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all dimensions n ≥ 3.
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1. Introduction

We study the question whether the blow-up of a projective, Q-factorial toric variety over C of Picard 
number one, at the identity point p of the open torus, is a Mori Dream Space (MDS).

Mori Dream Spaces were introduced by Hu and Keel in [14]. By [1], log Fano varieties over C are Mori 
Dream Spaces. Projective, Q-factorial toric varieties, being log Fano, are MDS. The property of being a 
MDS is nevertheless not a birational invariant. In fact, the blow-up of Pn at r very general points stops 
being a MDS if r > 8 for P2 and P4, r > 7 for P3, and r > n + 3 for n ≥ 5 [16]. One of the motivations 
to study blow-ups of toric varieties at the identity point comes from the proof by Castravet and Tevelev [3]
that the moduli spaces of stable rational curves M0,n are not MDS when n > 133, which was later improved 
to n > 12 by González and Karu [8] and to n > 9 by Hausen, Keicher and Laface [12]. The proof of [3] used 
the examples of not MDS blow-ups of weighted projective planes (see 1.4 and 1.5) by Goto, Nishida and 
Watanabe [11].

E-mail address: he.zhu@husky.neu.edu.
https://doi.org/10.1016/j.jpaa.2019.01.014
0022-4049/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2019.01.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
mailto:he.zhu@husky.neu.edu
https://doi.org/10.1016/j.jpaa.2019.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2019.01.014&domain=pdf


Z. He / Journal of Pure and Applied Algebra 223 (2019) 4426–4445 4427
The discussion above prompts the question of searching for not MDS blow-ups of toric varieties of small 
Picard numbers, which was formulated in [2]. Historically, much research work was done for surfaces. For a 
weighted projective plane S = P(a, b, c), let p be the identity point of the open torus. If the anticanonical 
divisor −K of the blow-up Blp S of S at p is big, then Blp S is a MDS [5]. If one of a, b, c is at most 4 or equals 6
then Blp S is a MDS [5][17]. The first examples where Blp S is not a MDS were given in [11]. A generalization 
was achieved by González and Karu [8] for toric varieties of Picard number one whose corresponding polytope 
Δ has specific numbers of lattice points in its columns. The question can be formulated as an interpolation 
problem on the lattice points in Δ and leads to 3 families of new nonexamples [13]. We note that for any 
weighted projective space X, Blp X is a MDS if and only if the Cox ring of Blp X is a finitely generated 
C-algebra, which is also equivalent to the finite generation of the symbolic Rees algebra associated to X
[5][11], which is of independent interest.

In higher dimensions not much was known until the recent work [9]. In [9] González and Karu constructed 
higher dimensional toric varieties X of Picard number one with Blp X not a MDS, by exhibiting a nef but 
not semiample divisor on Blp X. Their examples include some weighted projective 3-spaces X = P(a, b, c, d)
such that Blp X is not a MDS.

In this paper, we give a sufficient condition (Theorem 1.2) so that the blow-up of the weighted projective 
n-space X = P(a, b, c, d1, d2, · · · , dn−2) at the identity p is not a MDS. We show new examples of such X
in all dimensions n ≥ 3.

We sum up our results below. We work over the complex numbers C. Let N = Z2 and M be the dual 
lattice of N . Let S be a normal projective, Q-factorial toric surface of Picard number 1, with fan ΣS in 
N ⊗Z R = R2. Then a polarization H = HΔ on S is determined by a rational triangle Δ in M ⊗Z R
whose normal fan is ΣS . Let the sides of Δ have rational slopes s1 < s2 < s3. We choose Δ so that after 
translating one vertex of Δ to (0, 0), the opposite side passes through (0, 1). Then the width of this Δ equals 
w := 1/(s2 − s1) + 1/(s3 − s2). This w is called the width of the polarized toric surface (S, HΔ) (see [8, 
Thm. 1.2]).

A weighted projective plane S = P(a, b, c) is an example of normal Q-factorial toric surfaces of Picard 
number 1. A triple (e, f, −g) is called a relation between the weights (a, b, c) if e, f, g ∈ Z>0 and ae +bf = cg

[8, Thm. 1.5]. Then there exists a polarization HΔ such that the width w of (S, HΔ) is smaller than 1 if 
and only if there exists a relation (e, f, −g) with cg2/ab = w < 1. Such (e, f, −g) is unique if it exists, even 
when permuting the weights a, b, c. Therefore for a relation (e, f, −g) we define the width of (e, f, −g) to be 
cg2/(ab).

