
28 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 1, JANUARY 2019

Coded Computation Against Processing Delays for

Virtualized Cloud-Based Channel Decoding

Malihe Aliasgari , Student Member, IEEE, Jörg Kliewer , Senior Member, IEEE,

and Osvaldo Simeone , Fellow, IEEE

Abstract— The uplink of a cloud radio access network archi-
tecture is studied in which decoding at the cloud takes place
via network function virtualization on commercial off-the-shelf
servers. In order to mitigate the impact of straggling decoders

in this platform, a novel coding strategy is proposed, whereby
the cloud re-encodes the received frames via a linear code before
distributing them to the decoding processors. Transmission of a
single frame is considered first, and upper bounds on the resulting
frame unavailability probability as a function of the decoding
latency are derived by assuming a binary symmetric channel for
uplink communications. Then, the analysis is extended to account
for random frame arrival times. In this case, the tradeoff between
an average decoding latency and the frame error rate is studied
for two different queuing policies, whereby the servers carry
out per-frame decoding or continuous decoding, respectively.
Numerical examples demonstrate that the bounds are useful tools
for code design and that coding is instrumental in obtaining a
desirable compromise between decoding latency and reliability.

Index Terms— Coded computation, network function virtual-
ization, cloud radio access network, large deviation, queueing.

I. INTRODUCTION

PROMOTED by the European Telecommunications Stan-

dards Institute (ETSI), network function virtualiza-

tion (NFV) has become a cornerstone of the envisaged

architecture for 5G systems [2]. NFV leverages virtualization

technologies in order to implement network functionalities

on commercial off-the-shelf (COTS) programmable hardware,

such as general purpose servers, potentially reducing both

capital and operating costs. An important challenge in the

deployment of NFV is ensuring carrier grade performance

while relying on COTS components. Such components may be

subject to temporary unavailability due to malfunctioning, and

are generally characterized by randomness in their execution

Manuscript received January 1, 2018; revised June 8, 2018 and August 25,
2018; accepted September 1, 2018. Date of publication September 13, 2018;
date of current version January 15, 2019. This work was supported in part
by U.S. NSF grants CNS-1526547, CNS-1815322, ECCS-1711056, CCF-
1525629, and by the European Research Council (ERC) under the European
Union Horizon 2020 research and innovative programme (grant agreement No
725731). This paper was presented in part at the IEEE International Sympo-
sium on Information Theory in 2018 [1]. The associate editor coordinating
the review of this paper and approving it for publication was A. Graell i Amat.
(Corresponding author: Malihe Aliasgari.)

M. Aliasgari and J. Kliewer are with the Department of Electrical
and Computer Engineering, New Jersey Institute of Technology, Newark,
NJ 07102 USA (e-mail: ma839@njit.edu; jkliewer@njit.edu).

O. Simeone is with the Department of Informatics, King’s College London,
London WC2R 2LS, U.K., on leave from the New Jersey Institute of
Technology, Newark, NJ 07102 USA (e-mail: osvaldo.simeone@kcl.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2018.2869791

runtimes. The typical solution to these problems involves

replicating the virtual machines that execute given network

functions on multiple processors, e.g., cores or servers [3]–[6].

Among the key applications of NFV is the implementation

of centralized radio access functionalities in a cloud radio

access network (C-RAN) [7], [8]. As shown in Fig. 1, each

remote radio head (RRH) of a C-RAN architecture is con-

nected to a cloud processor by means of a fronthaul (FH)

link. Baseband functionalities are carried out on a distributed

computing platform in the cloud, which can be conveniently

programmed and reconfigured using NFV. The most expensive

baseband function in terms of latency to be carried out at the

cloud is uplink channel decoding [7], [9], [10].

The implementation of channel decoding in the cloud by

means of NFV is faced not only with the challenge of

providing reliable operation despite the unreliability of COTS

servers, but also with the latency constraints imposed by

retransmission protocols. In particular, keeping decoding

latency at a minimum is a major challenge in the implementa-

tion of C-RAN owing to timing constraints from the link-layer

retransmission protocols [11]–[13]. In fact, positive or neg-

ative feedback signals need to be sent to the users within

a strict deadline in order to ensure the proper operation of

the protocol. In [14] and [15], it is argued that exploiting

parallelism across multiple cores in the cloud can reduce

the decoding latency by enabling decoding as soon as one

can has computed its task. However, parallel processing does

not address the unreliability of COTS hardware. A different

solution is needed in order to address both unreliability and

delays associated with cloud decoding.

The problem of straggling processors, that is, of processors

lagging behind in the execution of a certain orchestrated

function, has been well studied in the context of distributed

computing [16]–[21]. Recently, it has been pointed out that,

for the important case of linear functions, it is possible to

improve over repetition strategies in terms of the trade-off

between performance and latency by carrying out linear

precoding of the data prior to processing, e.g., [22]–[30].

The key idea is that, by employing suitable linear (erasure)

block codes operating over fractions of size 1/K of the

original data, a function may be completed as soon as any

K or more processors, depending on the minimum distance

of the code, have completed their operations. Coding has also

been found to be useful addressing the straggler problem in the

context of coded distributed storage and computing systems,

see, e.g., [31]–[35].

0090-6778 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3782-6570
https://orcid.org/0000-0003-0942-8006
https://orcid.org/0000-0001-9898-3209

ALIASGARI et al.: CODED COMPUTATION AGAINST PROCESSING DELAYS 29

Fig. 1. NFV model for uplink channel decoding. The input information frame u is divided into packets, which are encoded with a linear code Cu with
generator matrix Gu. The packets are received by the RRH through a BSC and forwarded to the cloud. Server 0 in the cloud re-encodes the received packet
with a linear code Cc in order to enhance the robustness against potentially straggling Servers 1, . . . , N .

In this paper, we explore the use of coded computing to

enable reliable and timely channel decoding in a C-RAN archi-

tecture based on distributed unreliable processors. Specifically,

we formally and systematically address the analysis of coded

NFV for C-RAN uplink decoding. The only prior work on

coded computing for NFV is [36], which provides numerical

results concerning a toy example with three processors in

which a processor in the cloud is either on or off. Unlike [36],

in this work, we derive analytical performance bounds for a

general scenario with any number of servers, random com-

puting runtimes, and random packet arrivals. Specific novel

contributions are as follows.

