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Abstract
The wide deployment of 4G/5G has enabled connected

vehicles as a perfect edge computing platform for a plethora

of new services which are impossible before, such as remote

real-time diagnostics and advanced driver assistance. In this

work, we propose CLONE, a collaborative learning setting

on the edges based on the real-world dataset collected from

a large electric vehicle (EV) company. Our approach is built

on top of the federated learning algorithm and long short-

term memory networks, and it demonstrates the effectiveness

of driver personalization, privacy serving, latency reduction

(asynchronous execution), and security protection. We choose

the failure of EV battery and associated accessories as our

case study to show how the CLONE solution can accurately

predict failures to ensure sustainable and reliable driving in a

collaborative fashion.

1 Introduction

The proliferation of edge computing technologies is strongly

stimulating the adoption of machine learning methods on ve-

hicles so that they can provide a variety of intelligent onboard

services. On the one hand, current vehicles, such as connected

and autonomous vehicles (CAVs), can generate over 11 TB

of privacy-sensitive data per day [43]. Such big data amount

brings not only opportunities but also challenges to domain

researchers - practices have proved that larger training data set

can achieve more remarkable results [40]; however, training a

big model often requires excessive computation and memory

resources, which hinders the application of machine learning

algorithms on the resource-constrained edge devices [47].

On the other hand, electric vehicles (EVs) have received

significant attention as an important efficient and sustainable

transportation system. As a key component of EVs, the bat-

tery system largely determines the safety and durability of

EVs [2, 50]. Due to the aging process or abuse maneuvers,

various faults may occur at each constituent cell or associ-

ated accessories. It is essential to develop early failure de-

tection techniques for EV battery and associated accessories

to ensure availability and safety of EVs through anticipated

replacements.

Besides, although EIC (electric, instrumentation and com-

puter control system) data (such as voltage and current) of

EVs are able to show the symptoms of an imminent failure

of EV battery and associated accessories, they are hard to tell

the reason why the battery and associated accessories failed.

Driver behavior metrics such as speed, acceleration, and steer-

ing reflect the usage of an EV. We believe such usage is one

of the main root causes of failures.

Hence, in this paper, we choose the failure of EV battery

and associated accessories as our case study and seek to

answer the following vital questions: "How to construct a

personalized model by continuously tuning parameters on

connected vehicles?", "What is the influence of the driver

behavior metrics on the failure prediction of EVs?".

Our main contributions include:

• To the best of our knowledge, this is the first work to

predict an imminent failure of EV battery and associated

accessories based on the real-world EV dataset which

involves EIC attributes and driver behavior metrics.

• Our analysis reveals that adding driver behavior metrics

can improve the prediction accuracy of EV failures.

• We train random forest (RF), gradient boosting decision

tree (GBDT), and long short-term memory networks

(LSTMs) to predict failures, and we find LSTMs outper-

form other methods based on our dataset.

• We propose CLONE, a collaborative learning setting

on the edges for connected vehicles, and it can reduce

training time significantly without sacrificing prediction

accuracy.

2 Data Description

This study presents the analysis of EV health characteristics

based on the data measured at and collected from a large

EV company. We analyze three different models of EVs, and

the corresponding data is reported and collected every 10

milliseconds during the whole 6-hour collection period.
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Figure 1: Three Core Control Systems of EVs.

In general, our data set is collected from the core con-

trol systems of EVs, which includes the vehicle control unit

(VCU) [34], motor control unit (MCU) [30], and battery man-

agement system (BMS) [7]. BMS [7] is responsible for the

battery maintenance and state estimation. The VCU [34],

as a key component of the whole EV, sends orders to other

modules based on the driver manipulation (such as gear sig-

nal, accelerator pedal signal, and vehicle mode) via CAN

communication network [41]. MCU [30] controls the wheel

motor locally according to the commands from VCU. Fig-

ure 1 shows the structure diagram of the core control systems.

42 features listed in Table 1 and Table 2 were analyzed.

Table 1: Selected EIC features.

