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Abstract

This paper studies a stylized, yet natural, learning-to-rank
problem and points out the critical incorrectness of a widely
used nearest neighbor algorithm. We consider a model
with n agents (users) {xi}i∈[n] and m alternatives (items)
{yl}l∈[m], each of which is associated with a latent feature
vector. Agents rank items nondeterministically according to
the Plackett-Luce model, where the higher the utility of an
item to the agent, the more likely this item will be ranked
high by the agent. Our goal is to identify near neighbors of an
arbitrary agent in the latent space for prediction.

We first show that the Kendall-tau distance based kNN pro-
duces incorrect results in our model. Next, we propose a
new anchor-based algorithm to find neighbors of an agent.
A salient feature of our algorithm is that it leverages the rank-
ings of many other agents (the so-called “anchors”) to deter-
mine the closeness/similarities of two agents. We provide a
rigorous analysis for one-dimensional latent space, and com-
plement the theoretical results with experiments on synthetic
and real datasets. The experiments confirm that the new algo-
rithm is robust and practical.

1 Introduction

In a learning-to-rank problem, there is a set of agents
(users) X = {x1, . . . xn} and a set of alternatives (items)
Y = {y1, . . . ym}. Each agent reveals her preferences over
a subset of alternatives. The goal is to infer agents’ pref-
erences over all alternatives, including those that are not
rated or ranked. This fundamental machine learning prob-
lem has many practical applications. For example, recom-
mender systems use an agent’ revealed preferences to dis-
cover other alternatives she might be interested in; product
designers learn from consumers’ past choices to estimate the
demand curve of a new product; defenders can predict ter-
rorists’ preferences based on their past behavior; and polit-
ical parties can evaluate campaign options based on voters’
preferences. See (Liu and others 2009) for a recent survey.

Rating vs. ranking. Agents’ preferences can be represented
by either a rating for each alternative (e.g., an integer rat-
ing in Netflix), or a ranking over the alternatives (i.e., com-
plete ordering). Rating-based approaches have many known
drawbacks (Liu and Yang 2008; Katz-Samuels and Scott
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2018), including (i) agents often have different scales for
ratings; and (ii) numeric values are often less robust than
ranking-based approaches. In fact, rating data can always be
converted to ranking data (e.g., y1 is ranked higher than y2
if y1 has a higher rating) and thus ranking-based models and
algorithms are more general. We focus on ranking data.

A common approach to infer an agent’s preference is to
first identify near neighbors of the agent in terms of the
Kendall-Tau (KT) distance, then aggregate their rankings
to produce a prediction. The KT distance is a metric that
counts the number of pairwise disagreements between two
ranking lists. This approach was proposed by Liu and Yang
(2008), and their algorithm will be referred to as KT-kNN in
this paper. Many subsequent work are based on the follow-
ing assumption (Hwang and Lee 2009; Wang et al. 2012;
Fan and Lin 2013; Wang et al. 2014; Park et al. 2015).

Assumption 1. KT distance is a good measure of similar-
ity between agents.

No theoretical justification for this assumption was known
until recently. Katz-Samuels and Scott (2018) proposed a la-
tent utility model to justify the assumption. In their model,
each agent or alternative is associated with a latent feature.
Alternative j’s utility to agent i is controlled by a determin-
istic function of the similarity in their latent features. Under
this model, consistency result is established for the KT-kNN
algorithms.

However, this model assumes that agents’ preferences are
deterministic, which is unrealistic in many settings. For ex-
ample, an agent can exhibit irrational behavior, or provide
only a noisy version of her preferences. In fact, human pref-
erences are often highly non-deterministic. Various statisti-
cal models have been built to model such randomness, pio-
neered by the Nobel Laureate McFadden (McFadden 2000)
among many other researchers. Therefore, the following
question remains open.

How can we learn an agent’s random preferences from
other agents’ random preferences?

This question can be answered by designing algorithms
for two closely-related problems: (i) preference completion
(PC): given each agent’s preferences over a subset of alter-
natives, the goal is to estimate its preference over all the al-
ternatives. (ii) near neighbors (NN): given an agent xi, the
goal is to find agents xi′ close to xi in the latent space.

Standard techniques exist to use algorithms for the NN



problem to solve a PC problem ( (Katz-Samuels and Scott
2018; Liu and Yang 2008); see also Appendix D). Therefore,
we focus on the NN problem in this paper.