• We first consider the transmission of an isolated frame,

and develop analytical upper bounds on the frame

unavailability probability (FUP) as a function of the

allowed decoding delay. The FUP measures the prob-

ability that a frame is correctly decoded within a tol-

erated delay constraint. The FUP bounds leverage large

deviation results for correlated variables [37] and depend

on the properties of both the uplink linear channel code

adopted at the user and the NFV linear code applied at

the cloud;

• As a byproduct of the analysis we introduce the depen-

dency graph of a linear code and its chromatic number

as novel relevant parameters of a linear code beside

minimum distance, blocklength, and rate;

• We extend the analysis to account for random frame

arrival times, and investigate the trade-off between aver-

age decoding latency and frame error rate (FER) for two

different queuing policies, whereby the servers carry out

either per-frame or continuous decoding;

• We provide extensive numerical results that demonstrate

the usefulness of the derived analytical bounds in both

predicting the system performance and enabling the

design of NFV codes.

The rest of the paper is organized as follows. In Section II,

we present the system model focusing, as in [36], on a

binary symmetric channel (BSC) for uplink communications.

Section III presents the two proposed upper bounds on the FUP

as a function of latency. In Section IV we study the proposed

system with random frame arrival times, and Section V

provides numerical results.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the uplink of a C-RAN

system in which a user communicates with the cloud via a

remote radio head (RRH). The user is connected to the RRH

via a BSC with cross error probability δ, while the RRH-to-

cloud link, typically referred to as fronthaul, is assumed to

be noiseless. Note that the BSC is a simple model for the

uplink channel, while the noiseless fronthaul accounts for a

typical deployment with higher capacity fiber optic cables.

As we briefly discuss in Section VI, the analysis can be

generalized to other additive noise channel, such as Gaussian

channels. The cloud contains a master server, or Server 0, and

N slave servers, i.e., Servers 1, . . . , N . The slave servers are

characterized by random computing delays as in related works

on coded computation [22], [23], [27]. Note that we use here

the term “server” to refer to a decoding processor, although,

in a practical implementation, this may correspond to a core

of the cloud computing platform [14], [15].

In the first part of this paper, we consider transmission of

a single information frame u, while Section IV focuses on

random frame arrival times and queuing effect delays. The

user encodes an information frame u consisting of L bits.

Before encoding, the information frame is divided into K
blocks u1, u2, . . . , uK ∈ {0, 1}L/K of equal size, each of them

containing L/K bits. As shown in Fig. 1, in order to combat

noise on the BSC, the L/K blocks are encoded by an (n, k)
binary linear code Cu of rate r = k/n defined by generator

matrix Gu ∈ F
n×k
2 , where n = L/(rK) and k = L/K .

Let xj ∈ {0, 1}n with j ∈ {1, . . . , K} be the K transmitted

packets of length n. At the output of the BSC, the length-n
received vector for the jth packet at the RRH is given as

yj = xj ⊕ zj , (1)

where zj is a vector of i.i.d. Bern(δ) random variables (rvs).

The K received packets (y1, y2, . . . , yK) by the RRH are

transmitted to the cloud via the fronthaul link, and the cloud

30 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 1, JANUARY 2019

Fig. 2. Coded NFV at the cloud: Server 0 re-encodes the received packets
in Y by a linear NFV code Cc with generator Gc. Each encoded packet ỹ

i
is

then conveyed to Server i for decoding.

performs decoding. Specifically, as detailed next, we assume

that each Server 1, . . . , N performs decoding of a single packet

of length n bits while Server 0 acts as coordinator.

Assuming N ≥ K , we adopt the idea of NFV coding

proposed in [36]. Accordingly, as seen in Fig. 2, the K
packets are first linearly encoded by Server 0 into N ≥ K
coded blocks of the same length n bits, each forwarded to

a different server for decoding. This form of encoding is

meant to mitigate the effect of straggling servers in a manner

similar to [22], [23], and [27]. Using an (N, K) binary linear

NFV code Cc with K × N generator matrix Gc ∈ F
N×K
2 ,

the encoded packets are obtained as

Ỹ = YGc, (2)

where Y = [y1, . . . , yK] is the n × K matrix obtained by

including the received signal yj as the jth column and Ỹ =
[ỹ1, . . . , ỹN] is the n × N matrix whose ith column ỹi is the

input to Server i, where i ∈ {1, . . . , N}. From (1), this vector

can be written as

ỹi =

K
∑

j=1

yjgc,ji =

K
∑

j=1

xjgc,ji +

K
∑

j=1

zjgc,ji, (3)

where gc,ji is the (j, i)th entry of matrix Gc.

The signal part
∑K

j=1 xjgc,ji in (3) is a linear combination

of di codewords for the rate-r binary code with generator

matrix Gu, and hence it is a codeword of the same code. The

parameter di, i ∈ {1, . . . , N}, denotes the Hamming weight of

the ith column of matrix Gc, where 0 ≤ di ≤ K . Each server

i receives as input ỹi from which it can decode the codeword
∑K

i=1 xigc,ji. This decoding operation is affected by the noise

vector
∑K

j=1 zjgji in (3), which has i.i.d. Bern(γi) elements.

Here, γi is obtained as the first row and second column’s entry

of the matrix Qdi , with Q being the transition matrix of the

BSC with cross over probability δ, i.e.,

Q =

[

1 − δ δ
δ 1 − δ

]

. (4)

As an example, di = 2, implies a bit flipping probability of

γi = 2δ(1 − δ). Note that a larger value of di yields a larger

bit probability γi. We define as Pn,k(γi) the decoding error

probability of the (n, k) linear user code at Server i, which

can be upper bounded by using [38, Th. 33].

Server i requires a random time Ti = T1,i+T2,i to complete

decoding, which is modeled as the sum of a component T1,i

that is independent of the workload and a component T2,i

that instead grows with the size n of the packet processed at

each server, respectively. The first component accounts, e.g.,

for processor unavailability periods, while the second models

the execution runtime from the start of the computation.

The first variable T1,i is assumed to have an exponential

probability density function (pdf) f1(t) with mean 1/µ1, while

the variable T2,i has a shifted exponential distribution with

cumulative distribution function (cdf) [39]

F2(t) = 1 − exp

(

−
rKµ2

L

(

t − a
L

rK

))

, (5)

for t ≥ aL/(rK) and F2(t) = 0 otherwise. The parameter a
represents the minimum processing time per input bit, while

1/µ2 is the average additional time needed to process one

bit. As argued in [22] and [39], the shifted exponential

model provides a good fit for the distribution of computation

times over cloud computing environments such as Amazon

EC2 clusters. The cdf of the time Ti can hence be written

as the integral F (t) =
∫ t

0 f1(τ)F2(t − τ)dτ . We also assume

that the runtime rvs {Ti}N
i=1 are mutually independent. Due

to (5), the probability that a given set of l out of N servers

has finished decoding by time t is given as

al(t) =

(

N

l

)

F (t)l(1 − F (t))N−l. (6)

Let dmin be the minimum distance of the NFV code Cc.