Given ξ = (e, f, −g) a relation with width w < 1, we can construct a fan Σξ of S and the polytope Δξ

with width w as follows: By [13, Prop. 5.1], there exists a unique integer r such that 1 ≤ r ≤ g, g | er − b

and g | fr + a. Then the following vectors are primitive and span Z2:

u0 =
(

er − b

g
, −e

)
, u1 =

(
fr + a

g
, −f

)
, u2 = (−r, g). (1)

Clearly au0 + bu1 + cu2 = 0. Hence the fan Σξ with ray generators u0, u1 and u2 is a fan of P(a, b, c). The 
triangle Δξ has vertices

(0, 0),
(

−eg

b
, −er − b

b

)
,

(
fg

a
,

fr + a

a

)
, (2)

which is normal to Σξ and has width w = cg2/(ab) (see Fig. 1).
Throughout this paper, we always assume that the weights q0, q1, · · · , qn of a weighted projective n-space 

P(q0, q1, · · · , qn) are well-formed, i.e., any n weights are relatively prime.
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Fig. 1. The triangle Δξ from the relation ξ = (e, f, −g).

For any weighted projective space X, let p be the identity point of the open torus in X. For S = P(a, b, c), 
let B be the pseudo-effective divisor on S generating Cl(S) ∼= Z. Let e be the exceptional divisor of the 
blow-up π : Blp S → S. Our main result is:

Theorem 1.1. Let X = P(a, b, c, d1, d2, · · · , dn−2) where a, b, c are pairwise coprime. Let S = P(a, b, c). 
Suppose there is a negative curve C on Blp S, different from e, with C ∼Q λπ∗B − μe for some λ, μ ∈ Q. 
Suppose all the following hold:

(i) every di lies in the semigroup generated by a, b and c (i.e., di is a linear combination of a, b, c with 
non-negative integer coefficients),

(ii) di <
abcμ

λ
for every i,

(iii) Blp P(a, b, c) is not a MDS.

Then Blp X is not a MDS.

We show a special case of Theorem 1.1 when there is a relation (e, f, −g) between the weights (a, b, c)
with w < 1. In this case, there exists a negative curve C ∼ cgπ∗B − e on Blp S, and we have:

Theorem 1.2. Let X = P(a, b, c, d1, d2, · · · , dn−2) be a weighted projective n-space where a, b, c are pairwise 
coprime. Let p be the identity point of the open torus in X. Suppose all the following hold:

(i) there is a relation between the weights (a, b, c) such that the width satisfies w < 1,
(ii) every di lies in the semigroup generated by a, b and c,
(iii) d2

i w < abc for every i,
(iv) Blp P(a, b, c) is not a MDS.

Then Blp X is not a MDS.

In particular, if all di = a and a < b < c with w < 1, then d2
i w = a2w < a2 < abc. Thus we have the 

following corollary:
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Corollary 1.3. Assume that a < b < c are pairwise coprime. Suppose Blp P(a, b, c) is not a MDS, and there 
is a relation between the weights (a, b, c) such that the width satisfies w < 1. Then Blp P(a, b, c, a, · · · , a) is 
not a MDS.

Example 1.4. By [11], the Cox ring of the blow-up of P(a, b, c) at the identity point is not finitely generated 
as a C-algebra when (a, b, c) = (7m − 3, 8m − 3, (5m − 2)m) for m ≥ 4 and 3 � m. Equivalently, the blow-up 
at p is not a MDS. The sequence of weights has relation (e, f, −g) = (m, m, −3) so that w < 1.

By Theorem 1.2, we conclude that Blp P(7m − 3, 8m − 3, (5m − 2)m, d1, · · · , dn−2) is not a MDS when

(i) m ≥ 4 and 3 � m,
(ii) every di lies in the semigroup generated by 7m − 3, 8m − 3 and (5m − 2)m, and
(iii) every di < (7m − 3)(8m − 3)/3.

By Corollary 1.3, Blp P(7m − 3, 8m − 3, (5m − 2)m, 7m − 3, · · · , 7m − 3) is not a MDS for m ≥ 4 and 
3 � m.

Example 1.5. Another infinite sequence given by [11] where the blow-ups at p are not MDS is (a, b, c) =
(7m − 10, 8m − 3, 5m2 − 7m + 1) for any m ≥ 5 such that 3 � 7m − 10 and m �≡ −7 (mod 59) (By [8] the 
blow-up at p is also not a MDS when m = 3). The sequence of weights has relation (e, f, −g) = (m, m −1, −3)
so that w < 1.

We conclude by Theorem 1.2 that Blp P(7m −10, 8m −3, 5m2 −7m +1, d1, · · · , dn−2) is not a MDS when

(i) m ≥ 3, 3 � 7m − 10 and m �≡ −7 (mod 59),
(ii) every di lies in the semigroup generated by 7m − 10, 8m − 3 and 5m2 − 7m + 1, and
(iii) every di < (7m − 10)(8m − 3)/3.

