
Toward Detection and Characterization of

Variability Bugs in Configurable C Software: An

Empirical Study

Austin Mordahl

Department of Computer Science

University of Texas at Dallas

Richardson, TX, USA

Email: austin.mordahl@utdallas.edu

Abstract—Variability in C software is a useful tool, but critical
bugs that only exist in certain configurations are easily missed by
conventional debugging techniques. Even with a small number
of features, the configuration space of configurable software is
too large to analyze exhaustively. Variability-aware static analysis
for bug detection is being developed, but remains at too early
a stage to be fully usable in real-world C programs. In this
work, we present a methodology of finding variability bugs
by combining variability-oblivious bug detectors, static analysis
of build processes, and dynamic feature interaction inference.
We further present an empirical study in which we test our
methodology on two highly configurable C programs. We found
our methodology to be effective, finding 88 true bugs between
the two programs, of which 64 were variability bugs.

Index Terms—static analysis, configurable C software, vari-
ability bugs

I. RESEARCH PROBLEM AND MOTIVATION

Compile-time variability allows large C programs to be

tailored to a wide variety of use cases. This variability is

achieved through the use of features, which are used to

determine which parts of the codebase will be included in the

final product [1]. While this variability proves useful in this

regard, it can mask bugs in the codebase that only manifest in

configurations with certain feature combinations [2] [3].

These bugs, called variability bugs, have been shown to

exist in significant numbers in commonly used C programs.

Abal et al. [4], for instance, demonstrated the existence of

variability bugs in the Linux kernel and other C programs

through manual inspection of bug-fixing patches. Rhein et

al. [5] attempted to find bugs preemptively, developing seven

variability-aware static analyses. These analyses produced

impressive results on real-world C programs; however, they

are still limited, not supporting all GNU C extensions and

necessitating the exclusion of some files in order to work.

In short, the work of finding variability bugs is still nascent,

requiring either extensive manual inspection or the use of new,

specialized tools.

To this end, we aim to develop a strategy that uses existing

static analysis tools to find previously unknown variability

bugs in highly configurable C programs. This strategy would

allow developers to take advantage of the static analysis tools

they are already familiar with to find variability bugs as part

of the quality assurance process. Furthermore, studying new

variability bugs would inform the design of variability-aware

tools in the future. Two primary challenges arise as part of

this goal. The first is how we can find variability bugs with

variability-oblivious static analyzers. Then, given a variability

bug, the second challenge is determining what feature or

feature interaction cause that bug to manifest.

We address these challenges with the following contribu-

tions:

1) We develop a methodology that combines existing static

bug detectors, static analysis of build systems, dynamic

interaction inference, and configuration sampling to

semiautomatically detect new variability bugs in real-

world C software.

2) We conduct an empirical study involving two highly

configurable C programs that shines light on the nature

of variability bugs in the wild.

II. DETECTING & CHARACTERIZING VARIABILITY BUGS

In this section, we describe our methodology in detail.

Sample Generation The number of configurations for

programs even with a relatively small feature space is far too

big to exhaustively analyze. As we aim to use variability-

oblivious static analysis, we sample configurations from the

configuration space with the feature information exposed in

systems that use KCONFIG. Using the KMAX [6] tool to ob-

tain configuration information, and the methodology described

by Oh et al. [1], we generate a configuration sample that 1)

provides high feature coverage and 2) only generates valid

configurations (i.e.,configurations that can be compiled suc-

cessfully). We generate a sample of 1,000 valid configurations

for each target program.

Postprocessing and Classifying Warnings We next run our

detector suite on each configuration in the sample and obtain

warnings (i.e., bug reports emitted by a bug detector). With

1000 configurations, the collection of warnings generated by

just a single bug detector on a single target program quickly

becomes too large to evaluate manually; however, since most

of the codebase is the same between different configurations

153

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00064

Fig. 1. Number of bugs plotted against degree of feature interaction. The
latter refers to the number of features are associated with the bug. Generic

refers to non-variability bugs.

of the same program, there will be many duplicated warnings

in the collection. By generating a hash value for each bug

report, and comparing those hashes to weed out duplicates,

we reduce the number of warnings to a manageable level. We

next manually classify the unique warnings as true or false,

referring to the reported location and description. We repeat

this process for each bug detector.

Determining Feature Interactions We use a semiautomatic

approach to determine feature interactions for true positive

bugs, combining dynamic feature inference using IGEN [7]

and manual code inspection. IGEN uses the list of configura-

tions in which a bug occurred to infer the feature constraints

that give those configurations. The combined approach allows

us to effectively determine the feature interactions responsible

for all found bugs with high precision.

Tools and Target Programs When choosing target pro-

grams for the empirical study, our goal was to find software

that is 1) highly configurable, 2) under active maintenance,

and 3) exposes feature constraints through KCONFIG. We

thus chose two programs: axTLS 2.1.4 [8], which provides 84

features and 2.0 × 10
12 possible configurations; and Toybox

0.7.5 [9], which provides 316 features and 1.4×10
81 possible

configurations. Similarly, when choosing static analysis tools

to use, we wanted tools that 1) work on C code, 2) emit bug

warnings instead of other code quality metrics, and 3) are free

to use. The third criterion we enforced to ease reproducibility.

