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ABSTRACT

Water Distribution Networks are a particularly critical infrastructure for the high energy costs and
frequent failures. Variable Speed Pumps have been introduced to improve the regulation of water pumps,
a key for the overall infrastructure performance. This paper addresses the problem of analyzing the effect
of the VSPs regulation on the pressure distribution of a WDN, which is highly correlated to leakages and
energy costs. Due to the fact that water network behavior can only be simulated, we formulate the
problem as a black box feasibility determination, which we solve with a novel stochastic partitioning
algorithm, the Feasibility Set Approximation Probabilistic Branch and Bound, that extends the algorithm
previously proposed by two of the authors. We use, as black box, EPANet, a widely adopted hydraulic
simulator. The preliminary results, over theoretical functions as well as a water distribution network
benchmark case, show the viability and advantages of the proposed approach.

1 INTRODUCTION

Water Distribution Networks (WDNs) are large and complex cyber-physical infrastructures, crucial for
social, industrial and environmental aspects of our life. Water utilities that manage WDNs must ensure
the satisfaction of service supply in terms of quality and quantity of water, while simultaneously
achieving customer performance goals. A recent report by Copeland and Carter (2017), reveals that
energy consumption by public drinking water and wastewater utilities, which are primarily owned and
operated by local governments, can represent 30%-40% of a municipality’s energy bill. Also, water
infrastructures are known to be characterized by frequent leakages that oftentimes lead to failures of the
network which are difficult to identify and, therefore, recover (Candelieri et al. 2017; Candelieri et al.
2015a; Candelieri et al. 2015b; Candelieri et al. 2014). It is of uttermost important to operate these
infrastructures in a way that prevents failures, which clearly has impact on the energy costs. In this
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direction, one of the key components responsible for safe operations are the pumps, whose functioning is
responsible for 80% of the overall energy cost. Pumps are also responsible for the pressure distribution
across the infrastructure, which is a key to understanding location and diffusion of potential leakages. The
engineering community has carefully looked into this problem proposing the design of a new technical
solution to control water pumps, the Variable Speed Pump (VSP). Any VSP can be programmed to run at
many different rotational speed settings, each with a different related pump curve. Specifically, it is
possible to regulate the pump speed by controlling the relative speed parameter, e.g., when running the
pump at half speed, the relative setting is 0.5 (Rossman 2000). Potentially, VSPs can save up to 90% of
annual energy cost when compared to traditional binary pumps.

Regulating VSPs to achieve cost savings and efficient pressure distribution is a challenge, due, in
part, to the difficulty of analyzing the system. Indeed, computationally costly and extensive computer
simulations are required to analyze the behavior of a WDN. Available simulation packages include:
EPANet, Finesse, H2Onet, and WaterCAD (Rossman 2000; Balut and Urbaniak 2011; Paluszczyszyn et
al. 2015; Schmid 2002). In light of this, the goal of this research is to provide a novel methodology that
makes an intelligent use of simulation to enable water utilities to better understand appropriate working
conditions for a WDN in terms of pump regulation focusing on the pressure distribution profile.

1.1 Solution Approach

In this paper we explore the problem of determining safe working conditions for a large water network as
a stochastic feasibility determination problem. In particular, we formalize the problem of safe working
condition characterization as the problem of determining a set of configurations of pump speeds such that
the profile pressure across the network is appropriately bounded within values defined by the engineering
experts. Our approach can then be coupled with an optimizer/control algorithm according to the process
summarized in Figure 1.

Possible Range Feasibility ,| Feasible Range ,| Optimization of
for Pump Setting Determination for Pump Setting Energy Cost

Figure 1: Process of pump scheduling optimization.

2 BACKGROUND

The background of this research is vast and we focused on two main areas: (1) simulation of WDNs, and
(2) approaches for the control and analysis of WDNSs. In Section 2.1, we introduce in detail an open-
source hydraulic simulation software, EPANet. Then, the algorithms proposed in the literature to solve
the Pump Scheduling Optimization, are presented in Section 2.2.

2.1 EPANet

In this work, we adopted a state-of-the-art hydraulic simulator, EPANet 2.0 (Rossman 2000), an open-
source freeware that is widely adopted in the literature, that describes the detailed workings of a complex
hydraulic system. The main network components considered within EPANet are pipes, nodes (junctions),
pumps, valves and storage tanks or reservoirs. With these components, EPANet performs an extended
period simulation of the hydraulic and water quality behavior. The user can construct the network by
setting object properties (i.e., pipe diameter, pump efficiency curve). As output, EPANet provides
information about the flow of water in each pipe, the pressure at each node, the height of water in each
tank and the concentration of a chemical throughout the network during a user-defined time period
characterized by a user-defined demand profile. In addition to running the simulation of the various
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complex hydraulic systems configuration, EPANet can also compute the energy cost for keeping the
network pumps active during the simulated horizon.