Example 1.6. The infinite sequence (a, b, c) = (7, 15 + 2t, 26 + 3t) for t ≥ 0 has the relation (e, f, −g) =
(1, 3, −2). The weights (a, b, c) are pairwise coprime if and only if 7 � t − 3. They all satisfy the criterion of 
[8, Thm. 1.5], so Blp P(a, b, c) is not MDS for every t ≥ 0, where the width

w = 4(26 + 3t)
7(15 + 2t) = 104 + 12t

105 + 14t
< 1

for t ≥ 0. Theorem 1.2 (3) then gives the upper bound

d <

√
abc

w
= ab

g
= 7(15 + 2t)

2 .

Note that when t ≥ 0, a + b = 2t + 22 <
7(15 + 2t)

2 . Hence d = a + b is on the list. As a result, 
Blp P(7, 15 + 2t, 26 + 3t, d1, · · · , dn−2) is not a MDS when

(i) t ≥ 0 and 7 � t − 3,
(ii) every di lies in the semigroup generated by 7, 15 + 2t and 26 + 3t, and
(iii) every di < 7(15 + 2t)/2.

The paper is organized as follows. In Section 2, we give a sufficient condition (Theorem 2.1) for the blow-up 
Blp X of a normal projective variety X with Picard number 1 not to be a MDS, with p a smooth point on X. 
Such Blp X has a nef but not semiample divisor. Sections 3 and 4 consider weighted projective n-spaces 
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X with properties described in Theorem 1.1. We show that X contains a closed subvariety isomorphic to 
S = P(a, b, c). Section 5 verifies the conditions in Theorem 2.1 for X and S, applying a result of Fulton and 
Sturmfels [7, Lem. 3.4]. In particular, we prove that Blp X is not a MDS.

In Section 6, we compare our results with the examples in [9]. Proposition 6.6 describes the overlap of 
our list in dimension 3 with González and Karu’s in [9]. The only common examples are X = P(a, b, c, cg)
where (e, f, −g) is a relation between (a, b, c), and Blp P(a, b, c) is not a MDS and satisfies the assumptions 
in [9, Cor. 2.5]. Note that we give more examples beyond the overlap (Examples 1.4, 1.5 and 1.6).

In Section 7, we apply Theorem 1.1 to the case when X = P(a, b, c, d1, d2, · · · , dn−2) where S = P(a, b, c)
being of the form considered in [10, Ex. 1.4]. Hence Blp S is again not a MDS. This leads to new examples 
where Blp X is not MDS in Corollary 7.1.

2. Blow-ups of varieties of Picard number one

Let X be a normal, projective, Q-factorial variety of Picard number 1 and dimension n ≥ 3. Suppose 
Y1, · · · , Yn−2 are prime Weil divisors of X (Yi not necessary normal), such that the set-theoretic intersection 
S := ∩n−2

i=1 Yi, with the reduced subscheme structure on S, is a normal, projective, Q-factorial surface of 
Picard number 1. In addition, suppose both Pic(X) and Pic(S) are finitely generated.

Let us blow up S and X at a point p ∈ S which is smooth in X, S and each Yj . Let f : Blp S → Blp X

be the natural inclusion. Let E be the exceptional divisor of the blow-up πX : Blp X → X and e be the 
exceptional divisor of π : Blp S → S.

Theorem 2.1. Let X, Yi, S and f be defined as above. Suppose there exists an irreducible curve C in Blp S, 
different from the exceptional divisor e in Blp S, with C2 < 0, such that for every i, (f∗C). Blp Yi < 0 in 
Blp X. Then if Blp S is not a Mori Dream Space (MDS), then Blp X is not a Mori Dream Space.

Proof. Here both Blp S and Blp X have Picard number 2. Since C2 < 0 in Blp S, C spans an extremal 
ray of the Mori cone NE(Blp S) [15, Lem. 1.22]. Since e is numerically equivalent to a general line in the 
exceptional divisor E of Blp X, [e] spans an extremal ray in both NE(Blp X) and NE(Blp S).