Our Contributions. Our main conceptual contribution is
the combination of a distance-based latent model and ran-
dom preferences for learning to rank. To the best of our
knowledge, while there is a large literature in each compo-
nent, we are the first to consider both. See related work for
more discussions.

Our model is called distance-based random preference
model. Let the latent feature of agent i (alternative j) be xi

(yj). Agent i’s preferences are determined by a utility func-
tion u(xi, yj) = θ(xi, yj) + ǫi,j , where θ(xi, yj) is a de-
terministic monotonically decreasing distance-based func-
tion and ǫi,j is a zero mean independent random variable.
Our model captures two pervasive characteristics of rank-
ing datasets: Ch1. Economically meaningful θ(·, ·) function.
u(xi, yj) is high in expectation when xi and yj are close.
An agent is more likely to prefer alternatives with similar
latent features to itself. Ch2. Random preference model. The
function u(xi, yj) contains a noise term ǫi,j to capture un-
certainties in agents’ behaviors.

Our technical contributions are two-fold. First, we prove
that Assumption 1 does not hold anymore in our distance-
based random preference model. More precisely, we prove
that the agents found by the KT-kNN algorithm (Liu and
Yang 2008) is far away from the given agents with high
probability, even when n,m→∞.

Second, we design an “anchor-based” algorithm for find-
ing an agent’s near neighbors under random preferences.
The algorithm is based on the following natural idea: if two
agents i1 and i2 are close, then their KT distance to any
other agent j (an anchor) should also be close. The algo-
rithm proceeds by using the KT distance to other agents
as an agent’s feature, and measures the closeness between
two agents by the L1 distance of their features. We prove
that asymptotically our algorithm identifies an agent’s near
neighbors with high probability when the latent space is 1-
dimensional. Many techniques we developed can be gener-
alized to high-dim settings.

Experiments on synthetic data verify our theoretical find-
ings, and demonstrate that our algorithm is robust in high-
dim spaces. Experiments on Netflix data shows that our
anchor-based algorithm is superior to the KT-kNN algo-
rithm and a standard collaborative filter (using the cosine-
similarities to determine neighbors).
Related Work and Discussions. While using random util-
ity models in learning-to-rank problems is not new (Lu and
Negahban 2015; Park et al. 2015; Oh, Thekumparampil, and
Xu 2015; Zhao, Piech, and Xia 2016; Zhao, Villamil, and
Xia 2018; Liu et al. 2019; Katz-Samuels and Scott 2018),
we are not aware of any that simultaneously achieves both
Ch1 and Ch2.

Random utility-based ranking algorithms (Lu and Negah-
ban 2015; Park et al. 2015; Oh, Thekumparampil, and Xu
2015) address Ch2, but the function θ(xi, yj) often does not
have an explicit economics interpretation. For example, let
Θ ∈ R

n×m be a matrix such that Θi,j = θ(xi, yj). (Park et
al. 2015; Oh, Thekumparampil, and Xu 2015) assume that

Θ is low rank. But the low rank assumption does not have
explicit economically interpretation.

While recent non-parametric models (e.g., (Katz-Samuels
and Scott 2018)) allow one to use economically interpretable
functions θ (addressing Ch1), they operate only under deter-
ministic utility models.

Parametric preference learning has been extensively
studied in machine learning, especially learning to
rank (Azari Soufiani et al. 2013; Azari Soufiani, Parkes,
and Xia 2013; 2014; Cheng, Hüllermeier, and Dembczynski
2010; Hughes, Hwang, and Xia 2015; Khetan and Oh 2016;
Maystre and Grossglauser 2015). These works are different
with ours as it is often assumed that agents’ preferences are
generated from a parametric model.

2 Preliminaries

Distance-Based Random Preference Model. Let X =
{x1, . . . , xn} ⊂ R

d denote the set of agents and let Y =
{y1, . . . , ym} ⊂ R

d denote the set of alternatives. We
slightly abuse the notation and use xi to refer to both agent
i and her latent features. Each agent xi has a ranking (pref-
erence list) Ri = [yj1 ≻ · · · ≻ yjm ] over Y , where ≻ means
“prefer to”. We observe only a subset of Ri for each i ∈ [n].

