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Abstract

The wide deployment of 4G/5G has enabled connected
vehicles as a perfect edge computing platform for a plethora
of new services which are impossible before, such as remote
real-time diagnostics and advanced driver assistance. In this
work, we propose CLONE, a collaborative learning setting
on the edges based on the real-world dataset collected from
a large electric vehicle (EV) company. Our approach is built
on top of the federated learning algorithm and long short-
term memory networks, and it demonstrates the effectiveness
of driver personalization, privacy serving, latency reduction
(asynchronous execution), and security protection. We choose
the failure of EV battery and associated accessories as our
case study to show how the CLONE solution can accurately
predict failures to ensure sustainable and reliable driving in a
collaborative fashion.

1 Introduction

The proliferation of edge computing technologies is strongly
stimulating the adoption of machine learning methods on ve-
hicles so that they can provide a variety of intelligent onboard
services. On the one hand, current vehicles, such as connected
and autonomous vehicles (CAVs), can generate over 11 TB
of privacy-sensitive data per day [43]. Such big data amount
brings not only opportunities but also challenges to domain
researchers - practices have proved that larger training data set
can achieve more remarkable results [40]; however, training a
big model often requires excessive computation and memory
resources, which hinders the application of machine learning
algorithms on the resource-constrained edge devices [47].
On the other hand, electric vehicles (EVs) have received
significant attention as an important efficient and sustainable
transportation system. As a key component of EVs, the bat-
tery system largely determines the safety and durability of
EVs [2,50]. Due to the aging process or abuse maneuvers,
various faults may occur at each constituent cell or associ-
ated accessories. It is essential to develop early failure de-
tection techniques for EV battery and associated accessories

to ensure availability and safety of EVs through anticipated

replacements.

Besides, although EIC (electric, instrumentation and com-
puter control system) data (such as voltage and current) of
EVs are able to show the symptoms of an imminent failure
of EV battery and associated accessories, they are hard to tell
the reason why the battery and associated accessories failed.
Driver behavior metrics such as speed, acceleration, and steer-
ing reflect the usage of an EV. We believe such usage is one
of the main root causes of failures.

Hence, in this paper, we choose the failure of EV battery
and associated accessories as our case study and seek to
answer the following vital questions: "How to construct a
personalized model by continuously tuning parameters on
connected vehicles?", "What is the influence of the driver
behavior metrics on the failure prediction of EVs?".

Our main contributions include:

e To the best of our knowledge, this is the first work to
predict an imminent failure of EV battery and associated
accessories based on the real-world EV dataset which
involves EIC attributes and driver behavior metrics.
Our analysis reveals that adding driver behavior metrics
can improve the prediction accuracy of EV failures.

We train random forest (RF), gradient boosting decision

tree (GBDT), and long short-term memory networks

(LSTMs) to predict failures, and we find LSTMs outper-

form other methods based on our dataset.

e We propose CLONE, a collaborative learning setting
on the edges for connected vehicles, and it can reduce
training time significantly without sacrificing prediction
accuracy.

2 Data Description

This study presents the analysis of EV health characteristics
based on the data measured at and collected from a large
EV company. We analyze three different models of EVs, and
the corresponding data is reported and collected every 10
milliseconds during the whole 6-hour collection period.
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Figure 1: Three Core Control Systems of EVs.

In general, our data set is collected from the core con-
trol systems of EVs, which includes the vehicle control unit
(VCU) [34], motor control unit (MCU) [30], and battery man-
agement system (BMS) [7]. BMS [7] is responsible for the
battery maintenance and state estimation. The VCU [34],
as a key component of the whole EV, sends orders to other
modules based on the driver manipulation (such as gear sig-
nal, accelerator pedal signal, and vehicle mode) via CAN
communication network [41]. MCU [30] controls the wheel
motor locally according to the commands from VCU. Fig-
ure | shows the structure diagram of the core control systems.
42 features listed in Table | and Table 2 were analyzed.

Table 1: Selected EIC features.