The minimum set of data needed to create a model of a WDN consists of: (a) coordinates and
altimetry for each node; (b) demand profile (i.e., a “pattern”) over the simulation time horizon of the
water request for each consumption node in the network; (c) size and shape of each tank, with an initial
level; (d) connectivity of the WDN (links connecting nodes); (¢) length, diameter and roughness of each
pipe; (f) efficiency curve of each pump (which can be binary or VSPs); and (g) energy tariff over the
simulation period. A simple example of a WDN model (named Netl) is presented in Figure 2(a). This
network has one variable speed pump, one reservoir, one storage tank, and nine nodes. Examples of the
input to EPANet for hourly demand pattern and pump curve are illustrated in Figure 2(b) and Figure 2(c),
respectively. Outputs from the EPANet Netl example are shown in Figure 3. In particular, Figure 3(a)
illustrates the pressure at two junctions in the network (red and green curves) over a time period of 24
hours, while Figure 3(b) shows the time series for the tank level.
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(a) A simple example of a (b) An EPANet hourly demand (c) An EPANet pump efficiency
WDN model as represented pattern. curve.
in the EPANet interface.

Figure 2: EPANet screen shots of inputs to the Netl example.
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(a) Pressure measured at two nodes of the WDN. (b) Tank level.

Figure 3: EPANet screen shots of outputs from the Netl example over the simulation time period (24
hours).

2.2 Control and Analysis of WDNs

Most of the operations research literature on operation of WDNs focuses on the Pump Scheduling
Optimization (PSO) problem (Mala-Jetmarova et al. 2017). PSO tries to identify the optimal pumps’
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operating conditions in terms of hourly pump regulation (e.g., speed ratio in case of Variable Speed
Pumps, on/off in case of binary pumps) in order to identify the regulation that guarantees a water supply
that meets the demand and minimizes the energy cost. In order to model the network behavior and
formulate the energy cost several approximation to the highly non-linear flow dynamics of WDNs have
been proposed. These approximations transform the PSO problem to a classic optimization problem for
which traditional deterministic algorithms apply. In this direction, (Mala-Jetmarova et al. 2017) reports
several classes of existing approaches, including linear programming (Pasha and Lansey 2009), nonlinear
programming (Chase and Ormsbee 1989), and dynamic programming (Sterling and Coulbeck 1975).
Mathematical programming-based approaches try to formalize the problem by linearizing/convexifying
the equations regulating flow, thus greatly simplifying the complex water distribution system. As a result,
most of the applications are limited to solve the optimization problem only on simple water distribution
networks.

Meta-heuristic algorithms, such as Genetic Algorithms (Nicklow et al. 2009; Savic et al. 1997), and
Harmony-Search Algorithm (De Paola et al. 2016) have also been proposed. Most of the approaches do
not consider the presence of Variable Speed Pumps (VSPs). As a result, the problem is reduced to
decision variables of binary pump statuses (0 = pump off, 1 = pump on) during a short time interval
(Mala-Jetmarova et al. 2017). More recently, a Sequential Model Based Optimization (SMBO), more
precisely Bayesian Optimization (BO) approach has been proposed to solve the PSO problem in both the
VSPS and ON/OFF pumps settings (Candelieri et al. 2018). Also, as previously mentioned, most of the
literature focuses on energy cost minimization, while fewer contributions look at the problem from a
feasibility perspective. Most of the contributions consider the feasibility of pump operation settings by
means of a penalty function added to the objective function (Biles et al. 2007). The main idea of
penalization is to try to minimize the true objective while also driving the penalty to zero, thus leading to
the identification of a feasible, optimal, solution. Lagrangian relaxation is among the most popular
techniques used in this area (Bertsekas 2014). Although Lagrangian relaxation (Biles et al. 2007) can
guarantee the identification of the optimal solution, it fails to provide insights into feasibility. This
motivates us in the direction of studying multiple measures that can lead to characterizing the quality
working conditions of a WDN. To do so, we propose an adaptation of a stochastic optimization method
designed for level set approximation (Huang and Zabinsky 2013; Zabinsky and Huang 2018) in order to
apply it for feasibility determination. Feasibility has been investigated in Szechtman and Yucesan (2008),
but for Ranking and Selection problem. According to our approach, the output from the feasibility
determination algorithm is a set of sub-regions with corresponding feasibility measures providing an
approximation of the true, unknown feasible region. Such an approximation helps practitioners
understand constraints and possible stressing working conditions/vulnerable nodes within the system, and
improve the efficiency of the optimization process.

