
Collaborative Learning on the Edges: A Case Study on Connected Vehicles

Sidi Lu, Yongtao Yao, Weisong Shi

{lu.sidi, yongtao.yao, weisong}@wayne.edu

Wayne State University

Abstract
The wide deployment of 4G/5G has enabled connected

vehicles as a perfect edge computing platform for a plethora

of new services which are impossible before, such as remote

real-time diagnostics and advanced driver assistance. In this

work, we propose CLONE, a collaborative learning setting

on the edges based on the real-world dataset collected from

a large electric vehicle (EV) company. Our approach is built

on top of the federated learning algorithm and long short-

term memory networks, and it demonstrates the effectiveness

of driver personalization, privacy serving, latency reduction

(asynchronous execution), and security protection. We choose

the failure of EV battery and associated accessories as our

case study to show how the CLONE solution can accurately

predict failures to ensure sustainable and reliable driving in a

collaborative fashion.

1 Introduction

The proliferation of edge computing technologies is strongly

stimulating the adoption of machine learning methods on ve-

hicles so that they can provide a variety of intelligent onboard

services. On the one hand, current vehicles, such as connected

and autonomous vehicles (CAVs), can generate over 11 TB

of privacy-sensitive data per day [43]. Such big data amount

brings not only opportunities but also challenges to domain

researchers - practices have proved that larger training data set

can achieve more remarkable results [40]; however, training a

big model often requires excessive computation and memory

resources, which hinders the application of machine learning

algorithms on the resource-constrained edge devices [47].

On the other hand, electric vehicles (EVs) have received

significant attention as an important efficient and sustainable

transportation system. As a key component of EVs, the bat-

tery system largely determines the safety and durability of

EVs [2, 50]. Due to the aging process or abuse maneuvers,

various faults may occur at each constituent cell or associ-

ated accessories. It is essential to develop early failure de-

tection techniques for EV battery and associated accessories

to ensure availability and safety of EVs through anticipated

replacements.

Besides, although EIC (electric, instrumentation and com-

puter control system) data (such as voltage and current) of

EVs are able to show the symptoms of an imminent failure

of EV battery and associated accessories, they are hard to tell

the reason why the battery and associated accessories failed.

Driver behavior metrics such as speed, acceleration, and steer-

ing reflect the usage of an EV. We believe such usage is one

of the main root causes of failures.

Hence, in this paper, we choose the failure of EV battery

and associated accessories as our case study and seek to

answer the following vital questions: "How to construct a

personalized model by continuously tuning parameters on

connected vehicles?", "What is the influence of the driver

behavior metrics on the failure prediction of EVs?".

Our main contributions include:

• To the best of our knowledge, this is the first work to

predict an imminent failure of EV battery and associated

accessories based on the real-world EV dataset which

involves EIC attributes and driver behavior metrics.

• Our analysis reveals that adding driver behavior metrics

can improve the prediction accuracy of EV failures.

• We train random forest (RF), gradient boosting decision

tree (GBDT), and long short-term memory networks

(LSTMs) to predict failures, and we find LSTMs outper-

form other methods based on our dataset.

• We propose CLONE, a collaborative learning setting

on the edges for connected vehicles, and it can reduce

training time significantly without sacrificing prediction

accuracy.

2 Data Description

This study presents the analysis of EV health characteristics

based on the data measured at and collected from a large

EV company. We analyze three different models of EVs, and

the corresponding data is reported and collected every 10

milliseconds during the whole 6-hour collection period.

VCU MCU BMS

CAN Communication Network

Driver
Manipulation

Figure 1: Three Core Control Systems of EVs.

In general, our data set is collected from the core con-

trol systems of EVs, which includes the vehicle control unit

(VCU) [34], motor control unit (MCU) [30], and battery man-

agement system (BMS) [7]. BMS [7] is responsible for the

battery maintenance and state estimation. The VCU [34],

as a key component of the whole EV, sends orders to other

modules based on the driver manipulation (such as gear sig-

nal, accelerator pedal signal, and vehicle mode) via CAN

communication network [41]. MCU [30] controls the wheel

motor locally according to the commands from VCU. Fig-

ure 1 shows the structure diagram of the core control systems.