Voltage Temperature Power & Energy
BMS_BattVolt InCar_Temp BMS_BattSOC
BMS_CellVoltMax Environment_Temp BMS_MaxChgPwrCont
BMS_CellVoltMax_Num  BMS_BattTempAvg BMS_MaxChgPwrPeak

BMS_Cell VoltMin
BMS_CellVoltMin_Num

BMS_Inlet_WaterTemp BMS_MaxDchgPwrCont
BMS_Outlet_WaterTemp  BMS_MaxDchgPwrPeak

MCUEF_Volt BMS_MaxTemp VCU_Batt_Comp_Pwr
MCUR_Volt BMS_MinTemp VCU_Batt_PTC_Pwr
Current BMS_TempMaxNum Error Info
BMS_BattCurr BMS_TempMinNum BMS_BatterySysFaultLevel
MCUF_Curr MCUF_Temp BMS_Low_SOC
MCUR_Curr MCUR_Temp VCU_PTC_ErrSta

Table 2: Selected driver behavior metrics.

VehicleSpeed
Driver YawRate
Behavior  WheelSpeedRL

AccPedalPosition

Acceleration
‘WheelSpeedFL
WheelSpeedRR
BrakePedalPosition

Steering
WheelSpeedFR
Emergency_Stop

Driver behavior metrics are collected from VCU and sensors.

More specifically, we analyze EV data in the two aspects:
(1) EIC attributes, and (2) driver behavior metrics. Here, EIC
refers to electric, instrumentation, and computer control sys-
tem [29]. It includes battery features collected from BMS
(most commonly used for EV battery durability analysis by
other studies [2, 16,39,44,51]) and the data reported from
other control systems. Most of the selected features can be
understood intuitively; hence, we choose some vague features
to give our explanations. "MCUF" represent the MCU for
the front wheels, and "MCUR" means the MCU for the rear
wheels. Positive Temperature Coefficient heater (PTC) is the
heating unit of the battery in EVs. Besides, state of charge
(SOC) is the indicator of battery left capacity, and "Comp" is
an acronym of the compressor.

3 Collaborative Learning on Edges (CLONE)

The models learned in this paper are implemented in Python,
using tensorflow 1.5.0 [1], keras 2.1.5 [21], and scikit-learn li-
braries [38] for model building. We use 5-fold cross-validation
method [27,42] to evaluate the proposed prediction approach.

Note that there is a trade-off between long prediction horizon
and the sampling frequency, with the constraints of computing
resources. After conducting a series of sensitivity study, we
choose 15 seconds as our prediction horizon so that it can
predict failures for the next 1,500 data points.

3.1 Stand-alone Learning

Before employing CLONE, we first combine the whole real-
world dataset of three EVs to train different machine learning
models on the Intel FogNode (the hardware information is
shown in Table 5). The goal is to find a suitable algorithm to
predict failures, and answer the question of "What is the influ-
ence of the driver behavior metrics on EV failure prediction?"

We tackle the failure prediction problem using random
forest (RF) [31], gradient boosted decision tree (GBDT) [17,
52], and long short-term memory networks (LSTMs) [13,23]
since they have become highly successful learning models for
both classification and regression problems.

To show the impact of driver behavior metrics on the fail-
ure prediction, we conduct experiments on two experimental
groups. Our first step is to combine all selected EIC attributes
and driver behavior metrics to train models using RF, GBDT,
and LSTMs methods, and we label this group as ED Group.
Then, we exclude all driver behavior metrics but keep EIC
attributes, and we denote it as E Group. Table 3 shows the
input features for ED Group and E Group.

Table 3: Input features for two experimental groups.

EIC attributes | Driver Behavior Metrics
ED Group 31 attributes 11 metrics
E Group 31 attributes NONE
Table 4: Evaluation results.
Precision | Recall | Accuracy | F-measure

RF 0.7492 0.7814 0.7833 0.7649
ED GBDT 0.7905 0.8500 0.8234 0.8192
Group | LSTM 0.9420 0.9500 0.9430 0.9460
Average 0.8272 0.8605 0.8499 0.8434
RF 0.6615 0.6900 0.7008 0.6755
E GBDT 0.6975 0.7500 0.7294 0.7228
Group | LSTM 0.8924 0.9000 0.8738 0.8962
Average 0.7505 0.7800 0.7630 0.7648

Table 4 presents the average evaluation scores of ED and
E Group. Based on our experimental results, we have the
following observations:
e Excluding driver behavior metrics results in around 8%
reduction in the average F-measure.
o LSTMs outperform RF and GBDT in both two groups
based on our dataset.