3 METHODOLOGY

We formulate the problem of identifying pump configuration with non-dangerous pressure profiles as a
feasibility determination problem. We propose to adapt a stochastic optimization algorithm, Probabilistic
Branch and Bound (PBnB) (Zabinsky et al. 2011; Huang and Zabinsky 2013; Zabinsky and Huang 2018),
which approximates a level set with probabilities of being correct and incorrect (within o error). PBnB
can be applied to mixed continuous-integer black box problems. While it has good performance in
optimization settings, it has not been formally applied to feasibility determination, and this will be an
outcome of this paper.

3.1 Introduction of Probabilistic Branch and Bound

The Probabilistic Branch and Bound (PBnB) algorithm is a partitioning-based random search simulation
optimization approach, which is designed for optimizing noisy and deterministic functions over mixed
continuous-integer domains (Zabinsky et al. 2011; Huang and Zabinsky 2013; Zabinsky and Huang
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2018). Aiming to approximate a user-defined target level set, PBnB iteratively maintains, prunes and
branches sub-regions to approximate the unknown target level set with a probabilistic guarantee of the
accuracy. When the algorithm terminates, it provides sub-regions with a relatively high concentration of
high quality solutions, and returns an estimation of the global optima. Many simulation optimization
algorithms have been proposed but most of the approaches focus on finding location estimates for the
local/global solution, rather than a set of high quality solutions. PBnB provides a set of solutions that
capture the target level set, allowing decision makers to make analyze a broader set of good solutions. A
summary of PBnB is presented in Figure 4.

Step 0: Set user defined Step 2: Sample Ny points in each
parameters a, yB,S sub-region and rank sub-regions Yy | Output
l l *» remaining
Step 1: Branch each current Step 3: Prune sub-regions if | regions
Region in B sub-regions pruning criterion is met

I

Figure 4: Algorithm Flow.

3.2 PBnB for Feasibility Determination: FSA-PBnB

The PBnB algorithm assumes the feasible region is defined by box constraints (upper and lower bounds
on the decision variables) and does not allow general constraints. However, we are interested in solving
the feasibility determination problem, identifying the feasibility set X inside the box constrained set Xg:

Xp = {XE mn'li <x; Syl = 1,...,7’1}
Xp ={x €Xp, 9 < fo(x) <% c=1,..,C}. )

Where [; and u; are lower and upper bounds on x;,i =1,...,n, f.(x)is the c-th constraint value
(deterministic) of sample point x, 9} and 9¥ in (1) are the lower bound and upper bound reference values
for the c¢t"* constraint, and C is the number of constraints. In order to identify the feasible set in (1), we
propose the Feasibility Set Approximation-Probabilistic Branch and Bound (FSA-PBnB) method which
uses the following metric as the main driver to indicate how far a solution is from feasibility:

2

D(x) = J2§=1 [max (0, £, () = 0, 9L - £ 2)

The metric introduced in (2) is the Euclidean distance between the point x and the feasible frontier. If

the sample point x is feasible, the metric D(x) = 0.
For each sampled solution x, we measure the amount of infeasibility, and instead of just penalizing the
value (as is traditional in Lagrangian-type approaches), we seek to approximate the set of feasible
solutions. Approximating the feasible region, with a metric for infeasibility, provides more insight into
the characterization of a given solution x.

To manage the feasibility determination as a standard optimization problem, we can see the feasibility
measure D(x) as an objective function. Therefore, the problem becomes a single-objective optimization
problem, the goal of which is to identify the feasible set of solutions that have D(x) = 0. Before
providing the details of the algorithm, Table 1 contains the main inputs to the FSA-PBnB algorithm.
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Table 1: Notation of the main inputs to FSA-PBnB.

Notation Description

a 0<a<1, control the quality of the
feasible set approximation

6 Define the §-quantile for the D(x) lower
bound

B Number of disjoint partitions to generate
when branching any sub-region

Xp Potential solution set considering only
box constraints for the control parameters

The main algorithm steps of FSA-PBnB are presented below.