42 features listed in Table 1 and Table 2 were analyzed.

Table 1: Selected EIC features.

Voltage Temperature Power & Energy

BMS_BattVolt InCar_Temp BMS_BattSOC

BMS_CellVoltMax Environment_Temp BMS_MaxChgPwrCont

BMS_CellVoltMax_Num BMS_BattTempAvg BMS_MaxChgPwrPeak

BMS_CellVoltMin BMS_Inlet_WaterTemp BMS_MaxDchgPwrCont

BMS_CellVoltMin_Num BMS_Outlet_WaterTemp BMS_MaxDchgPwrPeak

MCUF_Volt BMS_MaxTemp VCU_Batt_Comp_Pwr

MCUR_Volt BMS_MinTemp VCU_Batt_PTC_Pwr

Current BMS_TempMaxNum Error Info

BMS_BattCurr BMS_TempMinNum BMS_BatterySysFaultLevel

MCUF_Curr MCUF_Temp BMS_Low_SOC

MCUR_Curr MCUR_Temp VCU_PTC_ErrSta

Table 2: Selected driver behavior metrics.

VehicleSpeed Acceleration Steering

YawRate WheelSpeedFL WheelSpeedFR

WheelSpeedRL WheelSpeedRR Emergency_Stop

Driver

Behavior

AccPedalPosition BrakePedalPosition

Driver behavior metrics are collected from VCU and sensors.

More specifically, we analyze EV data in the two aspects:

(1) EIC attributes, and (2) driver behavior metrics. Here, EIC

refers to electric, instrumentation, and computer control sys-

tem [29]. It includes battery features collected from BMS

(most commonly used for EV battery durability analysis by

other studies [2, 16, 39, 44, 51]) and the data reported from

other control systems. Most of the selected features can be

understood intuitively; hence, we choose some vague features

to give our explanations. "MCUF" represent the MCU for

the front wheels, and "MCUR" means the MCU for the rear

wheels. Positive Temperature Coefficient heater (PTC) is the

heating unit of the battery in EVs. Besides, state of charge

(SOC) is the indicator of battery left capacity, and "Comp" is

an acronym of the compressor.

3 Collaborative Learning on Edges (CLONE)

The models learned in this paper are implemented in Python,

using tensorflow 1.5.0 [1], keras 2.1.5 [21], and scikit-learn li-

braries [38] for model building. We use 5-fold cross-validation

method [27, 42] to evaluate the proposed prediction approach.

Note that there is a trade-off between long prediction horizon

and the sampling frequency, with the constraints of computing

resources. After conducting a series of sensitivity study, we

choose 15 seconds as our prediction horizon so that it can

predict failures for the next 1,500 data points.

3.1 Stand-alone Learning

Before employing CLONE, we first combine the whole real-

world dataset of three EVs to train different machine learning

models on the Intel FogNode (the hardware information is

shown in Table 5). The goal is to find a suitable algorithm to

predict failures, and answer the question of "What is the influ-

ence of the driver behavior metrics on EV failure prediction?"

We tackle the failure prediction problem using random

forest (RF) [31], gradient boosted decision tree (GBDT) [17,

52], and long short-term memory networks (LSTMs) [13, 23]

since they have become highly successful learning models for

both classification and regression problems.

To show the impact of driver behavior metrics on the fail-

ure prediction, we conduct experiments on two experimental

groups. Our first step is to combine all selected EIC attributes

and driver behavior metrics to train models using RF, GBDT,

and LSTMs methods, and we label this group as ED Group.

Then, we exclude all driver behavior metrics but keep EIC

attributes, and we denote it as E Group. Table 3 shows the

input features for ED Group and E Group.

Table 3: Input features for two experimental groups.

EIC attributes Driver Behavior Metrics

ED Group 31 attributes 11 metrics

E Group 31 attributes NONE

Table 4: Evaluation results.