Due to (3), Server 0 in the cloud is able to decode the message

u or equivalently the K packets uj for j ∈ {1, . . . , K}, as soon

as N − dmin + 1 servers have decoded successfully. Let ûi

be the output of the ith server in the cloud upon decoding.

We assume that an error detection mechanism, such as a cyclic

redundancy check (CRC), is in place so that Server 0 outputs

ûi =

{

ûi, for correct decoding,

∅, otherwise.

The output û(t) of the decoder at Server 0 at time t is then a

function of the vectors ûi(t) for i ∈ {1, . . . , N}, where

ûi(t) =

{

ûi, if Ti ≤ t,

∅, otherwise.

Finally, the frame unavailability probability (FUP) at time t is

defined as the probability

Pu(t) = Pr [û(t) 6= u] . (7)

The event {û(t) 6= u} occurs when either not enough servers

have completed decoding or many servers have completed but

failed decoding by time t. We also define the FER as

Pe = lim
t→∞

Pu(t). (8)

The FER measures the probability that, when all servers have

completed decoding, a sufficiently large number, namely larger

than N − dmin, has decoded successfully.

III. BOUNDS ON THE FRAME UNAVAILABILITY

PROBABILITY

In this section we derive analytical bounds on the FUP

Pu(t) in (7) as a function of the decoding latency t.

ALIASGARI et al.: CODED COMPUTATION AGAINST PROCESSING DELAYS 31

A. Preliminaries

Each server i with i ∈ {1, . . . , N} decodes successfully its

assigned packet ỹi if: (i) the server completes decoding by

time t; (ii) the decoder at the server is able to correct the

errors caused by the BSC. Furthermore as discussed, an error

at Server 0 occurs at time t if the number of servers that have

successfully decoded by time t is smaller than N − dmin + 1.

To evaluate the FUP, we hence define the indicator variables

Ci(t) = 1{Ti ≤ t} and Di which are equal to 1 if the

events (i) and (ii) described above occur, respectively, and zero

otherwise. Based on these definitions, the FUP is equal to

Pu(t) = Pr

[

N
∑

i=1

Ci(t)Di ≤ N − dmin

]

. (9)

The indicator variables Ci(t) are independent Bernoulli rvs

across the servers i ∈ {1, . . . , N}, due to the independence

assumption on the rvs Ti. However, the indicator variable Di

are dependent Bernoulli rvs. The dependence of the variables

Di is caused by the fact that the noise terms
∑K

i=1 zjgc,ji

in (3) generally have common terms. In particular, if two

columns i and j of the generator matrix Gc have at least

a 1 in the same row, then the decoding indicators Di and Dj

are correlated. This complicates the evaluation of bounds on

the FUP (9).

B. Dependency Graph and Chromatic Number

of a Linear Code

To capture the correlation among the indicator variables Di,

we introduce here the notion of the dependency graph and

its chromatic number for a linear code. These appear to be

novel properties of a linear code, and we will argue below

that they determine the performance of the NFV code Cc for

the application at hand.

Definition 1: Let G ∈ F
K′×N ′

2 be a generator matrix of a

linear code. The dependency graph G(G) = (V , E) comprises

a set V of N 0 vertices and a set E ⊆ V × V of edges, where

edge (i, j) ∈ E is included if both the ith and jth columns of

G have at least a 1 in the same row.

Example 1: For an (8, 4) NFV code Cc with the following

generator matrix

Gc =

⎡

⎢

⎢

⎣

1 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1
0 1 0 0 0 0 1 1
1 0 1 0 1 0 0 0

⎤

⎥

⎥

⎦

, (10)

the resulting dependency graph G(Gc) is shown in Fig. 3.

The chromatic number X (G) of the graph G(G) will play

an important role in the analysis. We recall that the chromatic

number is the smallest number of colors needed to color the

vertices of G(G), such that no two adjacent vertices share

the same color (see the example in Fig. 3). Generally, finding

the chromatic number of a graph is NP-hard [40]. However,

a simple upper bound on X (G) is given as [41]

X (G) ≤ ∆(G) + 1, (12)

where ∆(G) is the maximum degree of a graph G(G).
A consequence of (12) is the following.

Fig. 3. Dependency graph associated with the (8, 4) NFV code Cc in
Example 1.

Lemma 1: Let G be a K 0×N 0 matrix, where αr and αc are

the maximum Hamming weights of the rows and columns in G,

respectively. Then the chromatic number of the corresponding

dependency graph G(G) is upper bounded as

X (G) ≤ min{N, αc(αr − 1) + 1}. (13)

Proof: According to Definition 1 we have the upper bound

∆(G) ≤ αc(αr−1) and hence (13) follows directly from (12).

�

C. Large Deviation Upper Bound

In this subsection, we derive an upper bound on the FUP.

The bound is based on the large deviation result in [37] for

the tail probabilities of rvs X =
∑M

i=1 Xi, where the rvs

Xi are generally dependent. We refer to this bound as the

large deviation bound (LDB). The correlation of rvs {Xi} is

described in [37] by a dependency graph. This is defined as

any graph G(X) with Xi as vertices, such that, if a vertex

i ∈ {1, . . . , M}\{i} is not connected to any vertex in a subset

J ⊂ {1, . . . , M}, then Xi is independent of {Xj}j∈J .

Lemma 2 ([37]): Let X =
∑M

i=1 Xi, where Xi ∼
Bern(pi) and pi ∈ (0, 1) are generally dependent. For any

b ≥ 0, such that the inequality Xi − E(Xi) ≥ −b holds for

all i ∈ {1, . . . , M} with probability one, and for any τ ≥ 0
we have

Pr[X ≤ E(X) − τ] ≤ exp

(

−
S

b2X (G(X))
ϕ

(

4bτ

5S

))

,

(15)

where S
∆
=

∑N
i=1 Var(Xi) and ϕ(x)

∆
= (1 + x) ln(1 + x) − x.