Step 0. Initialization Input the user defined parameters «, 6, B, Xp . Initialize the feasible M,

infeasible P, and current U sub-region sets, and the iterate counters: &) = @, £F = ¢, £V = X,
a

k: 1. Setal :E
Step 1. Partition. Branch each current region into B disjoint sub-regions. Denote fg’as the union of
all newly generated sub-regions after partitioning.

Step 2. Sample and Rank. Let Nik = [12(1012)]’ and uniformly sample Nl-k points in each current sub-

regions g; € A ’, where i is the index of the sub-region and k is the index of the algorithm
iteration. Evaluate the sampled points by the distance function D(xi, j,k) using (2), where x; j . €

~717! .
Oik,i=1,.., |Z,l(] | and for j =1, ...,Nl-k, and calculate the average distance value for g

k
NE
221 D(xijk)
k

5(0”() = . Rank the current sub-regions according to Z_)(ai,k) with o(;) denoting the

i best sub-region, that is, translate regions into feasibility rankings, (1) being the most feasible

sub-region. @(0(1)‘,() < 1_)(0(2),,() <...<D <O'( D ) Rank all the sample points x(;) jx €

|§,‘{' Kk
0(i),k according to D(x(l-)' j,k) with o) ),k denoting the j th best point in the it" best sub-region,
D(x(l-)’(l),k) < D(x(i)'(z),k) <...£D (x(i) V) k). From the ranking, define g(y)j as the most

feasible sub-region and x as the most infeasible point in g(yy . We arbitrarily break the

W)k
ties in case we have multiple sub-regions that return the same value, e.g., 5(0(.),,{) = 0.

Step 3. Identify Feasible Sub-Region. Define the indicator functions 7, for m =
1, . |illc],|;~7m,k = { 1’ lfD(J(m):k) =0

., where T, = 1 indicates o) can be categorized
o, otherwise
into feasible set I .

Step 4. Prune Infeasible Sub-Region
Denote the most feasible sub-region o(y)y and the most feasible point X1 (1)« as oy and X1y,

respectively.  Define  the indicator functions J,, for p=2, ...,|i,L<”| s Tpx =
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, where J,; =1 indicates o), can be categorized into

L if D(x@y, k) > DXy )
0, otherwise

infeasible set &£ .

Step 5. Update Current Region. Update the current sub-regions which are not classified as feasible
or infeasible at the k-th iteration: £Y,, = £U' \ {omyk * Tmr = 13U {0k * Ipx = 1}. Update
the set of the feasible sub-regions: £ty = Z' U {o(m) ki Tmi = 1}

Terminate FSA-PBnB. If the cr1ter1a to terminate PBnB is met, output the sub-regions £, , and
S, 1. Otherwise, let ay . = =,k « k + 1, and go back to Step 1.

4 PRELIMINARY RESULTS

In the following, we present the results of FSA-PBnB implementation on one test function in different
dimensions (Section 4.1) and on one simple Water Distribution Network (Section 4.2).

4.1 Test Functions

To showcase the performance of FSA-PBnB over generally constrained optimization problems, we apply
FSA-PBnB to a test function with varying dimensionality. In particular, we use a sinusoidal function in
different dimensions. This is a well-known single-objective optimization problem function frequently
used in the global optimization literature (Ali et al. 2005), namely:

n

fx(")—‘“ﬂ 180 Hsm(g_)g)'

=1

We added the following constraints:

fu(x) < —23,0<x,<180,i=1,..,n

The global optimum is located in x* = (90,...,90) with a function value f(x*) = —3.5. FSA-PBnB
algorithm parameters were: § = 0.1, = 0.25,B = 3. FSA-PBnB terminates when the number of
iterations reaches the maximum number K set by the user, the values adopted are displayed in Table 2 as a
function of the problem dimension. For purposes of the experiment, we also estimated R(TV), the ratio of
the true volume of the feasible region V (Xy) to the initial volume V (Xp).

Table 2: Criteria to terminate the algorithm.

Dimension 2 3 4
Iteration (K) |10 |13 |15

For each experiment, we collected the metrics in Table 3. Figure 5 shows the approximated feasible
region resulting from FSA-PBnB for the 2-dimensional sinusoidal function. The undecided regions (in
orange) and the maintained regions (in blue) are the result from 10 iterations of FSA-PBnB. The inner
space of the black dashed line is the true feasible set for the constraint f,.(x) < —2.3. We can observe
that the more inside the feasible boundary, the larger the blue rectangles are, that is, the regions are
“maintained” earlier. Also, it is possible to observe how the undecided regions are mostly located at the
boundaries of the feasible set, hinting that the regions around the boundaries require more iterations as
more partitioning and sampling are needed to classify the regions.