3.2 CLONE Design

By observing experiment results of stand-alone learning, we
can see that driver behavior metrics has non-negligible im-
pacts on the failure prediction, and employing LSTMs can



achieve better results. Therefore, we aim to deploy LSTMs-
based collaborative learning approaches on the edges based
on EIC attributes and driver behavior metrics. We term our ap-
proach CLONE, which is the solution of the problems - "How
to construct a personalized model on connected vehicles?".

3.2.1 Model Description

The learning tasks of CLONE is solved by a group of dis-
tributed participating vehicles (edge nodes) which are coordi-
nated by a Parameter EdgeServer. Each vehicle has its local
training dataset which is never uploaded to the Parameter
EdgeServer or transferred to the cloud. Instead, each vehicle
is responsible for continuously performing training and infer-
ence locally based on its private data. When a vehicle finishes
one epoch [19], which refers to the number of iteration related
with the input dataset during training, it will push the value
of current parameters to the Parameter EdgeServer, where the
parameter values are aggregated by computing the weighted
average value. Then, each vehicle can immediately pull the
updated parameter values from the Parameter EdgeServer,
and set the updated parameters as their current parameters
to start the next epoch. The above steps will be repeated as
necessary. Figure 2 shows the basic framework of CLONE.
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Figure 2: The framework of CLONE. In CLONE, each ve-
hicle trains the neural network model locally based on its
private data. Then, the value of current parameters from each
vehicle is uploaded to the Parameter EdgeServer, where those
parameters are aggregated and sent back to vehicles.

Note that when a new vehicle joins in, it will pull the cur-
rent aggregated parameters from the Parameter EdgeServer
first, and set them as the initial parameters for the first round
of training, which speeds up the training process of unseen
vehicles. Besides, since it is asynchronous communication,
for each vehicle, there is no need to stop and wait for other
vehicles to complete an epoch, which greatly reduces the la-
tency. To illustrate the aggregation protocol of this work, we
need to introduce the loss function first, which is defined as
follows:

Loss =Y [$) *log(yp)) + (1= ) xlog(1 — )]

i

Here, ¥; is the predicted output of the machine learning model,
and the scalar y; is the desired output of the model for each
data sample i. We then define the formula to aggregate and
update parameters as:

Loss(v Loss(p
P(p) = Loss(p)—}—Lgss(v)P(p) + Loss(p)+£zzss(v)P(V)
Loss(p) < Loss(v)

Where P represents the value of a parameter, and Loss stands
for the value of the loss function. Besides, p refers to the
Parameter EdgeServer, and v represents a specific vehicle.
For the more accurate vehicle (lower value of loss function),
we assign a higher weight to its parameter.

3.2.2 Hardware Setup

To build heterogeneous hardware cluster representing differ-
ent models of EVs, we adopt two different types of hardware
- Intel FogNode and Jetson TX2, with different CPUs, operat-
ing systems and so on (shown in Table 5). More specifically,
we choose one Intel FogNode as the Parameter EdgeSever,
and we treat the other two Intel FodeNodes and one Jetson
TX2 as the edge nodes (vehicles) to continuously "learn"
latent patterns.

Table 5: Hardware setup for CLONE.

Intel FogNode Jetson TX2
CPU Intel Xeon E3-1275 v5 ARMVS8 + NVIDIA Pascal GPU
Frequency 3.6 GHz 2 GHz
Cores 4 6
Memory 32GB 8 GB
OS Linux 4.13.0-32-generic Linux 4.4.38-tegra

3.2.3 Model Setup

In Section 3.1, we trained an accurate LSTMs model with 4
layers on the front and followed by a fully connected layer
(dense layer). Now, we aim to deploy a collaborative LSTMs
with the same number of layers on the edges, i.e., with the
same hyperparameters. We first distribute our whole dataset
to three edge nodes so that each edge node (vehicle) has its
locally private dataset.

Table 6: Model parameters.

Layers Variables Shape
. Istm_1/kernel (16, 400)
Fl(:::nll‘a{)e r Istm_1/recurrent_kernel | (100, 400)
- Istm_1/bias (400,1)
Istm_2/kernel (100, 400)
Sec((l)sri:lnL;)y er Istm_2/recurrent_kernel | (100, 400)
- Istm_2/bias (400,1)
Last Layer dense_1/kernel (100, 24)
(dense_1) dense_1/bias (24,1)

Table 6 shows the parameter distribution of the LSTMs
model on the first two LSTMs layers (marked as Istm_1
and Istm_2) and the last fully connected layer (labelled as
dense_1). The "kernel" and "recurrent_kernel" are the param-
eter vectors, and the last column represents the shape (size)
of the parameters for each vector. For example, (16, 400) in-
dicates that there are 16 x 400 of parameters. Our whole



network contains up to 297,700 parameters, including the
weights and the biases. Weight can reflect the strength of the
connection between input and output. Bias shows how far off
the predictions are from the real values.

