I) and (II) from
the Weibull model (Figs. 4–6).

Based on the comparison, we see that the deterministic
model generates higher risk than the solutions generated
with the multi-objective stochastic model. This generally
suggests that the deterministic model prioritizes a low-pen-
alty function at the cost of increased risk of deferred care
and long wait times.

The solution provided is generally more distributed (i.e.
more clusters), which reduces patient travel time and reduces
any penalty for large clinics (the staffing expense is as low as
possible given the average demand constraint in (3)). Thus, the
use of the deterministic model results in risk-insensitive solu-
tions that expose patients to further risk of not having suffi-
cient staffing to meet their needs in a timely manner.

Therefore, the benefit of the multi-objective stochastic
model is two-fold: first, it captures the interaction between
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Figure 4. The constructed efficient frontier (non-dominated solutions) for the optimization model where demand is modeled with a normal distribution (left panel)
and a Weibull distribution (right panel). Each data point is labeled with the number of clusters for each specialist type in the final optimized solution (in order:
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12 D. LINZ ET AL.



staffing level and staff location, which results in an aware-
ness of risk exposure, and, second, it allows a decision
maker to understand the tradeoffs between risk and penalty
formulations by weighing penalty cost against exposure to
the risk of staffing shortfall.

5. Discussion

This article provided an optimization model for allocating
specialty staff across a set of geographically distributed med-
ical centers based on minimizing the risk of care disruption
and the average system penalty costs. Due to the impact of
centralized staff becoming increasingly necessary (Rais and
Viana, 2011), a tool designed to quantify the risks of
patient-centered staffing strategies will be useful to adminis-
trators. Moreover, our model will allow an administrator to
measure the risk and penalty tradeoff implicit in status-quo
staffing strategies and compare the results to an optimized
allocation. Combined with domain knowledge, the informa-
tion furnished by these solutions could lead to more efficient
staffing with lower risk, less wait time, and minimized
inconvenience for patients.

One benefit of our model is its ability to address non-
normal distributions and consider the critical impact of

heavy-tailed effects on risk and penalty. As demonstrated in
Section 4.3, accounting for tail effects can be potentially
important when generating an optimal staffing strategy.
Therefore, a model that minimizes risk based on a general
distribution could provide an advantage over others that use
an assumption of normally distributed demand. Yet another
benefit to our model is the ability to generate solutions
along the efficient frontier to provide insight into balancing
risk with penalty costs. Further examination shows that the
policy solutions supplied by the multi-objective stochastic
model result in lower risk policy recommendations than the
alternative of solving the problem deterministically. The use
of the multi-objective stochastic model allows a decision
maker to directly observe the tradeoff between penalty and
risk and, therefore, directly address risk aversion, allowing
for greater consideration of patient needs to play a part in
the decision making process.

Depending on the specific situation, administrators may
need to modify the assumptions used in our model. In fact,
when specific thresholds for total staffing, patient familiarity,
or total travel exist, linear constraints could be added with-
out significantly modifying the mixed-integer linear program
formulation. For instance, many administrators consider
specialist staffed hours to be non-flexible and might also
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Figure 5. (I) spenalty ¼ 116000. The lined-arrows show re-direction of patients under the normal model, the dotted arrows show the redirection of patients recom-
mended by the Weibull model, and the solid colors show the re-direction under both models. Colors and labels distinguish the different specialist types
being directed.

Figure 6. (II) spenalty ¼ 228000: The lined-arrows show re-direction of patients under the normal model, the dotted arrows show the redirection of patients recom-
mended by the Weibull model, and the solid colors show the re-direction under both models. Colors and labels distinguish the different specialist types
being directed.
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have limits on the total average distance traveled by patients
in a given week. This addition may shed light on the par-
ticular constraints that force clustering and isolation of clin-
ics. In either of these instances simple linear constraints
could be added to the general optimization problem without
altering the solution approach demonstrated in this article.

The proposed staffing model has several areas where
extensions could provide results that are more practical and
accurate in accounting for the risk and penalty that result
from staffing medical specialists. In a future model, a clinic
might have limits both on the total amount of staffing sup-
ported across all clinics as well as additional penalties for
having a large number of specialists centered at the same
clinic. Moreover, an updated model might also look into
how the staffing of medical professionals in clinics might
change when demand for different types of care are modeled
with joint distributions.
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Appendix A: Parameter values for sample run

Listed below are the selected parameter values used to create the
Weibull and normal models in Section 4.2. The results are labeled by
clinics such that each cell contains the values in order of specialist type
(ordered: oncology, endocrinology, and behavioral care).

