
Dissecting the Learning Curve of Taxi Drivers: A Data-Driven Approach

Menghai Pan, Yanhua Li

Worcester Polytechnics Institute

mpan,yli15@wpi.edu

Xun Zhou

University of Iowa

xun-zhou@uiowa.edu

Zhenming Liu

College of William & Mary

zliu@cs.wm.edu

Rui Song

North Carolina State University

rsong@ncsu.edu

Hui Lu

Guangzhou University

luhui@gzhu.edu.cn

Jun Luo

Lenovo Group Limited

jluo1@lenovo.com

Abstract

Many real world human behaviors can be modeled and char-

acterized as sequential decision making processes, such as

taxi driver’s choices of working regions and times. Each

driver possesses unique preferences on the sequential choices

over time and improves their working efficiency. Under-

standing the dynamics of such preferences helps accelerate

the learning process of taxi drivers. Prior works on taxi op-

eration management mostly focus on finding optimal driving

strategies or routes, lacking in-depth analysis on what the

drivers learned during the process and how they affect the

performance of the driver. In this work, we make the first

attempt to inversely learn the taxi drivers’ preferences from

data and characterize the dynamics of such preferences over

time. We extract two types of features, i.e., profile features

and habit features, to model the decision space of drivers.

Then through inverse reinforcement learning we learn the

preferences of drivers with respect to these features. The

results illustrate that self-improving drivers tend to keep ad-

justing their preferences to habit features to increase their

earning efficiency, while keeping the preferences to profile

features invariant. On the other hand, experienced drivers

have stable preferences over time.

Index terms— urban computing, inverse rein-
forcement learning, preference dynamics

1 Introduction

Taxi service is a vital part of the transportation systems
in large cities. Improving taxi operation efficiency
is a crucial urban management problem, as it helps
improve the transportation efficiency of the city and
at the same time improves the income of taxi drivers.
In the same city, taxi operation efficiency might differ
significantly. Fig. 1a shows the earning efficiency (total
amount earned normalized by total working time) of
different taxi drivers in Shenzhen, China. The top
drivers earn 3 to 4 times more money than the bottom
drivers.

A major cause of such difference is the difference
in working experiences. Fig. 1b shows the growth of
earning efficiency of new drivers over years. FromMarch
2014 to December 2016, the new drivers became more
experienced and had much higher earning efficiency.
During the same time as shown in Fig. 1c, there is no
obvious change to the local economy or market, since the
average earning efficiency of all the drivers are pretty
stable. This shows that drivers are trying to improve
their own strategies of looking for passengers based on
their increasing knowledge of the city.

However, each driver might learn different knowl-
edge during the learning process, which in turn de-
veloped different preferences, when making decisions.
For instance, some drivers tend to look for passen-
gers around regions near their homes, and some oth-
ers might prefer to take passengers from city hubs,
e.g., train stations, airport. These preferences might
be unique to individual drivers and ultimately lead to
differences in earning efficiency. Fig. 1b shows that
the ”smart” drivers (in blue) improve their earning effi-
ciency faster than “average” drivers and reach a higher
level of earning efficiency eventually. Finding what
adaptation strategies these “smart” drivers carry could
help us understand the learning process of successful
drivers and therefore help new drivers to grow faster.

The passenger-seeking behavior of taxi drivers can
be modeled as a Markov Decision Process (MDP).
Prior work on taxi operation management focused on
recommending the optimal policy or routes to maximize
the chance of finding passengers or making profit [20,
19, 15, 12]. However, these works only studied how to
find the “best” strategies based on data, rather than
fundamentally understanding how the drivers learned
these strategies over time.

In this work, we make the first attempt to in-
versely learn the taxi drivers’ decision-making prefer-
ences, which lead to their choices while looking for pas-
sengers. We also study how these preferences evolve
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Moreover, when πq(a|s) at each state s is uniform
distribution, e.g., πq(a|s) = 1/|As|, with As as the
set of actions at state s, the problem P1 is equiva-
lent to maximizing the causal entropy of P (τ |θ), i.e.,∑

τ∈T P (τ |θ) lnV (τ |θ), while matching P (τ |θ) to the
observed data [23]. Following the similar process out-
lined in [4], P1 can be solved by a gradient descent ap-
proach, with the step-wise updating gradient as follows.

(3.8) ∇g(θ) = f̂i−
∑

τ∈T π

U(τ)
π(τ) exp(

∑k

j=1 θif
τ
j )

∑
τ∈T π

U(τ)
π(τ) exp(

∑k

j=1 θi)
−αiǫi,

where αi = 1 if θi ≤ 0 and αi = −1 otherwise. T π is
a set of trajectories sampled from T̃ by an executing
a given policy π. U(τ) is the joint probability of
taking actions conditioned on the states in a observed
trajectory τ , induced by uniform policy πq(a|s) =
1/|As|. See Algorithm 1 for our IRL algorithm.