3.24 Throughput

Figure 3 shows the 1/O throughput per second at the Parame-
ter EdgeServer when the three edge nodes are working at the
same time. It can be seen that the peak of the data throughput
is relatively stable, and the peak appears intermittently. Be-
sides, the maximum I/O throughput for push and pull process
is around 750 KB/s and 250 KB/s respectively, which indi-
cates that there is no big pressure on the network throughput.
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Figure 3: I/O throughput per second.

Figure 3 also proves that the push process is usually much
slower than the pull process which was concluded by the work
of [28]. This observation shows the importance to investigate
methods that can reduce the communication latency of push
process in the future work.

4 Evaluation

In this section, we present the experimental results of CLONE,
and compare it with the algorithm performance of stand-alone
learning in two aspects - (1) training time, and (2) evaluation
scores including precision, recall, accuracy, and F-measure.

To have a clear comparison, we conduct experiments on
three experimental groups. The first group is the stand-alone
learning, and we set the epoch of stand-alone learning equal
to 210. The second group is CLONE with the epoch of 70
for each edge node, and we label it as CLONEL. Since there
are three edge nodes in CLONEI], the equivalent number of
iterations in total is also 210 (70 x 3). As to the third group
(CLONE2), the epoch is 100 for a single edge node, which
results in 300 (100 x 3) of total iterations.

4.1 Training Time Comparison

We first profile and compare how the training time is spent on
the three experimental groups, which is shown in Table 7.

Table 7: Training time (seconds).

Intel FogNodel | Intel FogNode2 | Jetson TX2
Stand-alone
learning(epoch=210) 1183 1573 1497
CLONE1(epoch=70x3) 657 734 765
CLONE2(epoch=100x 3) 928 1036 1158

For the stand-alone learning, the used training time varies
with different edge devices - it takes 1183s and 1573s on
two Intel FogNodes (different working states) respectively,
while taking 1497s to execute the training task on Jetson
TX2. As to CLONEI, the training time of each edge node
is much lower than the training time of the single edge node
of stand-alone learning. Since there are three edge nodes in
CLONE]/, the training time of CLONE]1 should be one-third
of stand-alone learning theoretically. However, due to the
inevitable delay of the parameter transmissions, the training
time of CLONEI is greater than one-third of stand-alone
learning. We then increase the epoch value from 70x3 to
100x3 (CLONE2), we can see the required training time is
longer than CLONEI as it has a larger number of iteration
related with the input dataset during training, but it still less
than stand-alone learning which has a lower epoch value. Note
that with the participation of more edge nodes and larger size
of the input dataset, the advantages of CLONE in training
time reduction will be more obvious.

4.2 Evaluation Scores Comparison

We then calculate the average evaluation scores for each
group, which is shown in Figure 4. Compared stand-alone
learning and CLONE]1, we can see that the overall evaluation
scores of CLONE] are lower than stand-alone learning. This
may be caused by the fact that - in stand-alone learning, the
prediction accuracy will be improved with the increasing num-
ber of iterations passing the full dataset through the current
model. However, in CLONEI], due to the hardware difference,
powerful edge nodes may train the model with high accuracy
prior to other edge nodes. When the parameters of the poor
training results are uploaded to the Parameter EdgeServer, the
global accuracy of CLONEI will be influenced. This may
explain the performance gap between stand-alone learning
and CLONE1 whose total epoch values are the same.

However, when we further increase the value of epoch
(CLONEY), it can achieve high evaluation scores as stand-
alone learning. Note that, by observing Table 7, the training
time of CLONE?2 is much lower than stand-alone learning,
even though CLONE?2 has higher epoch.

5 Discussion

Compared with stand-alone learning, CLONE can reduce
model training time without sacrificing algorithm perfor-
mance. With more edge nodes involved, the advantages of
CLONE in training time reduction will be more obvious. Be-
sides, compared with the collaborative cloud-edge approach,
the main advantages of CLONE is to speed up the analysis
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Figure 4: Algorithm performance.

tasks and protect user privacy better as it does not need to
transfer any portion of the big and sensitive dataset via the
network.