Let C1 be the image of C in Blp X, and e1 be the image of e in Blp X. We show that [C1] spans the other 
extremal ray of NE(Blp X). Since C is irreducible, C1 is irreducible. Suppose towards a contradiction that 
C1 is not extremal in NE(Blp X). Then C1 ≡ r1F1 + s1e1 for some effective curve F1 and some rational 
numbers r1, s1 > 0. Then there exists an irreducible component F2 of F1 such that F1 ≡ r2F2 + s2e1 for 
some rational numbers r2 > 0 and s2 ≥ 0. Therefore we can assume at the beginning that F1 is irreducible. 
By assumption, C1 ·Blp Yi < 0 for every i. Since Blp Yi is isomorphic to the proper transform of Yi in X, and 
the class of e1 is the class of a line in E, we have e1 · Blp Yi ≥ 0. Therefore F1 · Blp Yi < 0. The irreducibility 
assumption of F1 implies that F1 ⊂ Blp Yi. Run this for every i, and we have F1 ⊂ ∩i Blp Yi = Blp S. 
Consider the pushforward f∗ : N1(Blp S) → N1(Blp X) and the pullback f∗ : N1(Blp X) → N1(Blp S). Since 
N1(Blp S) is spanned by [f∗H] and [e] where H = π∗

XH0 is the total transform of a very ample divisor 
H0 on X, and e ≡ f∗E, we have f∗ is surjective. The dual paring between N1(Blp X) and N1(Blp X)
(respectively N1(Blp S) and N1(Blp S)) is perfect. Hence f∗ is injective by the projection formula. Now 
f∗(C − r1F1 − s1e) ≡ C1 − r1F1 − s1e1 ≡ 0. By injectivity, C − r1F1 − s1e ≡ 0. Then the ray R≥0[C] is not 
extremal in NE(Blp S), which is a contradiction. Hence the ray R≥0[C1] is extremal in NE(Blp X).

Finally, suppose Blp X is a MDS. Since X is Q-factorial, and p is smooth in X. Blp X is also Q-factorial. 
Then the nef cone of Blp X is generated by semiample divisors. In particular, there is a semiample divisor 
D such that D.C1 = 0. Therefore f∗D · C = f∗(f∗D · C) = D · f∗C = D · C1 = 0 by projection formula. 
Hence [f∗D] spans an extremal ray of Nef(Blp S). Now f∗D is also semiample. This shows that Blp S is a 
MDS. �



Z. He / Journal of Pure and Applied Algebra 223 (2019) 4426–4445 4431
3. Divisors on weighted projective spaces

In this section we construct the fan of the weighted projective n-space X = P(a, b, c, d1, · · · , dn−2) and 
define n − 2 divisors Yj on X for j = 3, 4, · · · , n, under the assumption (i) of Theorem 1.1. Then we show 
that the set-theoretic intersection of those Yj equals the Zariski closure of a 2-dimensional subtorus in X.

Notation 3.1. We list some notations and terminology for later use.

• For any integer n ≥ 3, let J := {3, 4, · · · , n}.
• Let N ∼= Zn (n ≥ 3) be a lattice. Let TN = N ⊗Z C∗. Then TN is a torus of dimension n. Let 

M = Hom(N, Z) be the dual lattice of N . Then M = Hom(TN , Gm), so each u ∈ M defines a character 
χu on TN .

• If e1, e2, · · · , en form a basis of N , then e∗
1, · · · , e∗

n form the dual basis of M . Write χj := χe∗
j . Then 

TN = SpecC[χ1, χ−1
1 , · · · , χn, χ−1

n ].
• For any lattice L, define LR := L ⊗Z R.
• Let N1 := Z{e1} be the sublattice of N spanned by e1. Let N12 := Z{e1, e2} be the sublattice spanned 

by e1 and e2. Let T1 := N1 ⊗Z C∗ and T12 := N12 ⊗Z C∗ be the corresponding subtori of TN . Let 
M12 := Hom(N12, Z).

• Let Lj := Z{e1, e2, · · · , êj , · · · , en} for j ∈ J . Let Tj := Lj ⊗Z C∗.
• Let Σ be a full dimensional fan in NR. If X is the toric variety corresponding to the fan Σ, then 

TN is the open torus in X. For any full dimensional cone σ ∈ Σ, let Uσ := SpecC[σ∨ ∩ M ]. Then 
{Uσ | σ ∈ Σ is full dimensional} is an affine open cover of X.

• Write τ ≺ σ if τ is a face of σ. For any cone τ ∈ Σ, let O(τ) be the TN -orbit associated to τ in X. Then 
for a full dimensional cone σ and any cone τ in Σ, O(τ) ⊆ Uσ if and only if τ ≺ σ (see [4, 3.2.6c]).

• Let V (τ) be the Zariski closure of O(τ) in X. Then V (τ) is a torus-invariant closed subvariety of X.
• A fan Σ is simplicial if any cone σ ∈ Σ is generated by linearly independent generators. Assume that Σ

is a simplicial fan in Rn with n +1 rays R0, R1, · · · , Rn, where every n of them are linearly independent. 
For every I ⊆ {0, 1, · · · , n}, let σI ∈ Σ be the cone spanned by {Ri | i ∈ I}. Every cone σ ∈ Σ
corresponds to a unique subset I in the way above. Let Σ(k) be the k-dimensional cones in Σ. Then 
Σ(k) = {σI | |I| = k}. We write V (σI) as VI , and O(σI) as OI . Then OI is a torus of dimension n − |I|. 
If I = {i}, then we write the torus-invariant divisor V (σ{i}) as Di:.

