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 Analysis of gene expression can be challenging, especially if it involves 
genetically diverse populations that exhibit high variation in their individual 
expression profile. Despite this variation though, it is conceivable that in the 
same individuals a high degree of coordination is maintained between 
transcripts that belong to the same signaling modules and are associated with 
related biological functions. To explore this further, we calculated the 
correlation in the expression levels between each of ATF4, CHOP (DDIT3), 
GRP94, DNAJB9 (ERdj4), DNAJ3C (p58IPK) and HSPA5 (BiP/GRP78) with 
the whole transcriptome in primary fibroblasts from deer mice following 
induction of endoplasmic reticulum (ER) stress. Since these genes are 
associated with different transducers of the unfolded protein response (UPR) 
we postulated that their profile, in terms of correlation of transcripts, reflects 
distinct UPR branches engaged and therefore different biological processes. 
Standard gene ontology analysis was able to predict major functions associated 
with the corresponding transcript, and of the UPR arm related to that, namely 
regulation of the apoptotic response by ATF4 (PERK arm) and the ER stress 
associated degradation for GRP94 (IRE1). BiP, being a global regulator of the 
UPR, was associated with activation of ER stress in a rather global manner. 
Pairwise comparison in the correlation coefficients for these genes’ associated 
transcriptome showed the relevance of selected genes in terms of expression 
profiles. Conventional assessment of differential gene expression was 
incapable of providing meaningful information and pointed only to a generic 
association with stress. Collectively this approach suggests that by evaluating 
the degree of coordination in gene expression in genetically diverse biological 
specimens may be useful in assigning genes in transcriptome networks and 
more importantly in linking signaling nodules to specific biological functions and 
processes.   
 
Introduction 
 

Signaling networks respond to stimuli by modulating the expression of a 
multitude of genes. This activation proceeds by high quantitative variation and 
for certain transcripts it can be high while for others it can be minimal, yet both 
highly and marginally regulated transcripts are equally important for the 
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production of the desired cellular response. This variation in the magnitude of 
the response increases if biological samples from genetically diverse 
populations are analyzed. Correlation clustering had been widely used for the 
discovery of the group of genes show similar expression pattern under different 
conditions (Ben-Dor et al, 1999; Ng et al, 2006). Such approaches have been 
used to define population structures and to identify variation in expression 
profiles between different groups (Brown et al, 2018; Wei et al, 2011) or to 
reveal disease-related genes (Cai et al, 2017; Tai et al, 2017). 

The utilization of genetically diverse organisms allows applying such 
analysis to experiments performed on the same conditions where the diversity 
of the animals is projected to the diversity of the output evaluated. Despite the 
variation in the intensity of the response among individuals, it is conceivable 
that a high degree of coordination is maintained between targets that belong to 
the same signaling cascades (Komili & Silver, 2008). To that end it is 
conceivable though that co-regulated transcripts, due to their participation in 
the same networks will exhibit higher coordination than with those associated 
with other signaling modules and that identification and analysis of coregulated 
transcripts may convey information regarding the function regulated by the 
corresponding signaling module. Furthermore, by focusing on the degree of 
coordination as opposed to fold induction, even minimal albeit impactful 
differences in gene expression, should be unveiled and appreciated. In the 
present study we sought to exploit these hypotheses by testing if the degree of 
coordination in gene expression, rather than the magnitude of overexpression, 
bears information more valuable in assessing signal integration and biological 
function.  

As a model for the transcriptional analyses we used the induction of 
endoplasmic reticulum (ER) stress following exposure of fibroblasts to 
tunicamycin. ER stress is defined as the state of the cells at which protein 
production exceeds the capacity for protein folding and therefore results in the 
accumulation of misfolded and unfolded proteins (Walter & Ron, 2011; Almanza 
et al, 2018). ER stress, for its resolution, inflicts the unfolded protein responses 
(UPR) that is mediated by 3 major transducers, IRE1, ATF6 and PERK, each 
of which results in the activation of well-defined downstream targets (Fu & Gao, 
2017; Hetz et al, 2017; Lemus & Goder, 2014; Szegezdi et al, 2006). Despite 
certain redundancies in the regulation of the downstream mediators, the 
activities and the molecular determinants of the corresponding 3 branches of 
UPR remain well defined, representing an appropriate system to study the 
integration of signals associated with different transcriptional nodules, into an 
overall cascade of a well-orchestrated response.     

