Leto: Verifying Application-Specific Hardware Fault
Tolerance with Programmable Execution Models

BRETT BOSTON, Massachusetts Institute of Technology, USA
ZOE GONG, Massachusetts Institute of Technology, USA
MICHAEL CARBIN, Massachusetts Institute of Technology, USA

Researchers have recently designed a number of application-specific fault tolerance mechanisms that enable
applications to either be naturally resilient to errors or include additional detection and correction steps that
can bring the overall execution of an application back into an envelope for which an acceptable execution is
eventually guaranteed. A major challenge to building an application that leverages these mechanisms, however,
is to verify that the implementation satisfies the basic invariants that these mechanisms require—given a
model of how faults may manifest during the application’s execution.

To this end we present Leto, an SMT-based automatic verification system that enables developers to verify
their applications with respect to an execution model specification. Namely, Leto enables software and platform
developers to programmatically specify the execution semantics of the underlying hardware system as well as
verify assertions about the behavior of the application’s resulting execution. In this paper, we present the
Leto programming language and its corresponding verification system. We also demonstrate Leto on several
applications that leverage application-specific fault tolerance mechanisms.

CCS Concepts: « Computer systems organization — Reliability; « Software and its engineering —
Formal software verification;

Additional Key Words and Phrases: Approximate Computing

ACM Reference Format:

Brett Boston, Zoe Gong, and Michael Carbin. 2018. Leto: Verifying Application-Specific Hardware Fault Toler-
ance with Programmable Execution Models. Proc. ACM Program. Lang. 2, OOPSLA, Article 163 (November 2018),
30 pages. https://doi.org/10.1145/3276533

1 INTRODUCTION

Due to the aggressive scaling of technology sizes in modern computer processor fabrication, modern
processors have become more vulnerable to errors that result from natural variations in processor
manufacturing, natural variations in transistor reliability as processors physically age over time,
and natural variations in these processors’ operating environments (e.g., temperature variation and
cosmic/environmental radiation) [Amarasinghe et al. 2009; Borkar 2005; Johnston 2000; Kurd et al.
2010; Mitra et al. 2005, 2006; Mukherjee et al. 2003; Shivakumar et al. 2002; Yim 2014].

Authors’ addresses: Brett Boston, Massachusetts Institute of Technology, Cambridge, MA, USA, boston@csail. mit.edu; Zoe
Gong, Massachusetts Institute of Technology, Cambridge, MA, USA, zoegong@mit.edu; Michael Carbin, Massachusetts
Institute of Technology, Cambridge, MA, USA, mcarbin@csail.mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2475-1421/2018/11-ART163

https://doi.org/10.1145/3276533

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:2 Brett Boston, Zoe Gong, and Michael Carbin

Challenges. These systems encounter faults—anomalies in the underlying physical device—that
produce errors—unanticipated or incorrect values that are visible to the program. Simple fault
models include bit flips in the output of arithmetic, logical, and memory operations. These faults
can be transient—occurring nondeterministically with the device eventually returning to correct
behavior—or permanent—with the device never returning to correct behavior. A key challenge for
building applications for these platforms is that reasoning about the reliability of these applications
requires reasoning about the semantics of the platform and its impact on the application’s behavior.

1.1 Application-Specific Fault Tolerance

In response to this increased error vulnerability, researchers have expanded on historical results
for algorithm-based fault tolerance [Bronevetsky and de Supinski 2008; Hoemmen and Heroux
2011; Huang and Abraham 1984; Oboril et al. 2011; Roy-Chowdhury and Banerjee 1994, 1996; Sao
et al. 2016; Sao and Vuduc 2013; Shantharam et al. 2012], alternatively application-specific fault
tolerance, to identify new opportunities for low-overhead mechanisms that can steer an application’s
execution to produce acceptable results: results that are within some tolerance of the result expected
from a fully reliable execution. These mechanisms take the original application and produce a
protected version of the application that includes runtime error detection and recovery mechanisms.

For example, application-specific fault tolerance techniques for linear algebra instrument the
application with lightweight checksums that validate if the computation produced the correct
results. For some applications, these checksums are exact. However, for other applications, these
checksums either are not known to exist or, at best, compromise on their error coverage.

Other techniques include selective n-modular redundancy in which a developer either manually
or with the support of a dynamic fault-injection tool identifies instructions or regions of code that
do not need to be protected for the application to produce an acceptable result—as determined by
an empirical evaluation [Carbin and Rinard 2010; Thomas and Pattabiraman 2016; Venkatagiri et al.
2016; Vishal Chandra Sharma 2016]. Another class of techniques is fault-tolerant algorithms that
through the addition of algorithm-specific checking and correction code are tolerant to faults [Du
et al. 2012; Hoemmen and Heroux 2011; Sao et al. 2016; Sao and Vuduc 2013].

Challenges. A major barrier to implementing these techniques is that their results either rely
on empirical guarantees or—for self-stabilizing algorithms—hinge on the assumption that the under-
lying computing substrate’s fault model matches the assumptions of the algorithmic formalization.

1.2 Verified Application-Specific Fault Tolerance

To address these challenges we present Leto, an SMT based, automatic verification system that
supports reasoning about unreliably executed programs. Leto enables a developer to verify their
application-specific fault tolerance mechanism by providing tools to 1) programmatically specify
the behavior of the computing substrate’s fault model and 2) verify relational assertions that relate
the behavior of the unreliably executed program to that of the reliable execution. Specifically, Leto
automatically weaves the behavior of the underlying hardware system—as given by a specification—
into the execution of the main program. In addition, Leto’s program logic enables a developer to
specify relational assertions that, for example, constrain the difference in results of the unreliable
execution of the program from that of its reliable execution.

1.2.1 Execution Models. Leto permits developers to programmatically specify an execution model.
Figure 1 presents a Leto specification for a single-event upset (SEU) execution model with specifica-
tions for multiplication. An SEU model is a common fault model that application developers in the
area of fault tolerance use to model the execution behavior of an application such that they can
provide a variety of fault tolerance mechanisms [Chen et al. 2008; Yim et al. 2010]. The underlying

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:3

assumption is that faults in a system (e.g., those due to cosmic radiation) occur with a probability
such that at most one fault will occur during the execution of an application.
The model exports two versions of the multiplica-

1 | bool upset = false; . N . .

2 P tion operator. Line 3 specifies the standard reliable
3 |operator *(real x1, real x2) implementation of multiplication. The model denotes
;1 ensures (result == x1 * X2);| thig fact with its ensures clause which asserts what
6 |operator *(real x1, real x2) must be true of the model’s state and outputs after
7 when (lupset) execution of the operation. This operation specifically
8 modifies (upset) . .

9 ensures (upset); constrains the value of result—which represents the

result of the operation—to equal x1 * x2 where * has

Fig. 1. Unbounded SEU Execution Model standard multiplication semantics. Line 6 specifies an

unreliable implementation of the multiplication opera-

tor. This implementation does not place any constraints on result and therefore permits arbitrary,
unbounded errors in the operation’s result.

Stateful. Because the model is an SEU model it must track whether a fault has occurred so that
the model exposes at most one fault to the application. This model is therefore stateful and to
achieve this semantics, the model includes a boolean valued state variable—upset (Line 1)—that
records whether or not a fault has already occurred during the execution of the program. The
model additionally predicates the availability of its unreliable operations by a guard. Specifically, an
operation’s guard is the optionally-specified boolean expression that occurs after the when keyword.
The when clause for the unreliable version requires !upset indicating that the unreliable version is
only enabled if a fault has yet to occur. Leto models the dynamic execution of the application such
that the execution exposes only enabled operation implementations at a given program point.

1.2.2 Acceptability Properties. Leto enables developers to automatically verify the basic goal of an
application-specific fault tolerance mechanism: ensure that the resulting application satisfies its
acceptability properties [Carbin et al. 2012], such as its safety and accuracy.

Safety Properties: standard properties of the execution of the application that must be true
of a single execution of the application. Such properties include, for example, memory safety
and the assertion that the application returns results that are within some range. For example, a
computation of a distance metric must—regardless of the accuracy of its results—return a value
that is non-negative. In Leto, a developer specifies safety properties with the standard assert
statements typically seen in verification systems.

Accuracy Properties: properties of the unreliable or relaxed execution of the application
that relate its behavior and results to that of a reliably executed version. Accuracy properties
are relational in that they relate values of the state of the program between its two semantic
interpretations. For example, the assertion abs(x<o> - x<r>) < epsilon in Leto specifies that
the difference in value of x between the program’s original, reliable execution (denoted by x<o>)
and relaxed execution (denoted by x<r>) is at most epsilon.

Execution-Specific Properties. Given an execution model, Leto also enables developers to
refer to the execution model’s state. For example, in many self-stabilizing iterative algorithms, the
proof of convergence for the algorithm in the presence of faults requires reasoning about three
cases: 1) the portion of the execution in which no fault has occurred, 2) the iteration on which a fault
occurs (assuming an SEU model), and 3) the portion of the execution after the fault. Leto enables
developers to verify such properties by exposing the state of the fault model into the program logic.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:4 Brett Boston, Zoe Gong, and Michael Carbin

Asymmetric Relational Verification. Leto provides and implements an Asymmetric Rela-
tional Hoare Logic [Carbin et al. 2012] as its core program logic. An Asymmetric Relational Hoare
Logic is a variant of the standard Hoare Logic that natively refers to the values of variables between
two executions of the program. Leto’s use of a relational program logic serves two goals: 1) it
gives a semantics to accuracy properties and 2) it enables tractable verification of safety properties.
For example, proving the memory safety of an application outright can be challenging for many
applications. However, application-specific fault tolerance mechanisms can typically be designed
and deployed such that it is possible to verify that for any given array access or memory access,
errors in the application do not interfere with the accessed address. Such properties are typically
easier to verify for a protected application than verifying the safety of the memory access outright.
Leto therefore enables developers to tractably verify a strong relative safety guarantee: if the
original application satisfies its safety properties, then relaxed executions of the application with
its deployed application-specific fault tolerance mechanisms also satisfy these safety properties.

1.3 Contributions
This paper presents the following contributions:

Execution Models. We present a language for specifying execution models that provides
stateful, input-dependent selection of each operation’s implementation. We demonstrate numerous
sample execution models.

Programming Language and Semantics. We present language constructs that enable devel-
opers to specify assertions that refer to the state of the execution model. These constructs enable a
developer to, for example, specify the precise properties that self-stabilizing applications require to
verify high-level convergence properties.

Program Logic and Verification Algorithm. Leto’s program logic enables developers to lower
the overhead of verifying a standard safety property by enabling techniques that demonstrate the
non-interference between the application’s faults and the validity of a property. Leto’s verification
algorithm additionally automates this process through the inclusion of loop invariant inference.

Case Studies. We evaluate Leto on several self-correcting algorithms (Jacobi, Self-stabilizing
Conjugate Gradient, Self-stabilizing Steepest Descent, and Self-correcting Connected Components)
and demonstrate that it is possible to verify the key invariants required to prove that these algo-
rithms’ self-stability guarantees hold for their implementations. We consider execution models that
capture a range of substrates, including emerging hardware systems that bound potential error,
emerging hardware security vulnerabilities (Rowhammer [Kim et al. 2014]), as well as standard
fault modeling assumptions that expose unbounded errors to the application.

Leto’s contributions enable developers to specify and verify the rich properties seen in applica-
tions with application-specific fault tolerance mechanisms. Within the developer’s workflow, Leto
therefore aids developers in building concrete implementations of their applications by enabling
them to first specify and verify their fault tolerance mechanisms within Leto’s environment.