We start with the fan of the weighted projective plane P(a, b, c). The assumption and conclusion of 
Proposition 1.1 are symmetric about a, b and c. Hence up to a permutation on (a, b, c), we can choose a 
fan ΣS of S with ray generators ui = (xi, yi) such that both y0, y1 < 0 and y2 > 0. Note that we have 
au0 + bu1 + cu2 = 0.

Consider N = Zn. Fix a basis e1, e2, · · · , en of N . By assumption (ii), there exist nonnegative integers 
{mij} such that dj−2 = am0,j + bm1,j + cm2,j for every j ∈ J . Define the following vectors in N :

v0 = (x0, y0, −m0,3, · · · , −m0,n),

v1 = (x1, y1, −m1,3, · · · , −m1,n),

v2 = (x2, y2, −m2,3, · · · , −m2,n),

vj = ej , for j ∈ J = {3, 4, · · · , n}.

(3)

Note that for every j ∈ J , at least one of the integers m0j , m1j , m2j is necessarily nonzero.
Those vi satisfy the relation

av0 + bv1 + cv2 + d1v3 + · · · + divi+2 + · · · + dn−2vn = 0.
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Moreover, each vi is primitive, and together they span the lattice N . As a result, if we let ΣX be the fan in 
NR spanned by the n + 1 rays along vi (i = 0, 1, · · · , n), then ΣX is a fan of X = P(a, b, c, d1, · · · , dn−2).

Definition 3.2. Let the fan ΣX of X = P(a, b, c, d1, · · · , dn−2) be defined as above. For every j ∈ J , let Yj

be the Zariski closure of the subtorus Tj = Lj ⊗Z C∗ in X. Define S to be the set-theoretic intersection 
∩n

j=3Yj . Let Z be the Zariski closure of the subtorus T12 = N12 ⊗Z C∗ in X.

By definition, all the Yj and Z are irreducible. We claim:

Proposition 3.3.

(i) The set-theoretic intersection S equals Z.
(ii) With the reduced subscheme structure, S is isomorphic to P(a, b, c). In particular, S is normal.

We prove (ii) of Proposition 3.3 in the next section. Here we prove (i) by showing that Z is the unique 
irreducible component of the intersection S. We will reduce the question to the affine case and apply the 
following lemma.

Lemma 3.4. Let σ in NR be a simplicial cone spanned by n linearly independent rays Ri, i = 1, · · · , n. Let 
Uσ := SpecC[σ∨ ∩ M ]. For any u ∈ M such that u is primitive and u �= 0, let Tu be the subtorus of TN

defined by χu = 1, and take the Zariski closure Tu in Uσ. Then we have:

(i) If τ ≺ σ such that u ∈ τ∨ ∪ (−τ∨) and u /∈ τ⊥, then the set-theoretic intersection Tu ∩ O(τ) = ∅. In 
particular:
(a) For τ = Ri, if u /∈ τ⊥, then Tu ∩ O(τ) = ∅.
(b) If u ∈ σ∨ ∪ (−σ∨), then Tu ∩ O(σ) = ∅.

(ii) If u ∈ τ⊥ and u ∈ σ∨ ∪ (−σ∨), then Tu ∩ O(τ) has codimension at least 1 in O(τ).

Proof. When τ = Ri is a ray, τ∨ ∪ (−τ∨) = M . When τ = σ, τ⊥ = σ⊥ = {0}. Therefore the two special 
cases (a) and (b) of (i) follow from the general result. Now let τ be a d-dimensional face of σ such that 
u ∈ τ∨ ∪ (−τ∨), and u /∈ τ⊥. Then O(τ) ∼= SpecC[τ⊥ ∩M ] is a (n −d)-dimensional torus (see Notation 3.1). 
Let V (τ) be the closure of O(τ) in Uσ. Then V (τ) ∼= SpecC[τ⊥ ∩ σ∨ ∩ M ]. Then the inclusions

O(τ) ∼= SpecC[τ⊥ ∩ M ] ↪−→ V (τ) ∼= SpecC[τ⊥ ∩ σ∨ ∩ M ] ↪−→ Uσ
∼= SpecC[σ∨ ∩ M ]

correspond to the maps of C-algebras

C[σ∨ ∩ M ] φτ−−→ C[τ⊥ ∩ σ∨ ∩ M ] → C[τ⊥ ∩ M ],

where φτ sends χu to χu if u ∈ τ⊥, and 0 otherwise. To prove that Tu does not intersect O(τ), it suffices 
to show that there is a regular function f vanishing on Tu but not vanishing anywhere on O(τ). There are 
two cases.

