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Abstract—We consider binary spatially coupled (SC) low
density measurement matrices for low complexity reconstruction
of sparse signals via the interval passing algorithm (IPA). The
IPA is known to fail due to the presence of harmful sub-structures
in the Tanner graph of a binary sparse measurement matrix, so
called termatiko sets. In this work we construct array-based (AB)
SC sparse measurement matrices via algebraic lifts of graphs,
such that the number of termatiko sets in the Tanner graph is
minimized. To this end, we show for the column-weight-three
case that the most critical termatiko sets can be removed by
eliminating all length-12 cycles associated with the Tanner graph,
via algebraic lifting. As a consequence, IPA-based reconstruction
with SC measurement matrices is able to provide an almost
error free reconstruction for significantly denser signal vectors
compared to uncoupled AB LDPC measurement matrices.

I. Introduction
Compressed sensing [1], [2] is a tool for estimating a sparse

signal x ∈ Rn of sparsity order k from a compressed version of
the signal y ∈ Rm, where k � n and m � n. The compressed
signal can be obtained by taking m random linear projections
of the original signal via the operation y = Ax, where A ∈ Rm×n

is an m × n measurement matrix.
A straightforward way for reconstructing the signal is to

find a vector x̂ with the smallest l0 norm. However, as its
complexity is NP-hard, this approach is rendered infeasible
for most practical applications [2]. A more efficient approach
based on linear programming (LP), called Basis Pursuit, has
been proposed in [3], which however is still too complex
for applications that require fast reconstruction. To overcome
these complexity issues, message passing schemes such as
verification decoding and iterative thresholding algorithms
have been proposed for reconstructing compressed signals
[4], [5]. An improved messaging passing algorithm known
as Approximate Message Passing (AMP) is proposed in [6],
which has an identical sparsity to sampling ratio trade-off as
LP, albeit at a much lower computational complexity.

The interval-passing algorithm (IPA) was first proposed
in [7] for both binary and non-negative real measurement
matrices. For measurement matrices derived from parity check
matrices of LDPC codes, the IPA is known to fail due to the
presence of stopping sets. In particular, in [8] it is shown that
if the Tanner graph associated with the support of a signal
x contains a non-empty stopping set, then the IPA fails to
fully recover x, but some of the samples inside these sets
can be recovered. In [9] a complete graphical description of
harmful substructures causing a recovery failure, the so called
termatiko sets, is provided. In particular, if the Tanner graph
associated with the support of x contains a termatiko set, then

the IPA completely fails to recover the signal.
In this work we are mainly interested in the reconstruction

performance of array-based (AB) spatially coupled (SC) mea-
surement matrices, obtained by coupling regular AB LDPC
code-based measurement matrices. Note that AB SC LDPC
codes can be constructed via an edge-spreading process ap-
plied to a base Tanner graph of the LDPC block code (BC),
yielding an SC protograph. Recently, general edge-spreading
schemes [10] have been proposed as an extension of the
widely used cutting vector approach [11] for constructing SC
codes. Additionally, [10] considers the design of generalized
cutting vectors with the objective of maximizing the minimum
distance of the corresponding SC protograph, thus also maxi-
mizing the size of the smallest stopping set in the Tanner graph
of the code [12]. In [13] we have proposed a new algebraic
lifting strategy for constructing AB SC LDPC codes, which
outperforms existing schemes in terms of reducing critical
substructures in the Tanner graph of the AB SC code.

Also, it is known that AB block measurement matrices
are able to outperform Gaussian measurement matrices under
AMP decoding [14]. Further, in [15] it is shown that SC
LDPC measurement matrices obtained from randomly gener-
ated regular LDPC BCs outperform uncoupled measurement
matrices under verification decoding. However, to the best of
our knowledge, the use of binary AB SC LDPC code-based
measurement matrices under IPA reconstruction has not been
studied so far. In particular, we propose to construct binary
SC AB measurement matrices such that the number of both
size-three and size-six termatiko sets in the underlying Tanner
graph is minimized. As one of our main results we show that
for the column-weight-three AB case, these termatiko sets can
be removed efficiently by eliminating length-12 cycles in the
Tanner graph. As a consequence, IPA-based reconstruction in
conjunction with binary SC LDPC code based measurement
matrices is able to provide a low complexity, almost error free
reconstruction for significantly denser signal vectors compared
to uncoupled AB LDPC based measurement matrices.