The same bound (15) holds for Pr(X ≥ E(X) + τ), where

Xi − E(Xi) ≤ b with probability one.

The following theorem uses Lemma 2 to derive a bound on

the FUP.

Theorem 1: Let Pmin
n,k = mini{Pn,k(γi)}N

i=1. For all

t ≥ F−1

(

N − dmin

N −
∑N

i=1 Pn,k(γi)

)

, (16)

the FUP is upper bounded by in (11), shown at the top

of the next page, where b(t)
∆
= F (t)

(

1 − Pmin
n,k

)

and

S(t)
∆
=

∑N
i=1 F (t) (1 − Pn,k(γi)) (1 − F (t)(1 − Pn,k(γi))).

The upper bound (11), as shown at the top of the next page,

on the FUP captures the dependency of the FUP on both

32 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 1, JANUARY 2019

Pu(t) ≤ exp

⎛

⎝−
S(t)

b2(t)X (Gc)
ϕ

⎛

⎝

4b(t)
(

NF (t) − F (t)
∑N

i=1 Pn,k(γi) − N + dmin

)

5S(t)

⎞

⎠

⎞

⎠, (11)

Pu(t) ≤ 1 −
1

(

N
l

)

N
∑

l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

⎛

⎝1 − exp

⎛

⎝−
SA

b2
AX (GA)

ϕ

⎛

⎝

4bA

(

l − N + dmin − PA
n,k

)

5SA

⎞

⎠

⎞

⎠

⎞

⎠. (14)

the channel and the NFV code. In particular, the bound is

an increasing function of the error probabilities Pn,k(γi),
which depend on both codes. It also depends on the NFV

code through parameters dmin and X (Gc).

Proof: Let Xi(t)
∆
= Ci(t)Di and X(t) =

∑N
i=1 Xi(t),

where Xi(t) are dependent Bernoulli rvs with probability

E[Xi(t)] = Pr[Xi(t) = 1] = F (t) (1 − Pn,k(γi)). It can be

seen that a valid dependency graph G(X) for the variables

{Xi} is the dependency graph G(Gc) defined above. This is

due to the fact that, as discussed in Section III-C, the rvs Xi

and Xj are dependent if and only if the ith and jth column of

Gc have at least a 1 in a common row. We can hence apply

Lemma 2 for every time t by selecting τ = E(X)−N +dmin,

and b(t) as defined above. Note that this choice of b(t) meets

the constraint for b in Lemma 2. For 1/µ1 = 0, (16) can be

simplified as follows:

t ≥ n

(

a −
1

µ
ln

(

dmin −
∑N

i=1 Pn,k(γi)

N −
∑N

i=1 Pn,k(γi)

))

. (17)

�

Remark 1: When t → ∞, we have the limit limt→∞ F (t) =
1, which implies that eventually all servers complete decoding.

Letting dmax ∆
= max{di}N

i=1 and γ
∆
= Qdmax

(1, 2), the first

row and second column’s entry of the matrix Qdmax

, the bound

(11) reduces to

lim
t→∞

Pu(t)

≤ exp

(

−NPn,k(γ)

(1−Pn,k(γ))X (Gc)
ϕ

(

4(dmin/N−Pn,k(γ))

5Pn,k(γ)

))

. (18)

This expression demonstrates the dependence of the FUP

bound (11) on the number of servers N , the decoding error

probability Pn,k(γ) for each server, the chromatic number

X (Gc), and minimum distance dmin of the NFV code. In

particular, it can be seen that the FUP upper bound (18)

is a decreasing function of dmin, while it increases with the

chromatic number, Pn,k(γ) and with dmax.

D. Union Bound

As indicated in Theorem 1, the large deviation based bound

in (14), as shown at the top of this page, is only valid for large

enough t, as can be observed from (17). Furthermore, it may

generally not be tight, since it neglects the independence of the

indicator variables Ci. In this subsection, a generally tighter

but more complex union bound (UB) is derived that is valid

for all times t.

Theorem 2: For any subset A ⊆ {1, . . . , N}, define

P
min(A)
n,k

∆
= min{Pn,k(γi)}i∈A and PA

n,k
∆
=

∑

i∈A

Pn,k(γi),

and let GA be the K × |A|, submatrix of Gc, with column

indices in the subset A. Then, the FUP is upper bounded

by (14), shown at the top of the page, where SA �
∑

i∈A Pn,k(γi) (1 − Pn,k(γi)) and bA
∆
= 1 − P

min(A)
n,k .

Proof: Let Ii = 1 − Di be the indicator variable which

equals 1 if Server i fails decoding. Accordingly, we have Ii ∼
Bern(Pn,k(γi)). For each subset A ⊆ {1, . . . , N}, let IA =
∑

i∈A Ii. The complement of the FUP Ps(t) = 1−Pu(t) can

hence be written as

Ps(t)

= Pr

[

N
∑

i=1

Ci(t)Di > N − dmin

]

(19)

=
1

(

N
l

)

N
∑

l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

·
l

∑

j=N−dmin+1

Pr

⎡

⎣

j servers from A decode successfully

and

l − j servers from A fail to decode

⎤

⎦

(20)

=
1

(

N
l

)

N
∑

l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

(1−Pr[IA≥ l−N +dmin]).

(21)

We can now apply Lemma 2 to the probability in (21)

by noting that G(GA) is a valid dependency graph for the

variables {Ii}, i ∈ A. In particular, we apply Lemma 2 by

setting τA = l − N + dmin − E(IA), bA ≥ Ii − E[Ii], and

SA =
∑

i∈A Var (Ii), leading to

Pr [IA ≥ l − N + dmin]

≤ exp

⎛

⎝−
SA

b2
AX (GA)

ϕ

⎛

⎝

4bA

(

l − N + dmin − PA
n,k

)

5SA

⎞

⎠

⎞

⎠.

(22)

By substituting (22) into (21), the proof is completed. �

IV. RANDOM ARRIVALS AND QUEUING

In this section we extend our analysis from one to multiple

frames transmitted by the users. To this end, we study the

ALIASGARI et al.: CODED COMPUTATION AGAINST PROCESSING DELAYS 33

Fig. 4. In the model studied in Section IV, frames arrive at the receiver according to a Poisson process with parameter λ. Server 0 in the cloud encodes the
received frames using an NFV code and forwards the encoded packets to servers 1, . . . , N for decoding.

system illustrated in Fig. 4 with random frame arrival times

and queueing at the servers. We specifically focus on the

analysis of the trade-off between average latency and FER.