Utility functions and the random utility model. Agent i’s
expected utility on alternative j is determined by a func-
tion θ(xi, yj). Throughout this paper, we use θ(xi, yj) =
exp(−‖xi − yj‖2), where ‖.‖2 is the ℓ2-norm.

Agent i’s ranking Ri is determined by the widely-used
Plackett-Luce model (Plackett 1975; Luce 1977). The re-
alized utility of alternative yj for agent i is generated by
u(xi, yj) ≡ θ(xi, yj) + ǫi,j , where ǫi,j is a zero mean in-
dependent random variable that follows the Gumbel dis-
tribution. Then, agent i ranks the alternatives in decreas-
ing order of their realized utilities. The density function
of the Plackett-Luce model has a closed-form formula. Let
yj1 ≻i yj2 represent that yj1 is ahead of yj2 in Ri and let
j1, j2, . . . jm be a permutation of [m]. We have

Pr [yj1 ≻i · · · ≻i yjm ] =

m
∏

t=1

θ(xi, yjt)
∑m

t∗=t θ(xi, yjt∗ )
. (1)

The marginal distribution between alternatives j1 and j2 is

Pr[yj1 ≻i yj2 ] =
θ(xi,yj1

)

θ(xi,yj1 )+θ(xi,yj2 )
.

Distributions of X and Y . xi and yj are i.i.d. generated
from distributions DX and DY . The supports of DX and
DY are a cube B(d) in R

d, where B(d) = {v ∈ R
d :

‖v‖∞ ≤ c}, where c is a constant. We adopt the standard
“near uniform” assumption for DX and DY (Abraham et al.
2015; Hoff, Raftery, and Handcock 2002; Kleinberg 2000;
Sarkar, Chakrabarti, and Moore 2011).

Definition 1. Consider a continuous distributionD on B(d)
with probability density function fD(x). D is near-uniform

if
sup fD(x)
inf fD(x) is bounded by a constant, where x ∈ B(d).

Let fX and fY be the PDFs of DX and DY respectively.

Define cX = sup fX(x)
inf fX(x) and cY = sup fY (x)

inf fY (x) .

Observation model. We observe only agent i’s ranking over
a subset Oi ⊆ [m] of alternatives. Each alternative j is in



Oi independently with probability p. The Oi’s are also in-
dependently generated across different agents. Let ROi be
the ordered list over Oi ⊆ Y that is consistent with R (i.e.,
ROi is the partial ranking of R over Oi). For each agent i,
we observe ROi

i .

The near neighbor problem. Here, an algorithm needs
to find near neighbors of an input agent. An algorithm is
a k(n,m)-NN solver with parameter τ(n) if

• for any input agent i, the algorithm outputs k agents
i1, i2, . . . ik, and

• with overwhelming probability, |xi − xij | ≤ τ(n), where
τ(n) = o(1).

We often write k-NN or kNN instead of k(n,m)-NN
when k’s dependencies on m and n are not critical.

Additional notations and examples. For an arbitrary or-
dered list R, we use it calligraphic formR to extract the rank
of an alternative. For example, suppose yj is the top-ranked
alternative in R, then R(yj) = 1. Let I(v) be an indicator
that sets to 1 if the argument v is true; if false, it sets to 0.

Let |R| be the length of the list R. Let R1 and R2 be two
ordered lists over the same set of alternatives. The normal-
ized Kendall-Tau distance between R1 and R2 is

NK(R1, R2) =
1

(

|R1|
2

)

∑

j1 6=j2∈R1

I

(

(

R1(j1)−R1(j2)
)

(

R2(j1)−R2(j2)
)

< 0
)

.

(2)

When R1 and R2 do not have the same support, the nor-
malized KT distance is defined as NK(RO

1 , RO
2 ), where

O = R1 ∩R2.
To facilitate analysis, sometimes we need to introduce

new agents outside X . For a new agent with latent features
x, let Rx denote its ranking over Y and let ROx

x denote the
observed ranking.

Conditional probability and expectations. There are multi-
ple levels of randomness for producing the rankings Ri’s:
(i) xi and yj are random and (ii) u(xi, yj) consists of a ran-
dom component (i.e., randomness from the Plackett-Luce
model). Care must be taken when operating the conditional
random variables defined in our process. For example,

• E[NK(Ri1 , Ri2 | X ] refers to fixing the latent positions
of the agents and taking expectations over Y and random-
ness from the Plackett-Luce model.