2 EXAMPLE: VERIFYING HARDWARE FAULT TOLERANCE

Verifying hardware fault tolerance is challenging task in which the end goal is to deliver a fault
tolerance scheme that balances fault coverage (the set of faults for which the computation produces
an acceptable result) with the added overhead of instrumentation for potentially detecting and
recovering from the fault. In this section, we illustrate this task’s challenges as well as how to
address them with Leto. We first present two fault tolerance approaches for a simplified vector-
vector product that we then combine to produce a self-stabilizing version of the Jacobi iterative
method [Jacobi 1845] using Leto.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:5

1 | vector<real> product(uint N, vector<real> x(N), vector<real> y(N))
2 1 {
3 vector<real> result(N);
4
5 for (uint i = 0; i < N; ++i) { result[i] = x[i] * y[il; }
6
7 return result;
8 11}
Fig. 2. Vector Product
1 | property_r eq_array(vector<real> x, uint N) :
2 V(uint i)((i < N<r>) -> (x<o>[i] == x<r>[il]));
3
4 |requires_r eq(N) && eq(x) && eq(y)
5 | vector<real> product(uint N, vector<real> x(N), vector<real> y(N))
6 |{
7 vector<real> result(N);
8
9 for (uint i = @; i < N; ++1i)
10 invariant_r eq_array(result, i)
11 {
12 real d_1 = x[i] *. y[i];
13
14 real d_2 = x[i] *. y[i];
15 if (d_1 !'= d_2) {
16 d_1 = x[i] *. y[i];
17 3}
18
19 result[i] = d_1;
20 }
21
22 assert_r(eq_array(result, N));
23
24 return result;
25 |}

Fig. 3. Vector Product Under SEU

Vector-Vector Product. Figure 2 presents an implementation of a vector-vector (Hadamard/-
Pointwise) product in Leto. We start with this simple example because vector products are compo-
nents in many numerical algorithms and exist in three of our four benchmarks as an intermediate
calculation in matrix-vector products.

This implementation defines a function product that takes a size parameter N, a vector of real
numbers, X, of size N, a vector y of size N, and returns the pointwise product of x and y. This
computation uses Leto’s real datatype to communicate that the values should be modeled as real
numbers in the theories of the system’s underlying SMT solver (Z3).!

2.1 Exact Fault Tolerance through Dual-Modular Redundancy

Figure 3 presents a vector-vector product implementation protected using dual-modular redundancy
(DMR) such that the resulting implementation is exact in the presence of errors generated by the
unbounded single-event upset model specified in Figure 1 of Section 1. Specifically, Leto verifies
that this implementation when executed under the model satisfies its stated invariants.

Two features in Leto that diverge from traditional programming languages are that developers
can specify that some operations in the program may execute with an alternative semantics and —
as consequence — write relational assertions that relate values between the program’s standard,
original execution and its alternative relaxed execution under a specified execution model.

ILeto also supports traditional float data types. However, real can serve as a simplifying assumption and optimization
over the complexity of Z3’s floating-point implementation.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:6 Brett Boston, Zoe Gong, and Michael Carbin

Relaxed Execution. Leto exports relaxed operations by enabling developers to specify that
an operation may execute according to the execution model specification (versus a standard
implementation) by appending a dot to the operation such as the multiplication operation ‘*.’
on Line 12, Line 14, and Line 16. The first multiplication corresponds to the multiplication on
Line 5 in the original implementation, with the additional two operations corresponding to the
implementation’s hardware fault tolerance scheme.

Fault Tolerance. A hardware fault tolerance scheme typically has two components: the code
that corresponds to detecting that an error has occurred and the code the recovers from the detected
error. Dual modular redundancy (DMR) prescribes a simple implementations of these components.

Detection. In DMR, to detect an error the developer or system executes a redundant copy of the
computation. In this case, the developer inserts a redundant multiply on (Line 14). Note that this
multiply is also relaxed, with the typical assumption in DMR being that redundant computation
executes under the same fault assumptions.

The implementation then checks if the duplicated value matches the original value. If not, DMR
prescribes that the computation should then execute its recovery mechanism.

Recovery. The simplest recovery mechanism for DMR is to simply re-execute the operation. In
this case, the implementation re-executes the multiplication on Line 16 (again with the same fault
assumptions), setting d_1 to the correct value.

Reasoning. The DMR detection and recovery scheme is correct because of the single-event
upset model. Specifically, at most one multiplication during the execution of product can return
an incorrect result. Therefore we know that if either multiplication on Line 12 or Line 14 return a
correct result, then the equality comparison must identify that a fault occurred. Further, given that
correct multiplications are deterministic, the recovery multiplication on Line 16 only executes if a
fault occurred previously. Second, given that the only admissible fault has already occurred, the
recovery multiplication must execute correctly, therefore restoring d_1 to the correct value.

Relational Verification. To verify that this vector product implementation produces the correct
result in Leto, the developer uses the assert_r statement on Line 22 to assert eq_array(result,
N). eq_array is a relational assertion. This implementation defines eq_array as a property — a
hygienic macro in Leto that enables code reuse within loop invariants and assertions — on Line 1.
This property takes a vector x and a size N and enforces that for every index i, x<o>[i] == x<r>[i],
where x<o> refers to the value of x in the standard, original execution of the program and x<r>
refers to the value of x in the relaxed execution. To facilitate the verification of this condition we
also include it in the loop invariant on Line 9. Another necessary component to verifying this
assertion is that N, x, and y have the same values in both the original and relaxed executions. The
implementation enforces this property through the relational function precondition (requires_r)
on Line 4. Leto expands terms of the form eq(x) to x<o> == x<r>.

Verification Algorithm. Leto provides an automated verification algorithm that performs
relational forward symbolic execution to discharge assertions in the program. Namely, Leto traverses
the program, building a logical characterization of the state of the program at each point and verifies
that the resulting logical formula ensures that a given assert or assert_r statement is valid. This
approach also works in concert with the developer’s specification annotations; these include both
function preconditions and loop invariants. Leto also provides support for automatic loop invariant
inference, which can lower the annotation burden of the developer by automatically inferring
additional loop invariants. For example, in this program, Leto infers eq(N), eq(x), eq(y) and i <=
N, which is necessary to demonstrate that all of the vector accesses are in bounds.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:7

Summary. DMR is a traditional and simple scheme for hardware fault tolerance. However, even
in its simplicity, there are still challenges. For example, consider if the developer were to execute
their application on the Leto execution model in Figure 4, which produces two faults instead one.
(Leto supports the old keyword in the spirit of similar constructs in ESC/Java [Flanagan and Leino
2001], Spec# [Barnett et al. 2004], and other verification systems, which denotes the value of the
corresponding variable before the operator executes.) For this model, DMR is no longer correct:
both d_1 and d_2 could result in the same incorrect result and therefore the error detection check
would erroneously pass, leading to an undetected error.

Alternatively, the developer may
be willing to risk two incorrect ex-
ecutions under the assumption that
errors are independent (Figure 5) and,
therefore, the probability that two in-
structions produce the same incorrect
result is small enough to not be a con-
cern . However, in this case, the recov-
ery multiplication must then execute Fig. 4. Double-Event Upset Execution Model
reliably (via a separate fully reliable
hardware substrate [Sampson et al. 2011] or additional replication) because it is then possible for
the implementation to correctly detect the first error, but then have the second error corrupt the
multiplication used for recovery.

These considerations and scenar-

uint upset = 2;

operator *(real x1, real x2)
ensures (result == x1 * x2);

operator *(real x1, real x2)
when (upset > 0)
modifies (upset)
ensures (upset = old(upset) - 1);

DO O UTHR WD~

. . 1 |uint upset = 2;
ios demonstrate that even simple, 5 |real first_upset_value = 0;
traditional hardware fault tolerance 3
. . s _ 4 |operator =*(real x1, real x2)
schem.es with seem.lngly straightfor- ensures (result == x1 x x2):
ward implementations have subtle ¢
interactions between their behavior 7 |operator x(real x1, real x2)
d th . del 8 when (upset == 2)
and the execution model. 9 modifies (upset, first_upset_value)
10 ensures (upset = 1 &&
11 first_upset_value == result);
2.2 Approximate Computation 12 (real 1 x2)
13 | operator *(real x1, real x2
through Bounded Error 14 when (upset == 1)
Another hardware fault tolerance ap- 13 modifies (upset)
. . . 16 ensures (upset = 0 &&
proach is to permit a computation to 1, result != first_upset_value):

produce approximate results [Carbin
et al. 2013b; Sampson et al. 2011]. In Fig. 5. Independent Double-Event Upset Execution Model
this case, the developer does not nec-
essarily seek to produce the exact result in the event of an error; instead the developer understands
that the end user of a component’s or application’s results can tolerate error. For example, many
self-healing iterative algorithms for solving linear systems of equations can tolerate uncorrected er-
rors in their intermediate computations and still converge to correct solutions. The typical outcome
of such an error, however, is that the solver takes longer (than an error free execution) to compute
an answer. However, if the developer can determine and control the frequency and magnitude of
these errors, then they can also control the increase in convergence time [Sao and Vuduc 2013].
For example, the Jacobi iterative method has the property that the change in the number of
iterations to converge after an error is bounded logarithmically by the magnitude of the error.
Thus, by bounding the magnitude of errors, a developer using the Jacobi method can derive a static
bound on the maximum impact errors can have on convergence time.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:8 Brett Boston, Zoe Gong, and Michael Carbin

1 | const real E_REL = ...;

2 | bool upset = false;

3

4 | operator x(real x1, real x2)

5 ensures (result == x1 * x2);

6

7 | operator *(real x1, real x2)

8 when lupset && (0 != x1 * x2)

9 modifies (upset)
10 ensures upset && -E_REL <= 1 - result / (x1 * x2) <= E_REL;

Fig. 6. SEU Execution Model with Relative Error

1 | const real max = ...;

2 | const real eps = ...;

3

4 | property_r bounded_diff(vector<real> x, uint N) :

5 V(uint i)((i < N<r>) -> (abs(x<o>[i] - x<r>[i]) < eps));

6

7 |requires_r eq(N) && eq(x) && eq(y)

8 | requires forall(uint fi)(abs(x[fi]) < max && abs(y[fi]) < max)

9 |matrix<real> product(uint N, matrix<real> x(N), matrix<real> y(N))
10 |{

11 matrix<real> result(N);

12

13 for (uint i = @; i < N; ++i)

14 invariant_r bounded_diff(result, i)
15 {

16 result[i] = x[i] *. y[il;

17 }

18

19 assert_r (bounded_diff (result, N));
20

21 return result;

22 |}

Fig. 7. Vector Product Under SEU with Relative Error

Bounded Error Multiplication. Figure 6 presents an single-event upset model that also pro-
vides a relative error bound on the result of an errant multiply. This model corresponds to the
guarantees provided by hardware designs that, for example, are protected by truncated error
correction [Sullivan and Swartzlander 2012, 2013].

The model exports two versions of the multiplication operator. Line 4 specifies the standard
reliable implementation of multiplication. Line 7 additionally specifies an unreliable implementation
for the case where x1 * x2 is non-zero. The semantics of this unreliable operator guarantees
that even in the presence of an error, the result is within E_REL percent of the original result. To
implement the bound, the developer places a bound on the results of the multiplication using
inequalities over the result variable. In this case, E_REL (defined on Line 1) is the constant that
specifies the magnitude of the error bound.

Bounded Error Vector Product. Figure 7 presents a vector product implementation annotated
to verify under the relative error execution model. All of the relaxation in this implementation
occurs in the loop (Line 14) where the execution model may corrupt the value of result[i]. On
Line 19 the implementation uses a relational assertion (assert_r) to assert that eps (a constant) is
an upper bound on the impact of these errors (Line 5).

Verifying this vector product implementation relies on Leto’s specification capabilities to establish
bounds on the error in the product. To verify that this vector product implementation has bounded
error the developer uses the assert_r statement on Line 19 to assert bounded_diff(result, N).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:9

We define the bounded_diff property on Line 4. This property takes a vector x and a size N and
enforces that for every index i, the absolute error defined by x<o>[i] - x<r>[i] is less than eps.
To facilitate the verification of this condition we also include it in the loop invariant on Line 14.

In addition to the preconditions on N, x, and y as before (Figure 3, Line 4), this version requires
each component of the two input vectors to be less than max (Line 8). Because bounded_diff
asserts a bound on the absolute deviation in each component of result whereas the execution
model provides a relative bound, this additional precondition enables the solver to determine that
applying that relative bound to each array value results in a value that satisfies the absolute bound
(for satisfying values of max and model.E_REL).

Summary. Using Leto, a developer can bound the error that occurs in this approximate vector
product. For example, because at most one fault happens during product’s execution, at most one
position in result differs from the value in a reliable execution and, therefore, the norm of the
difference between result in the relaxed program versus the original program is at most eps. Such
bounded error properties are important for a variety of approximate computations [Carbin et al.
2012; Chaudhuri et al. 2011]. Moreover, for self-stabilizing iterative solvers, this property enables
the developer to bound the additional time to convergence given faults in the underlying hardware.