A. System Model

As illustrated in Fig. 4, we assume that the arrival times of

the received frames are random and distributed according to

a Poisson process with a rate of λ frames per second. Upon

arrival, Server 0 applies an NFV code to any received frame

yr for r = 1, 2, . . ., as described in Section II and sends

each resulting coded packet ỹr
i to Server i, for i = 1, . . . , N .

At Server i, each packet ỹ
r
i enters a first-come-first-serve

queue. After arriving at the head of the queue, each packet ỹr
i

requires a random time Ti to be decoded by Server i. Here,

we assume that Ti is distributed according to an exponential

distribution in (5) with an average processing time of 1/µ2

per bit. Furthermore, the average time to process a frame of

n bits is denoted as 1/µ.

Also, the random variables Ti are i.i.d. across servers.

If the NFV code has minimum distance dmin, as soon as

N − dmin + 1 servers decode successfully their respective

packets derived from frame yr, the information frame ur can

be decoded at Server 0. We denote as T the average overall

latency for decoding frame ur, which includes both queuing

and processing.

Using (8), (9) and the fact that all servers complete decoding

almost surely as t → ∞, that is Ci(t) → 1 as t → ∞, the FER

is equal to

Pe = Pr

[

N
∑

i=1

Ii ≥ dmin

]

, (23)

where Ii is the indicator variable that equals 1 if decoding at

Server i fails. This probability can be upper bounded by the

following corollary of Theorem 1.

Corollary 1: The FER defined in (23) is upper bounded by

Pe ≤ exp

⎛

⎝

−S

b2X (GC)
ϕ

⎛

⎝

4b
(

dmin−
∑N

i=1Pn,k(γi)
)

5S

⎞

⎠

⎞

⎠, (24)

where S
∆
=

∑N
i=1 Pn,k(γi) (1 − Pn,k(γi)) and b

∆
= 1 − Pmin

n,k .

Proof: The result follows from Theorem 1 by selecting

τ = dmin −
∑N

i=1 Pn,k(γi). �

We now discuss the computation of the average delay T for

different queueing management policies.

B. Per-Frame Decoding

We first study the system under a queue management policy

whereby only one frame yr is decoded at any time. Therefore,

all servers wait until at least N − dmin + 1 servers have

completed decoding of their respective packets ỹ
r
i before

moving to the next frame r+1, if this is currently available in

the queues. Furthermore, as soon as Server 0 decodes a frame,

the corresponding packets still being present in the servers’

queues are evicted.

As a result, the overall system can be described an

M/G/1 queue with arrival time λ and service time distributed

according to the (N − dmin + 1)th order statistic of the

exponential distribution [42]. The latter has the pdf [43] (25),

shown at the bottom of the page, where FT (t) and fT (t) are

the cdf and pdf of rv Ti, respectively. This queueing system

was also studied in the context of distributed storage systems.

Using the Pollaczek-Khinchin formula [44], the average

delay of an M/G/1 queue can be obtained as (26), shown

at the bottom of the page, where HN and HN2 are gen-

eralized harmonic numbers, defined by HN =
∑N

i=1
1
i and

HN2 =
∑N

i=1
1
i2 [42]. Note that the queue is stable, and hence

the average delay (26) is finite, if the inequality nλ(HN −
Hdmin−1) < µ(N −dmin +1) holds. We refer to the described

fTN−dmin+1:N
(t) =

N !

(N − dmin)!(dmin − l)!
fT (t)FT (t)N−dmin(1 − FT (t))dmin−1, (25)

Tpfd =
n(HN − Hdmin−1)

(N − dmin + 1)µ
+

λn2[(HN − Hdmin−1)
2 + (HN2 − H(dmin−1)2)]

2(N − dmin + 1)2µ2[1 − λnµ−1(N − dmin + 1)−1(HN − Hdmin−1)]
, (26)

34 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 1, JANUARY 2019

Fig. 5. Decoding latency versus FUP for L = 504, N = 8, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.01, r = 0.5) : (a) LDB, UB and Exact FUP for the parallel,
single-server, and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and the NFV code Cc

defined in (10).

queue management scheme as per-frame decoding (pfd). This

set-up is equivalent to the fork-join system studied in [42].

C. Continuous Decoding

As an alternative queue management policy, as soon as

any Server i decodes its packet ỹr
i , it starts decoding the

next packet ỹ
r+1
i in its queue, if this is currently available.

Furthermore, as above, as soon as Server 0 decodes a frame

yr, all corresponding packets ỹ
r
i still in the servers’ queues are

evicted. We refer this queue management policy as continuous

decoding (cd).

The average delay (26) of per-frame decoding is an upper

bound for the average delay of continuous decoding, i.e., we

have Tcd ≤ Tpfd [42]. This is because, with per-frame decod-

ing, all N servers are blocked until N − dmin + 1 servers

decode their designed packets. We evaluate the performance

of continuous decoding using Monte Carlo methods in the next

section.

V. SIMULATION RESULTS

In this section we provide numerical results to provide

additional insights into the performance trade-off for the

system shown in Fig. 1. We first consider individual frame

transmission as studied in Section II and Section III, and then

we study random arrivals as investigated in Section IV.

A. Single Frame Transmission

We first consider single frame transmission. The main goals

are to validate the usefulness of the two bounds presented

in Theorems 1 and 2 as design tools and to assess the

importance of coding in obtaining desirable trade-offs between

decoding latency and FUP. We employ a frame length of

L = 504 and N = 8 servers. The user code Cu is selected

to be a randomly designed (3, 6) regular (Gallager-type)

LDPC code with r = 0.5, which is decoded via belief

propagation.