II. Preliminaries
A. Algebraic lifting

Let the Tanner graph associated to a m× n binary matrix A
be represented by G = (V ∪C, E), where V = {v1, v2, . . . , vn} is
a set of variable nodes (VNs), C = {c1, c2, . . . , cm} is a set of
check nodes (CNs), and E = {(vi, c j)|vi ∈ V, c j ∈ C, A( j, i) = 1}
is the set of edges connecting vi to c j, for i = {1, . . . ,m} and
j = {1, . . . , n}. We also denote the set of neighbors for each



node vi and c j as N(vi) = {c j ∈ C|(vi, c j) ∈ E} and N(c j) =

{vi ∈ V |(vi, c j) ∈ E}, respectively. In general, a degree J lift of
G is a graph Ĝ with VN set V̂ = {v11 , . . . , v1J , . . . , vn1 , . . . , vnJ }

of size nJ and CN set Ĉ = {c11 , . . . , c1J , . . . , cm1 , . . . , cmJ } of
size mJ and for each e ∈ E, if e = (vi, c j) in G, then there
are J edges from {vi1 , . . . , viJ } to {c j1 , . . . , c jJ } in Ĝ in a one-
to-one mapping. The graph Ĝ can be obtained algebraically
by assigning permutations to each of the edges in G so that
if e = (vi, c j) is assigned a permutation τ(k) ∈ {1, . . . , J}, the
corresponding edges in Ĝ are (vik , c jτ(k) ) for 1 ≤ k ≤ J.

The protograph approach to the construction of SC LDPC
codes involves the base Tanner graph with a parity check
matrix represented as H(γ, p), where p is odd and p ≥ γ.
In case of AB codes, this matrix is given as

H(γ, p) =


I I I · · · I
I σ σ2 · · · σp−1

...
...

... · · ·
...

I σγ−1 σ2(γ−1) · · · σ(γ−1)(p−1)

 ,
where I and σz for z ∈ {1, . . . , 2(p − 1)} are identity and
permutation matrices, resp., of dimension p × p. This matrix
can also be considered as a 2-D array of submatrices where
each row (column) of matrices denotes a row (column) group
with p column groups and γ row groups in total. A SC
protograph is then obtained from H(γ, p) via edge-spreading.
The idea is to split H(γ, p) into a sum of m + 1 matrices of
the same dimension as H(γ, p) = H0 + H1+, . . . ,Hm, where
m represents the memory of the code. These matrices are
arranged as

H(γ, p, L) =



H0
H1 H0

. . .
. . .

Hm · · · H0
. . .

...
Hm


to form the parity-check matrix of a terminated SC protograph
H(γ, p, L) ∈ Fγ(L+1)p× Lp2

2 , where L is the coupling length and
F2 is the binary field. The final SC LDPC measurement matrix
H(γ, p, L, J) ∈ Fγ(L+1)Jp× LJp2

2 is then obtained by a terminal lift
of H(γ, p, L), where J is the terminal lifting parameter.

For algebraic lifting, let τκL be a L × L permutation matrix
obtained by left shifting the identity permutation by an amount
of κ, where 0 ≤ κ ≤ m. Then, the SC protograph corresponding
to H(γ, p, L) can alternatively be constructed by lifting each of
the edges of the base protograph by a τκL matrix; this is equiva-
lent to replacing the non-zero entires of H(γ, p) by τκL, and the
zero entries by all-zero matrices of the same size, respectively.
In the same way, the check matrix H(γ, p, L, J) of the final SC
LDPC code can be obtained by lifting each of the edges of
the SC protograph by any J × J permutation matrix [13].