• E[NK(Ri1 , Ri2) | X ,Y] refers to fixing the latent posi-
tions of both alternatives and agents and taking expecta-
tions over randomness from the Plackett-Luce model.

3 Inefficacy of KT-kNN

In this section, we will prove the inefficacy of KT-kNN
algorithm by Liu and Yang (2008) (Algorithm 1) in our
distanced-based random preference model. This implies that
Assumption 1 does not hold in our model.

Recall that KT-kNN uses KT distances to find an agent’s
neighbors based on the intuition that when xi and xj are
close, their “opinion” on alternatives’ utilities should be sim-
ilar. The next theorem show that this intuition does not hold

Algorithm 1: KT-kNN (it produces incorrect re-
sults)

1 Input: {R
Oj

j }j∈[n], k, and an agent xi.

2 Output: k neighbors near agent i in the latent space.
3 Find j1, j2, · · · , jn−1(∈ [n]/{i}) such that

NK(ROi
i , R

Oj1
j1

) ≤ · · · ≤ NK(ROi
i , R

Ojn−1

jn−1
)

4 Return XKT-kNN ← {j1, . . . jk}

in our model, by proving that KT-kNN does not return any
near neighbors for a large fraction of xi.

Theorem 1. Consider Algorithm KT-kNN under distance-
based random preference model in which d = 1 and p = 1.
LetDY andDX be uniform distributions on [−1, 1]. For any
constant ǫ, any xi ∈ [−1 + ǫ,−0.5] ∪ [0.5, 1 − ǫ], and any

k ≤ n/ ln5 n, we have

min
x∈KT-kNN({R

Oj
j }j ,k,xi)

||x− xi||2 ≥ ǫ = Ω(1). (3)

with high probability. The probability comes from random
X/{xi}, random Y , and random preferences.

Remarks. Theorem 1 states that KT-kNN fails to work
even for the simple case where d = 1 and DX = DY =
Uniform([−1, 1]). Eq. (3) is a strong result because trivial
algorithms exist to find an agent xj whose distance to xi

is Θ(1) (just picking up an arbitrary xj). In addition, this
result continues to hold for large populations (e.g., when
n,m → ∞ and p = 1), suggesting that the limitation of
the KT-based approach roots at the structural properties of
the NK function. In addition, if we use KT-kNN to solve
PC problem by applying standard techniques, it will also
produce poor results (see Appendix D and Lemma 8 there).

Comparison to (Katz-Samuels and Scott 2018). Katz-
Samuels and Scott (2008) proved that KT-kNN is effec-
tive under the deterministic utility model. This suggests that
with the presence of uncertainties in the utility function (a
more realistic assumption), the algorithmic structure of the
NN problem is significantly altered.

Intuitions behind Theorem 1. The following example
highlights the salient structures of KT-distances.

Example 1 (Near-neighbors in expectation). Let
x1 = 0, y1 = −0.5, and y2 = 1. Let x∗ =
argminx E[NK(Rx, R1) | x1, x,Y] (e.g., where would
we place an agent that minimizes its KT distance to x1?).
One would hope that when x∗ and x1 are close, Rx∗ and
R1 is close, but here x∗ = −0.5. Specifically, let a be the

probability x1 prefers y1 to y2 (i.e., a ≡ θ(x1,y1)
θ(x1,y1)+θ(x1,y2)

)

and let b(x) be the probability x prefers y1 to y2. Recall that
agents’ support is [−1, 1]. We need to solve

x∗ = argmin
x

E[NK(Rx, R1) | x1, x,Y]

= argmin
x

a(1− b(x)) + (1− a)b(x).

Here, we aim to minimize the weighted sum of a ∈ [0, 1]
and (1− a) via controlling b(x). The optimal solution has a



simple structure: when a > (1− a) (equivalently, a > 0.5),
we need to set the weight associated with a as small as pos-
sible, which means setting b(x) to the largest possible value.
When a < (1 − a), b(x) needs to be minimized. Thus, the
optimal solution uses the following threshold rules (assume
a 6= 0.5 for simplicity).

x∗ ∈

{

(−1, y1) if a > 0.5
(y2, 1) if a < 0.5

.

This minimizer is far from x1. �

See also Example 3 in Appendix B.5 for another small and
concrete example, in which KT-kNN produces poor output.