Voltage Temperature Power & Energy

BMS_BattVolt InCar_Temp BMS_BattSOC

BMS_CellVoltMax Environment_Temp BMS_MaxChgPwrCont

BMS_CellVoltMax_Num BMS_BattTempAvg BMS_MaxChgPwrPeak

BMS_CellVoltMin BMS_Inlet_WaterTemp BMS_MaxDchgPwrCont

BMS_CellVoltMin_Num BMS_Outlet_WaterTemp BMS_MaxDchgPwrPeak

MCUF_Volt BMS_MaxTemp VCU_Batt_Comp_Pwr

MCUR_Volt BMS_MinTemp VCU_Batt_PTC_Pwr

Current BMS_TempMaxNum Error Info

BMS_BattCurr BMS_TempMinNum BMS_BatterySysFaultLevel

MCUF_Curr MCUF_Temp BMS_Low_SOC

MCUR_Curr MCUR_Temp VCU_PTC_ErrSta

Table 2: Selected driver behavior metrics.

VehicleSpeed Acceleration Steering

YawRate WheelSpeedFL WheelSpeedFR

WheelSpeedRL WheelSpeedRR Emergency_Stop

Driver

Behavior

AccPedalPosition BrakePedalPosition

Driver behavior metrics are collected from VCU and sensors.

More specifically, we analyze EV data in the two aspects:

(1) EIC attributes, and (2) driver behavior metrics. Here, EIC

refers to electric, instrumentation, and computer control sys-

tem [29]. It includes battery features collected from BMS

(most commonly used for EV battery durability analysis by

other studies [2, 16, 39, 44, 51]) and the data reported from

other control systems. Most of the selected features can be

understood intuitively; hence, we choose some vague features

to give our explanations. "MCUF" represent the MCU for

the front wheels, and "MCUR" means the MCU for the rear

wheels. Positive Temperature Coefficient heater (PTC) is the

heating unit of the battery in EVs. Besides, state of charge

(SOC) is the indicator of battery left capacity, and "Comp" is

an acronym of the compressor.

3 Collaborative Learning on Edges (CLONE)

The models learned in this paper are implemented in Python,

using tensorflow 1.5.0 [1], keras 2.1.5 [21], and scikit-learn li-

braries [38] for model building. We use 5-fold cross-validation

method [27, 42] to evaluate the proposed prediction approach.

Note that there is a trade-off between long prediction horizon

and the sampling frequency, with the constraints of computing

resources. After conducting a series of sensitivity study, we

choose 15 seconds as our prediction horizon so that it can

predict failures for the next 1,500 data points.

3.1 Stand-alone Learning

Before employing CLONE, we first combine the whole real-

world dataset of three EVs to train different machine learning

models on the Intel FogNode (the hardware information is

shown in Table 5). The goal is to find a suitable algorithm to

predict failures, and answer the question of "What is the influ-

ence of the driver behavior metrics on EV failure prediction?"

We tackle the failure prediction problem using random

forest (RF) [31], gradient boosted decision tree (GBDT) [17,

52], and long short-term memory networks (LSTMs) [13, 23]

since they have become highly successful learning models for

both classification and regression problems.

To show the impact of driver behavior metrics on the fail-

ure prediction, we conduct experiments on two experimental

groups. Our first step is to combine all selected EIC attributes

and driver behavior metrics to train models using RF, GBDT,

and LSTMs methods, and we label this group as ED Group.

Then, we exclude all driver behavior metrics but keep EIC

attributes, and we denote it as E Group. Table 3 shows the

input features for ED Group and E Group.

Table 3: Input features for two experimental groups.

EIC attributes Driver Behavior Metrics

ED Group 31 attributes 11 metrics

E Group 31 attributes NONE

Table 4: Evaluation results.

Precision Recall Accuracy F-measure

ED

Group

RF 0.7492 0.7814 0.7833 0.7649

GBDT 0.7905 0.8500 0.8234 0.8192

LSTM 0.9420 0.9500 0.9430 0.9460

Average 0.8272 0.8605 0.8499 0.8434

E

Group

RF 0.6615 0.6900 0.7008 0.6755

GBDT 0.6975 0.7500 0.7294 0.7228

LSTM 0.8924 0.9000 0.8738 0.8962

Average 0.7505 0.7800 0.7680 0.7648

Table 4 presents the average evaluation scores of ED and

E Group. Based on our experimental results, we have the

following observations:

• Excluding driver behavior metrics results in around 8%

reduction in the average F-measure.

• LSTMs outperform RF and GBDT in both two groups

based on our dataset.