5.1 Possible Improvements

There are some possible improvements for CLONE. We list
three of them for the discussion.

e Bandwidth demand - As the increasing number of edge
nodes or the participation of larger neural networks, the
communication of CLONE may be limited by bandwidth.
In this context, we can use the Parameter EdgeServer
group. In the group, Parameter EdgeServers can com-
municate with each other. Each Parameter EdgeServer
is only responsible for a portion of parameters, and they
work together to maintain globally shared parameters
and their updates.

e Aggregation protocol - It is essential to find a suitable
aggregation rule for the Parameter EdgeServer to aggre-
gate parameters, which requires excessive experiments
based on the specific experimental conditions.

e Push latency - Pushing parameters to the Parameter
EdgeServer is usually much slower than pulling param-
eters. Hence, it is essential to investigate methods to
reduce uplink latency (possible solutions include struc-
tured updates and sketched updates [28]).

5.2 Potential Use Cases

Besides, there are a variety of other meaningful use cases that
CLONE can help, particularly for two types of scenarios:

e Real-time applications which requires developing suit-
able machine learning algorithms on the resource-
constrained edges.

e Due to the privacy or/and the large network bandwidth
constraints, the training dataset cannot be moved away
from its source.

6 Related Work

Although machine learning algorithms are widely deployed, it
is difficult to deploy them on the resource-constrained devices.
In this context, model compression technologies [9, 11, 12,22,

33,45] and lightweight machine learning algorithms [8, 24,
25] have been proposed, but they can not guarantee to solve
the problem completely when the training data and machine
learning models are particularly large. Another popular choice
to address this limitations is employing distributed data flow
systems such as MapReduce [10], Spark [54], Naiad [36],
and XGBoost [6]. They are able to robustly scale with the
increasing dataset size, but when training complex neural
networks tasks, the data flow systems fail to scale as they are
inefficient at executing iterative workloads [3,55].

This restriction sparked the development of distributed ma-
chine learning (DML) algorithms [5, 14, 15,32, 53]. Later
on, federated learning (FL), a novel DML, was proposed by
Google researchers [4, 18,28, 35,49]. The main difference
between conventional DML and FL is that, in FL, data is
collected at the edges directly and stored persistently; thus,
the data distribution at different edge nodes are usually not
independent and identically distributed (non-i.i.d) [48]. Our
work is inspired by FL, and the advantages of CLONE on the
vehicles are shown in Table 8.

Table 8: Advantages of CLONE.

Advantages Description Outperform
Driver Each vehicle trains the neural network model lo- | DML, Cloud-
Personal- cally based on its private data; local models will | based method
ization be updated according to the dynamic changes of

the local dataset.
Privacy- The training data can always be kept in its original | DML, Cloud-
Preserving location. based method

Asynchronous| There is no need to stop and wait for other vehi- | DML

Execution cles to perform an iteration; solve the inefficient
communication problem of bulk synchronous exe-
cution.
Latency Re- Analyze vehicle data onboard; vehicles just need | DML, Cloud-
duction to push the parameter value to the Parameter Edge- | based method,
Server rather than the whole data set. Cloud-edge
method
Security Reduce security risks by limiting the attack sur- | Cloud-based
Protection face to only the edges, instead of the edges and | method, Cloud-

the cloud. edge method

Different from the collaborative cloud-edge method that
a few papers proposed [20,26,48], CLONE has three main
strengths - (1) reduces power consumption by eliminating
the use of central data centers, (2) speeds up the analysis and
modeling tasks as it always analyze real-time data onboard
and just need to communicate with the Parameter EdgeServer
about the current parameters [37,46], and (3) reduces security
risk by limiting the attack surface to only the edges.

7 Conclusion and Future Work

In this paper, we conduct a field study of EVs based on a real-
world dataset collected from a large EV company. We discover
that driver behavior metrics are potentially good indicators of
the failures of EV battery and associated accessories. Besides,
we propose CLONE, collaborative learning setting on the
edges for connected vehicles, which can reduce model training
time significantly. In the future, we plan to explore more
advanced neural networks, enlarge the applying scope, and
find a more suitable aggregation protocol for CLONE.
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