Precision Recall Accuracy F-measure

ED

Group

RF 0.7492 0.7814 0.7833 0.7649

GBDT 0.7905 0.8500 0.8234 0.8192

LSTM 0.9420 0.9500 0.9430 0.9460

Average 0.8272 0.8605 0.8499 0.8434

E

Group

RF 0.6615 0.6900 0.7008 0.6755

GBDT 0.6975 0.7500 0.7294 0.7228

LSTM 0.8924 0.9000 0.8738 0.8962

Average 0.7505 0.7800 0.7680 0.7648

Table 4 presents the average evaluation scores of ED and

E Group. Based on our experimental results, we have the

following observations:

• Excluding driver behavior metrics results in around 8%

reduction in the average F-measure.

• LSTMs outperform RF and GBDT in both two groups

based on our dataset.

3.2 CLONE Design

By observing experiment results of stand-alone learning, we

can see that driver behavior metrics has non-negligible im-

pacts on the failure prediction, and employing LSTMs can

achieve better results. Therefore, we aim to deploy LSTMs-

based collaborative learning approaches on the edges based

on EIC attributes and driver behavior metrics. We term our ap-

proach CLONE, which is the solution of the problems - "How

to construct a personalized model on connected vehicles?".

3.2.1 Model Description

The learning tasks of CLONE is solved by a group of dis-

tributed participating vehicles (edge nodes) which are coordi-

nated by a Parameter EdgeServer. Each vehicle has its local

training dataset which is never uploaded to the Parameter

EdgeServer or transferred to the cloud. Instead, each vehicle

is responsible for continuously performing training and infer-

ence locally based on its private data. When a vehicle finishes

one epoch [19], which refers to the number of iteration related

with the input dataset during training, it will push the value

of current parameters to the Parameter EdgeServer, where the

parameter values are aggregated by computing the weighted

average value. Then, each vehicle can immediately pull the

updated parameter values from the Parameter EdgeServer,

and set the updated parameters as their current parameters

to start the next epoch. The above steps will be repeated as

necessary. Figure 2 shows the basic framework of CLONE.

Parameter

EdgeServer

Local Model Local Dataset

Local Dataset Local Model

Local Model Local Dataset

…

…Pull Parameters

Push Parameters
Parameter

Aggregation

Figure 2: The framework of CLONE. In CLONE, each ve-

hicle trains the neural network model locally based on its

private data. Then, the value of current parameters from each

vehicle is uploaded to the Parameter EdgeServer, where those

parameters are aggregated and sent back to vehicles.

Note that when a new vehicle joins in, it will pull the cur-

rent aggregated parameters from the Parameter EdgeServer

first, and set them as the initial parameters for the first round

of training, which speeds up the training process of unseen

vehicles. Besides, since it is asynchronous communication,

for each vehicle, there is no need to stop and wait for other

vehicles to complete an epoch, which greatly reduces the la-

tency. To illustrate the aggregation protocol of this work, we

need to introduce the loss function first, which is defined as

follows:

Loss = ∑
i

[

ŷ(i) ∗ log(y(i))+(1− ŷ(i))∗ log(1− y(i))
]

Here, ŷi is the predicted output of the machine learning model,

and the scalar yi is the desired output of the model for each

data sample i. We then define the formula to aggregate and

update parameters as:
{

P(p)← Loss(v)
Loss(p)+Loss(v)P(p)+ Loss(p)

Loss(p)+Loss(v)P(v)

Loss(p)← Loss(v)

Where P represents the value of a parameter, and Loss stands

for the value of the loss function. Besides, p refers to the

Parameter EdgeServer, and v represents a specific vehicle.

For the more accurate vehicle (lower value of loss function),

we assign a higher weight to its parameter.

3.2.2 Hardware Setup

To build heterogeneous hardware cluster representing differ-

ent models of EVs, we adopt two different types of hardware

- Intel FogNode and Jetson TX2, with different CPUs, operat-

ing systems and so on (shown in Table 5). More specifically,

we choose one Intel FogNode as the Parameter EdgeSever,

and we treat the other two Intel FodeNodes and one Jetson

TX2 as the edge nodes (vehicles) to continuously "learn"

latent patterns.

Table 5: Hardware setup for CLONE.