3.2 CLONE Design

By observing experiment results of stand-alone learning, we

can see that driver behavior metrics has non-negligible im-

pacts on the failure prediction, and employing LSTMs can



achieve better results. Therefore, we aim to deploy LSTMs-

based collaborative learning approaches on the edges based

on EIC attributes and driver behavior metrics. We term our ap-

proach CLONE, which is the solution of the problems - "How

to construct a personalized model on connected vehicles?".

3.2.1 Model Description

The learning tasks of CLONE is solved by a group of dis-

tributed participating vehicles (edge nodes) which are coordi-

nated by a Parameter EdgeServer. Each vehicle has its local

training dataset which is never uploaded to the Parameter

EdgeServer or transferred to the cloud. Instead, each vehicle

is responsible for continuously performing training and infer-

ence locally based on its private data. When a vehicle finishes

one epoch [19], which refers to the number of iteration related

with the input dataset during training, it will push the value

of current parameters to the Parameter EdgeServer, where the

parameter values are aggregated by computing the weighted

average value. Then, each vehicle can immediately pull the

updated parameter values from the Parameter EdgeServer,

and set the updated parameters as their current parameters

to start the next epoch. The above steps will be repeated as

necessary. Figure 2 shows the basic framework of CLONE.

Parameter 
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Local Model Local Dataset 

Local Dataset Local Model 
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…
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Figure 2: The framework of CLONE. In CLONE, each ve-

hicle trains the neural network model locally based on its

private data. Then, the value of current parameters from each

vehicle is uploaded to the Parameter EdgeServer, where those

parameters are aggregated and sent back to vehicles.

Note that when a new vehicle joins in, it will pull the cur-

rent aggregated parameters from the Parameter EdgeServer

first, and set them as the initial parameters for the first round

of training, which speeds up the training process of unseen

vehicles. Besides, since it is asynchronous communication,

for each vehicle, there is no need to stop and wait for other

vehicles to complete an epoch, which greatly reduces the la-

tency. To illustrate the aggregation protocol of this work, we

need to introduce the loss function first, which is defined as

follows:

Loss = ∑
i

[

ŷ(i) ∗ log(y(i))+(1− ŷ(i))∗ log(1− y(i))
]

Here, ŷi is the predicted output of the machine learning model,

and the scalar yi is the desired output of the model for each

data sample i. We then define the formula to aggregate and

update parameters as:
{

P(p)← Loss(v)
Loss(p)+Loss(v)P(p)+ Loss(p)

Loss(p)+Loss(v)P(v)

Loss(p)← Loss(v)

Where P represents the value of a parameter, and Loss stands

for the value of the loss function. Besides, p refers to the

Parameter EdgeServer, and v represents a specific vehicle.

For the more accurate vehicle (lower value of loss function),

we assign a higher weight to its parameter.

3.2.2 Hardware Setup

To build heterogeneous hardware cluster representing differ-

ent models of EVs, we adopt two different types of hardware

- Intel FogNode and Jetson TX2, with different CPUs, operat-

ing systems and so on (shown in Table 5). More specifically,

we choose one Intel FogNode as the Parameter EdgeSever,

and we treat the other two Intel FodeNodes and one Jetson

TX2 as the edge nodes (vehicles) to continuously "learn"

latent patterns.

Table 5: Hardware setup for CLONE.

Intel FogNode Jetson TX2

CPU Intel Xeon E3-1275 v5 ARMv8 + NVIDIA Pascal GPU

Frequency 3.6 GHz 2 GHz

Cores 4 6

Memory 32 GB 8 GB

OS Linux 4.13.0-32-generic Linux 4.4.38-tegra

3.2.3 Model Setup

In Section 3.1, we trained an accurate LSTMs model with 4

layers on the front and followed by a fully connected layer

(dense layer). Now, we aim to deploy a collaborative LSTMs

with the same number of layers on the edges, i.e., with the

same hyperparameters. We first distribute our whole dataset

to three edge nodes so that each edge node (vehicle) has its

locally private dataset.

Table 6: Model parameters.

Layers Variables Shape

First Layer

(lstm_1)

lstm_1/kernel (16, 400)

lstm_1/recurrent_kernel (100, 400)

lstm_1/bias (400,1)

Second Layer

(lstm_2)

lstm_2/kernel (100, 400)

lstm_2/recurrent_kernel (100, 400)

lstm_2/bias (400,1)

Last Layer

(dense_1)

dense_1/kernel (100, 24)

dense_1/bias (24,1)

Table 6 shows the parameter distribution of the LSTMs

model on the first two LSTMs layers (marked as lstm_1

and lstm_2) and the last fully connected layer (labelled as

dense_1). The "kernel" and "recurrent_kernel" are the param-

eter vectors, and the last column represents the shape (size)

of the parameters for each vector. For example, (16, 400) in-

dicates that there are 16 × 400 of parameters. Our whole



network contains up to 297,700 parameters, including the

weights and the biases. Weight can reflect the strength of the

connection between input and output. Bias shows how far off

the predictions are from the real values.