B. Compressed sensing and the IPA

Let x ∈ Rn be an n dimensional k-sparse signal (which
means it has at most k nonzero entries). We consider the
recovery of x from measurements y = Ax ∈ Rm, where m � n

and k � n, and A is the m × n measurement matrix. The
IPA denotes an iterative algorithm IPA(y, A) to reconstruct a
nonnegative real signal x ∈ Rn from a measurement vector y. It
has been stated in [9] that the IPA reconstruction performance
is independent of whether binary or non-negative measurement
matrices A and signal vectors x are used. Therefore, without
loss of generality we consider A ∈ F×n

2 and x ∈ Fn
2. We also

denote the elements of x and y as x = [x(v1), . . . , x(vn)]T and
y = [y(c1), . . . , y(cm)]T , respectively. Recovery takes place by
iteratively exchanging messages on the Tanner graph of A,
where the measurement nodes will be denoted as VNs and
the function nodes as CNs in the following.

C. Stopping sets in AB measurement matrices

Stopping sets are harmful structures in the Tanner graph
of A that can cause the IPA to fail. In this work, we first
analyze the structure of minimum stopping sets in AB SC
LDPC measurement matrices which are the most harmful to
the IPA decoder.

Definition 1 ([16]). A stopping set S (M) = {v1, . . . , vM} ⊂ V
is a non-empty subset of the set of M variable nodes V such
that all neighbors of S (M) are connected to it at least twice.

In the following, we focus on AB parity check matrix with
a column weight of γ = 3 for the sake of simplicity1. For
γ = 3, each VN has 3 neighbors, so there must be 3M edges
connected to S (M). The Tanner graph of an AB code also
consists of cycles with the following structural properties.

Remark 1. For γ = 3, a cycle of length ` in an AB code
consists of ` edges that are connected to `/2 CNs (resp. VNs)
of degree 2 with respect to the VNs (resp., CNs) of the cycle.
By the pattern consistency condition [17] each CN associated
to the cycle is connected to a distinct pair of VNs of the cycle.

We now address the structure of some small stopping sets of
size ≤ 12. Let N(S (M)) be the set of all neighboring CNs of
S (M), and let e(S (M)) be the set of all the edges connecting
S (M) to N(S (M)).

Remark 2. For γ = 3, the minimum stopping set S (6) in an
AB code consists of 6 degree 3 VNs that are connected via 18
edges to 9 CNs of degree 2 with respect to the VNs in S (6).

Since there are no 4-cycles in AB codes [17], a pair of
neighbors of S (6) cannot be connected to the same pair of
VNs in S (6). In e(S (6)), nine CNs are connected to nine VN
pairs via 18 edges. There are

(
6
2

)
= 15 possible pairs of VNs

in S (6). However, we only consider nine pairs such that each
VN of S (6) appears in exactly three pairs out of those nine
(because the VN degree is 3). This also implies that there exists
two pairs out of those nine that have a common VN, and that
is true for all VNs in S (6). Thus, we obtain the following
lemma.

Lemma 1. For γ = 3, the minimum stopping set S (6) in an
AB code consists of six VNs of degree 3 that are connected
via 18 edges to nine CNs of degree 2 with respect to the VNs
in S (6). Here, a pair of neighboring CNs of S (6), denoted by

1Note that in the following "AB codes" refers to AB codes with γ = 3.



c and c′, respectively, that have a common neighbor vk, must
be connected to three VNs {vi, vk, vq} ∈ S (6) via four edges
(c, vi), (c, vk), (c′, vk) and (c′, vq), where i , q , k.
Corollary 1. There are two sets of VNs V ′ ⊂ S (6) and V̂ =

S (6) \ V ′, where |V ′| = |V̂ | = 3, that are connected to all CNs
in N(S (6)).