The analyses were performed in primary cultures of fibroblasts from 
genetically diverse (outbred) Peromyscus (deer mice) (Havighorst et al, 2017). 
Recently we reported that major UPR targets such as chaperones BiP, GRP94 
and calnexin are highly coordinated in fibroblasts from outbred deer mice (P. 
maniculatus) (Havighorst et al, 2019). The utilization of an outbred species for 
this analysis allows assessment of the variation in gene expression in the 
context of the naturally existing diversity and within what should be considered 
as physiological range. 

 
Materials and Methods 
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Animals. Deer mouse, Peromyscus maniculatus bairdii (BW Stock) was 
closed colony bred in capitivity since 1948 and decended from 40 ancestors 
wild-caught near Ann Arbor, Michigan. Sonoran deer mouse, Peromyscus 
maniculatus sonoriensis (SM2 Stock) was derived from about 50 animals wild-
caught by Jack Hayes in 1995 near White Mountain Research Station, CA 
(Havighorst et al, 2017). In this study, we picked 3 outbred BWs, including 2 
males and 1 female. They were 4-week old at weaning. All animal procedures 
were approved by the Institutional Animal Care and Use Committee (IACUC) 
and the Department of Health and Human Services, Office of Laboratory 
Animal Welfare, University of South Carolina (Approval No. 2349-101211-
041917). 
 
Cell culture. Fresh ear punches were collected from deer mice during routine 
weaning and marking procedures. Ear punches were washed for 2 minutes in 
70% EtOH and moved to RPMI-1640 medium (HyClone) supplemented with 
10% FBS  (Gibco), 500 u/mL Penicillin and 500 uL/mL L-Glutamine (complete 
RPMI). Ear punches were minced into small pieces and then digested by 
collagenase I (5 mg/ml in RPMI-1640) for 1 hour. Tissue debris from digested 
ear punches was removed once cells were visible. Cells were cultivated in 
complete RPMI at 37°C in a humidified incubator containing 5% CO2, and 
passaged when cells were at 90% confluency or above to 45% confluency or 
above. Cells were passaged no more than 7 times before tunicamycin 
treatment. For tunicamycin treatment, cells were split into 6-well plates, 
300,000 cells/well, and cultivated for 24 hours. Then cells were treated with 

tunicamycin (5 g/mL) for 5 hours, immediately followed by RNA extraction. 
The analysis was performed in 3 pairs of fibroblasts, all obtained from 
different animals that resulted in 6 datasets (3 treated and 3 untreated). 
 
RNA sequencing. RNA and library preparation, sequencing, and post-
processing of the raw data and data analysis were performed by the USC 
CTT COBRE Functional genomics Core. RNAs were extracted with Qiagen 
RNeasy Plus Mini kit as per manufacturer recommendations (Qiagen, 
Valencia, CA, USA). RNA integrity was assessed using the Agilent 
Bioanalyzer and samples had a quality score >8.0. RNA libraries were 
prepared using established protocol with NEBNExt Ultra II Directional Library 
Prep Kit for Illumina, (NEB, Lynn, MA). Each library was made with one of the 
TruSeq barcode index sequences and samples were sequenced across three 
lanes. The pools were clustered at 6.5 pM on a pair end read flow cell and 
sequenced for 300 cycles on an Illumina NextSeq. Sequences were aligned to 
the Peromyscus maniculatus genome using STAR v2.6.1 (Dobin et al., 2013). 
Reads were counted using the featureCounts function of the Subreads 
package (Liao et al., 2013) in R (https://www.R-project.org/) using Gencode 
M6 GTF (http://www.gencodegenes.org/mouse_stats/archive.html) and 
summarized at exon, transcript, or gene level. Only reads that were mapped 
uniquely to the genome were used. Mapping quality (MAPQ) minimum 
threshold was set at 10. Differential expression analysis was performed in R 
using the edgeR package (Robinson et al., 2010). The average read depth for 
the samples was 48 million reads and only genes with at least one count per 
million average depth were considered for differential expression analysis. 
Raw counts were normalized using the trimmed mean of mvalues (TMM) 

https://www.r-project/
https://www.r-project/
http://www.gencodegenes/
http://www.gencodegenes/
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method. Dispersion estimates were then calculated using the 
estimateGLMRobustDisp function (Zhou et al., 2014). The normalized read 
counts were then fitted to a generalized linear model using the function glmFit 
(McCarthy et al., 2012). Genewise tests for significant differential expression 
were performed using the function glmLRT. The P-value was then corrected 
for multiple testing using Benjamini-Hochberg’s FDR (Benjamini and 
Hochberg, 1995). The results have been deposited in GEO (GSE131429). 
 