2.3 Application-Specific Fault Tolerance

Figure 8 presents an implementation of the Jacobi iterative method, alternatively Jacobi, in Leto.
The Jacobi iterative method is an algorithm for solving a system of linear equations. Specifically,
given a matrix of coefficients A and a vector b of intercepts, the algorithm computes a solution
vector, x, where A= x = b. The algorithm works iteratively by computing successive approximations
of x. For a system of two equations (where A is a 2x2 matrix and both b and x are of length two),
Jacobi uses the solution vector from the previous iteration, x*, to produce the solution vector for
the current iteration, x**!, using the following approximation scheme:

X(]fﬂ = (bo — A1 'Xf)/Ao,o

xf“ = (b1 = Ao ~xé‘)/A1,1

In words, for a given coordinate x;, Jacobi approximates xlk“, by substituting the values xJI.‘, where

i # J, into the linear equation for i, and solving for xf”. Modulo floating-point rounding error,
Jacobi converges to the correct x as the number of iterations goes to infinity.

Fault Tolerance. Jacobi is naturally self-stabilizing. Specifically, if faults do not modify the
contents of A, then Jacobi is in a valid state at the end of each iteration: if no additional faults occur
during its execution, then Jacobi will converge to the correct solution.

To understand this property intuitively, if an iteration produces an incorrect solution vector,
then the subsequent execution of the computation is equivalent to having started the computation
from scratch with the produced vector as the initial starting point. Moreover, Jacobi enjoys the
nice result that the change in the number of iterations required to converge from the new starting
point is bounded logarithmically by the magnitude of the error in the solution vector.

Verifying Jacobi for a given execution platform therefore poses two challenges: 1) verifying that
faults only affect the value of x and 2) identifying a bound on the number of added iterations in the
presence of a fault. Note that the latter determination not only serves as important information for
understanding if the implementation will meet the developer’s convergence requirements, but it
also serves the practical purpose of setting the maximum number of iterations such that a faulty
execution will produce a result that is at least as good as a fully reliable execution.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:10 Brett Boston, Zoe Gong, and Michael Carbin

1 |const real E = ...;

2

3 | property_r sig(real sum)

4 (!model.upset -> eq(sum)) &&

5 ('out[model.upset] && model.upset -> (abs(sum<o> - sum<r>) < E));
6

7 |uint N; int iters;

8 |matrix<real> A(N,N); vector<real> b(N); vector<real> x(N);
9

10 |@label(out)

11 | for (; @ <= iters; --iters) invariant_r !model.upset -> eq(x)
12 | ¢

13 vector<real> next_x(N);

14

15 for (uint i = 0; i < N; ++1i)

16 invariant_r !model.upset -> eq(next_x)

17 invariant_r !out[model.upset] & model.upset -> bounded_diff(next_x,N)
18 {

19 real sum = 0;

20

21 for (uint j = 0; j < N; ++j) invariant_r sig(sum)
22 {

23 if (1 !'= 3) {

24 real delta = A[iJ[j] *. x[j];

25

26 if (E/model.E_REL-E <= abs(delta)) {

27 delta = A[il[j]1 * x[j1;

28 3}

29

30 sum = sum + delta;

31 }

32

33 }

34 real num = b[i] - sum;

35 next_x[i] = num / A[il[i];

36 3}

37

38 X = next_x;

39

40 assert_r eq(A);

41 assert_r (bounded_diff (x, N));

42 |3

Fig. 8. Jacobi Iterative Method

Jacobi Implementation. The overall architecture of the implementation in Figure 8 is that the
outer loop on Line 11 computes and stores the solution vector for the current iteration into next_x.
At the end of each iteration, the implementation updates x by copying next_x into x. The second
loop on Line 15 iterates through each x; (stored at x[i]), sums the other terms in the ith equation
using the third loop (Line 21) into sum, and then computes x[i] as the value b[i] - sum/A[i][i].
The property bounded_diff is the same as before (Figure 7). We discuss sig below.

Relaxation. All of the relaxation in Jacobi occurs in the third loop (Line 21), where the relaxed
execution may perturb the value of sum. Specifically, the implementation performs a relaxed
multiplication (Line 24) for each calculation of delta.

To ensure that the overall calculation of sum does not exceed the error bound E, the implementa-
tion dynamically asserts that each delta calculation is sufficiently accurate. To achieve this, the
implementation dynamically checks that delta is less than E / model.E_REL - E, which asserts
that delta is small enough that even if the calculation were to have encountered the worst-case
possible error according to the specification for the relaxed multiplication, then the resulting error

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:11

in sum still would not exceed E. If this check succeeds, then the implementation continues to
the next iteration of the loop. If this check fails, then the implementation falls back to a reliable
multiplication implementation (Line 27), enabling the computation to recover from the error.

Self-Stability. To verify that this Jacobi implementation is self-stabilizing the developer uses
the assert_r statement on Line 40 to assert eq(A), which denotes that A has the same value in
both the original and relaxed execution. This property therefore asserts that faults do not disturb
the matrix of coefficients and therefore precludes any execution models that may disturb A.

Convergence Bound. Jacobi also enjoys a bound on the additional number of iterations added to
its execution given a fault. Specifically, A, = O(logT(m)) where A, is the number of additional
iterations in the relaxed execution, N is the size of the x vector, E is the maximum perturbation
in each element of the solution vector to due a fault in an iteration, and T is a value between 0
and 1 representing the magnitude of the non-diagonal elements of A relative to the magnitude of
the diagonal elements of A. We specify that the maximum perturbation is bounded by E with the
assert_r on Line 41, which asserts that bounded_diff(x, N).

Verification Approach. To verify Jacobi, the developer needs to provide a set of loop invariants
that structure the proof. In Jacobi, there two key invariants.

The developer specifies one invariant for the outermost loop on Line 11: Imodel . upset -> eq(x).
Given our target execution model in Figure 6, this invariant therefore states that if a fault has yet
to occur, then x is equivalent between both the original and relaxed executions. This invariant
follows because in the absence of a fault, Jacobi is a deterministic computation for which any two
executions (the original and relaxed execution) that start from the same state compute the same
result. By default, Leto models the two executions as starting from the same state. Therefore, all
variables initialized in Line 7 and Line 8 have the same values between the two executions. An
important observation here is that developer-driven reasoning is guided by the model’s state.

The invariant on Line 17 is a key step towards the main proof goal in that it bounds the
difference in next_x if a fault occurs on the current iteration of the loop. In Leto, the notation
lout[model.upset] is a reference to the state of the execution model at the last execution of the
label out, which corresponds to the beginning of the body of the outer while loop (Line 11). Leto’s
support for labels enables the developer and the verification system to refer to the value of a model
state at some control flow point in the program. This capability is important because, as shown in
the previous invariant and here, the model state communicates whether any faults have occurred
and, moreover, enables the developer (and system) to reason about whether a fault has occurred
between two program points. In this invariant, labels enable the developer to assert that the bound
applies for this single iteration of the iterative algorithm where the fault occurs.

Finally, the invariant sig(sum) bounds the total error on sum. This property is true because if a
fault did not occur on the previous calculation of x in the outer loop then at most one fault may
happen during the calculation of each delta that contributes to sum and the error in each delta is
bounded by E. Leto verifies that the unreliable multiplication in combination with the conservative
check on Line 26 establishes this fact.

Summary. In Jacobi, these properties work together to enable the developer to refine the dual
modular redundancy approach (as explored in Section 2.1) to eliminate the redundant multiplication
required to detect and error while still providing an useful bound on the behavior of the application.
Leto’s relational verification features therefore enable a developer to navigate the space between
exact fault tolerance, approximate computation, and appplication-specific fault tolerance, which
combines detection and correction logic with application-specific properties to produce more
efficient detection and correction schemes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:12

c € constants, x € variables, r € memory regions

S — (@region r)’ r x | (@region r)’ tx(c*) |x=E

|S; S|assume P | assert_r P, | assert P
|[if B){S }else{S}|while(B)I"{S}

T — int | real | bool

I — invariant P | invariant_r P,

M — model { x* O } O — operator Op (r x)* C*

Op— = | -~ | ®|<]| o] read |write

C — when P | ensures P | modifies x*

Brett Boston, Zoe Gong, and Michael Carbin

O A| A > | = ...
<-=< | <. =|=.]..

d-o+| +.| x| x.|...

E— x|E ®E|model.x | x[E]
E, — x<0>| x<r>| E, ® E,
| x<o>[E,] | x<r>[E,] | E

B — true| false | E < E
|BoB|fE*|-B|-.B
P—>VxB|dxB|B

P, — true| false | E < E,|P, ¢ P,

| =Py |=. P |VxPr|3x P
Fig. 9. Language Syntax
3 LANGUAGE

Figure 9 presents the core of Leto’s programming language. Leto provides a general-purpose
imperative language that includes specification primitives (e.g., requires) in the spirit of ESC/-
Java [Flanagan and Leino 2001], Boogie [Barnett et al. 2005], Eiffel [Meyer 1992], and Spec# [Barnett
et al. 2004] to support verifying applications.

Programs. A program consists of a sequence of statements S. Although we also support func-
tions, we elide them here.

Data Types. The language includes primitive data types (r) of (signed and unsigned) integers,
reals, and booleans as well as vectors/matrices of these types. A developer can use the @region r
annotation to state the variable is allocated in a named memory region, r, for which reads and writes
may have a custom semantics according to the execution model.

Memory Regions. In addition to binary operators,

Leto permits the specification of read and write behav- | [poo1 upset = false;
ior. Figure 10 presents an adaptation of the single-event 2
upset model in Figure 1 to memory. Read and write spec- - | érégion(unreliable)
'p . & . o Y- . p 4 |write(uint dest, uint src)
ifications may contain an additional @region annotation 5 ensures (dest == src);
that enables developers to partition their program vari- © .)

bles int ltipl . ith differi d 7 |@region(unreliable)
ables into multiple memory regions with differing read g | ,rite(uint dest, uint src)
and write characteristics. The annotations on Line 3 and 9 when (lupset)
Line 7 denote that each respective specification gives a 1(1) Zﬁgiiéis (5;2:?;?
semantics to variables stored in the unreliable memory '

region. In general, the set of regions is not fixed in Leto;
a developer can define arbitrary regions by name.
When Leto encounters an expression of the form v = e where v is in the memory region
unreliable, Leto substitutes occurrences of dest in the model with v and occurrences of src with
e. Line 3 specifies a reliable write operator while Line 7 specifies a faulty write operator that writes
arbitrary values to memory, with the result being that the system stores an erroneous value in the
variable represented by dest and subsequent reads of that variable return the erroneous value.

Fig. 10. Single-Event Upset Memory Model

Expressions. Leto includes standard numerical operations, comparison, and logical expressions,
along with dotted notations (e.g., x +. y) that communicate that the operation may have a custom
semantics as specified in the execution model.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:13

Memory Operations. Leto supports reads from and writes to variables, including values of both
primitive and array/matrix type. Reads and writes to variables allocated in a designated memory
region operate with the semantics as given in the program’s execution model.

Assertions and Assumptions. Leto also enables developers to specify assertions and assump-
tions on the state of the program. Leto’s language includes both standard assert statements and
assume statements (with their traditional meaning). Each such statement can use a quantified
boolean expression, P, that quantifies over the value of variable (e.g., the index of an array/matrix).
A relational assertion statement, assert_r, uses a quantified relational boolean expression, Py, that
specifies a relationship between the original and relaxed executions to verify.

Control flow. Leto’s language includes standard control constructs, such as sequential compo-
sition, if statements, while, and for statements. For while and for statements, a developer can
specify loop invariants to support verification via the syntax invariant (unary loop invariant) and
invariant_r (relational loop invariant). A loop invariant specifies a property that must be true on
entry to the loop, as well as at the end of each loop iteration. Loop invariants are a key to verifying
applications that contain loops because automatically inferring loop invariants is undecidable in
general. Therefore, a developer may need to specify additional loop invariants when Leto’s loop
invariant inference procedure is insufficient.