Intel FogNode Jetson TX2

CPU Intel Xeon E3-1275 v5 ARMv8 + NVIDIA Pascal GPU

Frequency 3.6 GHz 2 GHz

Cores 4 6

Memory 32 GB 8 GB

OS Linux 4.13.0-32-generic Linux 4.4.38-tegra

3.2.3 Model Setup

In Section 3.1, we trained an accurate LSTMs model with 4

layers on the front and followed by a fully connected layer

(dense layer). Now, we aim to deploy a collaborative LSTMs

with the same number of layers on the edges, i.e., with the

same hyperparameters. We first distribute our whole dataset

to three edge nodes so that each edge node (vehicle) has its

locally private dataset.

Table 6: Model parameters.

Layers Variables Shape

First Layer

(lstm_1)

lstm_1/kernel (16, 400)

lstm_1/recurrent_kernel (100, 400)

lstm_1/bias (400,1)

Second Layer

(lstm_2)

lstm_2/kernel (100, 400)

lstm_2/recurrent_kernel (100, 400)

lstm_2/bias (400,1)

Last Layer

(dense_1)

dense_1/kernel (100, 24)

dense_1/bias (24,1)

Table 6 shows the parameter distribution of the LSTMs

model on the first two LSTMs layers (marked as lstm_1

and lstm_2) and the last fully connected layer (labelled as

dense_1). The "kernel" and "recurrent_kernel" are the param-

eter vectors, and the last column represents the shape (size)

of the parameters for each vector. For example, (16, 400) in-

dicates that there are 16 × 400 of parameters. Our whole

network contains up to 297,700 parameters, including the

weights and the biases. Weight can reflect the strength of the

connection between input and output. Bias shows how far off

the predictions are from the real values.

3.2.4 Throughput

Figure 3 shows the I/O throughput per second at the Parame-

ter EdgeServer when the three edge nodes are working at the

same time. It can be seen that the peak of the data throughput

is relatively stable, and the peak appears intermittently. Be-

sides, the maximum I/O throughput for push and pull process

is around 750 KB/s and 250 KB/s respectively, which indi-

cates that there is no big pressure on the network throughput.

Throughput

Time (seconds)

P
u

ll
 (

K
B

/s
)

P
u

sh

(K
B

/s
)

Figure 3: I/O throughput per second.

Figure 3 also proves that the push process is usually much

slower than the pull process which was concluded by the work

of [28]. This observation shows the importance to investigate

methods that can reduce the communication latency of push

process in the future work.

4 Evaluation

In this section, we present the experimental results of CLONE,

and compare it with the algorithm performance of stand-alone

learning in two aspects - (1) training time, and (2) evaluation

scores including precision, recall, accuracy, and F-measure.

To have a clear comparison, we conduct experiments on

three experimental groups. The first group is the stand-alone

learning, and we set the epoch of stand-alone learning equal

to 210. The second group is CLONE with the epoch of 70

for each edge node, and we label it as CLONE1. Since there

are three edge nodes in CLONE1, the equivalent number of

iterations in total is also 210 (70 × 3). As to the third group

(CLONE2), the epoch is 100 for a single edge node, which

results in 300 (100 × 3) of total iterations.

4.1 Training Time Comparison

We first profile and compare how the training time is spent on

the three experimental groups, which is shown in Table 7.

Table 7: Training time (seconds).

Intel FogNode1 Intel FogNode2 Jetson TX2

Stand-alone

learning(epoch=210)
1183 1573 1497

CLONE1(epoch=70×3) 657 734 765

CLONE2(epoch=100×3) 928 1036 1158

For the stand-alone learning, the used training time varies

with different edge devices - it takes 1183s and 1573s on

two Intel FogNodes (different working states) respectively,

while taking 1497s to execute the training task on Jetson

TX2. As to CLONE1, the training time of each edge node

is much lower than the training time of the single edge node

of stand-alone learning. Since there are three edge nodes in

CLONE1, the training time of CLONE1 should be one-third

of stand-alone learning theoretically. However, due to the

inevitable delay of the parameter transmissions, the training

time of CLONE1 is greater than one-third of stand-alone

learning. We then increase the epoch value from 70×3 to

100×3 (CLONE2), we can see the required training time is

longer than CLONE1 as it has a larger number of iteration

related with the input dataset during training, but it still less

than stand-alone learning which has a lower epoch value. Note

that with the participation of more edge nodes and larger size

of the input dataset, the advantages of CLONE in training

time reduction will be more obvious.