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
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1708
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1747
1748
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1758
1759
1760
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1762
1763
1764
1765
1766

Table 6. Weibull parameters.

Clinic Shape: ac;i Scale: bc;i
1 5, 5, 5 5000, 4000, 3000
2 1, 1, 1 1500, 1000, 650
3 1, 1, 1 1500, 1000, 650
4 0.5, 0.5, 0.5 750, 500, 300
5 0.5, 0.5, 0.5 750, 500, 300
6 5, 5, 5 5000, 4000, 2500
7 0.5, 0.5, 0.5 750, 500, 300

Table 7. Fit parameters for normal and Weibull models.

Clinic Modeled normal mean: l̂c;i Modeled normal standard deviation: r̂c;i Modeled Weibull shape: âc;i Modeled Weibull scale: b̂c;i

1 4553, 3672, 2741 1056, 854, 644 5.19, 4.99, 4.95 5048, 4007, 3008
2 1611, 973, 640 1669, 943, 629 1.02, 0.99, 1.00 989.32, 655, 636
3 1512, 1003, 619 1479, 1013, 596 1.01, 1.01, 1.01 1577, 1020, 671
4 1600, 876, 703 3866, 1852, 1723 0.51, 0.53, 0.50 759.08, 539, 305
5 1529, 1082, 595 2996, 2683, 1287 0.47, 0.50, 0.494 715, 458, 328
6 4578, 3664, 2282 1062, 874, 535 4.89, 4.98, 5.07 5032, 3978, 2507
7 1594, 938, 632 3660, 2031, 1526 0.50, 0.52, 0.51 706, 563, 318
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1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
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1884

Table 8. System parameters.

ci K n wi

0.05 1000 0.0001 1, 2, 2

Table 9. Co-morbidity matrix mi;i0

Specialist type 1 Specialist type 2 Specialist type 3

Specialist type 1 1 0 0
Specialist type 2 0.1 0.9 0
Specialist type 3 0.1 0.1 0.8

Table 10. Transport penalty: tc;l
Clinic 1 Clinic 2 Clinic 3 Clinic 4 Clinic 5 Clinic 6 Clinic 7

Clinic 1 0, 0, 0 0.5, 1, 1 3, 6, 6 3, 6, 6 3.5, 7, 7 3.5, 7, 7 2, 4, 4
Clinic 2 0.5, 1, 1 0, 0, 0 3, 6, 6 2.5, 5, 5 3, 6, 6 3, 6, 6 4, 8, 8
Clinic 3 3, 6, 6 3, 6, 6 0, 0, 0 6, 12, 12 6.5, 13, 13, 7, 14, 14, 8, 16, 16,
Clinic 4 3, 6, 6 2.5, 5, 5 6, 12, 12 0, 0, 0 3, 6, 6 3, 6, 6 2.5, 5, 10
Clinic 5 3.5, 7, 7 3, 6, 6 6.5, 13, 13 1.5, 3, 3 0, 0, 0 1.5, 3, 3 5.5, 11, 11
Clinic 6 3.5, 7, 7 3, 6, 6 7, 14, 14 1.5, 3, 3 1.5, 3, 3 0, 0, 0 6.5, 11, 11
Clinic 7 2, 4, 4 4, 8, 8 8, 16, 16 5, 10, 10 5.5, 11, 11 5.5, 11, 11 0, 0, 0

Table 11. Clinic data.

Clinic Capacity: bl;i Cost per staff: hl;i Discontinuity penalty rate: sl;i Discontinuity threshold: vl;i
1 300,000, 300,000, 300,000 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300
2 3000, 2000, 1300 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300
3 3000, 2000 1300 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300
4 1500, 1000, 600 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300
5 1500, 1000, 600 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300
6 10,000, 8000, 5000 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300
7 1500, 1000, 600 2, 1, 0.75 0.5, 0.3, 1 3000, 2000, 1300

Values generated for ðdc;i;1; dc;i;2; :::; dc;i;KÞ can be provided upon request.
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