III. Termatiko Sets in AB MeasurementMatrices
A. Preliminaries

In [9] it is shown that stopping sets may not cause a total
failure of the IPA. Under some conditions, some of the non-
zero values of the signal can be recovered even if the VNs in
the Tanner graph of the measurement matrix corresponding
to the non-zero values are associated with a stopping set.
However, there are sets of VNs inside a stopping set, termed
termatiko sets, that cause a total failure of the IPA if the
support of x, supp(x) = {v ∈ V : x(v) ∈ x, x(v) , 0}, is a
termatiko set.

Definition 2 ([9]). A subset Tw,M ⊆ S (M) is a termatiko set of
size w ≤ M if and only if the function IPA(AxTw,M , A) returns
x̂ = 0, where xTw,M is a binary vector with supp(xTw,M ) = Tw,M .

We denote by N the set of CNs connected to Tw,M . More-
over, we denote by Ŝ = {v ∈ V \ Tw,M : NN(v) = N(v)} the set
of remaining VNs outside Tw,M connected only to N, where
NN(v) is the set of neighbors of v in N. Tw,M exists only if
for each c ∈ N one of the following conditions is true [9]:

(i) A CN c ∈ N is connected to Ŝ .
(ii) If c ∈ N is not connected to Ŝ , then it must have at

least two neighbors belonging to set Tw,M satisfying the
following constraint: all CNs c′ ∈N connected to these
neighbors must have at least two neighbors in Tw,M .

B. Minimum termatiko sets

In the following we analyze the structure of minimum
termatiko sets, residing in minimum stopping sets, which have
the smallest possible value of w > 0. For AB measurement
matrices with γ = 3, this minimum termatiko set of this type
is denoted as T3,6.
Proposition 1 (see also [18]). A set of three VNs in S (6)
constitutes a T3,6 set if it is connected to all nine CNs in
N(S (6)). Also, a S (6) stopping set consists of two T3,6 sets.

Proof: As in [9] we assume without loss of generality
that V = Tw,M ∪ Ŝ . Recall from Corollary 1 that there exists
two sets of VNs V ′ ⊂ S (6) and V̂ = S (6) \ V ′, where |V ′| =
|V̂ | = 3, and each of them are connected to all nine CNs in
N(S (6)). Thus, according to Condition (i) above we obtain
that T3,6 = V ′, Ŝ = V̂ , and T3,6 = V̂ , Ŝ = V ′, respectively, and
N = N(S (6)).

On the other hand, assume now that a set of three VNs
Ṽ ⊂ S (6) is not equal to V ′ or V̂ . Then, according to the
structure of e(S (6)), the total number of CNs connected to Ṽ
is less than nine. If we assume for a moment that Ṽ = T3,6,
then this would imply that |N| < |N(S (6))| = 9; in other words
N , N(S (6)). Then, due to the properties of e(S (6)), there
would be less than nine CNs in the set N(S (6)) \ N that has
neighbors in the set S̃ = S (6) \ Ṽ = S (6) \ T3,6. However, this
also implies that S̃ , Ŝ . Consequently, Ṽ , T3,6.

Fig. 1 shows that a set of VNs {v2, v3, v5} is not connected to
all the neighbors of S (6), hence it cannot form a T3,6 set, since
if it did, it would imply that Ŝ = {v1, v4, v6}. This contradicts
the definition of Ŝ as the set {v1, v4, v6} is not connected to all
green CNs (which are neighbors of the candidate termatiko
set {v2, v3, v5} in this example).

Fig. 1: Example of a case where a set of VNs {v2, v3, v5} cannot
form a termatiko set in S (6) = {v1, v2, v3, v4, v5, v6}. The underlying
12-cycle is shown in blue. The VNs {v1, v2, v5} are connected to all
neighbors of S (6) and therefore represent a T3,6 termatiko set with
Ŝ = {v3, v4, v6}.