We compare the performance of the following solutions:

(i) Standard single-server decoding, whereby we assume, as a

benchmark, the use of a single server, that is N = 1, that

decodes the entire frame (K = 1); (ii) Repetition coding,

whereby the entire frame (K = 1) is replicated at all servers;

(iii) Parallel processing, whereby the frame is divided into

K = N disjoint parts processed by different servers; (iv) Split

repetition coding, whereby the frame is split into two parts,

which are each replicated at N/2 servers. The code has hence

K = 2, dmin = N/2, X (Gc) = N/2, which can be thought

of as an intermediate choice between repetition coding and

the parallel scheme; (v) Single parity check code (SPC), with

N = K+1, whereby, in addition to the servers used by parallel

decoding, an additional server decodes the binary sum of all

other K received packets; and (vi) an NFV code Cc with the

generator matrix Gc defined in (10), which is characterized

by K = 4. Note that, with both single-server decoding and

repetition coding, we have a blocklength of n = 1008 for the

channel code. Single-server decoding is trivially characterized

by X (Gc) = dmin = 1, while repetition coding is such

that the equalities X (Gc) = dmin = 8 hold. Furthermore,

the parallel approach is characterized by n = 126, dmin = 1
and X (Gc) = 1; the split repetition code is characterized

by n = 504, dmin = 4 and X (Gc) = 4; the SPC code has

n = 144, dmin = 2 and X (Gc) = 2; and the NFV code Cc has

n = 252, dmin = 3 and X (Gc) = 3. The exact FUP for a given

ALIASGARI et al.: CODED COMPUTATION AGAINST PROCESSING DELAYS 35

Fig. 6. Decoding latency versus FUP for (L = 504, N = 8, 1/µ1 = 50, µ2 = 20, a = 0.1, δ = 0.01, r = 0.5) : (a) LDB, UB and Exact FUP for the
parallel, single-server, and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and the NFV
code Cc defined in (10).

function Pn,k(·) can easily be computed for cases (i)-(iii). In

particular, for single server decoding, the FUP equals

Pu(t) = 1 − a1(t)(1 − PL/r,L(δ)); (27)

for the repetition code, the FUP is

Pu(t) = 1 −
N

∑

i=1

ai(t)(1 − PL/r,L(δ)); (28)

and for the parallel approach, we have

Pu(t) = 1 − aN (t)(1 − PL/(rN),L/N(δ))N . (29)

In contrast, the exact FUPs for the SPC and code Cc are

difficult to compute, due to the discussed correlation among

the decoding outcomes at the servers.

Fig. 5a shows decoding latency versus FUP for the LDB

in Theorem 1, the UB in Theorem 2, and the exact error

(27), (28), (29), for the first three schemes (i)-(iii), and

Fig. 5b shows the LDB in Theorem 1, the UB in Theorem 2,

as well as Monte Carlo simulation results for schemes (iv), (v),

and (vi). Here, we assume that the latency contribution that,

is independent of the workload, is negligible, i.e., 1/µ1 = 0.

We also set a = 1 and µ2 = 10. As a first observation, Fig. 5

confirms that the UB bound is tighter than the LDB.

Leveraging multiple servers in parallel for decoding is

seen to yield significant gains in terms of the trade-off

between latency and FUP as argued also in [14] by using

experimental results. In particular, the parallel scheme is

observed to be preferred for lower latencies. This is due to

the shorter blocklength n, which entails a smaller average

decoding latency. However, the error floor of the parallel

scheme is large due to the higher error probability for short

blocklengths. In this case, other forms of NFV coding are

Fig. 7. Decoding latency versus exact FUP for parallel and repetition coding
for different number of servers N ∈ {3, 6, 12} and (L = 240, 1/µ1 =
0, µ2 = 10, a = 1, δ = 0.03, r = 0.5).

beneficial. To elaborate, repetition coding requires a larger

latency in order to obtain acceptable FUP performance owing

to the larger blocklength n, but it achieves a significantly

lower error floor. For intermediate latencies, the SPC code,

and at larger latencies also both the NFV code Cc, and the

split repetition code provide a lower FUP. This demonstrates

the effectiveness of NFV encoding in obtaining a desirable

trade-off between latency and FUP.

36 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 1, JANUARY 2019

Fig. 8. Average latency versus FER with different values of the user code rate r and for different coding schemes when the system is (a) lightly loaded
and (b) heavily loaded, respectively (L = 112, N = 8, δ = 0.03).

In order to validate the conclusion obtained using the

bounds, Fig. 5 also shows the exact FUP for the schemes

(i)-(iii), as well as Monte Carlo simulation results for schemes

(iv)-(vi), respectively. While the absolute numerical values of

the bounds in Fig. 5a and 5b are not uniformly tight with

respect to the actual performance, the relative performance of

the coding schemes are well matched by the analytical bounds.

This provides evidence of the usefulness of the derived bounds

as a tool for code design in NFV systems.

Fig. 6 is obtained in the same way as Fig. 5, except for

the parameters µ1 = 0.02, µ2 = 20, and a = 0.1. Unlike

Fig. 5, here latency may be dominated by effects that are

independent of the blocklength n since we have 1/µ1 > 0.

The key difference with respect to Fig. 5 is that, for this choice

of parameters, repetition coding tends to outperform both the

parallel case, and the NFV code Cc, apart from very small

latencies. This is because repetition coding has the maximum

resilience to the unavailability of the servers, while not being

excessively penalized by the larger blocklength n. This is not

the case, however, for very small latency levels, where the

NFV code Cc provides the smallest FUP given its shorter

blocklength as compared to repetition coding and its larger

dmin, with respect to the parallel scheme.

Fig. 7 shows the exact FUP for the extreme cases of

parallel and repetition coding for different number of servers

N ∈ {3, 6, 12}. The figure confirms that, for both schemes,

the latency decreases for a larger number of servers N .

However, by increasing N , the error floor of the parallel

scheme grows due to the higher channel error probability for

shorter block lengths.

B. Random Frame Transmission

We now consider the queueing system described in

Section IV, and present numerical results that provide insights

into the performance of both per-frame and continuous

decoding in terms of FER versus average latency (23). As

above, the decoding error probability is upper bounded by

using [38, Th. 33]. Both FER and average latency are a func-

tion of the user code rate r. We hence vary r ∈ {1/2, . . . , 1/5}
to parametrize a trade-off curve between FER and latency.

We assume a frame length of L = 112 bits with N = 8
servers, and adopt the same user code Cc as in the previous

subsection. The average delay Tpfd is computed from (26), and

Tcd is obtained via Monte Carlo simulations.

Figs. 8a and 8b compare the performance of repetition

coding, the NFV code Cc with the generator matrix (10), and

the parallel approach as defined above. Fig. 8a considers a

lightly loaded system with λ = 0.1 frames per second and

µ = 500 frames per second, while Fig. 8b shows a highly

loaded system with both λ = 1 frames per second and µ = 50
frames per second.

First, by comparing the two figures we observe that

per-frame decoding and continuous decoding have a similar

performance when the system is lightly loaded (see Fig. 8a),

while continuous decoding yields a smaller average latency

than per-frame decoding when the system is heavily loaded

(see Fig. 8b). This is because, in the former case, it is likely

that a frame is decoded successfully before the next one

arrives. This is in contrast to heavily loaded systems in which

the average latency becomes dominated by queuing delays.