Correlation clustering. The Pearson’s correlation was calculated between the 
whole transcriptome as obtained by the RNAseq analysis, and the UPR-
associated transcripts indicated, by using Excel. Subsequently, all transcripts 
were sorted according to their R value with the given UPR genes and all 
exhibiting P<0.05 (Pearson’s) were introduced in the Gene Ontology 
Enrichment analysis (http://cbl-gorilla.cs.technion.ac.il/). Both transcripts 
showing positive correlation only (Table 1) or positive and negative correlation 
(Suppl. Table 1) were analyzed. The process and analysis followed is shown in 
Figure 1. 
 
Results and Discussion 

 
By using 3 pairs of fibroblasts from different P. maniculatus animals that 

were treated with tunicamycin we performed RNA sequencing that revealed 
expression of 14,159 transcripts. The upregulation of six selected UPR targets, 
as revealed by the RNAseq analysis, indicates the canonical activation of the 
UPR under these conditions (Suppl. Fig. 1). Subsequently, we determined the 
correlation of the 14,158 genes with each of ATF4, CHOP (DDIT3), GRP94, 
DNAJB9 (ERdj4), DNAJ3C (p58IPK) and HSPA5 (BiP/GRP78) and then 
calculated the correlation of the corresponding R (Pearson’s) values for all 
pairwise comparisons. These genes represent targets of different branches of 
the unfolded protein response (UPR): ATF4 is regulated by PERK (Harding et 
al, 2003) while CHOP by both PERK (in a manner that is ATF4-dependent) and 
by ATF6 (Zinszner et al, 1998; Ye et al, 2000). GRP94 is regulated by IRE1 
(Yoshida et al, 2001; Merzec et al, 2012) but also by ATF6 (Yamamoto et al, 
2007; Shoulders et al, 2013). DNAJB9 and DNAJ3C have been recognized as 
XBP-1 specific targets (Lee et al, 2003) while BiP (HSPA5) is induced by ATF6 
but then it plays a nodal role in orchestrating globally the UPR .  

Calculation of the correlation of the transcriptome coordinated with each 
of the UPR-associated genes analyzed, in all pairwise comparisons, showed 
similar –yet distinct– profiles. BiP, being a global transducer of the UPR was 
highly coordinated with all UPR targets while CHOP exhibited the most deviant 
profile (Figure 2). This is not surprising considering that CHOP is activated by 
several stress inducing signals, beyond UPR (Jauhiainen et al, 2012). CHOP 
and ATF4 that are co-regulated following stimulation of the PERK branch of the 
UPR showed tight coordination with each other exceeding that obtained by 
CHOP and the other UPR targets analyzed. DNAJB9 and DNAJC3 that are 
XBP1 targets showed high coordination with all UPR targets and especially with 
BiP.   

These observations imply that interpretation of the degree of co-
ordination between specific transcripts and the whole transriptome may be 
useful in assigning genes into networks, signaling nodules and biological 
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processes. It is noted though that UPR is a highly integrated response at which 
different branches of the UPR crosstalk and mask linear and causative 
associations between specific targets. For example, BiP that is an ATF6 target 
globally activates all branches of the UPR while XBP1 is regulated by both IRE1 
(at the level of splicing) and by ATF6 (at the level of transcription). Yet, we 
hypothesized that the impact of particular targets and their association with 
specific biological processes may be revealed. 

 Based on these notions we explored if the identification of the array of 
genes that are mostly correlated with each of these UPR-associated genes can 
predict biological processes that are known to reflect activation of 
corresponding UPR branches and reveal their corresponding impact in specific 
processes. The identification of signaling networks and associated biological 
processes was performed by using the gene ontology online platform (Eden et 
al, 2007; Eden et al, 2009) at which the list of genes that showed significant 
(P<0.05, Pearson’s) with either of GRP94, ATF4, CHOP, DNAJB9 (ERdj4), 
DNAJ3C (p58IPK) or HSPA5 (BiP/GRP78) were considered hierarchically, in a 
progressively decreasing manner. For this analysis we considered both genes 
exhibiting positive correlation only (Table 1 and suppl. Fig. 2 and 3) and genes 
exhibiting positive and negative correlation (suppl. Table 1 and suppl. Fig. 4 
and 5). With GRP94, 1178 genes exhibited significant positive correlation, 1010 
with CHOP (DDIT3), 1198 with ATF4, 1182 with BiP, 1250 with ERdj4 and 1202 
with p58IPK (for all P<0.05, Pearson’s). Relevant biological processes are 
shown in Table 1 at which all functions unveiled, along with the corresponding 
statistical significance is indicated. Similar results were obtained when both 
positively and negatively transcripts were analyzed (Suppl. Table 1). 