Algorithm 1 Relative Entropy IRL

Input: Demonstrated trajectories T̃ , feature matrix
F , threshold vector ǫ, learning rate α, and executing
policy π.

Output: Preference vector θ.
1: Randomly initialize preference vector θ.
2: Sample a set of trajectories. T π using π.
3: Calculate feature expectation vector f̂ .
4: repeat

5: Calculate each feature count fτ
i .

6: Calculate gradient ∇g(θ) using Eq 3.8.
7: Update θ ← θ + α∇g(θ).
8: until ∇g(θ) < ǫ.

3.3 Preference Dynamic Analysis. Using Algo-
rithm 1, we can inversely learn the preference θ for
each driver, during each time interval (e.g., a month)
over time, and obtain a sequence of preference vectors
{θ1, · · · , θN}. For each driver, we can conduct hypoth-
esis testing to examine if the change of the preference
vectors over months is significant or not. We denote the
preference vector learned for taxi driver p in period Ti

as θpi , and that in period Tj as θpj . Then, we can ob-
tain two preference vector sample sets in i-th and j-th
months as Si and Sj over a group of n drivers as follow:

Si = {θ1i , θ2i , ..., θni },(3.9)

Sj = {θ1j , θ2j , ..., θnj }.(3.10)

With Si and Sj , we will examine if the entries in prefer-
ence vectors changed significantly or not from the i-th
to j-th month, using two-sample t-test [17]. For each
feature fm, the null hypothesis is that the difference
between the m-th entry of each θpi in Si and θpj in Sj

equals 0, which means drivers’ preference to feature fm
does not change significantly from the i-th month to
the j-th month. Otherwise, the alternative hypothe-
sis indicates a significant change. Taking the difference
between Si and Sj as ∆Sij = {∆θ1ij ,∆θ2ij , ...,∆θnij} =

{θ1i −θ1j , θ
2
i −θ2j , ..., θ

n
i −θnj }. The t-test statistics of the

m-th entry is as follow.

(3.11) tij(m) =
Z

s
=

∆θij(m)− µ

δ/
√
n

.

where µ is the sample mean, n is the sample size and δ
if the sample square error. The t-distribution for the
test can be determined given the degree of freedom
n − 1. Given a significance value 0 < α < 1, we can
get a threshold of the t value tα in the t-distribution.
Then if tij(k) > tα, the null hypothesis should be
rejected with significance α, otherwise, we can accept
the null hypothesis with significance α. Usually, we set
α = 0.05, which also means the confidence of the test is
1− α = 0.95.

4 Experiments

In this section, we conduct experiments with real world
taxi trajectory data to learn the preferences of differ-
ent groups of taxi drivers, and analyze the preference
evolution patterns for each group.

4.1 Experiment settings When analyzing the tem-
poral dynamics of the drivers’ decision-making prefer-
ences, the null hypothesis is that the difference between
the preferences in two time periods is not significant.
The alternative hypothesis is the temporal preference
difference is significant. We choose the t-test signifi-
cance value α = 0.05.
Driver Group Selection. We aim to analyze how taxi
drivers’ decision making preferences evolve over time.
For each month, we select 3000 drivers with the highest
earning efficiency. The intuition is that these drivers are
likely more experienced drivers, thus with near-optimal
policies, under maximum causal entropy principle [24].
To evaluate the preference change across two months,
i.e., the i-th and j-th months, we find those drivers
from those experience drivers, who also show up in both
months for our study. For example, in 07/2016 and
12/2016, there are 2151 experienced drivers in common.
Then, we calculate the difference of earning efficiency of
each driver in the two months. Fig. 7 shows the gap
distribution in 07/2016 and 12/2016. We will choose
two groups of drivers for preference dynamics analytics
based on the drivers’ earning efficiency gaps.

• Group #1 (Self-improving Drivers): 200 drivers
whose earning efficiencies increase the most.
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look for passengers. We further studied how the drivers’
preferences evolve over time, during the learning process
This problem is critical to helping new drivers improve
performance fast. We extracted different types of in-
terpretable features to represent the potential factors
that affect the decisions of taxi drivers and inversely
learned the preferences of different groups of drivers.
We conducted experiments using large scale taxi trajec-
tory datasets, and the results demonstrated that drivers
tend to improve their preferences to habits features to
gain more knowledge in the learning phase and keep the
preferences to profile features stable over time.
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