1951



Tsai, Perego, Pedrielli, Candelieri, Huang, Zabinsky, and Mathesen

Table 3: Definition of metrics for experiment results.

Metric Definition
~ Estimated probability of the optimal solution being in the
Y remaining region (remaining region: &Y U )
T Pts Total number of points sampled at termination, iteration K
R(PV) Ratio of the pruned volume to the initial volume V (Xp)
R(UV) Ratio of the undecided volume to the initial volume V (Xp)
R(MV) Ratio of the maintained volume to the initial volume V (Xg)
R(TV) Ratio of the true volume to the initial volume V (Xz)

We performed 100 macro replications for each experiment. The detailed performance is presented in
Table 4. For each experiment, the top result for each metric represents the average performance obtained
across the 100 macro-replications, while the values in parentheses are the coefficients of variation
associated with the average performance. As an exception, ¥ does not report the variability, since this
metric is the Monte Carlo estimate of the probability y obtained by averaging the result (1 if optimum is
remained 0 otherwise) across the macro-replications.

180
160
10

1 1
120 S o f
! s

100

X2
+

a0

20

Figure 5: Result of FSA-PBnB for 2-dimensional test function.

From the numerical results it is possible to observe how, independently from the dimension of the
problem, the true optimal solution is always included in the remaining region (union of the undecided and
maintained sub-regions). Observing the metric R(PV), it is clear that the algorithm succeeded in pruning a
large portion of the region in all the dimensional cases. Further observations can be made by observing
the ratio R(Remaining)/R(TV). It is important to highlight that R(TV) was approximated by partitioning
Xp using a grid with controlled granularity. For each hypercube generated by the grid, we evaluate the
hypercube volume as feasible as long as the center point of the volume is feasible. We then compute the
ratio of the volume of feasible hyper-cubes against the volume of all the hyper-cubes which is V(X3).

Table 4: Results of FSA-PBnB on test function.

Dimension T Pts ¥ R(PV) R(UV) R(MV) R(Remaining)/R(TV)

2 71.475%10° 1 90.54% 1.88% 7.58% 9.46% / 8.77%
(14.38%) (1.13%)  (3.43%) (1.13%)

3 12.591x10° 1 9743% 1.33% 1.25% 2.58%/1.92%
(27.48%) (0.15%)  (16.83%) (6.92%)
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Dimension T Pts ¥ R(PV) R(UV) R(MV) R(Remaining)/R(TV)
4 47.607x10° 1 99.39 0.5% 0.1% 0.6% /0.3%
(20.63%) (0.08%)  (19.57%) (24.17%)

From Table 4, we see that the ratio of the remaining volume against the true volume increases as the
dimension of the problem grows, i.e., the algorithm accuracy is affected by the problem dimension. We
also recall that R(remaining) consists of R(UV) and R(MV). By looking into the portion of R(UV) and
R(MV) in R(remaining), the 2-dimensional case shows that R(MV) makes up 80% and R(UV) makes up
20% of R(Remaining) at iteration 10. In the 3-dimensional case, at iteration 13, R(MV) makes up 52%
and R(UV) makes up 48% of R(Remaining). These ratios suggest that the majority of the feasible regions
are captured in the maintained regions. However, in the 4-dimensional case, R(MV) makes up only 17%
of R(remaining), that is, R(UV) may contain a large portion of infeasible solutions. This reflects the
increasing complexity of the function which translates into the need for a larger effort to lead to
identification.

4.2  Application to a Water Distribution Network: the Netl Example

In this section, we present preliminary results from the application of FSA-PBnB to a Water Distribution
Network (WDN) example. In order to run FSA-PBnB, we exposed the simulator as a web service and we
created the connection between the simulator and algorithm, which was programmed in Python 3.6.
Preliminary results were obtained for the simple network case known as Netl (refer to Figure 1). Results
for Netl were gathered for a 2 hour simulated time horizon, with two time slots of 1 hour each, where the
variable pump speed can take on a value between zero and one for each hour, i.e., x; € [0,1] fori = 1,2.
The electricity tariff is set to 0.0244 [$/kWh]. For the Netl Example, feasibility is entirely determined by
the pressure at each node of the network. EPANet tracks the pressure at each node over a time period and
returns a unique pressure value for each node after every hour of simulated time. As an example, a
simulation of two hours on Netl results in a 9 X 2 pressure matrix, each column corresponding to an hour
and each row corresponding to a node in the network. It is important, as specified within the manual of
EPANet for this network, to guarantee that the minimum pressure across all nodes of the network is larger
than the lower bound 9! = 0 [Pa], resulting in two constraints (one for each time slot).