We also note that, for repetition coding, the performance of

per-frame decoding and continuous decoding coincides in both

lightly or heavily loaded systems, since decoding is complete

as soon as one server decodes successfully.

Also, by comparing the performance of different codes,

we recover some of the main insights obtained from the study

of the isolated frame transmission. In particular, the parallel

approach outperforms all other schemes for low average delays

ALIASGARI et al.: CODED COMPUTATION AGAINST PROCESSING DELAYS 37

Fig. 9. Average latency versus arrival rate λ (L = 112, N = 8, r =
0.5, µ = 500).

due to its shorter block length n. In contrast, repetition

coding outperforms all other schemes in FER for large average

delay because of its large block length n and consequently

low probability of decoding error (not shown). Furthermore,

we observe that split repetition coding is to be preferred for

small values of FER.

Finally, Fig. 9 demonstrates the behavior of the average

latency as the arrival rate λ increases and the system becomes

more heavily loaded. We observe that, for a lightly loaded

system, the latencies of per frame and continuous decoding

are similar, while continuous decoding is preferable for a large

number of λ. This is because per-frame decoding requires

all servers to wait until at least N − dmin + 1 servers have

completed decoding of their respective packets before moving

on to the next frame.

VI. CONCLUSIONS

In this paper, we analyzed the performance of a novel coded

NFV approach for the uplink of a C-RAN system in which

decoding takes place at a multi-server cloud processor. The

approach is based on the linear combination of the received

packets prior to their distribution to the servers or cores,

and on the exploitation of the algebraic properties of linear

channel codes. The method can be thought of as an application

of the emerging principle of coded computing to NFV. In

addition, we obtain novel upper bounds on the FUP as a

function of the decoding latency based on evaluating tail

probabilities for Bernoulli dependent rvs. By extending the

analysis from isolated frame transmission to random frame

arrival times, the trade-off between average decoding latency

and FER for two different policies are derived. Analysis

and simulation results demonstrate the benefits that linear

coding of received packets, or NFV coding, can yield in

terms of trade-off between decoding latency and reliability. In

particular, a prescribed decoding latency or reliability can be

obtained by selecting an NFV code with a specific minimum

distance and chromatic number, where the two extremes are

parallel NFV-based processing and repetition coding. The

former scheme obtains the smallest latency but the lowest

reliability, whereas the latter scheme yields the largest latency,

but the highest reliability. All other linear NFV codes operate

between these two extreme cases.

Among interesting open problems, we mention the design of

optimal NFV codes and the extension of the principle of NFV

coding to other channels. Note that the approach proposed here

applies directly to other additive noise channels in which the

user code is an additive group. A key example is the additive

Gaussian channel with lattice codes at the user, which will be

studied in future work.

REFERENCES

[1] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation against
straggling decoders for network function virtualization,” in Proc. IEEE

Int. Symp. Inf. Theory, Jun. 2018, pp. 711–715.
[2] R. Mijumbi et al., “Network function virtualization: State-of-the-art

and research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[3] “Network function virtualisation (NFV); Report on models and fea-
tures for end-to-end reliability,” Eur. Telecommun. Standards Inst.,
Sophia Antipolis, France, Tech. Rep. GS NFV-REL 003, Apr. 2016.

[4] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability
evaluation for NFV deployment of future mobile broadband networks,”
IEEE Wireless Commun., vol. 23, no. 3, pp. 90–96, Jun. 2016.

[5] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A com-
prehensive survey,” IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[6] J. Kang, O. Simeone, and J. Kang, “On the trade-off between compu-
tational load and reliability for network function virtualization,” IEEE

Commun. Lett., vol. 21, no. 8, pp. 1767–1770, Aug. 2017.
[7] N. Nikaein, “Processing radio access network functions in the cloud:

Critical issues and modeling,” in Proc. ACM 6th Int. Workshop Mobile

Cloud Comput. Services, Apr. 2015, pp. 36–43.
[8] Cloud RAN and MEC: A Perfect Pairing, Eur. Telecommun. Standards

Inst., Sophia Antipolis, France, Feb. 2018.
[9] I. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and

N. Nikaein, “Critical issues of centralized and cloudified LTE-FDD radio
access networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 5523–5528.

[10] N. Nikaein et al., “OpenAirInterface: An open LTE network in a PC,”
in Proc. ACM 20th Annu. Int. Conf. Mobile Comput. Netw., Sep. 2014,
pp. 305–308.

[11] U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier,
“Quantitative analysis of split base station processing and determination
of advantageous architectures for LTE,” Bell Labs Tech. J., vol. 18, no. 1,
pp. 105–128, Jan. 2013.

[12] P. Rost and A. Prasad, “Opportunistic hybrid ARQ—Enabler of
centralized-RAN over nonideal backhaul,” IEEE Wireless Commun.

Lett., vol. 3, no. 5, pp. 481–484, Oct. 2014.
[13] S. Khalili and O. Simeone, “Uplink HARQ for cloud RAN via separation

of control and data planes,” IEEE Trans. Veh. Technol., vol. 66, no. 5,
pp. 4005–4016, May 2017.

[14] V. Q. Rodriguez and F. Guillemin, “Towards the deployment of a
fully centralized cloud-RAN architecture,” in Proc. 13th Int. Wireless

Commun. Mobile Comput. Conf. (IWCMC), Valencia, Spain, Jun. 2017,
pp. 1055–1060.

[15] V. Q. Rodriguez and F. Guillemin, “Cloud-RAN modeling based on
parallel processing,” IEEE J. Sel. Areas Commun., vol. 36, no. 3,
pp. 457–468, Mar. 2018.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[17] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using mantri,” in Proc. OSDI, Oct. 2010, vol. 10, no. 1, p. 24.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX

Conf. Hot Topics Cloud Comput., 2010, p. 10.

38 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 1, JANUARY 2019

[19] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” in Proc. 54th

Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Sep. 2016,
pp. 164–171.

[20] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep./Oct., 2015, pp. 964–971.

[21] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.

IEEE Globecom Workshops (GC Wkshps), Dec. 2016, pp. 1–6.
[22] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Speeding up distributed machine learning using codes,” in Proc. IEEE

Int. Symp. Inf. Theory, Jul. 2016, pp. 1143–1147.
[23] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[24] Y. Yang, P. Grover, and S. Kar, “Computing linear transformations
with unreliable components,” IEEE Trans. Inf. Theory, vol. 63, no. 6,
pp. 3729–3756, Jun. 2017.