Execution Model. An execution model M consists of a set of state variables x* and operation
specifications (O”). Each operation specification (O) specifies 1) the target operator for the specifi-
cation, 2) a list of variables as parameters to the specification, and 3) a set of clauses. A clause is
either a when clause, which guards the execution of the specification with a predicate P, an ensures
clause, which establishes a relationship on the output of the specification given the inputs to the
specification and fault model’s state variables, or a modifies clause, that specifies which of the
model’s state variables changes as a result of using the operation. Predicates consist of standard
operations over standard expressions with the addition of the distinguished result variable, which
captures the result of the specification’s execution.

3.1 Dynamic Semantics

Exp — n|rer We next present an abbreviated dynamic se-

x € Var S — r=Exp|r=x| x=r mantics of Lfeto’.s language. W.e expand.on
€ Reg | assertr | assumer these semantics in our companion technical

n € Inty | skip | S; S| ifrSs report [Boston et al. 2018]. We formalize the
| whilerP; S semantics via a lowered syntax of the Leto lan-

guage that includes registers (Figure 11). We as-
sume a standard compilation process that trans-
lates high-level Leto to this lowered language. Additionally, to support our formalization of Leto’s
program logic, we extend the predicates P and P, with registers into P* and P}, respectively.

Fig. 11. Syntax of Lowered Language (Abbreviated)

3.1.1 Preliminaries. Leto’s semantics models an abstract machine that includes a frame, a heap,
and an execution model state. Leto allocates memory for program variables (both scalar and array)
in the heap. A frame serves two roles: 1) a frame maps a program variable to the address of the
memory region allocated for that variable in the heap, and 2) a frame maps a register to its current
value. The model state stores the values for state variables within the execution model.

Frames, Heaps, Model States, Environments. A frame, 0 € ¥ = Var UReg — Inty, is a finite
map from variables and registers to N-bit integers. A heap, h € H = Loc — Inty;, is a finite map
from locations (n € Loc C Inty) to N-bit integer values. A region map, 6 € ® = Loc — Region, is a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:14 Brett Boston, Zoe Gong, and Michael Carbin

finite map from locations to memory regions. A model state, m € M = Var — Inty, is a finite map
from model state variables to N-bit integer values. An environment, ¢ € E = XX HXO XM, is a tuple
consisting of a frame, a heap, a region map, and a model state. An execution model specification,
p C Op X list(Var) x setf(Var) X P X P, is a relation consisting of tuples of an operation op € Op, a
list of input variables, a set of modified variables, and two unary logical predicates representing the
when and ensures clauses of the operation.

Initialization. For clarity of presentation, we assume a compilation and execution model in
which memory locations for program variables are allocated and the corresponding mapping in
the frame are done prior to execution of the program (similar in form to C-style declarations).

3.1.2 Execution Model Semantics. Here we provide an abbreviated presentation of the execution
model relation {m, op, (args)) |, (n, m’). The relation states that given the arguments, args to an
operation op, evaluation of the operation from the model state m yields a result n and a new model
state m’ under the execution model specification p.

F-BINOP
w(®, [x1,x2],X, Py, Pe) Vxm € X - fresh(x},) m[x1 = n1][x2 — na2] | Py
m'[x1 > n1][x2 — n2][Vxm € X - xm > x),|[result — n3] [= Pe dom(m) = dom(m”)

(m, ®,(n1,n2)) Uy (ns, m")

The [r-BINOP] rule specifies the meaning of this relation for binary operations. This relation states
that the value of an operation @ given a tuple of input values (ny, nz) and an execution model state m
evaluates to value ns; and a new model state m’. The rule relies on the relation p(op,vlist, X, P,,, P,)
which specifies the list of argument names, vlist, the set of modified variables X, the precondition
P,,, and the postcondition P, for the operation op in the developer-provided execution model. The
set of modified variables is the union of the modifies clauses in the operation’s specification. The
precondition of an operation is the conjunction of the when clauses in the operation’s specification.
The postcondition of an operation is the conjunction of the ensures clauses in the operation’s
specification.

The semantics of the model relation nondeterministically selects an operation specification, result
value, and output model state subject to the constraint that: 1) the current model state satisfies the
precondition (after the inputs to the operation have been appropriately assigned into the model
state), 2) the output model state satisfies the postcondition (after the inputs, modified variables,
and result value have been appropriately assigned into the model state), and 3) the domains of the
input and output state are the same.

Because of the uniformity of the execution model specification, the semantics for other operations
(e.g., reads and writes) is similar with the sole distinction being the number of arguments passed to
the operation. For clarity of presentation, we elide the presentation of rules for those operations.

3.1.3 Language Semantics. We next present the nondeterministic small-step transition relation

(s, €) LR (s’, €’y of a Leto program. The relation states that execution of statement s from the
environment ¢ takes one step yielding the statement s’ and environment ¢’ under the execution
model specification p. The semantics of statements is largely similar to that of traditional approaches
except for the statements’ ability to encounter faults. We categorize Leto’s instructions into four
categories: register instructions, assertions, memory instructions, and control flow.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:15

Register Instructions. The rules ,qqon
[assiGN] and [BINOP] specify the se-
mantics of two of Leto’s register ma- (r = n, (o, h, 0, m)) LN (skip, (a[r — n], h, 0, m))
nipulation instructions. [AssIGN] de-
fines the semantics of assigning an BINOP
integer value to a register, r = n. This ,
has the expected semantics updat- (m, @, (n1,n2)) Uy ns, m’)
ing the value of r within the current (r=r ®rs,{c, h, 0, m)) LR (r=ns, (o, h, 0, m’))
frame with the value n. Of note is that
register assignment executes fully reliably without faults.

[BINOP] specifies the semantics of a register only binary operation, r =r; @ r;. Note that reads
of the input registers execute fully reliably. The result of the operation is ns, which is the value of
the operation given the semantics of that operation’s execution model when executed from the
model state m on parameters n; and n,. Executing the execution model may change the values
of the execution model’s state variables. Therefore, the instruction evaluates to an instruction
that assigns ns to the destination register and evaluates with a environment that consists of the
unmodified frame, the unmodified heap, and the modified execution model state. Note that by
virtue of the fact that both the frame and heap are unmodified, faults in register instructions cannot
modify the contents or organization of memory.

ny = o(ry) ny = o(rs)

Assertions. The assert and assume statements have standard semantics, yielding a skip and
continuing the execution of the program if their conditions are satisfied. For either of these
statements, if their conditions evaluate to false, then execution yields fail denoting that execution
has failed and become stuck in error.

READ

a=o(x) n = h(a) q = 6(a) (m,read,(n,q)) |, (n’, m’)
(r=x,(o, h, 0, m)) % (r=n’,{c, h, 6, m’))

WRITE
a=o(x)
noia = h(a) Npew = 0(7) q=0(a) (m,write, (nold, Mnews q)) U,u (np, m")

(x=r,{(c, h, 0, m)) 5 (skip, (o, hla > n,], 6, m’))

Memory Instructions. The rules [READ] and [WRITE] specify the semantics of two of Leto’s
memory manipulation instructions. [READ] defines the semantics of reading the value of a program
variable x from it’s corresponding memory location: r = x. The rule fetches the program variable’s
memory address from the frame, reads the value of the memory location n = h(a) and the region
the memory location belongs to ¢ = 6(a) and then executes the execution model with the program
variable’s current value in memory and the memory region it resides in as a parameters. The execu-
tion model nondeterministically yields a result n’ that the rule uses to complete its implementing
by issuing an assignment to the register.

[WRITE] defines the semantics of writing the value of a register to memory. The rule reads the
value of the memory location to record the old value of the memory location, reads the value of
the input register, fetches the region the memory location corresponds to, and then executes the
execution model with these values as parameters. The execution model yields a new value n, that
the rule then assigns to the value the program variable.

Control Flow. The rules for control flow have standard semantics. An important note is that
the semantics of these statements is such that the transfer of control from one instruction to

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:16 Brett Boston, Zoe Gong, and Michael Carbin

another always executes reliably and, therefore, faults do not introduce control flow errors into
the program. This modeling assumption is consistent with standard fault injection and reliability
analysis models [Sampson et al. 2011; Vishal Chandra Sharma 2016].

Big-Step Semantics. To support the formalization in the remainder of the paper, we introduce
the big-step relation (s, ¢) |, v € S X E XV where V =:= E | fail E such that (s,¢) | v is the
reflexive transitive closure of —, that yields the environment ¢ if execution ends successfully in a
skip statement or yields the pair fail ¢ when the execution ends in a failure. We also introduce
the big-step relation (s,) | v € S X E x V where (s,¢) | v = (s,¢) |, v where p denotes a fully
reliable fault model where the only implementations exposed for each operation are fully reliable
implementations.

4 PROGRAM LOGIC

Leto’s program logic is a relational program logic in that it relates relaxed executions of the program
to its original, reliable execution. A key idea behind our development is the separation of the rules
into a part that solely characterizes the reliable execution of the program, (the Left Rules), a part
that solely characterizes the relaxed execution (the Right Rules), and a part the characterizes the
lockstep execution of the reliable and relaxed execution (the Lockstep Rules). The result is an
Asymmetric Relational Hoare Logic that characterizes the two interpretations of the program.

4.1 Preliminaries

Assertion Logic Syntax and Semantics. Figure 9 presents our language syntax, including
the syntax of our assertion language. Assertions include standard quantified boolean predicates,
P*, with the standard semantic function [P*] € P(E) that gives the denotation of P* as the set
of environments that satisfy the predicate. Assertions also include quantified relational boolean
predicates, P, with the semantic function [P/] € P(E x E) that gives P; the meaning of the set of
pairs of environments that satisfy the predicate. In our standard convention, the first environment
of the pair corresponds to the state of the reliable execution whereas the second environment
corresponds to that of the relaxed execution.

Aucxiliary Definitions. To support the formalization in the remainder of the paper we define
the auxiliary notation inj,(-) where ¢ € {o, r} implements an injection for standard unary predicates
into a relational domain. For ¢ = o, the definition injects a predicate into the domain of the reliable
execution of the program whereas when t = r, the definition injects a predicate into the domain of
the relaxed execution.

4.2 Proof Rules

Figures 12 and 13 provide an abbreviated presentation of the rules of our program logic. We
present the remainder of the rules in our companion technical report [Boston et al. 2018]. We
have partitioned the presentation into two parts: 1) the Left Rules and Right Rules for primitive
statements and 2) the Lockstep Rules.

Left Rules. The Left Rules, which we denote by the judgment +; { P} } s { QO }, characterize
the behavior of the reliable execution of the statement s. The denotation of the judgment is that if
(e1,€2) |F Py, and (s, 1) | €], then (¢, &2) |= Q;. Namely, given a proof in the Left Rules, for a pair
of environments satisfying the precondition of the proof, then if a reliable execution of s terminates,
then the resulting environment pair satisfies the proof’s postcondition.

Right Rules. The right rules, which we denote by the judgment p +, { P} } s { Qf }, character-
ize the behavior of the relaxed execution of s under a fault model specification y. The denotation
of the judgment is similar to that of the Left Rules: if (¢1, &2) [= Py, (s, &2) U, &5, then (e1, &5) = Oy.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:17

ASSIGN-L ASSIGN-R

b { Qrln/inj,(N] } r=n { QF } prr { Qflnfinj, (M Y r=n{Q; }

BINOP-L

ki { Qrlinjo(ri @ r2)/injo(M)] Y r=ri®rs { Q7 }

BINOP-R
fresh(r’) A([x1, x2], X, Py, Py) € p(®) - inj (P}, [r1/x1][r2/x2])
o = \/ inj, (P, [r1/x11[rz2/x2]) = inj.(Py[r1/x1][r2/x2][Vxm € X - fresh(x,,,)/xm][r’ /result])

(Ix1, %21, X, Py, Po)ep(®)

prr { Qplinj () /inj (NI A QT Y r=ri@r { QF }

ASSERT-L ASSERT-R

k7 { true } assert r { inj,(r) } prr {inj.(r) } assert r { inj,(r) }

ASSUME-R
ASSUME-L prr { P} }assertr { QF }
k1 { true } assume r { inj,(r) } ptr { Py} assume r { Q5 }

Fig. 12. Left and Right Rules for Primitive Statements

SPLIT SEQ

(P s (0] ﬂF{P:]y’FSNS{:Qj} #F{P:}Sl{R;;} /IF{R:;}Sz{Q;F}
,u'_{Pr}S{Qr} ,u'_{Pr}sl;sz{Qr}
IF

b=r=true pr{ P} Ainjy(b) Ainj.(b) } s1 { QF } pur{ PEA=in,(b) Ainj(b) Y s2 ~r 51 { QF }
pF{ Py Ainjy(b) A=inj.(b) } st ~r 52 { Oy} pF{ Py A=inj,(b) A —inj.(b) } s2 { OF }

F{PrYifrsisa {Qr}

Fig. 13. Lockstep Control Flow and Structural Rules

Namely, given a proof in the right rules, for a pair of environments satisfying the proof’s precon-
dition, then if execution of s under the fault model specification u terminates, then the resulting
environment pair satisfies the proof’s postcondition.