Case I. u ∈ σ∨ ∪ (−σ∨) and u /∈ τ⊥. Note that σ∨ ⊆ τ∨ since τ ≺ σ. Suppose u ∈ −σ∨. Then −u ∈ σ∨. 
By definition, Tu = T−u, so we can assume u ∈ σ∨. Now f := χu − 1 = χu − χ0 ∈ C[σ∨ ∩ M ] is a regular 
function on Uσ. Since u /∈ τ⊥, φτ (χu) = 0. Since 0 ∈ τ⊥, φτ (χ0) = 1. Therefore φτ (f) = −1 is a regular 
function on V (τ) which does not vanish on O(τ).

Case II. τ �= σ is a proper face, u ∈ τ∨ ∪ (−τ∨) and u /∈ σ∨ ∪ (−σ∨) and u /∈ τ⊥. For each i = 1, · · · , n, 
let ri be the ray generator of the ray Ri. Without loss of generality, we can assume τ is the face spanned 
by r1, · · · , rd, with d < n, and u ∈ τ∨. Let 〈·, ·〉 : N × M → Z be the dual pairing. Then 〈ri, u〉 ≥ 0 for 
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i = 1, . . . , d, with 〈ri, u〉 > 0 for some i ≤ d, and 〈rj , u〉 < 0 for some j ∈ {d + 1, · · · , n}. We claim there 
exist p, q ∈ σ∨ ∩ M − {0} and k ∈ Z>0 such that ku = p − q and q ∈ τ⊥. Indeed, since σ is simplicial, 
r1, · · · , rn form a basis of N ⊗Z Q. Let r∗

1 , · · · , r∗
n be the dual basis of M ⊗Z Q. Then u = u1r∗

1 + · · · + unr∗
n

for rational numbers ui, i = 1, · · · , n. Define

p′ :=
∑
ui>0

uir
∗
i , and q′ := −

∑
ui<0

uir
∗
i .

Then u = p′ − q′. Indeed both p′ and q′ are in σ∨. Since 〈ri, u〉 > 0 for some i ≤ d, and 〈rj , u〉 < 0 for some 
j ∈ {d + 1, · · · , n}, we have p′ �= 0 and q′ �= 0. Take any k ∈ Z>0 such that kp′ and kq′ are both in M . Let 
p := kp′ and q := kq′, then ku = p −q and p, q ∈ σ∨ ∩M −{0}, which proves the claim. Now let f = χq −χp. 
Then f ∈ C[σ∨ ∩ M ]. We have f = χq − χp = −χq(χku − 1). Since χu − 1 divides χku − 1, and χq has no 
poles on Tu, f must vanish everywhere Tu. On the other hand, since u /∈ τ⊥ and q ∈ τ⊥, p = ku + q /∈ τ⊥. 
Therefore φτ (χp) = 0, and φτ (f) = φτ (χq) = χq. When restricted to O(τ), χq is a nonzero monomial in the 
coordinate functions on O(τ), therefore χq does not vanish anywhere on the torus O(τ). This proves (i).

By the symmetry between u and −u, to prove (ii), we need only prove for the case when u ∈ τ⊥ ∩ σ∨. 
In this case, φτ (χu) = χu, so χu − 1 is a regular function of O(τ). Now Tu is contained in the zero locus 
of χu − 1. By assumption, u �= 0, so χu �= 1. Restricting to O(τ), χu �= 1 is a monomial of the coordinate 
functions on O(τ), so χu = 1 defines a subtorus of codimension 1 in O(τ). This proves (ii). �
Proof of Proposition 3.3(i). By Definition 3.2, S is the set-theoretic intersection of Yj , j ∈ J . Since each Yj

has codimension one in X, the codimension of each irreducible component of S in X is at most n − 2. For 
every j ∈ J , since T12 ⊆ Tj , Z is contained in Yj . Hence Z is contained in S. Therefore it suffices to prove 
that Z is the unique irreducible component of S of dimension at least 2.

Here the fan ΣX is simplicial, spanned by ray generator vi. By Notation 3.1, ΣX = {σI | I ⊆
{0, 1, · · · , n}}. To prove that Z is the unique irreducible component of S of dimension at least 2, we need 
only show that S ∩ OI is contained in a curve for every 1 ≤ |I| ≤ n − 2. Indeed, suppose S ∩ OI is contained 
in a curve for every 1 ≤ |I| ≤ n − 2. Then X\TN is a disjoint union of TN -orbits OI for 1 ≤ |I| ≤ n − 2, 
with dim OI = n − |I|. Therefore, if we assume there is some irreducible component S′ of S disjoint from Z, 
then S′ is contained in X\TN , hence dim S′ ≤ 1. This proves that Z is the unique irreducible component 
of S of dimension at least 2.