To construct a pressure benchmark for the Netl as a function of the VSPs speed settings, we ran over
10,000 regulations of the variable speed pump (uniformly sampled in the interval (0,1) for the two time-
slots referring to the regulations during the first and second hour, respectively).

Formally, the constraint values of each sample point x € [0,1] X [0,1] can be defined as:

f(x)

- [, 5

B f2(x)

.....

N = 9 is the number of nodes in the network. From (3), we derive the Euclidean Distance from the lower

bound 9} = 0 [Pa] as: D(x) = \[2§=1((19£ — fc(x))’f)z.

When this aggregated pressure measure satisfies D(x) = 0, the corresponding pump speed
configuration is infeasible. The D(x) projected plot resulting from the simulation study is shown in
Figure 6, where “x_time_slot1” and “x_time slot2” represent each control value set for the pump in the
two hour long time-slots of x € [0,1] X [0,1], respectively. The “Pressure distance” refers to the
aggregated pressure measure. It is apparent that most of the pump configurations end up being critical
(D(x) > 0) and that feasible configurations can quickly turn into bad solutions with small variations in
the control decisions.
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Figure 6 shows the projection of the distance measure onto x1_time slotland x2 time slot2, the blue
dots refer to the configurations satisfying D(x) = 0 and the red dots those such that D(x) > 0. Only
3,876 out of 10,000 points are feasible from the simulation study. Hence, the Monte Carlo estimate of the
percentage of the true feasible region to the initial box is 39%. Figure 7 and Figure 8§ present the results
obtained by FSA-PBnB at the 6™ and 7™ iteration, respectively, of FSA-PBnB. The feasible sub-regions
are in blue, infeasible in red, and undecided in orange. From Figure 7 and Figure 8, it can be observed that
the leftmost red rectangle is pruned at the 1% iteration, which indicates the search space is reduced by 1/3,
saving substantial sampling effort over the following iterations. Also, we can see that the approximation
of the feasible region, (in blue) in Figure 7, is close to the one in Figure 6. Figure 7 shows that, at iteration
6, after 3,707 simulation runs have been executed, the algorithm identifies the profile of the feasibility.
The feasible region is small compared to the overall search space and the undecided regions form an
orange belt which can be represented as the feasibility boundary in terms of the pressure. After the 7th
iteration, the number of simulation runs grows up to 8025 but only a small part of undecided sub-regions
shifts to the maintained/pruned sub-regions.
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Table 5 shows the quantitative results related to Figure 8. Through the comparison of R(Remaining)

and R(TV), we can see that the approximated feasible set by FSA-PBnB is very close to the true feasible

region.

Table 5: Experiment results on Netl.

Iteration T Pts R(PV) R(MV) R(UV) R(Remaining)/R(TV)
6 3,707 59% 36% 5% 41% /39%
7 8,025 60% 38% 2% 40% /39%

5 CONCLUSIONS

We propose FSA-PBnB extending Probabilistic Branch and Bound (PBnB) for the solution of a black box
feasibility determination problem. This algorithm allows us to tackle a pressing problem in the analysis of
complex water distribution networks, i.e., the analysis of feasible working conditions in water networks
with Variable Speed Pumps. From the results on a test function in different dimensions as well as the
results from a benchmark example, the largest portion of the infeasible region is identified very early in
the search thus making the approach very promising. Nevertheless, the results suggest that a better
management of the budget later in the search could help in dramatically reducing the amount of
simulations required. This research only considers the pressure measure to evaluate the feasibility of
pump operation. However, to achieve long-term planning as well as short-term (hourly) control of
networks, it is necessary to explore more feasibility measures, such as, load and supply. Also, more
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effective partitioning schemes different from hyperplane partitioning are being investigated. In this
direction, advanced machine learning techniques can be applied to create non linear separation planes
thus possibly improving the performance of the overall algorithm. Applying the algorithm to different
setups is also interesting such as investigating risk scenarios for critical infrastructures where the control
dimensions are not only regulation but also external uncontrollable factors. Such an application will make
the work impactful in important areas such as disaster response.
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