Lockstep Rules. The Lockstep Rules together constitute the main top-level judgment of the logic
reasons about relations between the two semantics as they proceed in lockstep.: u + { P} } s { Of }.
The denotation is that if (1, &) |= Py, (s, 1) || €], and (s, &2) |, €5, then (¢}, ;) |= OF.

4.2.1 Left and Right Rules.

Register Assignment. The rules [ASSIGN-1] and [ASSIGN-R] capture the semantics of the register
assignment statement, r = n in the lowered language. In the reliable execution, the rule [ASSIGN-1]
captures the semantics of the assignment statement via the standard backward characterization of
assignment as seen in standard Hoare logic [Hoare 1969]. The major distinction between a standard
presentation and the presentation here is that the substitution replaces the injected form of the
register r in the postcondition of the statement. The expression inj,(r) denotes the value of r in
the reliable version of the program. For the relaxed execution, the rule [ASSIGN-R] captures the
semantics by substituting for inj,.(r), which denotes the value of r in the relaxed execution. We
note that given these results, assignment is reliable in both the reliable and relaxed executions with
the primary distinction being which environment is modified (either that corresponding to the
reliable execution or that of the relaxed execution).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:18 Brett Boston, Zoe Gong, and Michael Carbin

Arithmetic Operation. The rules [BINOP-1] and [BINOP-R] give the semantics of binary arith-
metic operations on registers: r = r; @ r;. For the reliable execution, [BINOP-1] relies on the back-
wards characterization of assignment as seen in [ASSIGN-L] to substitute the value r in the reliable
execution of the program with the value of the arithmetic operation inj,(r; @ ry). For the relaxed
execution, [BINOP-R], augments the traditional backwards characterization to include the potentially
unreliable execution of the binary operation.

Assert. The rules [ASSERT-L] and [ASSERT-R] give the semantics of assertion statements. There
is a major distinction between the role of assertion statements between the reliable and relaxed
execution of the program. Specifically, while the logic requires that the condition of an assert
statement is verified in the relaxed execution, the condition of an assert statement in the reliable
execution does not need to be verified,; it is instead assumed. The major design point is that Leto
enables a developer to use a variety of means (e.g., testing, verification, or code review) to validate
an assertion in the original program and transfer that reasoning to the verification process for
the relaxed execution. To achieve this design, the Left rule for an assertion assumes the validity
of the assertion whereas the Right rule asserts. Although the assert and assume have the same
semantics in the reliable and relaxed executions, the intentions of the statements differ. Specifically,
if a developer places an assert in the program, the assumption is that they have used other means
to evaluate the validity of that assertion in the reliable execution (potentially including other
verification systems). An assume statement, however, does not carry that intention.

Assume. The rules [AsSUME-L] and [AsSUME-R] give the semantics of assume statements. The
primary distinction for assume statements is that while assume statements have their standard
semantics in the reliable execution of the program (no proof obligation is required), assume state-
ments do in fact require a proof obligation in the relaxed semantics. The semantics of an assume
statement in the relaxed semantics is therefore the same as that of an assert statement. The
rationale behind this design is that as part of the verification of the relaxed execution we must
verify that faults do not interfere with the reasoning behind an assumption.

Control Flow. For clarity of presentation we have elided the left and right rules control flow
because the rules adhere to the standard formalization as seen in traditional Hoare logic. The
only distinction between these rules and their standard implementation is that they operate over
relational predicates.

4.2.2 Lockstep Rules. To support the lock step rules, we first present the [sTAGE] rule, which joins
the Left Rules and Right Rules.

STAGE INVERSE-STAGE
P Y si{R Y pr (R} {Q} pre{P 2 AR Y HA{R }si {Qr}
pE{ P s~ {07} pE{ P st~ { Q0)

Stage. The rule [STAGE] gives a semantics to a pair of statements s; and s, for which the goal
is to characterize the behavior when the reliable execution executes s; and the relaxed execution
executes s;. The specific composition we have chosen for this rule is to apply the Left Rules for s;
before applying the Right Rules to s,. Namely, the rule first applies the Left Rule for sy, yielding
a new predicate R}, before then applying the Right Rule for s; to R;. The rule [spLIT] provides
a rationale for this specific composition. The rule [INVERSE-STAGE] has the opposite semantics,
applying the Right Rule for s;, yielding a new predicate R}, before then applying the Left Rule for
s1 to R}. The rule [1F] provides a rationale for this composition during non-lockstep execution.

Split. The rule [spLIT] gives a semantics to individual statements in the lockstep semantics. The
rule relies on the [STAGE] rule to apply the left rules for the statement before applying the right rules.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:19

This design forces a specific composition of the rules in order to achieve more tractable verification.
For example, for a statement assert r, this rule will first apply the left rule for assertions, which
can be used to derive r<o> = true. Note that this derivation occurs by assumption as the logic
assumes the validity of assertions in the reliable execution. Next, the rule requires the proof to
establish that r<r> = true. If, for example, the predicate r<o> = r<r> is in the context, then this
proof obligation is easily established.

If. The rule [1¥] gives the semantics of if statements. The rule considers all cases of the execution
of the statement. Specifically, the reliable and relaxed executions may proceed in lockstep or
they may diverge by proceeding down different branches. The logic captures this divergence by
leveraging the inverse staging rule to apply the Right Rules for the branch on which the relaxed
execution has taken before applying the Left Rules for the one which the reliable version has taken.
Again, this forces a specific methodology for reasoning about the programs in that the logic extracts
the full availability of assertions that may exist on the branch that the relaxed execution takes
before proceeding with the reliable execution.

4.3 Properties

Leto’s program logic ensures two basic properties of Leto programs: preservation and progress.
The preservation property states the partial correctness of the logic (but does not not establish
termination—and therefore total correctness). The progress property establishes that the relaxed
execution of a program verified with Leto satisfies all of its assert and assume statements—provided
that all reliable executions of the program also satisfy the program’s assert and assume statements.
We state these properties formally below and provide proofs of these theorems in our companion
technical report [Boston et al. 2018].

THEOREM 4.1 (PRESERVATION).
Ifuvr{P;}ys{Q;}and (e, &) |= Py and (s,e1) | €] and (s, &) |, &, then (¢}, ;) |= O

Leto’s preservation property states that given a proof in the program logic of a program s, for
all pairs of environments (¢1, ¢;) that satisfy the proof’s precondition, if the executions of s under
both the reliable semantics and the relaxed semantics terminate in a pair of environments (e}, £7),
then this pair of environments satisfies the proof’s postcondition.

THEOREM 4.2 (PROGRESS).
Ifpr{P:}s{Q;}and(e1,e) |E Py and (s,e1) | ¢ and (s, &) |, v, then —failed(v,) where
failed((fail, e)) = true

Leto’s progress property states that given a proof in the program logic of a program s, for all
pairs of environments (¢, 2) that satisfy the proof’s precondition, if the reliable execution of s
terminates successfully, then if the relaxed execution of s under p terminates, then it does not
terminate in an error.

5 SYSTEM AND IMPLEMENTATION

The Leto system includes other features that increase user productivity, including invariant inference
and model refinement.

Invariant Inference. One of Leto’s key enabling features is loop invariant inference. Our
approach uses Houdini-style [Flanagan and Leino 2001] template-based inference. Specifically,
Leto seeds its inference process with inequalities that relate values in the original execution of
the program to values in the relaxed execution. For example, as in other relational verification
systems [Lahiri et al. 2012], if the program variable x is live on entry to a loop, then Leto seeds its

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:20 Brett Boston, Zoe Gong, and Michael Carbin

inference algorithm with the conjunct eq(x), denoting the equivalence of the value of x in both the
original and relaxed executions. Where Leto differs from other techniques is through the adaptation
of aging [Furia and Meyer 2010] to model-driven versioning of invariants. Specifically, invariants in
our domain often need to reason about if the model state changes between two program points.

For example, Figure 14 presents an abbre-

1 | @label(out) . .
2 |while (...) viated snippet of the outer loop structure of
3 |invariant_r !model.upset -> eq(x) Jacobi. The invariant !model . upset -> eq(x)
;l fFor (..) ¢ is critical for supporting this proof in that if no
6 . error has occurred on entry into the loop, then
;) } x has the correct value inside of the body of
the loop and can therefore be used to discharge

proof obligations inside the inner loop. How-
ever, the property as stated may not necessarily
hold in the inner loop because a fault may occur between the beginning of the outer loop and the
point of use within the inner loop. Therefore, instead, what is needed is a versioned copy of this
invariant: !out[model.upset] -> eq(x), which asserts that if model.upset was false at the
previous execution of the program point labeled by out, then eq(x) must hold.

Leto’s invariant inference algorithm automatically applies model-driven versioning to propagate
invariants that refer to the model’s state from outer loops to inner loops, thereby lowering the

Fig. 14. Jacobi Loop Structure

overall verification burden. In our companion technical report, we present a detailed description of
Leto’s verification and loop invariant inference algorithms [Boston et al. 2018].

Refinement. To enable a parallel development process in which developers may successively
build their hardware, models, and programs in tandem, Leto supports execution model refinement.
Refinement enables developers to construct a lattice of models such that more precise submodels
satisfy the specification of less precise supermodels.

Figure 15 presents the rela- X
. . 1 | refines seu;
tive error model refined (Fig- 2 |import seu.reliable;
ure 6) from the unbounded 3
single-event upset model (Fig- ‘51 const real E_REL = ...;
ure 1). Leto supports multiplere- ¢ |erefines(unreliable)
finement, allowing submodelsto 7 |operator x(real x1, real x2)
g b £ d 8 when lupset && (0 != x1 * x2)
renne any number of supermod- o modifies (upset)
els. Line 2 imports the reliable 10 ensures upset &&
operatorfromthe Seumodelby 11 -E_REL <= 1 - result / (x1 * x2) <= E_REL;

name. To enable developers to Fig. 15. Refined SEU Model

import and refine operators by

name, Leto supports optional labels on operators. Therefore, the developer would augment (Figure 1),
such that each operator had the label @label{reliable} and @label{unreliable}, respectively.
This makes these operators available to the submodel.

Developers may add additional operators by indicating that they refine a named operator in each
supermodel. Leto checks that this submodel operator refines each supermodel operator by verifying
that the when clause of the submodel operator logically implies the when clause of each supermodel
operator and the ensures clause of the submodel operator logically implies the ensures clause of
each supermodel operator. Every additional operator in a submodel must explicitly refine some
named operator in each supermodel. When using multiple refinement, any imported operators
from one model must also explicitly refine an operator in every other supermodel.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:21

When refining a model, the submodel implicitly imports all variable declarations and initializa-
tions from the supermodel. The submodel may declare and initialize variables in its own namespace,
but it may not modify the variable state of the supermodel with one exception: submodels may
initialize uninitialized variables in the supermodel. We enforce this constraint on model variables
because Leto programs may inspect, modify, and assert over model variables so there must be
no statically discernible difference between the submodel and the supermodel state to a program
written with knowledge of supermodel state variables.

By verifying refinement, Leto guarantees that programs verified under an abstract execution
model will also verify under specialized versions of that model. Therefore, refinement separates
model elaboration from program verification. That is, it provides an interface between hardware
vendors and software developers. Software developers may verify their programs under loosely
defined execution models, while hardware vendors may provide detailed models that are true to
the underlying semantics of their hardware. As long as software developers use Leto to verify that
these precise models refine their loose models, Leto guarantees that their programs will run as
expected on the hardware vendor’s product. Our results in Figure 18 in Section 7 illustrate instances
where the same program and invariants verifies for different models.