4.2 Evaluation Scores Comparison

We then calculate the average evaluation scores for each

group, which is shown in Figure 4. Compared stand-alone

learning and CLONE1, we can see that the overall evaluation

scores of CLONE1 are lower than stand-alone learning. This

may be caused by the fact that - in stand-alone learning, the

prediction accuracy will be improved with the increasing num-

ber of iterations passing the full dataset through the current

model. However, in CLONE1, due to the hardware difference,

powerful edge nodes may train the model with high accuracy

prior to other edge nodes. When the parameters of the poor

training results are uploaded to the Parameter EdgeServer, the

global accuracy of CLONE1 will be influenced. This may

explain the performance gap between stand-alone learning

and CLONE1 whose total epoch values are the same.

However, when we further increase the value of epoch

(CLONE2), it can achieve high evaluation scores as stand-

alone learning. Note that, by observing Table 7, the training

time of CLONE2 is much lower than stand-alone learning,

even though CLONE2 has higher epoch.

5 Discussion

Compared with stand-alone learning, CLONE can reduce

model training time without sacrificing algorithm perfor-

mance. With more edge nodes involved, the advantages of

CLONE in training time reduction will be more obvious. Be-

sides, compared with the collaborative cloud-edge approach,

the main advantages of CLONE is to speed up the analysis

Figure 4: Algorithm performance.

tasks and protect user privacy better as it does not need to

transfer any portion of the big and sensitive dataset via the

network.

5.1 Possible Improvements

There are some possible improvements for CLONE. We list

three of them for the discussion.

• Bandwidth demand - As the increasing number of edge

nodes or the participation of larger neural networks, the

communication of CLONE may be limited by bandwidth.

In this context, we can use the Parameter EdgeServer

group. In the group, Parameter EdgeServers can com-

municate with each other. Each Parameter EdgeServer

is only responsible for a portion of parameters, and they

work together to maintain globally shared parameters

and their updates.

• Aggregation protocol - It is essential to find a suitable

aggregation rule for the Parameter EdgeServer to aggre-

gate parameters, which requires excessive experiments

based on the specific experimental conditions.

• Push latency - Pushing parameters to the Parameter

EdgeServer is usually much slower than pulling param-

eters. Hence, it is essential to investigate methods to

reduce uplink latency (possible solutions include struc-

tured updates and sketched updates [28]).

5.2 Potential Use Cases

Besides, there are a variety of other meaningful use cases that

CLONE can help, particularly for two types of scenarios:

• Real-time applications which requires developing suit-

able machine learning algorithms on the resource-

constrained edges.

• Due to the privacy or/and the large network bandwidth

constraints, the training dataset cannot be moved away

from its source.

6 Related Work

Although machine learning algorithms are widely deployed, it

is difficult to deploy them on the resource-constrained devices.

In this context, model compression technologies [9,11,12,22,

33, 45] and lightweight machine learning algorithms [8, 24,

25] have been proposed, but they can not guarantee to solve

the problem completely when the training data and machine

learning models are particularly large. Another popular choice

to address this limitations is employing distributed data flow

systems such as MapReduce [10], Spark [54], Naiad [36],

and XGBoost [6]. They are able to robustly scale with the

increasing dataset size, but when training complex neural

networks tasks, the data flow systems fail to scale as they are

inefficient at executing iterative workloads [3, 55].

This restriction sparked the development of distributed ma-

chine learning (DML) algorithms [5, 14, 15, 32, 53]. Later

on, federated learning (FL), a novel DML, was proposed by

Google researchers [4, 18, 28, 35, 49]. The main difference

between conventional DML and FL is that, in FL, data is

collected at the edges directly and stored persistently; thus,

the data distribution at different edge nodes are usually not

independent and identically distributed (non-i.i.d) [48]. Our

work is inspired by FL, and the advantages of CLONE on the

vehicles are shown in Table 8.

Table 8: Advantages of CLONE.

Advantages Description Outperform

Driver

Personal-

ization

Each vehicle trains the neural network model lo-

cally based on its private data; local models will

be updated according to the dynamic changes of

the local dataset.

DML, Cloud-

based method

Privacy-

Preserving

The training data can always be kept in its original

location.