The three static analysis tools we settled on are cppcheck 1.72

[10], Facebook Infer 0.15.0 [11], and clang 4.0’s built-in static

analyzer [12].

III. RESULTS AND FUTURE WORK

A. Results

In total we have found 88 bugs. 42 are from Toybox, and 46

are from axTLS. Of these bugs, 64 are variability bugs, 16 of

which are caused by the conjunction of two or more features.

Over half of the variability bugs are caused by enabling or

disabling a single feature, with bug count decreasing as the

number of features increases (see Figure 1).

Out of all found variability bugs, seven of them are associ-

ated with one or more disabled features: three are associated

with only disabled features, and the other four are associated

Fig. 2. Number of times a feature is involved in a bug-causing interaction
plotted against feature. Feature names are excluded for readability, but each
vertical bar represents one feature.

with some combination of enabled and disabled features. All

seven of these bugs are in axTLS (all Toybox bugs were

only associated with enabled features). This means while

one could find all of the bugs we found on Toybox by

running our detector suite on Toybox’s allyesconfig, neither the

allyesconfig nor the allnoconfig provided with these programs

are sufficient to find bugs in axTLS. Whether the configuration

information of a program could be used to choose whether to

analyze the allyesconfig or sample the configuration space is

an interesting question for future studies.

We also observe from Figure 2 that axTLS’ features tend

to be involved in more complex bug-causing interactions than

those in Toybox. This is likely because of how features are

used in these programs: Toybox’s features are more indepen-

dent of each other than those in axTLS. These data suggest

that the implementation of variability can affect the nature of

variability bugs in a program; how exactly this happens is an

interesting research question, which we plan to address by

running our experiments on more programs.

B. Evaluation and Future Work

Overall, our results suggest that variability-oblivious static

analysis can be used to find variability bugs in C software. We

are continuing to expand the scope of the empirical study by

adding more target programs and bug detectors. Namely, we

have added BusyBox 1.28.0 [13] and the Linux kernel 4.17.6

[14] as additional target programs, and CBMC 5.3 [15] and

IKOS 1.3.r1.dd5a747 [16] as additional bug checkers. This

should give us a fuller look at the nature of variability bugs

across a variety of programs, and enable us to make further

inferences about how the implementation of variability affects

the nature of variability bugs. We also plan to make our bug

database available in the near future, to provide a benchmark

for future works to compare against. We will add to this

database as we obtain results from more programs and tools.

ACKNOWLEDGMENT

This research is supported by NSF-1816951.

154

REFERENCES

[1] J. Oh, P. Gazzillo, and D. Batory, “Multi-objective optimization in large
software product lines,” The University of Texas at Austin, Department
of Computer Science, Tech. Rep. TR-18-02, 2018.

[2] H. Post and C. Sinz, “Configuration lifting: Verification meets software
configuration,” in Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering. IEEE Computer
Society, 2008, pp. 347–350.

[3] M. Attariyan and J. Flinn, “Using causality to diagnose configuration
bugs.” in USENIX Annual Technical Conference, 2008, pp. 281–286.

[4] I. Abal, J. Melo, x. Stănciulescu, C. Brabrand, M. Ribeiro, and
A. Wasowski, “Variability bugs in highly configurable systems:
A qualitative analysis,” ACM Trans. Softw. Eng. Methodol.,
vol. 26, no. 3, pp. 10:1–10:34, Jan. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3149119

[5] A. V. Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel, “Variability-
aware static analysis at scale: An empirical study,” ACM Trans. Softw.

Eng. Methodol., vol. 27, no. 4, pp. 18:1–18:33, Nov. 2018. [Online].
Available: http://doi.acm.org/10.1145/3280986

[6] P. Gazzillo, “Kmax: Finding all configurations of kbuild makefiles
statically,” in Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: ACM, 2017, pp. 279–290. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106283

[7] T. Nguyen, U. Koc, J. Cheng, J. S. Foster, and A. A. Porter,
“igen: Dynamic interaction inference for configurable software,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 655–665. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950311

[8] “axTLS.” [Online]. Available: http://axtls.sourceforge.net
[9] “Toybox.” [Online]. Available: https://github.com/landley/toybox

[10] “cppcheck.” [Online]. Available: https://github.com/danmar/cppcheck
[11] “Infer static analyzer.” [Online]. Available:

https://github.com/facebook/infer
[12] “LLVM.” [Online]. Available: https://llvm.org
[13] “Busybox.” [Online]. Available: https://busybox.net
[14] “Linux.” [Online]. Available: https://www.kernel.org
[15] “CBMC.” [Online]. Available: https://github.com/diffblue/cbmc
[16] “Ikos.” [Online]. Available: https://github.com/NASA-SW-VnV/ikos

155