[25] R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis. (2016). “Gra-
dient coding: Avoiding stragglers in synchronous gradient descent.”
[Online]. Available: https://arxiv.org/abs/1612.03301

[26] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2092–2100.

[27] A. Severinson, A. G. I. Amatb, and E. Rosnes, “Block-diagonal coding
for distributed computing with straggling servers,” in Proc. IEEE Inf.

Theory Workshop (ITW), Nov. 2017, pp. 464–468.
[28] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes:

An optimal design for high-dimensional coded matrix multiplication,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4403–4413.

[29] A. Mallick, M. Chaudhari, and G. Joshi. (2018). “Rateless codes for
near-perfect load balancing in distributed matrix-vector multiplication.”
[Online]. Available: https://arxiv.org/abs/1804.10331

[30] J. Kosaian, K. Rashmi, and S. Venkataraman. (2018). “Learning a
code: Machine learning for approximate non-linear coded computation.”
[Online]. Available: https://arxiv.org/abs/1806.01259

[31] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, 2015.

[32] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques
for latency reduction in cloud systems,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 2, no. 2, 2017, Art. no. 12.

[33] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. NSDI, vol. 13,
Apr. 2013, pp. 185–198.

[34] Y. Yang, M. Chaudhari, P. Grover, and S. Kar. (2018). “Coded
iterative computing using substitute decoding.” [Online]. Available:
https://arxiv.org/abs/1805.06046

[35] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation:
Which clones should attack and when?” ACM SIGMETRICS Perform.

Eval. Rev., vol. 45, no. 2, pp. 12–14, 2017.
[36] A. Al-Shuwaili, O. Simeone, J. Kliewer, and P. Popovski, “Coded

network function virtualization: Fault tolerance via in-network coding,”
IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 644–647, Dec. 2016.

[37] S. Janson, “Large deviations for sums of partly dependent random
variables,” Random Struct. Algorithms, vol. 24, no. 3, pp. 234–248, 2004.

[38] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307–2359, May 2010.

[39] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr. (2017).
“Coded computation over heterogeneous clusters.” [Online]. Available:
https://arxiv.org/abs/1701.05973

[40] A. Sánchez-Arroyo, “Determining the total colouring number is
NP-hard,” Discrete Math., vol. 78, no. 3, pp. 315–319, 1989.

[41] R. L. Brooks, “On colouring the nodes of a network,” Math. Proc.

Cambridge Philos. Soc., vol. 37, no. 2, pp. 194–197, 1941.
[42] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in

content download from coded distributed storage systems,” IEEE J. Sel.

Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.
[43] S. M. Ross, Introduction to Probability Models. New York, NY, USA:

Academic, 2014.
[44] H. C. Tijms, A First Course in Stochastic Models. Hoboken, NJ, USA:

Wiley, 2003.

Malihe Aliasgari (S’17) received the B.Sc., M.Sc.,
and Ph.D. degrees in pure mathematics from the
Amirkabir University of Technology, Tehran, Iran,
in 2014. She is currently pursuing the Ph.D. degree
in electrical engineering with the New Jersey Insti-
tute of Technology, Newark, NJ, USA. She was a
Faculty Member of the Department of Mathemat-
ics and Statistics, Azad University, Tehran, from
2013 to 2016. She was a Research Assistant with
Carleton University, Ottawa, ON, Canada, in 2014.
Her research interests include coding and informa-

tion theory, distributed computing, lattice theory, and algebraic coding.

Jörg Kliewer (S’97–M’99–SM’04) received the
Dipl.Ing. (M.Sc.) degree in electrical engineer-
ing from the Hamburg University of Technology,
Hamburg, Germany, in 1993, and the Dr.Ing. (Ph.D.)
degree in electrical engineering from the University
of Kiel, Germany, in 1999. From 1993 to 1998,
he was a Research Assistant with the University
of Kiel, where he was a Senior Researcher and a
Lecturer from 1999 to 2004. In 2004, he visited the
University of Southampton, U.K., for one year, and
from 2005 to 2007, he was with the University of

Notre Dame, Notre Dame, IN, USA, as a Visiting Assistant Professor. From
2007 to 2013, he was with New Mexico State University, Las Cruces, NM,
USA, most recently as an Associate Professor. He is currently with the New
Jersey Institute of Technology, Newark, NJ, USA, as a Professor. His research
interests span information and coding theory, graphical models, and statistical
algorithms, which includes applications to networked communication and
security, data storage, and biology. He has been a member of the Editorial
Board of the IEEE Information Theory Society Newsletter since 2012. He was
a recipient of the Leverhulme Trust Award in 2003 and the German Research
Foundation Fellowship Award in 2004. He was an Associate Editor of the
IEEE TRANSACTIONS ON COMMUNICATIONS from 2008 to 2014, and since
2015, he has been serving as an Area Editor for the IEEE TRANSACTIONS

ON COMMUNICATIONS. He has been an Associate Editor of the IEEE
TRANSACTIONS ON INFORMATION THEORY since 2017.

Osvaldo Simeone (M’02–SM’12–F’16) received
the M.Sc. (Hons.) and Ph.D. degrees in informa-
tion engineering from the Politecnico di Milano,
Milan, Italy, in 2001 and 2005, respectively. From
2006 to 2017, he was a Faculty Member with
the Center for Wireless Information Processing,
Electrical and Computer Engineering Department,
New Jersey Institute of Technology. He is currently a
Professor of information engineering with the Centre
for Telecommunications Research, Department of
Informatics, King’s College London. His research

has been supported by the U.S. NSF, the ERC, the Vienna Science and
Technology Fund, as well by a number of industrial collaborations. He is
a co-author of two monographs, an edited book published by Cambridge
University Press, and over one hundred research journal papers. His research
interests include wireless communications, information theory, optimization
and machine learning. He is a fellow of IET. He was a co-recipient of
the Best Paper Awards of IEEE SPAWC 2007 and IEEE WRECOM 2007,
the 2015 IEEE Communication Society Best Tutorial Paper Award, and the
2017 JCN Best Paper Award. He was a recipient of a Consolidator Grant by
the European Research Council in 2016. He is a Distinguished Lecturer of
the IEEE Information Theory Society. He currently serves on the Editorial
Board for the IEEE Signal Processing Magazine.