3.2.4 Throughput

Figure 3 shows the I/O throughput per second at the Parame-

ter EdgeServer when the three edge nodes are working at the

same time. It can be seen that the peak of the data throughput

is relatively stable, and the peak appears intermittently. Be-

sides, the maximum I/O throughput for push and pull process

is around 750 KB/s and 250 KB/s respectively, which indi-

cates that there is no big pressure on the network throughput.
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Figure 3: I/O throughput per second.

Figure 3 also proves that the push process is usually much

slower than the pull process which was concluded by the work

of [28]. This observation shows the importance to investigate

methods that can reduce the communication latency of push

process in the future work.

4 Evaluation

In this section, we present the experimental results of CLONE,

and compare it with the algorithm performance of stand-alone

learning in two aspects - (1) training time, and (2) evaluation

scores including precision, recall, accuracy, and F-measure.

To have a clear comparison, we conduct experiments on

three experimental groups. The first group is the stand-alone

learning, and we set the epoch of stand-alone learning equal

to 210. The second group is CLONE with the epoch of 70

for each edge node, and we label it as CLONE1. Since there

are three edge nodes in CLONE1, the equivalent number of

iterations in total is also 210 (70 × 3). As to the third group

(CLONE2), the epoch is 100 for a single edge node, which

results in 300 (100 × 3) of total iterations.

4.1 Training Time Comparison

We first profile and compare how the training time is spent on

the three experimental groups, which is shown in Table 7.

Table 7: Training time (seconds).

Intel FogNode1 Intel FogNode2 Jetson TX2

Stand-alone

learning(epoch=210)
1183 1573 1497

CLONE1(epoch=70×3) 657 734 765

CLONE2(epoch=100×3) 928 1036 1158

For the stand-alone learning, the used training time varies

with different edge devices - it takes 1183s and 1573s on

two Intel FogNodes (different working states) respectively,

while taking 1497s to execute the training task on Jetson

TX2. As to CLONE1, the training time of each edge node

is much lower than the training time of the single edge node

of stand-alone learning. Since there are three edge nodes in

CLONE1, the training time of CLONE1 should be one-third

of stand-alone learning theoretically. However, due to the

inevitable delay of the parameter transmissions, the training

time of CLONE1 is greater than one-third of stand-alone

learning. We then increase the epoch value from 70×3 to

100×3 (CLONE2), we can see the required training time is

longer than CLONE1 as it has a larger number of iteration

related with the input dataset during training, but it still less

than stand-alone learning which has a lower epoch value. Note

that with the participation of more edge nodes and larger size

of the input dataset, the advantages of CLONE in training

time reduction will be more obvious.

4.2 Evaluation Scores Comparison

We then calculate the average evaluation scores for each

group, which is shown in Figure 4. Compared stand-alone

learning and CLONE1, we can see that the overall evaluation

scores of CLONE1 are lower than stand-alone learning. This

may be caused by the fact that - in stand-alone learning, the

prediction accuracy will be improved with the increasing num-

ber of iterations passing the full dataset through the current

model. However, in CLONE1, due to the hardware difference,

powerful edge nodes may train the model with high accuracy

prior to other edge nodes. When the parameters of the poor

training results are uploaded to the Parameter EdgeServer, the

global accuracy of CLONE1 will be influenced. This may

explain the performance gap between stand-alone learning

and CLONE1 whose total epoch values are the same.

However, when we further increase the value of epoch

(CLONE2), it can achieve high evaluation scores as stand-

alone learning. Note that, by observing Table 7, the training

time of CLONE2 is much lower than stand-alone learning,

even though CLONE2 has higher epoch.

5 Discussion

Compared with stand-alone learning, CLONE can reduce

model training time without sacrificing algorithm perfor-

mance. With more edge nodes involved, the advantages of

CLONE in training time reduction will be more obvious. Be-

sides, compared with the collaborative cloud-edge approach,

the main advantages of CLONE is to speed up the analysis



Figure 4: Algorithm performance.

tasks and protect user privacy better as it does not need to

transfer any portion of the big and sensitive dataset via the

network.