DML, Cloud-

based method

Asynchronous

Execution

There is no need to stop and wait for other vehi-

cles to perform an iteration; solve the inefficient

communication problem of bulk synchronous exe-

cution.

DML

Latency Re-

duction

Analyze vehicle data onboard; vehicles just need

to push the parameter value to the Parameter Edge-

Server rather than the whole data set.

DML, Cloud-

based method,

Cloud-edge

method

Security

Protection

Reduce security risks by limiting the attack sur-

face to only the edges, instead of the edges and

the cloud.

Cloud-based

method, Cloud-

edge method

Different from the collaborative cloud-edge method that

a few papers proposed [20, 26, 48], CLONE has three main

strengths - (1) reduces power consumption by eliminating

the use of central data centers, (2) speeds up the analysis and

modeling tasks as it always analyze real-time data onboard

and just need to communicate with the Parameter EdgeServer

about the current parameters [37,46], and (3) reduces security

risk by limiting the attack surface to only the edges.

7 Conclusion and Future Work

In this paper, we conduct a field study of EVs based on a real-

world dataset collected from a large EV company. We discover

that driver behavior metrics are potentially good indicators of

the failures of EV battery and associated accessories. Besides,

we propose CLONE, collaborative learning setting on the

edges for connected vehicles, which can reduce model training

time significantly. In the future, we plan to explore more

advanced neural networks, enlarge the applying scope, and

find a more suitable aggregation protocol for CLONE.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: a system for large-scale machine learning.

In Proceedings of the 12th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI),

volume 16, pages 265–283, 2016.

[2] Li Bao, Lingling Fan, and Zhixin Miao. Real-time sim-

ulation of electric vehicle battery charging systems. In

2018 North American Power Symposium (NAPS), pages

1–6. IEEE, 2018.

[3] Christoph Boden, Tilmann Rabl, and Volker Markl. Dis-

tributed machine learning-but at what cost. In Machine

Learning Systems Workshop at the 2017 Conference on

Neural Information Processing Systems, 2017.

[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,

Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe

Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan

McMahan, et al. Towards federated learning at scale:

System design. arXiv preprint arXiv:1902.01046, 2019.

[5] Yingyi Bu, Bill Howe, Magdalena Balazinska, and

Michael D Ernst. Haloop: efficient iterative data pro-

cessing on large clusters. Proceedings of the VLDB

Endowment, 3(1-2):285–296, 2010.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable

tree boosting system. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery

and data mining, pages 785–794. ACM, 2016.

[7] Ka Wai Eric Cheng, BP Divakar, Hongjie Wu, Kai Ding,

and Ho Fai Ho. Battery-management system (bms) and

soc development for electrical vehicles. IEEE transac-

tions on vehicular technology, 60(1):76–88, 2011.

[8] François Chollet. Xception: Deep learning with depth-

wise separable convolutions. arXiv preprint, pages 1610–

02357, 2017.

[9] Matthieu Courbariaux, Yoshua Bengio, and Jean-

Pierre Binaryconnect David. Training deep neural net-

works with binary weights during propagations. arxiv

preprint. arXiv preprint arXiv:1511.00363, 2015.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-

fied data processing on large clusters. Communications

of the ACM, 51(1):107–113, 2008.

[11] Misha Denil, Babak Shakibi, Laurent Dinh, Nando

De Freitas, et al. Predicting parameters in deep learning.

In Advances in neural information processing systems,

pages 2148–2156, 2013.

[12] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann

LeCun, and Rob Fergus. Exploiting linear structure

within convolutional networks for efficient evaluation.

In Advances in neural information processing systems,

pages 1269–1277, 2014.

[13] Fernando Dione dos Santos Lima, Gabriel Maia Rocha

Amaral, Lucas Goncalves de Moura Leite, João

Paulo Pordeus Gomes, and Javam de Castro Machado.

Predicting failures in hard drives with lstm networks.

In Proceedings of the 2017 Brazilian Conference on

Intelligent Systems (BRACIS), pages 222–227. IEEE,

2017.

[14] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gu-

narathne, Seung-Hee Bae, Judy Qiu, and Geoffrey Fox.