Remark 3. From the proof of Proposition 1 we have seen
that a T3,6 set can exist in S (6) in two possible configurations:
T3,6 = V ′, Ŝ = Ṽ, and T3,6 = Ṽ , Ŝ = V ′. In other words, both
V ′ and Ṽ are termatiko sets. The fact that V ′ ∪ V̂ = S (6)
satisfies Condition (ii) above with the set Ŝ being the empty
set implies that S (6) is also a T6,6 termatiko set.

Lemma 2. A T6,6 set contains at least two 12-cycles.

Proof: Consider the Tanner graph of an AB code with m
CNs and n VNs. Let V1 : {vi1 , vi2 , vi3 , vi4 , vi5 , vi6 } ⊂ V and Ĉ :
{c j1 , c j2 , . . . , c j9 } ⊂ C, where jk ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , 9}
and i` ∈ {1, 2, . . . , n}, ` ∈ {1, 2, . . . , 6}. We split Ĉ into three
subsets, C1, C2 and C3, respectively, where C1 : {c j1 , c j2 , c j3 },
C2 : {c j4 , c j5 , c j6 }, and C3 : {c j7 , c j8 , c j9 }. We now establish
a condition under which the VNs in V1 connected to CNs
in set C1 ∪ C2 are associated to a 12-cycle. The six edges
connecting V1 to C1 and C2, respectively, are denoted as e1 and
e2, respectively. Next, we establish a condition under which
the VNs in V1 connected to CNs in set C1 ∪C3 are associated
to another 12-cycle, where the six edges connecting V1 to C3
are denoted as e3. Finally, we show that under these conditions
e(S (6)) = e(T6,6) = e1 ∪ e2 ∪ e3 by invoking Lemma 1. Further
details are omitted in the interest of space.

C. Other termatiko sets associated to 12-cycles
Remark 4. In the same way as above we can show that an
S (8) stopping set contains a 12-cycle whose VNs form a T6,8,
and that an S (12) stopping set contains a 12-cycle whose VNs
form a T6,12, respectively. Details are omitted due to space
constraints. Since |N(T6,8)| , |N(S (6)| we can conclude that
T6,8 , S (6). Likewise, T6,12 , S (6).

D. Eliminating small termatiko sets via algebraic lifting
In the algebraic lifting process described in Section II-A,

a `-cycle can be broken by the lift if we ensure that the
net permutation, which is the product of the oriented edge
labels, assigned to its edges is not identical to the identity
permutation. Let the assignments to the edges of a `-cycle
be τκ1

L , . . . , τ
κ`
L , where τκL is a permutation matrix as discussed

in Section II-A. Without loss of generality, then, the net



permutation of the cycle is given by τ
∑`

i=1(−1)i+1ki

L . This becomes
the identity permutation only when

∑̀
i=1

(−1)i+1ki = 0, (1)

where 0 ≤ ki ≤ m. For example, for ` = 12, a 12-cycle will be
eliminated by the algebraic lifting process if (1) is non-zero.

IV. Optimization of AB SC MeasurementMatrices

In our previous work [13] we have shown that all harmful
(3, 3) absorbing sets can be removed from an AB SC proto-
graph by eliminating all 6-cycles due to the fact that each (3, 3)
absorbing set contains a 6-cycle. In the same fashion we can
see from Lemma 2 and Remark 4, that if we remove all 12-
cycles via a properly chosen algebraic lifting, we can eliminate
all T6,{6,8,12} termatiko sets. Since T6,6 sets include two T3,6
sets, by this method we can also remove all T3,6 termatiko
sets. In the following, we focus on two lifting schemes for
constructing the SC protograph, namely cutting vector based
[19] and algebraic lifting schemes [13].
A. Enumeration of termatiko sets of size 6