3.1 Proof sketch of Theorem 1

We use intuitions from Example 1 to prove the theorem.
Specifically, define

Gi(x) ≡ E[NK(Ri, Rx) | xi, x].

First, note that NK(Ri, Rx) concentrates at Gi(x) when
m is sufficiently large. This comes from the concentration
behavior of the NK function:

Lemma 1. Let µ = E[NK(Ri, Rj) | X ] = Gi(xj). We have

Pr [|NK(Ri, Rj)− µ| ≥ δµ | X ] ≤ 4m exp

(

−
δ2mµ

6

)

.

See Appendix B.1 for the proof. The terms in NK are
not independent terms so we cannot directly apply Cher-
noff bounds. Our proof uses the combinatorial structure of
the NK function to decouple the dependencies among terms.
The technique we develop can be of independent interests.

Let x∗ = argminx Gi(x). Below is our main lemma:

Lemma 2. Let DY be uniform distribution on [−1, 1]. Let
xi be any agent in [−1,−0.5]. We have

argmin
x
Gi(x) = −1.

Similarly, when xi ∈ [0.5, 1], argminx Gi(x) = 1.

For any xi ∈ [−1,−0.5]∪[0.5, 1], Lemma 1 and Lemma 2
give us:

min
i∗

NK(Ri∗ , Ri) ≈ min
i∗
Gi(xi∗) ≈ Gi(−1),

where the first approximation comes from the concentration
bound of NK and the second approximation comes from the
fact that there must exist one agent close to -1 when the num-
ber of agent is large. Therefore, all the neighbors produced
by KT-kNN are far from xi (see Appendix B.4 for a rigor-
ous analysis).

Proof of Lemma 2. By linearity of expectation, we have

Gi(x) =
1

(

m
2

)

∑

ℓ1 6=ℓ2

E

[

NK
(

R
{yℓ1 ,yℓ2}

i , R
{yℓ1 ,yℓ2}
x

)
∣

∣

∣
x, xi

]

= E

[

NK
(

R
{yℓ1 ,yℓ2}

i , R
{yℓ1 ,yℓ2}
x

)
∣

∣

∣
x, xi

]

.

The last equality holds because yj’s are i.i.d. samples
from DY . Define

pi(y1, y2) ≡ Pr[y1 ≻i y2 | y1, y2, xi] =
θ(xi, y1)

θ(xi, y1) + θ(xi, y2)
.

px(y1, y2) ≡ Pr[y1 ≻x y2 | y1, y2, x] =
θ(x, y1)

θ(x, y1) + θ(x, y2)
.

When the context is clear, we shall refer to pi(y1, y2) and
px(y1, y2) as pi and px, respectively. We have

Gi(x) = Ey1,y2

[

px(1− pi) + (1− px)pi | xi, x
]

.

One can see that Gi(x) is a smooth function (the first
derivative exists). Our proof consists of three parts. Part
1. When x ∈ (−1, xi], ∂Gi(x)/∂x > 0, Part 2. When
x ∈ [xi,−xi], Gi(x) − Gi(xi) > 0, and Part 3. When
x ∈ [−xi, 1), ∂Gi(x)/∂x > 0.

The proof for part 3 is similar to part 1. Proving part 2 is
also simpler. Therefore, we focus only on the proof for part
1. Proof for part 2 and 3 is deferred to Appendix B.2.

We now show that when x ∈ (−1, xi], ∂Gi(x)/∂x > 0.
We have (see Fact 2 in Appendix B.2):

∂Gi(x)

∂x
= E [Φ(y1, y2, x, xi)|xi, x] , (4)

where


















Φ(y1, y2, x, xi) ≡ e
−∆

(i)
1,2−1

e
−∆

(i)
1,2+1

· sign(y1−x)−sign(y2−x)

4 cosh2
(

∆
(x)
1,2/2

)

∆
(i)
1,2 ≡ |y2 − xi| − |y1 − xi|

∆
(x)
1,2 ≡ |y2 − x| − |y1 − x|

.

Here, ∆
(i)
1,2 (∆

(x)
1,2) measures whether xi (x) is closer to y2

or y1. Similar to Example 1, they serve as important quan-
tities determining the structure of ∂Gi(x)/∂x (and therefore
the optimal solution).