For BiP, as expected, the response to ER stress was predicted to be the 
major process unveiled, underscoring its role as the nodal activator of the UPR 
(Table 1). For GRP94, besides the cumulative response to ER stress, major 
functions that had been identified are also protein catabolism, endoplasmic 
reticulum-associated (ERAD) degradation, and transcriptional activation, which 
are all established processes that are linked to the IRE1 arm of the UPR 
(Chiang et al, 2012). We note that earlier studies utilizing either qualitative 
changes in gene expression or chemical activators showed that in the absence 
of IRE1 and its target XBP1, but not in the absence of ATF6, MEFs can induce 
GRP94 which points to the important role of ATF6 in GRP94 expression 
(Yamamoto et al, 2007; Shoulders et al, 2013). This association we also noted 
since GRP94 was identified as an ATF6 target (Table 1). Yet, with such 
qualitative alterations the relative impact of each of these upstream regulators 
cannot be evaluated and adequately appreciated. The present experimental 
setting, at which all branches are physiologically expressed, implies that 
GRP94 is associated with functions (as opposed to specific genes), previously 
established as IRE1-regulated functions, such as ERAD. This observation does 
not contradict the role of ATF6 in the regulation of GRP94 but rather underscore 
the biological relevance of IRE1 at conditions at which all branches of the UPR 
are physiologically expressed 

With ATF4, major processes revealed were the regulation of translation 
and regulation of apoptosis in response to stress, which are known processes 
that are mediated by PERK (Szegezdi et al, 2017).  

For ERdj4 and p58IPK, no specific functions were revealed beyond their 
association with ER stress with the exception of the fact that for both, a negative 
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function was predicted. This probably implies their function in establishing 
negative feedback regulatory associations, consistent with the relief of stress 
following UPR activation.    

An unexpected finding was the consistent association of CHOP with the 
regulation of metabolic processes. While CHOP is known to regulate 
metabolism, it is believed that this is activity is produced indirectly, by 
competing with other cEBP family members. Indeed, negative regulation of 
CREB has been revealed (Rutkowski et al 2008). In addition, a major role of 
CHOP in regulating metabolism should also be considered.  

Although the present analysis possesses limitations in predicting linear 
association at the level of regulation, it possesses high power in identifying 
relevant biological processes and underscoring the relative impact of the 
transcripts of interest when simultaneously several such processes operate. 
The power of this approach in deciphering biologically relevant processes was 
reflected to the fact that by using only 3 primary cell lines we were able to 
distinguish between well established major functions for the different arms of 
the UPR and accurately predicting processes, such as ERAD and apoptosis for 
different transcripts. Similar gene ontology analysis by identifying transcripts 
significantly upregulated during ER stress and subjecting them, by an 
analogous hierarchical manner, to gene ontology analysis, was powerless to 
predict specific biological functions and only unveiled a generic and rather wide 
response to stress (Table 1). Furthermore, while the proposed analysis allows 
the extraction of information with regards to the function of individual genes, 
conventional analysis focusing on relative expression can be useful only if 
genetic manipulation targeting the gene of interest is applied. The latter, beyond 
its methodological limitation related to that it is hypothesis-driven, it also 
possesses conceptual limitations since qualitative changes may be distinct 
from quantitative changes that occur in naturally existing populations. It is 
plausible that the power of the correlation analysis over the standard 
overexpression analysis is associated with the fact that different transcription 
modules exhibit different saturation levels that when reached the coordination 
in their activation is abolished. This can only be studied by using genetically 
diverse biological systems at which variation in expression has the capacity to 
reveal the presence of correlation in expression levels. When, however, only 
the degree of differential expression is evaluated, co-regulation and deviation 
from this cannot be assessed. 

Collectively, the present study illustrates the power of using outbred 
species in analyzing gene expression and suggests that evaluation of the 
degree of coordination as opposed to the magnitude of expression may be 
particularly valuable in assigning genes into transcriptional networks. It is 
plausible that by increasing the depth of RNA sequencing and concomitantly 
analyzing a large number of specimens and transcripts, more precise 
predictions will be made regarding signal integration. It is conceivable that this 
strategy can find application to the study of virtually all signaling networks at 
which variation in the response, accompanied by coordination in the expression 
of the corresponding transcripts is anticipated. Whether in disease the 
coordination in particular signaling nodes is abolished, remains to be seen.  
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