Twister: a runtime for iterative mapreduce. In Pro-

ceedings of the 19th ACM international symposium on

high performance distributed computing, pages 810–

818. ACM, 2010.

[15] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and

Volker Markl. Spinning fast iterative data flows. Pro-

ceedings of the VLDB Endowment, 5(11):1268–1279,

2012.

[16] Abbas Fotouhi, Daniel J Auger, Karsten Propp, Stefano

Longo, and Mark Wild. A review on electric vehicle

battery modelling: From lithium-ion toward lithium–

sulphur. Renewable and Sustainable Energy Reviews,

56:1008–1021, 2016.

[17] Jerome H Friedman. Stochastic gradient boosting. Com-

putational Statistics & Data Analysis, 38(4):367–378,

2002.

[18] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differen-

tially private federated learning: A client level perspec-

tive. arXiv preprint arXiv:1712.07557, 2017.

[19] Alex Graves and Jürgen Schmidhuber. Framewise

phoneme classification with bidirectional lstm and other

neural network architectures. Neural Networks, 18(5-

6):602–610, 2005.

[20] Philipp M Grulich and Faisal Nawab. Collaborative edge

and cloud neural networks for real-time video process-

ing. Proceedings of the VLDB Endowment, 11(12):2046–

2049, 2018.

[21] Antonio Gulli and Sujit Pal. Deep Learning with Keras.

Packt Publishing Ltd, 2017.

[22] Song Han, Jeff Pool, John Tran, and William Dally.

Learning both weights and connections for efficient neu-

ral network. In Advances in neural information process-

ing systems, pages 1135–1143, 2015.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural computation, 9(8):1735–1780,

1997.

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[25] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and< 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[26] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovin-

ski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neu-

rosurgeon: Collaborative intelligence between the cloud

and mobile edge. Acm Sigplan Notices, 52(4):615–629,

2017.

[27] Ron Kohavi et al. A study of cross-validation and boot-

strap for accuracy estimation and model selection. In

International Joint Conference on Artificial Intelligence

(IJCAI), volume 14, pages 1137–1145, 1995.

[28] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-

ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.

Federated learning: Strategies for improving commu-

nication efficiency. arXiv preprint arXiv:1610.05492,

2016.

[29] Bo Li, Weina Wang, Long Jia, Dafang Wang, and Anran

Kong. Study on hil system of electric vehicle controller

based on ni. In IOP Conference Series: Materials Sci-

ence and Engineering, volume 382, page 052033. IOP

Publishing, 2018.

[30] Hong-Peng Li and Yan-wen Li. The research of electric

vehicle’s mcu system based on iso26262. In 2017 2nd

Asia-Pacific Conference on Intelligent Robot Systems

(ACIRS), pages 336–340. IEEE, 2017.

[31] Andy Liaw, Matthew Wiener, et al. Classification and

regression by randomForest. R news, 2(3):18–22, 2002.

[32] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny

Bickson, Carlos E Guestrin, and Joseph Hellerstein.

Graphlab: A new framework for parallel machine learn-

ing. arXiv preprint arXiv:1408.2041, 2014.

[33] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang,

Xiaoou Tang, et al. Face model compression by distilling

knowledge from neurons. In AAAI, pages 3560–3566,

2016.

[34] Yan Ma, Kangkang Zhang, Jing Gu, Jianqiu Li, and

Dongbin Lu. Design of the control system for a four-

wheel driven micro electric vehicle. In 2009 IEEE Vehi-

cle Power and Propulsion Conference, pages 1813–1816.

IEEE, 2009.

[35] H Brendan McMahan, Eider Moore, Daniel Ramage,

Seth Hampson, et al. Communication-efficient learn-

ing of deep networks from decentralized data. arXiv

preprint arXiv:1602.05629, 2016.

[36] Derek G Murray, Frank McSherry, Rebecca Isaacs,

Michael Isard, Paul Barham, and Martín Abadi. Na-

iad: a timely dataflow system. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems

Principles, pages 439–455. ACM, 2013.

[37] Donghyun Park, Seulgi Kim, Yelin An, and Jae-Yoon

Jung. Lired: A light-weight real-time fault detection

system for edge computing using lstm recurrent neural

networks. Sensors, 18(7):2110, 2018.