Let C(12) ⊂ V , |C(12)| = 6, represent the six VNs of a
12-cycle in G. From Lemma 2 and Remark 4 it is evident
that T6,{6,8,12} sets are in fact C(12) sets. Let C12 denote
the set of all unique C(12) sets, i.e., all 12-cycles with a
different set of VNs. In order to find the VN index i associated
to an edge (vi, c j) of a 12-cycle in G, we employ a cycle
detection algorithm, such as the improved message passing
algorithm proposed in [20]. Such an algorithm has polynomial
complexity and for AB codes, the complexity can be further
reduced by factor p. We then obtain the set C12 by employing
an efficient (binary) search algorithm to detect duplicate cycles
associated with the same set of VNs. This search algorithm has
a complexity of O(log µ), where µ is the number of all detected
(non-unique) 12 cycles, which potentially can be very large.
Algorithm 1 proposes a simple enumeration algorithm for all
T6,M sets, µT6,M with M ∈ {6, 7, . . . , Lp2}, associated with a
12-cycle. Note that all C(12) sets in G are not necessarily
associated to a termatiko set of size 6. In order to determine
whether or not a C(12) set is a T6,M set, we adopt the following
rule in Algorithm 1: If and only if the IPA outputs a vector
x̂ = 0 corresponding to an input data vector x with support
C(12), represented as xC(12), then C(12) = T6,M . Note that
µT6,6 + µT6,8 + µT6,12 ≤ µT6,M∀M ∈ {6, 7, . . . , Lp2}, and equality
holds if T6,{6,8,12} are the only size 6 termatiko sets associated
to 12-cycles.
B. Optimization of the SC protograph

Let us define the permutation indicator matrix B1 ∈

{0, 1}γ×p, where a 1 (resp., 0) in position (i, j) of this matrix
indicates that all the non-zero elements of block (i, j) of
H(γ, p) will be lifted by τκL (resp., I), for κ ∈ {1, 2, . . . ,m},
resulting in the H(γ, p, L) SC protograph matrix. The process
of obtaining optimized SC protographs by using both cutting
vector and algebraic lifting approaches is described as follows:

(i) We first choose an H(3, p) AB block matrix.
(ii) For the cutting vector approach based on the H(3, p)

AB block matrix, we construct SC protograph matrices by

Algorithm 1: Enumeration of all T6,M sets with M ∈
{6, 7, . . . , Lp2} in an AB measurement matrix A (γ = 3)
Input : C12, A
Output: µT6,M

1 Initialization: µT6,M = 0
2 foreach C(12) ∈ C12 do
3 Fix a binary xC(12) with supp(xC(12)) = C(12)
4 Compute yC(12) = AxT

C(12)
5 Run IPA(yC(12), A)
6 if x̂ = 0 then
7 µT6,M = µT6,M + 1
8 end
9 end

choosing a cutting vector ξ∗ from [12, Table III] that provides
a maximal minimum distance of 8 for the AB SC protograph.
For such a code the minimum distance is equivalent to the
stopping distance [12], and therefore it follows from Propo-
sition 1 and Remark 3 that the AB SC protograph does not
contain any T3,6 and T6,6 termatiko sets.

(iii) In case of algebraic lifting, we minimize the number of
12-cycles in the Tanner graph of the SC protograph obtained
from H(3, p). We numerically optimize the B1 permutation
matrix by using the approach in [13], and the cycle counting
algorithm of [20] is utilized to count the number of 12-cycles
in each optimization step. This leads to an optimized SC
protograph matrix H(3, p, L) that contains a smaller number
of T6,M sets compared to the non-optimized protograph.

(iv) Finally, for both SC protographs discussed previously,
we apply a degree J lift to H(3, p, ξ∗, L) and H(3, p, L), resp.,
and obtain the corresponding optimized AB SC measurement
matrix A, whose Tanner graph is used for reconstruction by
the IPA.
Proposition 2. Let Ĝ be a Tanner graph obtained by applying
a degree J lift to the Tanner graph G. Let µC(12) (resp. µ̂C(12))
represent the total number of 12-cycles in the graph G (resp.,
Ĝ). Also, let µT3,6 , µT6,M (resp. µ̂T3,6 , µ̂T6,M ) represent the total
number of T3,6, T6,M sets in the graph G (resp., Ĝ). We then
have µ̂C(12) ≤ JµC(12) and µ̂T3,6 ≤ JµT3,6 , µ̂T6,M ≤ JµT6,M .
The proof is a simple consequence of the properties of graph
lifting.