One can check that Φ(y1, y2, x, xi) = Φ(y2, y1, x, xi).
Therefore,

∂G(x)

∂x
= Ey1,y2

[Φ(y1, y2, x, xi) | x, xi, (y1 ≤ y2)] .

Central to our analysis is carefully partitioning the event
y1 ≤ y2 into four disjoint (sub)-events. Under each event,
the conditional expectation of Φ can be computed in a
straightforward manner. Specifically, define

• E1: when x ≤ y1 ≤ y2 or y1 ≤ y2 ≤ x. Thus, Pr[E1 |

y1 ≤ y2] =
x2+1

2 .
• E2: when y1 < x and y2 ≥ 1 + 2xi. Thus, Pr[E2 | y1 ≤

y2] = −(x+ 1)xi.
• E3: when y1 < x and x < y2 < 2xi − x. Thus, Pr[E3 |
y1 ≤ y2] = (x+ 1)(xi − x).

• E4: when y1 < x and 2xi − x ≤ y2 < 1 + 2xi. Thus,

Pr[E4 | y1 ≤ y2] =
(x+1)2

2 .

Figure 3(a) in Appendix A visualizes the events to com-
plement the analysis. We now interpret the meaning of these
events.

Event E1. Event E1 represents the case in which y1 and
y2 are on the same side of x. In this case, any movement





Algorithm 2: Anchor-kNN

1 Input: {R
Oj

j }j∈[n], k, and agent xi.

2 Output: k neighbors near agent i.

3 Compute F̂i,j = NK(ROi
i , R

Oj

j ) for all i, j ∈ [n].

4 Compute D̂(xi, xj) =
1

n−2

∑

t 6=i,j |F̂i,t − F̂j,t|.

5 Find j1, j2, · · · , jn−1 (∈ [n]/{i}) such that

D̂(xi, xj1) ≤ D̂(xi, xj2) · · · ≤ D̂(xi, xjn−1).
6 Return XAnchor-kNN ← {j1, · · · , jk}.

ω
(

ln3 n
p2·τ4(n) · ln

2
(

ln3 n
p2·τ4(n)

))

and any k = o(n · τ2(n) ·

ln−1 n), we have

max
x∈Anchor-kNN({R

Oj
j }j ,k,xi)

||x− xi||2 ≤ τ(n)

with high probability. The probability comes from random
X/{xi}, random Y , and random preferences.

Remark. τ(n) cannot be too small because our function
D(xi, xj) cannot measure the distance of two agents well if
they are too close. m needs to grow when p (fewer samples)
or τ(n) decreases (higher quality requirement), which is in-
tuitive. k measures the number of numbers an algorithm can
find so that their distance is within τ(n); larger k means the
algorithm is more powerful.

Let D(xi, xj) = E[D(xi, xj)]. In the remainder of this

section, we analyze the behavior of of D. The function D̂
concentrates at D and can be shown by using simple Cher-
noff bounds (see Appendix C.2 for a complete analysis).

Lemma 3. For any near-uniform DX ,DY on [−c, c] and
any two agents xi, xj , we have

c3(c) ·
(

ln−1 n
)

· |xi − xj |
2 ≤ D(xi, xj) ≤ |xi − xj |,

where c3 is a constant that depends only on c.

Upper bound proof for Lemma 3. The upper bound re-
quires only a straightforward calculation. Recall that pi =
pi(y1, y2) = Pr[y1 ≻i y2 | y1, y2, xi]. We have

D(xi, xj) = Ext

[
∣

∣Ey1,y2 [(pi − pj)(1− 2pt) | xi, xj , xt]
∣

∣

]

≤ Ey1,y2 [|pi − pj | | xi, xj ] ≤ |xi − xj |.
(6)

The last inequality is shown in Fact 6 in Appendix C.1.

Lower bound bound proof for Lemma 3. Here we analyze
only the case |xi − xj | ≤ 2c − 2 lnn. When |xi − xj | >
2c − 2 lnn (e.g., xi and xj are around the boundaries −c
and c, respectively), the result is trivial.

Wlog, assume that xi < xj . We partition [−c, c] into three
intervals and consider anchor agents in each of these inter-
vals. Specifically, define (see also Figure 1(b))

I1 ≡
[

−c,
xi − c

2

]

, I2 ≡
(

xi − c

2
,
xj + c

2

)

& I3 ≡
[

xj + c

2
, c
]

.