It remains to show S ∩ OI is contained in a curve for every 1 ≤ |I| ≤ n − 2. By Notation 3.1, {Uσ | σ ∈
ΣX(n)} is a torus-invariant open affine cover of X. For every TN -orbit OI with 1 ≤ |I| ≤ n − 2, we choose 
some σ′ ∈ ΣX(n) such that σI ≺ σ′. Then OI ⊆ Uσ′ . By definition, Yj is the Zariski closure of Te∗

j
in X. 

Indeed, Te∗
j

⊆ TN ⊆ Uσ′ . Let Y ′
j be the restriction of Yj to this Uσ′ . Then Y ′

j equals the Zariski closure of 
Te∗

j
in Uσ′ . We apply Lemma 3.4 to σ = σ′, τ = σI and u = e∗

j . Recall (3) that −mij ≤ 0 is the j-th entry 
of vi for i = 0, 1, 2, j ≥ 3. Define the following index sets:

I+ := I ∩ {0, 1, 2},

J− := {j ∈ J\I | mij > 0 for some i ∈ I+},

I0 := {j ∈ I ∩ J | mij = 0 for all i ∈ I+}.

There are 4 possible cases: (a) I+ = ∅; (b) I+ �= ∅ and J− �= ∅; (c) I+ �= ∅ and I0 �= ∅; and (d) I+ �= ∅ and 
J− = I0 = ∅.

In Cases (a) (b) and (c), we apply Lemma 3.4 (i) to show that there exists j ∈ J such that Y ′
j ∩ OI = ∅

for some j ∈ J and for every choice of σI ≺ σ′. Hence S ∩ OI = ∅. For (d), we apply Lemma 3.4 (ii) to show 
that S ∩ OI is contained in a curve by choosing a specific σ′.
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(a) I+ = ∅. Choose any j ∈ I. Then e∗
j /∈ σ⊥

I and e∗
j ∈ σ∨

I . Apply Lemma 3.4 (i) to any full dimensional 
σ′ such that σI ≺ σ′, τ = σI and u = e∗

j . Then Y ′
j ∩ OI = ∅.

(b) I+ �= ∅ and J− �= ∅. Then choose any j ∈ J−. We have 〈vi, e∗
j 〉 = −mij < 0 for some i ∈ I+, and 

〈vi, e∗
j 〉 ≤ 0 for all i ∈ I. Hence e∗

j ∈ −σ∨
I and e∗

j /∈ −σ⊥
I . Therefore Y ′

j ∩ OI = ∅.
(c) I+ �= ∅ and I0 �= ∅. Choose any j ∈ I0. Then 〈vj , e∗

j 〉 = 1 > 0. If i ∈ I and i �= j, then either i ∈ J

or i ∈ I+. If i ∈ J , then vi = ei and i �= j, so 〈vi, e∗
j 〉 = 0. If i ∈ I+, then 〈vi, e∗

j 〉 = −mij = 0 since j ∈ I0. 
Hence e∗

j ∈ σ∨
I and e∗

j /∈ σ⊥
I , so Y ′

j ∩ OI = ∅.
(d) I+ �= ∅ and J− = I0 = ∅. Since |I| ≤ n −2, and I+ �= ∅, it must be that J � I. Therefore I+ �= {0, 1, 2}

(otherwise for every j ∈ J\I, there exists an mij > 0, so j ∈ J−), so |I+| = 1 or 2. Fix some j ∈ J\I. 
Since J− = ∅, mij = 0 for all i ∈ I+. Therefore e∗

j ∈ σ⊥
I . For this j ∈ J\I, define I ′ = {0, 1, 2, · · · , ̂j, · · · , n}

and let σ′ := σI′ . Define Y ′
j to be the restriction of Yj to Uσ′ as discussed above. Then Uσ′ contains OI , 

with e∗
j ∈ −(σ′)∨. In Lemma 3.4 (ii), let σ = σ′, τ = σI and u = e∗

j . Then Y ′
j ∩ OI is of codimension at 

least one in OI and is contained in the zero locus of χj − 1, regarded as a regular function on OI . Now the 
number of such j equals |J\I| = n − 2 − |I ∩ J | = n − 2 − (|I| − |I+|). Since n − |I| = dim OI , we have 
|J\I| = dim OI − (2 − |I+|). Recall that M = Z{e∗

1, · · · , e∗
n} and OI = SpecC[σ⊥

I ∩ M ]. Since |I+| = 1
or 2, the semigroup σ⊥

I ∩ M is generated by {e∗
i | i ∈ J\I} if |I+| = 2, or by {e∗

i | i ∈ J\I} together with 
some ξ ∈ Z{e∗

1, e∗
2} if |I+| = 1. Therefore each χj , j ∈ J\I restricts to different coordinate functions on OI . 