V. Simulation Results
We now provide results for the IPA reconstruction perfor-

mance for different constructions of measurement matrices via
Monte Carlo simulations.
• A1 is obtained as a block diagonal matrix where each

block is obtained from a H(3, 7) AB base matrix of size
3p × p2 and then individually uplifted by factor J.

• A2 represents a non AB SC LDPC matrix obtained by
coupling L copies of a (3, 7) random regular LDPC matrix
of size 3p × p2, uplifted by a factor J.

• A3 represents a H(3, 7, ξ∗, L, J) matrix obtained by apply-
ing a degree J lift to the protograph of the H(3, 7, ξ∗, L)
SC protograph matrix from a cutting vector approach.

• A4 represents a H(3, 7, L, J) matrix obtained by applying a
degree J lift to the protograph of the optimized H(3, 7, L)
SC protograph matrix based on algebraic lifting.



• A5 represents a Gaussian matrix with same dimension
as A4 whose elements are N(0, σ2) Gaussian random
variables. Without loss of generality, σ2 = 1.

The matrices A1 to A4 have the same constraint length of
Jp2, and all matrices have dimension 3(L + 1)Jp × LJp2. As
parameters we select γ = 3, p = 7, m = 1, J = 5, L = 10,
which leads to a blocklength of n = 2450 for all matrices.
For these parameters Table I shows the total number of 12-
cycles and T6,M sets, M ∈ {6, 7, . . . Lp2}, for the corresponding
protograph matrices of A1, A3 and A4

2. We observe that spatial
coupling is able to provide a significant reduction of both T3,6
and T6,{6,8,12} termatiko sets. Also, Table I verifies that for the
cutting vector approach with ξ∗ all T3,6 sets are eliminated. We
also see that by optimizing the AB SC measurement matrix via
algebraic lifting, T6,M sets can be completely removed from
the protograph, which also implies the elimination of T3,6 and
T6,{6,8,12} sets. By invoking Proposition 2, these results also
hold for the terminally lifted Tanner graph of A4.

Number of protograph of A1 protograph of A3 protograph of A4

12-cycles 2409050 661311 227150
T3,6 sets 4900 0 0
T6,M sets 9800 63 0

TABLE I: Total number of 12-cycles and T6,M sets, M ∈

{6, 7, . . . , Lp2}, in the corresponding protograph matrices for A1, A3,
A4 with the parameters m = 1, p = 7, L = 10.

Fig. 2 displays the IPA reconstruction performance of ma-
trices A1 to A4, and the LP reconstruction performances of A4
and A5. For the IPA, the probability of reconstruction is defined
as Pr(x̂ = x). For the LP, the probability of reconstruction is
given as Pr(maxi∈{1,2,...,n} |x̂i − xi| ≤ 10−3). All data points on
the performance curve are averaged over 1000 realizations of
the binary vector x.

From Fig. 2 we can observe a behavior similar to the
results shown in Table I, i.e., that spatially coupling leads
to a significant increase in IPA reconstruction performance:
for the same probability of reconstruction the density of the
signal can be much higher. We also observe that LP based
reconstruction for A4 outperforms IPA decoding, albeit at a
significantly higher reconstruction complexity. Whereas the
IPA has a complexity of only O(n(log(n/k))2 log(k)) [7], LP-
based reconstruction has a complexity which is polynomial in
time. Therefore, IPA based reconstruction with algebraically
lifted SC measurement matrices serves as a good compromise
between complexity and performance, in particular for larger
block lengths.
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