The agents in I2 are “less effective anchors” (C2). We use
trivial bound for terms in I2 (|Fi,t−Fj,t| ≥ 0). Focusing on
I1 and I3, we have

D(xi, xj)

≥
xi + c

4c · cX
· Ext

[
∣

∣Gt(xi)− Gt(xj)
∣

∣ | xt ∈ I1, xi, xj

]

+

c− xj

4c · cX
· Ext

[
∣

∣Gt(xi)− Gt(xj)
∣

∣ | xt ∈ I3, xi, xj

]

.

(7)

Note that xi+c
4c·cX

+
c−xj

4c·cX
is at least Ω̃(1). Now we show that

Ext

[
∣

∣Gt(xi)− Gt(xj)
∣

∣ | xt ∈ I1, xi, xj

]

is at least in the or-

der of |xi − xj |
2. The analysis for the other term is similar.

Below is the lemma we need (related to C2):

Lemma 4. For any near-uniform DX ,DY on [−c, c] such
that |xi − xj | ≥ 2c− 2 lnn and xt ∈ I1, we have

|Gt(xi)− Gt(xj)| ≥ c4(c) · |xi − xj |
2,

where c4(c) =
1−e−c/4

1+e−c/4 ·
1

96c2·cosh2(c)·c2Y
∈ (0, 1

2c ).

Proof of Lemma 4. Note that |xi − xj | ≥ 2c − 2 lnn
and xt ∈ I1 imply xj ≥ xi ≥ 2xt + c. Because

|Gt(xi)− Gt(xj)| =
∣

∣

∣

∫ xj

xi

∂Gt(x)
∂x

dx
∣

∣

∣
, we aim to give a

bound for
∂Gt(x)

∂x
. Specifically,

∂Gt(x)

∂x
≥ 3c4(c) · (c

2 − x2).

when x ≥ 2xt + c (or equivalently, xt ≤
x−c
2 ). Re-cycle

the definition of Φ, ∆
(i)
1,2, and ∆

(x)
1,2 used in the analysis of

Theorem 1 (see also Appendix A for the notation summary)

so that
∂G(x)
∂x

= Ey1<y2 [Φ(y1, y2, x, xt) | x, xt]
We partition the positions of {y1, y2} into events (see also

Fig. 1c for a visualization):

• E1: when x ≤ y1 ≤ y2 or y1 ≤ y2 ≤ x.

• E2: when y1 ∈ [x−7c
8 , 3x−5c

8 ] and y2 ≥
x+c
2 . We have

Pr[E2 | y1 < y2] ≥
c2−x2

16c2c2Y
.

• E3: when (y1, y2) /∈ E1 ∪ E2. As explained below, we do
not need to explicitly calculate Pr[E3 | y1 ≤ y2].

We now explain the intuition associated with these events.

Event E1. Because y1 and y2 are on the same side of x, we
have E[Φ | E1, x, xt] = 0 (see also Lemma 2).

Event E2 and event E3. When (y1, y2) ∈ E2 ∪ E3, we have
|y1 − xt| ≤ |y2 − xt| (xt is closer to y1 than to y2). This is
because (i) |y2 − xt| ≥ x − xt when y2 ≥ x and x ∈ I1,
and (ii) |y1 − xt| ≤ max{xt − c, x − xt} ≤ x − xt since
y1 ≤ x and x ≥ 2xt + c. This conclusion is trivial when the
positions of the points are visualized (Figure 1(c)).

In these events, an increment in x will result in an incre-
ment in Gt(x). Therefore E[Φ | E2 ∪ E3, x, xt] ≥ 0.

Event E2. Knowing Φ can be arbitrarily close to 0 when
E2 ∪ E3 happens. Here, we need also identify an event so
that Φ is at least a positive constant. Event E2 serves for this





based kNN algorithm failed to find similar agents (users),
challenging the assumptions made in many prior preference
completion algorithms. To fix the problem, we introduced
a new anchor-based algorithm Anchor-kNN that uses all
the agents’ ranking data to determine the closeness of two
agents. Our approach is in sharp contrast to most existing
feature engineering methods. We provided a rigorous analy-
sis for Anchor-kNN for 1-dim latent space, and performed
experiments on both synthetic and real datasets. Our exper-
iments showed that Anchor-kNN works in high dim space
and promises to outperform other widely used techniques.
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