5.1 Possible Improvements

There are some possible improvements for CLONE. We list

three of them for the discussion.

• Bandwidth demand - As the increasing number of edge

nodes or the participation of larger neural networks, the

communication of CLONE may be limited by bandwidth.

In this context, we can use the Parameter EdgeServer

group. In the group, Parameter EdgeServers can com-

municate with each other. Each Parameter EdgeServer

is only responsible for a portion of parameters, and they

work together to maintain globally shared parameters

and their updates.

• Aggregation protocol - It is essential to find a suitable

aggregation rule for the Parameter EdgeServer to aggre-

gate parameters, which requires excessive experiments

based on the specific experimental conditions.

• Push latency - Pushing parameters to the Parameter

EdgeServer is usually much slower than pulling param-

eters. Hence, it is essential to investigate methods to

reduce uplink latency (possible solutions include struc-

tured updates and sketched updates [28]).

5.2 Potential Use Cases

Besides, there are a variety of other meaningful use cases that

CLONE can help, particularly for two types of scenarios:

• Real-time applications which requires developing suit-

able machine learning algorithms on the resource-

constrained edges.

• Due to the privacy or/and the large network bandwidth

constraints, the training dataset cannot be moved away

from its source.

6 Related Work

Although machine learning algorithms are widely deployed, it

is difficult to deploy them on the resource-constrained devices.

In this context, model compression technologies [9,11,12,22,

33, 45] and lightweight machine learning algorithms [8, 24,

25] have been proposed, but they can not guarantee to solve

the problem completely when the training data and machine

learning models are particularly large. Another popular choice

to address this limitations is employing distributed data flow

systems such as MapReduce [10], Spark [54], Naiad [36],

and XGBoost [6]. They are able to robustly scale with the

increasing dataset size, but when training complex neural

networks tasks, the data flow systems fail to scale as they are

inefficient at executing iterative workloads [3, 55].

This restriction sparked the development of distributed ma-

chine learning (DML) algorithms [5, 14, 15, 32, 53]. Later

on, federated learning (FL), a novel DML, was proposed by

Google researchers [4, 18, 28, 35, 49]. The main difference

between conventional DML and FL is that, in FL, data is

collected at the edges directly and stored persistently; thus,

the data distribution at different edge nodes are usually not

independent and identically distributed (non-i.i.d) [48]. Our

work is inspired by FL, and the advantages of CLONE on the

vehicles are shown in Table 8.

Table 8: Advantages of CLONE.

Advantages Description Outperform

Driver

Personal-

ization

Each vehicle trains the neural network model lo-

cally based on its private data; local models will

be updated according to the dynamic changes of

the local dataset.

DML, Cloud-

based method

Privacy-

Preserving

The training data can always be kept in its original

location.

DML, Cloud-

based method

Asynchronous

Execution

There is no need to stop and wait for other vehi-

cles to perform an iteration; solve the inefficient

communication problem of bulk synchronous exe-

cution.

DML

Latency Re-

duction

Analyze vehicle data onboard; vehicles just need

to push the parameter value to the Parameter Edge-

Server rather than the whole data set.

DML, Cloud-

based method,

Cloud-edge

method

Security

Protection

Reduce security risks by limiting the attack sur-

face to only the edges, instead of the edges and

the cloud.

Cloud-based

method, Cloud-

edge method

Different from the collaborative cloud-edge method that

a few papers proposed [20, 26, 48], CLONE has three main

strengths - (1) reduces power consumption by eliminating

the use of central data centers, (2) speeds up the analysis and

modeling tasks as it always analyze real-time data onboard

and just need to communicate with the Parameter EdgeServer

about the current parameters [37,46], and (3) reduces security

risk by limiting the attack surface to only the edges.

7 Conclusion and Future Work

In this paper, we conduct a field study of EVs based on a real-

world dataset collected from a large EV company. We discover

that driver behavior metrics are potentially good indicators of

the failures of EV battery and associated accessories. Besides,

we propose CLONE, collaborative learning setting on the

edges for connected vehicles, which can reduce model training

time significantly. In the future, we plan to explore more

advanced neural networks, enlarge the applying scope, and

find a more suitable aggregation protocol for CLONE.
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