[38] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-

fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, et al. Scikit-learn: Machine learning

in python. Journal of machine learning research,

12(Oct):2825–2830, 2011.

[39] E Peled, D Golodnitsky, H Mazor, M Goor, and

S Avshalomov. Parameter analysis of a practical lithium-

and sodium-air electric vehicle battery. Journal of Power

Sources, 196(16):6835–6840, 2011.

[40] Junfei Qiu, Qihui Wu, Guoru Ding, Yuhua Xu, and Shuo

Feng. A survey of machine learning for big data pro-

cessing. EURASIP Journal on Advances in Signal Pro-

cessing, 2016(1):67, 2016.

[41] Li Ran, Wu Junfeng, Wang Haiying, and Li Gechen. De-

sign method of can bus network communication struc-

ture for electric vehicle. In International Forum on

Strategic Technology 2010, pages 326–329. IEEE, 2010.

[42] Juan D Rodriguez, Aritz Perez, and Jose A Lozano. Sen-

sitivity analysis of k-fold cross validation in prediction

error estimation. IEEE transactions on pattern analy-

sis and machine intelligence (TPAMI), 32(3):569–575,

2010.

[43] Tiffiny Rossi. Autonomous and adas test cars produce

over 11 tb of data per day (article). October 10, 2018.

[44] Kaveh Sarrafan, Kashem M Muttaqi, and Danny Su-

tanto. Real-time state-of-charge tracking system using

mixed estimation algorithm for electric vehicle battery

system. In 2018 IEEE Industry Applications Society

Annual Meeting (IAS), pages 1–8. IEEE, 2018.

[45] Bharat Bhusan Sau and Vineeth N Balasubramanian.

Deep model compression: Distilling knowledge from

noisy teachers. arXiv preprint arXiv:1610.09650, 2016.

[46] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and

Lanyu Xu. Edge computing: Vision and challenges.

IEEE Internet of Things Journal, 3(5):637–646, 2016.

[47] Gregor Ulm, Emil Gustavsson, and Mats Jirstrand. Oo-

dida: On-board/off-board distributed data analytics for

connected vehicles. arXiv preprint arXiv:1902.00319,

2019.

[48] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,

Kin K Leung, Christian Makaya, Ting He, and Kevin

Chan. Adaptive federated learning in resource con-

strained edge computing systems. learning, 8:9, 2018.

[49] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song,

Qian Wang, and Hairong Qi. Beyond inferring class rep-

resentatives: User-level privacy leakage from federated

learning. arXiv preprint arXiv:1812.00535, 2018.

[50] Yinjiao Xing, Eden WM Ma, Kwok L Tsui, and Michael

Pecht. Battery management systems in electric and

hybrid vehicles. Energies, 4(11):1840–1857, 2011.

[51] Xiang-Wu Yan, Yu-Wei Guo, Yang Cui, Yu-Wei Wang,

and Hao-Ran Deng. Electric vehicle battery soc esti-

mation based on gnl model adaptive kalman filter. In

Journal of Physics: Conference Series, volume 1087,

page 052027. IOP Publishing, 2018.

[52] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui

Zheng. Stochastic gradient boosted distributed decision

trees. In Proceedings of the 18th ACM conference on

Information and knowledge management, pages 2061–

2064. ACM, 2009.

[53] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J

Franklin, Scott Shenker, and Ion Stoica. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation, pages 2–2. USENIX Association, 2012.

[54] Matei Zaharia, Mosharaf Chowdhury, Michael J

Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster

computing with working sets. HotCloud, 10(10-10):95,

2010.

[55] Kuo Zhang, Salem Alqahtani, and Murat Demirbas. A

comparison of distributed machine learning platforms.

In 2017 26th International Conference on Computer

Communication and Networks (ICCCN), pages 1–9.

IEEE, 2017.

	Introduction
	Data Description
	Collaborative Learning on Edges (CLONE)
	Stand-alone Learning
	CLONE Design
	Model Description
	Hardware Setup
	Model Setup
	Throughput

	Evaluation
	Training Time Comparison
	Evaluation Scores Comparison

	Discussion
	Possible Improvements
	Potential Use Cases

	Related Work
	Conclusion and Future Work