Implementation. Leto’s verification algorithm performs forward symbolic execution to dis-
charge verification conditions generated by assert, assert_t, invariant, and invariant_r
statements in the program. The algorithm directly implements the Hoare-style relational program
logic from Section 4. For additional detail, we provide a full specification of Leto’s verification
algorithm in our companion technical report [Boston et al. 2018].

Leto generates constraints to be solved by Microsoft’s Z3 SMT solver [De Moura and Bjerner
2008]. Our system makes use of Z3’s real, int, and bool types as well as uninterpreted functions
for arrays/matrices. Together, Leto’s support for quantifiers, non-linear integer arithmetic, and its
representation of matrices and vectors as uninterpreted functions can result in Z3 using undecidable
theories for which it is not complete. The practical impact of this design is that it is possible for Z3
to be unable to verify valid constraints. However, we have been able to successfully verify critical
fault tolerance properties for several applications as presented in the following section.

6 CASE STUDY: CONNECTED COMPONENTS WITH ROWHAMMER MODEL

Figure 16 presents an abbreviated presentation of a single iteration of the Self-Correcting Connected
Components algorithm (SC-CC) [Sao et al. 2016], an iterative algorithm that computes the connected
components of an input graph. A connected component is a subgraph in which every pair of vertices
in the subgraph is connected through some path, but no vertex is connected to another vertex that
is not also in the subgraph. One standard connected components algorithm begins by constructing
a vector CC? and initializing this vector such that Vo. CC°[v] = v. Then, on iteration i for each
node v the algorithm looks up the value of each of v’s neighbors in CC'~! and sets CC'[v] to the
minimum of its neighbors and CC'~![v]. In other words,

CC'[v] = min CC™'[j] (1)

JEN(v)

where N (v) is the union of v and the neighbors of node v. The algorithm iterates this process until
no elements in CC are updated at which point it has converged.

Self-correcting connected components adds an additional step of checking CC? after each iteration
to verify that it is valid and has not been corrupted by memory errors. If SC-CC detects an error at
CC'[v], it repeats the computation for node v with reliably backed storage.

To elaborate, the semantics of self-stabilizing connected components is such that if a sufficiently
large error happens, then the algorithm can easily detect and correct it due to its natural semantics.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:22 Brett Boston, Zoe Gong, and Michael Carbin
1 [assume (N < model.min_err);

2

3 |@region(relaxed) uint next(N) = CC;

4

5 |model.reliable = false;

6 |for (uint i = @; i < N; ++i) {

7 for (uint j = 0; j < N; ++j) {

8 if (next[i] <= i && adj[il[j]1) {
9 next[i] = min(next[i], CC[j1);
10 }

11 3

12 | 3

13

14 | model.reliable = true;

15 | for (uint i = @; i < N; ++i) {

16 if (i < next[i]) {

17 for (uint j = 0; j < N; ++3j) {

18 if (adj[illj1) {

19 next[i] = min(next[i], CC[jl);
20 }

21 }

22 3

23 |3

24 |CC = next;

25 |assert_r(eq(CC));

Fig. 16. Connected Components (Abbreviated)

Specifically, the label at each node is nonincreasing, therefore if a label increases between iterations,
then the algorithm must have experienced an error.

The algorithm is therefore naturally resilient to certain types of errors (large errors) in the
sense that there exists an efficient, application-specific error detectors for those errors. However, if
errors can cause a label to decrease incorrectly, then the algorithm cannot easily detect the error.
Therefore, if the hardware model delivers large errors, then the developer can use Leto to verify
that the application always detects and corrects errors.

Rowhammer Model. Figure 17 presents a switchable
Rowhammer execution model. This execution model sim-
ulates a Rowhammer attack that allows an attacker to
selectively flip bits in DRAM by issuing frequent reads on
DRAM rows [Kim et al. 2014]. Unlike most of the models
we have presented thus far, this one enables developers to
model memory errors. Additionally, it enables switchabil-
ity, permitting the program to selectively disable errors 10

O 0NNV R W =

const uint err_min = ...;
bool reliable = false;

@region(unreliable)
write(uint dest, uint src)
ensures (dest == src);

@region(unreliable)
write(uint dest, uint src)
when (!reliable)

to emulate selective Rowhammer protection techniques ! ensures (err_min < dest);
[Aweke et al. 2016]. Line 4 specifies a reliable write op-
erator while Line 8 specifies a faulty write operator. The
faulty write operator introduces errors that are larger than err_min.

Although researchers have devised protections from Rowhammer attacks [Kim et al. 2015, 2014],
these protections are neither fully deployed (e.g., the DDR4 standard [Association et al. 2012] does
not include protections) nor complete. For example, one commodity protection scheme is to use
ECC memory that can detect and correct single-bit errors. While this protects the application from
single-bit errors, double-bit errors (which are detectable but not correctable) and multi-bit (which
are neither detectable or correctable) are possible as well [Kim et al. 2014].

Of the variety of possible Leto execution specifications for Rowhammer, the presented execution
model captures a ECC scheme that for double-bit error stores a large value - of at least err_min

Fig. 17. Switchable Rowhammer Model

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:23

— into the memory location to communicate that an error happened. Such a model provides a
hardware scheme that avoids the complexity of software-delivered ECC exceptions (which are not
delivered at fine enough granularity to support recovery in practice [Lanteigne 2016]). This model
can also simulate scenarios that selectively use ECC-protected caches [Alameldeen et al. 2011; Kim
et al. 2007; Yoon and Erez 2009] in conjunction with traditional caches.

Switchability. The reliable flag models the fact that it is possible to selectively enable Rowham-
mer protection techniques [Aweke et al. 2016] (as well as ECC-protected caches) to trade perfor-
mance for reliability. Specifically if reliable is set to true, then the model does not generate
errors. In Figure 16, the program directly updates the value of reliable to model when it has
enabled or disabled the protection scheme. In practice, this write would correspond to API calls
that configure the underlying hardware (e.g., manipulations of memory-mapped registers).

Implementation. Connected components consists of two regions: the unreliable computation
on Lines 6 through 12 and the reliable detection and correction code on Lines 15 through 23. The
implementation may encounter errors on writes to the next vector because it has been allocated
in the relaxed memory region. The implementation toggles the reliability of writes to next on
Line 5 and Line 14.

The assertion that the developer verifies is that the algorithm correctly detects all errors, correctly
recomputes errant values, and produces the same result as a reliable execution. This property is
true if the choice of min_error in the execution model is large enough such that the condition on
Line 16 is true if there was an error.

Detection. To verify that this SC-CC sketch detects all errors, the developer must verify that each
errant value next[i] is greater than i (and therefore each errant value violates the nonincreasing
property of the computation), which therefore triggers the reliable recomputation on Line 16. In
SC-CC, the developer accomplishes this by assuming that that min_err is greater than N (the size
of the graph, Line 1) — because graphs are dynamic in size — and, therefore, by definition, an errant
value of next[i] is greater than i by being an invalid index.

Correction. Given that the detection phase soundly detects an error, the correction code on
Line 19 reliably recomputes the value. The verification here must verify that the recomputation is
functionally the same as the original computation performed by a reliable execution.

Summary. In the the final step, SC-CC asserts that CC is equivalent between both the original
and relaxed executions, which follows from the verification of the correction step above (Line 25).

This implementation is an effective partition of reliability because the write on Line 9 may write
to each next[i] up to N times. In the reliable loop, however, we can detect if an incorrect write
happened by using a single read of the computed value of next[i], a single recomputation of the
result if it is incorrect, and then a reliable write to next[1]. This approach amortizes the overhead
of checking each individual unreliable write to next[i] and - if the probability of an error is low -
it is faster than an alternative implementation that stores next[i] reliably.

7 CASE STUDIES

We next present our results from using Leto to implement and verify several self-stabilizing and
self-correcting algorithms. Figure 18 presents for each benchmark (Column 1) the execution model
we verified under (Column 2), and the number of lines of code it contains (Column 3). Benchmarks
with multiple models denote instances in which Leto can verify the application with a different
model without the developer changing the program or its invariants.

Jacobi Iterative Method. We verify the Jacobi benchmark as presented in Section 2 under a
multiplicative (SEU) error model (Figure 6).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:24 Brett Boston, Zoe Gong, and Michael Carbin

Benchmark Execution Model LOC || Manual Annotations | Invariants Inferred
Jacobi Multiplicative SEU 51 16 30
SS-CG Additive SEU 163 22 36
Unbounded SEU
SS-SD Additive SEU 57 9 0

Multiplicative SEU

sc-ce Switchable Bowhammer 89 " 47
Multicycle

Fig. 18. Benchmark Verification Effort

Self-Stabilizing Conjugate Gradient Descent (SS-CG). SS-CG is an iterative linear system
of equations solver that employs a periodic, reliable correction step to repair the program state in
the presence of faults [Sao and Vuduc 2013]. We verify under an additive SEU error model [Boston
et al. 2018] that errors are sufficiently small such that the algorithm does not diverge. We also verify
that the correction step can be correctly implemented using instruction duplication. We present a
full description of the SS-CG our companion technical report [Boston et al. 2018].

Self-Stabilizing Steepest Descent (SS-SD). SS-SD is another iterative linear system of equa-
tions solver that employs a periodic, reliable correction step [Sao and Vuduc 2013] to repair the
state of the program. We verify that a developer can correctly implement the correction step using
instruction duplication (i.e., dual modular redundancy) under an unbounded SEU execution model
(Figure 1), the additive SEU model [Boston et al. 2018], and the multiplicative SEU model. We
present the full benchmark in our companion technical report [Boston et al. 2018].

Self-Correcting Connected-Components (SC-CC). SC-CC is an iterative algorithm for com-
puting the connected subgraphs in a graph where each iteration consists of a faulty initial compu-
tation step followed by a correction step [Sao et al. 2016] (Section 6). We verify that each iteration
computes the correct result under a Rowhammer [Kim et al. 2014] error model that allows for an
unbounded number of faulty writes to storage as well as a multicyle error model modified from that
in Appendix A to have the appropriate error bounds. We specifically verify that the implementation
detects and corrects all errors.

7.1 Verification Effort

Figure 18 also presents the annotation burden Leto imposes on the programmer. For each benchmark,
we present the number of manual annotations (Column 4) and the number of automatically inferred
loop invariants (Column 5). Manual annotations include loop invariants, assertions, and function
requirements. We consider each conjunct a separate annotation when counting inferred invariants
and manual annotations.

Results. We significantly reduce the number of invariants we must provide using inference in
all but one benchmark. In half of the cases we infer more invariants than we provide. We infer no
invariants for SS-SD as Z3 very quickly runs out of memory on our machine and therefore we must
disable inference on all loops in that benchmark. We note that this failure results from the use of
Z3’s undecidable theories (Section 5). We believe that we could resolve this issue by monitoring
the memory usage of the Z3 subprocess, killing the process if it consumes too much, and falling
back to a weaker version of our invariant inference.

Runtime Characteristics. Figure 19 presents the runtime performance characteristics of the
Leto C++ implementation. We ran our experiments on an Intel i5-5200U CPU clocked at 2.20GHz
with 8 GB of RAM. For each benchmark we present the execution model we verified it under
(Column 2), the time it took to run in seconds (Column 3), the maximum memory usage in kilobytes
(Column 4), and the number of constraints generated for use with Z3 (Column 5).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:25

Benchmark Execution Model Time (s) | Memory Usage | Constraints
(kbytes) Generated
Jacobi Multiplicative SEU 37.79 36132 12473
SS-CG Additive SEU 4.29 37876 11665
Unbounded SEU 0.19 25440 420
SS-SD* Additive SEU 0.13 25452 420
Multiplicative SEU 0.13 25664 420
sc-cC Switchable Rowhammer | 168.78 369556 4321
Multicycle 174.75 405632 4168

Fig. 19. Benchmark Runtime Characteristics. "Memory consumption with invariant inference disabled.

8 RELATED WORK

Researchers have developed programming systems that enable developers to reason about ap-
proximate computations: computations for which the underlying execution substrate (e.g., the
programming and/or hardware system) augments the application’s behavior to produce approxi-
mate results [Carbin et al. 2013a; Hoffman et al. 2011; Misailovic et al. 2011, 2010; Rinard 2006].

For example, Ener] [Sampson et al. 2011] and FlexJava [Park et al. 2015] enable developers
to demonstrate non-interference between approximate computations and critical parts of the
computation that should not be modified. Meola and Walker [2010] propose a sub-structural logic
for reasoning about fault tolerant programs. Their logic enables the proof system to count the
number of faults that have occurred and therefore reason about properties that may hold for one
model but not another. Rely [Carbin et al. 2013b], Chisel [Misailovic et al. 2014], and Decaf [Boston
et al. 2015], enable developers to reason about the reliability of their applications: the probability
that they produce the correct result. In contrast to all of these approaches, Leto provides a more
expressive and unconstrained logic that supports verifying complicated relational properties.

The work on the relaxed programming model [Carbin et al. 2012] provides developers with a
Coq library to prove both safety and accuracy properties for relaxed computations by hand. Leto
automates the relational logic of Carbin et al. [2012]. In principle, one can map Leto’s integration of
a hardware execution model to automatically instrumenting a program with the relax statements
in the language of the relaxed programming model. A key difference in the formalism is that Leto
lowers the logic down to a load-store machine instead of the high-level language of IMP. This
formalism gives an explicit low-level semantics to memory and, for in-order processors, gives the
first semantics and specifications for multicycle errors (Appendix A). While these results are not
necessarily fully revolutionary, they provide valuable foundations for researchers in this space.

As to practicality, the manual proof method in Carbin et al. [2012] results in proofs on the order
of hundreds of lines of Coq code for programs that are no more than 20 lines of code. This stands
in contrast to Leto, in which the programs are significantly larger (a minimum of 2.5x larger) and
have at most 38 annotations. Leto’s base design (automatically weaving in the execution model),
base automation, and loop invariant inference work together to make verification simpler.

He et al. [He et al. 2016, 2018] leverage the Symdiff framework [Lahiri et al. 2012] to automatically
verify instances of approximate programs using the reasoning of Carbin et al. [2012]. However,
these properties are simpler than the self-stability we verify here. However, still, in principle, it
should be possible to translate instances of the Leto verification problem to Boogie programs
and attempt to discharge them with Symdiff. One additional departure from a direct translation
to Symdiff is that Leto’s loop invariant inference approach incorporates labeled program points
and model-based versioning (Section 5) to exploit the fact that the explicit model is the source of
the deviation in the two semantics of the program. Specifically, Leto automatically reasons about

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:26 Brett Boston, Zoe Gong, and Michael Carbin

model state changes between program points in an application (i.e., control flow) and automatically
attempts to infer and propagate invariants between those points.

Chaudhuri et al. [2010, 2011] demonstrate analyses that enable reasoning about uncertain and
approximate computations. These analyses specifically prove that either a program is continuous
or robust with, in the latter case, robustness meaning that changes in the input to a computation
result in linearly bounded changes in its outputs. Their results show that, for example, a variant of
loop perforation, an approximate computing technique, can be soundly applied to programs that
are robust. Robustness analysis presents a compelling, complementary approach for automating
numerical analysis as well as viewing the soundness of an approximately transformed program
as a judgment about the behavior of the original program on a perturbation to its input. Leto can
similarly be used to bound the difference in a computation’s outputs given perturbations to its
inputs, such as the approximate vector-vector product in Section 2. However, a key distinction in
this space is that verifying hardware fault tolerance includes, for example, verifying the correctness
of dual modular redundancy, which is independent from robustness in the general case.

Relational Hoare Logic. Researchers have proposed relational Hoare Logics and verification
systems to support verifying relational properties of programs [Barthe et al. 2011; Benton 2004;
Carbin et al. 2012; Lahiri et al. 2012; Sousa and Dillig 2016]. The verification algorithms produced by
Sousa and Dillig [Sousa and Dillig 2016] (Cartesian Hoare Logic) and Lahiri et al. [Lahiri et al. 2012]
(Symdiff) demonstrate that it is possible to automatically compose proofs for relational verification.
Leto’s verification system differs from that of Cartesian Hoare Logic in that 1) the semantics of the
two program executions are asymmetric and 2) Leto attempts to verify with a specific program
composition strategy that matches the types of proofs that are seen in practice for approximate
and unreliably executed programs. Namely, although the semantics of the two executions of the
program differ, their structure is typically identical and therefore assert and assumes can often
be matched to enable maximum reuse of assumed properties of the reliable execution during the
verification of the relaxed.

Type Systems for Self-Stabilization. Self-Stabilizing Java provides developers with a type
system and analysis that enables a developer to prove that any corrupted state of the program
exits the system in a finite amount of time [Eom and Demsky 2012]. Leto’s logic (versus the
information-flow type system of Self-Stabilizing Java) enables developers to specify the richer
invariants that need to be true of emerging algorithms for self-stability. For example, instead of
verifying that corrupted state leaves the system within bounded time, Leto enables a developer to
verify that the corruption in the program’s state is small enough that the algorithm’s correction
steps will work as designed.

Fault Rate Analysis. Soft fault rates have led major organizations — such as Intel [Kurd et al.
2010; Mitra et al. 2005, 2006; Mukherjee et al. 2003], Google [Yim 2014], NASA [Johnston 2000],
DOE [Snir et al. 2014], and DARPA [Amarasinghe et al. 2009] - to express concern over such faults.

The assumption of instruction-level arithmetic errors is the most common model for building 1)
application-specific fault analyses and mechanisms [Bronevetsky and de Supinski 2008; Hoemmen
and Heroux 2011; Huang and Abraham 1984; Oboril et al. 2011; Roy-Chowdhury and Banerjee 1994,
1996; Sao et al. 2016; Sao and Vuduc 2013; Shantharam et al. 2012], 2) software-level fault tolerance
analyses and mechanisms [Li et al. 2016; Reis et al. 2005; Santini et al. 2017; Wei and Pattabiraman
2012; Yim et al. 2011], 3) micro-architectural resilience analyses and mechanisms [Austin 1999; Lu
1982; Meixner et al. 2007], and 4) circuit-level resilience analyses/mechanisms [Bowman et al. 2009,
2011; Kelin et al. 2010; Lilja et al. 2013; Quinn et al. 2015a,b; Turowski et al. 2015].

Mitra et al. found that combinational logic faults account for 11% of all soft errors [Mitra et al.
2005]. In addition, soft error rates, including combinational faults, are expected to increase as chips

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:27

continue grow in the number of transistors [Mitra et al. 2005; Shivakumar et al. 2002]. These trends
have inspired research on modeling the propagation of transient faults [Chen and Tahoori 2012;
Omana et al. 2003], analyzing the rate of combinational soft faults [Buchner et al. 1997; Rao et al.
2007; Wang and Xie 2011; Zhang and Shanbhag 2006], analyzing the impact of combinational soft
faults [Rajaraman et al. 2006], and correcting combinational logic faults [Mitra et al. 2006].

9 CONCLUSION

Emerging computational platforms are increasingly vulnerable to hardware errors. Future compu-
tations designed to execute on these platforms must therefore be designed to be fault tolerant and
naturally resilient to error. We present a verification system, Leto, that facilitates the verification of
application-specific fault tolerance mechanisms under programmer-specified execution models. As
these proofs frequently relate a faulty execution to a fault-free one, Leto provides assertions that
enable the developer to specify and verify expressions that relate the semantics of both executions.
Leto’s support for execution models permit developers to convey information about the class of
faults they expect their computational platforms to experience.

By giving developers tools for building verified, fault tolerant applications, Leto holds out the
opportunity to develop new approximate, uncertain, and unreliable hardware with the confidence
that the resulting systems can be reliably programmed.

A MULTICYCLE ERROR MODEL

Figure 20 presents a multicycle error execu-
tion model. A multicycle error is an error
state in which multiple consecutive instruc-
tions experience errors [Inoue et al. 2011].
This implementation permits a single multi-
cycle error and tracks the state of this error
through the use of model variables stuck and

const real eps = ...;
bool stuck = false;
uint length;

when !stuck || length ==

1

2

3

4

5 | operatorx(real x1, real x2)
6

7 ensures result == x1 * x2;
8

9

operatorx(real x1, real x2)

length. The stuck flag represents whether 10 when length > @

or not the system is currently experiencing a E Zﬁgt ié ': s s ESEEC z& length)
multicycle fault while the 1ength variable in- 13 length == old(length) - 1
dicates how many instructions the fault will

continue for. We leave the length variable Fig. 20. Multicycle Error Execution Model

unbound, permitting the multicycle error to persist for an arbitrary number of operations. Line 5
describes a reliable multiplication implementation that the model may use before the fault occurs
(!'stuck) and after it ends (length ==). Line 9 encodes an operator that the model may use during,
or to begin a multicycle error. The model may substitute these operators so long as a multicycle
error has not occurred and resolved before the current instruction (length >). This operator
sets stuck, decrements length, and constrains result to be within eps of the original result.

Together, these two operators ensure that at some point the system may be stuck experiencing
faults on all multiplications, but after length multiplications the execution will be reliable.

ACKNOWLEDGMENTS

We thank Sara Achour, Clement Pit-Claudel, Benjamin Sherman, Eric Atkinson, Cambridge Yang,
Deokhwan Kim, and the anonymous referees for their helpful comments on the paper.

This research was supported in part by the Department of Energy (DE-SC0008923 and DE-
SC0014204) and the National Science Foundation (NSF CCF-1751011).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:28 Brett Boston, Zoe Gong, and Michael Carbin

REFERENCES

Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson, and Shih-Lien Lu. 2011. Energy-efficient Cache
Design Using Variable-strength Error-correcting Codes (ISCA).

Saman Amarasinghe, Dan Campbell, William Carlson, Andrew Chien, William Dally, Elmootazbellah Elnohazy, Robert
Harrison, William Harrod, Jon Hiller, Sherman Karp, Charles Koelbel, David Koester, Peter Kogge, John Levesque, Daniel
Reed, Robert Schreiber, Mark Richards, Al Scarpelli, John Shalf, Allan Snavely, and Thomas Sterling. 2009. ExaScale
Software Study: Software Challenges in Extreme Scale Systems.

JEDEC Solid State Technology Association et al. 2012. JEDEC Standard: DDR4 SDRAM. JESD79-4, Sep (2012).

Todd M Austin. 1999. DIVA: A reliable substrate for deep submicron microarchitecture design (MICRO).

Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren, and Todd Austin.
2016. ANVIL: Software-based protection against next-generation rowhammer attacks (ASPLOS).

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino. 2005. Boogie: A modular reusable
verifier for object-oriented programs (FMCO).

Mike Barnett, K Rustan M Leino, and Wolfram Schulte. 2004. The Spec# programming system: An overview (CASSIS).

G. Barthe, J. Crespo, and C. Kunz. 2011. Relational verification using product programs (FM).

N. Benton. 2004. Simple relational correctness proofs for static analyses and program transformations (POPL).

S. Borkar. 2005. Designing reliable systems from unreliable components: the challenges of transistor variability and
degradation. IEEE Micro 25, 6 (2005).

Brett Boston, Zoe Gong, and Michael Carbin. 2018. Verifying Programs Under Custom Application-Specific Execution
Models (arXiv 1805.06090).

Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. 2015. Probability type inference for flexible approximate
programming (OOPSLA).

Keith A Bowman, James W Tschanz, Nam Sung Kim, Janice C Lee, Chris B Wilkerson, Shih-Lien L Lu, Tanay Karnik, and
Vivek K De. 2009. Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE
Journal of Solid-State Circuits 44, 1 (2009), 49-63.

Keith A Bowman, James W Tschanz, Shih-Lien L Lu, Paolo A Aseron, Muhammad M Khellah, Arijit Raychowdhury,
Bibiche M Geuskens, Carlos Tokunaga, Chris B Wilkerson, Tanay Karnik, and Vivek K De. 2011. A 45 nm resilient
microprocessor core for dynamic variation tolerance. IEEE Journal of Solid-State Circuits 46, 1 (2011), 194-208.

Greg Bronevetsky and Bronis de Supinski. 2008. Soft error vulnerability of iterative linear algebra methods (ICS).

S Buchner, M Baze, D Brown, D McMorrow, and] Melinger. 1997. Comparison of error rates in combinational and sequential
logic. IEEE transactions on Nuclear Science 44, 6 (1997), 2209-2216.

M. Carbin, D. Kim, S. Misailovic, and M. Rinard. 2012. Proving Acceptability Properties of Relaxed Nondeterministic
Approximate Programs (PLDI).

M. Carbin, D. Kim, S. Misailovic, and M. Rinard. 2013a. Verified integrity properties for safe approximate program
transformations (PEPM).

M. Carbin, S. Misailovic, and M. Rinard. 2013b. Verifying Quantitative Reliability for Programs That Execute on Unreliable
Hardware (OOPSLA).

Michael Carbin and Martin C. Rinard. 2010. Automatically Identifying Critical Input Regions and Code in Applications
(ISSTA).

Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity Analysis of Programs (POPL).

Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour. 2011. Proving Programs Robust (ESEC/FSE).

Daniel Chen, Gabriela Jacques-Silva, Zbigniew Kalbarczyk, Ravishankar K Iyer, and Bruce Mealey. 2008. Error behavior
comparison of multiple computing systems: A case study using Linux on Pentium, Solaris on SPARC, and AIX on POWER
(PRDC).

Liang Chen and Mehdi B Tahoori. 2012. An efficient probability framework for error propagation and correlation estimation
(IOLTS).

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver (TACAS).

Peng Du, Aurelien Bouteiller, George Bosilca, Thomas Herault, and Jack Dongarra. 2012. Algorithm-based Fault Tolerance
for Dense Matrix Factorizations (PPoPP).

Yong hun Eom and Brian Demsky. 2012. Self-stabilizing Java (PLDI).

Cormac Flanagan and K Rustan M Leino. 2001. Houdini, an annotation assistant for ESC/Java (FME).

Carlo Alberto Furia and Bertrand Meyer. 2010. Fields of Logic and Computation. Springer-Verlag, Chapter Inferring Loop
Invariants Using Postconditions, 277-300.

Shaobo He, Shuvendu K Lahiri, and Zvonimir Rakamari¢. 2016. Verifying relative safety, accuracy, and termination for
program approximations (NFM).

Shaobo He, Shuvendu K. Lahiri, and Zvonimir Rakamari¢. 2018. Verifying Relative Safety, Accuracy, and Termination for
Program Approximations. Journal of Automated Reasoning 60, 1 (2018).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

Leto: Verifying Application-Specific Hardware Fault Tolerance with ... 163:29

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576-580.

Mark Hoemmen and Michael A Heroux. 2011. Fault-tolerant iterative methods via selective reliability (SC).

H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard. 2011. Dynamic Knobs for Responsive Power-
Aware Computing (ASPLOS).

Kuang-Hua Huang and Abraham. 1984. Algorithm-based fault tolerance for matrix operations. IEEE transactions on
computers 100, 6.

Tomoo Inoue, Hayato Henmi, Yuki Yoshikawa, and Hideyuki Ichihara. 2011. High-level synthesis for multi-cycle transient
fault tolerant datapaths (IOLTS).

C. G.J. Jacobi. 1845. Ueber eine neue AuflAtisungsart der bei der Methode der kleinsten Quadrate vorkommenden lineAdren
Gleichungen. Astronomische Nachrichten 22, 20 (1845), 297-306.

Allan H Johnston. 2000. Scaling and technology issues for soft error rates. (2000).

Lee Hsiao-Heng Kelin, Lilja Klas, Bounasser Mounaim, Relangi Prasanthi, Ivan R Linscott, Umran S Inan, and Mitra Subhasish.
2010. LEAP: Layout design through error-aware transistor positioning for soft-error resilient sequential cell design
(IRPS).

Dae-Hyun Kim, Prashant] Nair, and Moinuddin K Qureshi. 2015. Architectural support for mitigating row hammering in
DRAM memories. IEEE Computer Architecture Letters 14, 1 (2015), 9-12.

Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi, and James Hoe. 2007. Multi-bit Error Tolerant Caches Using
Two-Dimensional Error Coding (MICRO).

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors (ISCA).
Nasser A Kurd, Subramani Bhamidipati, Christopher Mozak, Jeffrey L Miller, Timothy M Wilson, Mahadev Nemani, and

Muntaquim Chowdhury. 2010. Westmere: A family of 32nm IA processors (ISSCC).

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebélo. 2012. SYMDIFF: A Language-agnostic
Semantic Diff Tool for Imperative Programs (CAV).

Mark Lanteigne. 2016. How Rowhammer Could Be Used to Exploit Weaknesses in Computer Hardware.

Tuo Li, Jude Angelo Ambrose, Roshan Ragel, and Sri Parameswaran. 2016. Processor Design for Soft Errors: Challenges and
State of the Art. ACM Computing Surveys (CSUR) 49, 3 (2016), 57.

K Lilja, M Bounasser, S-J] Wen, R Wong, J Holst, N Gaspard, S Jagannathan, D Loveless, and B Bhuva. 2013. Single-event
performance and layout optimization of flip-flops in a 28-nm bulk technology. IEEE Transactions on Nuclear Science 60, 4
(2013), 2782-2788.

David J. Lu. 1982. Watchdog processors and structural integrity checking. IEEE Trans. Comput. 31, 7 (1982), 681-685.

Albert Meixner, Michael E Bauer, and Daniel Sorin. 2007. Argus: Low-cost, comprehensive error detection in simple cores
(MICRO).

Matthew L. Meola and David Walker. 2010. Faulty Logic: Reasoning About Fault Tolerant Programs (ESOP).

Bertrand Meyer. 1992. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard. 2014. Chisel: reliability-and accuracy-aware
optimization of approximate computational kernels (OOPSLA).

S. Misailovic, D. Roy, and M. Rinard. 2011. Probabilistically Accurate Program Transformations (SAS).

S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. 2010. Quality of service profiling (ICSE).

Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim. 2005. Robust system design with built-in
soft-error resilience. Computer 38, 2 (2005), 43-52.

Subhasish Mitra, Ming Zhang, Saad Waqas, Norbert Seifert, Balkaran Gill, and Kee Sup Kim. 2006. Combinational logic soft
error correction (ESOP).

Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Reinhardt, and Todd Austin. 2003. A systematic
methodology to compute the architectural vulnerability factors for a high-performance microprocessor (MICRO).

Fabian Oboril, Mehdi B Tahoori, Vincent Heuveline, Dimitar Lukarski, and Jan-Philipp Weiss. 2011. Numerical defect
correction as an algorithm-based fault tolerance technique for iterative solvers (PRDC).

Martin Omana, Giacinto Papasso, Daniele Rossi, and Cecilia Metra. 2003. A model for transient fault propagation in
combinatorial logic (IOLTS).

Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William Harris. 2015. FlexJava: Language Support for Safe
and Modular Approximate Programming (FSE).

RC Quinn, JS Kauppila, TD Loveless, JA Maharrey, JD Rowe, ML Alles, BL Bhuva, RA Reed, M Mounasser, K Lilja, and LW
Massengill. 2015a. Frequency Trends Observed in 32nm SOI Flip-Flops and Combinational Logic. IEEE Transactions on
Nuclear Science (2015).

RC Quinn, JS Kauppila, TD Loveless, JA Maharrey,]D Rowe, MW McCurdy, EX Zhang, ML Alles, BL Bhuva, RA Reed, WT
Holman, M Bounasser, K Lilja, and LW Massengill. 2015b. Heavy ion SEU test data for 32nm SOI flip-flops (REDW).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

163:30 Brett Boston, Zoe Gong, and Michael Carbin

R Rajaraman, JS Kim, Narayanan Vijaykrishnan, Yuan Xie, and Mary Jane Irwin. 2006. SEAT-LA: A soft error analysis tool
for combinational logic (VLSI Design).

Rajeev R Rao, Kaviraj Chopra, David T Blaauw, and Dennis M Sylvester. 2007. Computing the soft error rate of a combinational
logic circuit using parameterized descriptors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 26, 3 (2007), 468-479.

G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. 2005. SWIFT: Software Implemented Fault Tolerance (CGO).

M. Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks (ICS).

Amber Roy-Chowdhury and Prithviraj Banerjee. 1994. Algorithm-based fault location and recovery for matrix computations
(FTCS).

Amber Roy-Chowdhury and Prithviraj Banerjee. 1996. Algorithm-based fault location and recovery for matrix computations
on multiprocessor systems. IEEE transactions on computers 45, 11 (1996), 1239-1247.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. Ener]J:
Approximate data types for safe and general low-power computation (PLDI).

Thiago Santini, Christoph Borchert, Christian Dietrich, Horst Schirmeier, Martin Hoffmann, Olaf Spinczyk, Daniel Lohmann,
Flavio Rech Wagner, and Paolo Rech. 2017. Effectiveness of Software-Based Hardening for Radiation-Induced Soft Errors
in Real-Time Operating Systems (ARCS).

Piyush Sao, Oded Green, Chirag Jain, and Richard Vuduc. 2016. A Self-Correcting Connected Components Algorithm
(FTXS).

Piyush Sao and Richard Vuduc. 2013. Self-stabilizing iterative solvers (ScalA).

Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. 2012. Fault tolerant preconditioned conjugate
gradient for sparse linear system solution (ICS).

Premkishore Shivakumar, Michael Kistler, Stephen W Keckler, Doug Burger, and Lorenzo Alvisi. 2002. Modeling the effect
of technology trends on the soft error rate of combinational logic (DSN).

Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose,
Franck Cappello, Bill Carlson, et al. 2014. Addressing failures in exascale computing. The International Journal of High
Performance Computing Applications 28, 2 (2014), 129-173.

M. Sousa and I. Dillig. 2016. Cartesian Hoare Logic for Verifying K-safety Properties (PLDI).

Michael B Sullivan and Earl E Swartzlander. 2012. Truncated error correction for flexible approximate multiplication
(ASILOMAR).

Michael B Sullivan and Earl E Swartzlander. 2013. Truncated logarithmic approximation (ARITH).

Anna Thomas and Karthik Pattabiraman. 2016. Error Detector Placement for Soft Computing Applications. ACM Trans.
Embed. Comput. Syst. (2016).

M Turowski, K Lilja, K Rodbell, and P Oldiges. 2015. 32nm SOI SRAM and latch SEU crosssections measured (heavy ion
data) and determined with simulations (SEE).

R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. 2016. Approxilyzer: Towards a systematic framework for
instruction-level approximate computing and its application to hardware resiliency (MICRO).

Sriram Krishnamoorthy Vishal Chandra Sharma, Ganesh Gopalakrishnan. 2016. Towards Resiliency Evaluation of Vector
Programs (DPDNS).

Feng Wang and Yuan Xie. 2011. Soft error rate analysis for combinational logic using an accurate electrical masking model.
IEEE Transactions on Dependable and Secure Computing 8, 1 (2011), 137-146.

Jiesheng Wei and Karthik Pattabiraman. 2012. BLOCKWATCH: Leveraging similarity in parallel programs for error detection
(DSN).

Keun Soo Yim. 2014. Characterization of impact of transient faults and detection of data corruption errors in large-scale
n-body programs using graphics processing units (IPDPS).

Keun Soo Yim, Zbigniew Kalbarczyk, and Ravishankar K Iyer. 2010. Measurement-based analysis of fault and error
sensitivities of dynamic memory (DSN).

Keun Soo Yim, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2011. Hauberk: Lightweight
silent data corruption error detector for gpgpu (IPDPS).

Doe Hyun Yoon and Mattan Erez. 2009. Memory Mapped ECC: Low-cost Error Protection for Last Level Caches (ISCA).

Ming Zhang and Naresh R Shanbhag. 2006. Soft-error-rate-analysis (SERA) methodology. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25, 10 (2006), 2140-2155.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 163. Publication date: November 2018.

	Abstract
	1 Introduction
	1.1 Application-Specific Fault Tolerance
	1.2 Verified Application-Specific Fault Tolerance
	1.3 Contributions

	2 Example: Verifying Hardware Fault Tolerance
	2.1 Exact Fault Tolerance through Dual-Modular Redundancy
	2.2 Approximate Computation through Bounded Error
	2.3 Application-Specific Fault Tolerance

	3 Language
	3.1 Dynamic Semantics

	4 Program Logic
	4.1 Preliminaries
	4.2 Proof Rules
	4.3 Properties

	5 System and Implementation
	6 Case Study: Connected Components with Rowhammer Model
	7 Case Studies
	7.1 Verification Effort

	8 Related Work
	9 Conclusion
	A Multicycle Error Model
	References