Hence, the intersection of the zero loci of all those χj − 1 (j ∈ J\I) has dimension exactly 2 − |I+|, which 
is either 1 or 0. Therefore S ∩ OI is contained in a curve. This finishes Case (d) and the proof. �
4. Normality of the closure of subtori

In this section we prove (ii) of Proposition 3.3, namely that the surface S is normal and isomorphic to 
the weighted projective plane P(a, b, c).

We recall the following construction in [4, §2.1] of a projective toric variety XA out of a finite set of 
lattice points A ⊂ M . Let N = Zn and M = Hom(N, Z). Then each m ∈ M gives a character χm of the 
torus TN . Any list of k lattice points A = (m1, · · · , mk) ⊂ M defines a morphism φA from TN to Pk−1:

φA : TN → Tk
μ−→ Pk−1,

t �→ (χm1(t), · · · , χmk (t)) �→ [χm1(t) : · · · : χmk (t)],
(4)

where Tk
∼= (C∗)k and μ : Tk → Pk−1 maps Tk to the open torus {[x0 : · · · : xk−1] | all xi �= 0} of Pk−1.

Definition 4.1. [4, Definition 2.1.1] We denote by XA the not necessarily normal toric variety given by the 
Zariski closure of the image φA(TN ) in Pk−1.

Remark 4.2. Up to isomorphism, the definition of XA only depends on the set of points appearing in A. So 
up to isomorphism we can ignore the order of the points in A, and can remove possible duplicates from A.

We note that by definition, XA is projective. However XA need not be normal. One of the ways to obtain 
normal toric varieties is from polytopes. Let P be a full dimension polytope in MR. Call P a lattice polytope 
if the vertices of P are in M . Now consider a semigroup S ⊂ M , with the addition inherited from M . Recall 
that S is said to be saturated if for every m ∈ M , every k ∈ Z − {0}, km ∈ S implies m ∈ S.

Definition 4.3. [4, Definition 2.2.17] A lattice polytope M is very ample if for every vertex m ∈ P , the 
semigroup SP,m generated by the set P ∩ M − m is saturated in M .

Lemma 4.4. [4, Cor. 2.2.19] If P is a full dimensional lattice polytope, then kP is very ample if k ≥ dim P −1. 
In particular, if P is a lattice polygon in R2 then P is very ample.
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Definition 4.5. [4, Definition 2.3.14] Suppose that P ⊂ MR is a full dimensional lattice polytope. Then define 
the toric variety XP to be XA with A = kP ∩ M , for any integer k > 0 such that kP is very ample.

The toric variety XP is well defined since XkP ∩M and X�P ∩M are isomorphic when both kP and 
P are 
very ample (see [4, §2.3]).

Lemma 4.6. If P is a full dimensional very ample lattice polytope, then XP ∩M is a normal projective toric 
variety, whose fan in N is the normal fan Σ of P .

Proof. This follows from [4, Thm. 2.3.1, Thm. 1.3.5]. �
Now we are ready to prove that S is normal and isomorphic to P(a, b, c).

Proof of Proposition 3.3(ii). Let M12 = Z{e∗
1, e∗

2}. We first show that S is a normal projective variety. By 
Lemma 4.6, we need only show S ∼= XQ∩M12 for some full dimensional very ample lattice polytope Q in 
(M12)R. Consider X = P(a, b, c, d1, · · · , dn−2), with the fan ΣX defined by generators vi in (3). Choose any 
lattice polytope P in MR whose normal fan is ΣX . By replacing P with some multiple kP , we can assume 
P is very ample. By Lemma 4.6, we have X = XP = XP ∩M . Let m0, m1, · · · , mu be the distinct lattice 
points of P ∩ M . Let ψ := φP ∩M be the map defined in (4). Then

ψ = φP ∩M : TN → Tu+1 → Pu,

t �→ (χm0(t), χm1(t), · · · , χmu(t)) �→ [χm0(t) : χm1(t) : · · · : χmu(t)].

Then X equals the Zariski closure of ψ(TN ) in Pu. Let ρ : M → M12 be the projection map. If t ∈ T12, then 
χmi(t) = χρ(mi)(t) for every i. Therefore, the restriction of ψ on T12 equals

ψ|T12 : T12 → Tu+1 → Pu,

t �→ (χρ(m0)(t), · · · , χρ(mu)(t)) �→ [χρ(m0)(t) : · · · : χρ(mu)(t)].

By Proposition 3.3 (i), S equals to the Zariski closure of ψ(T12) in X. Since X is closed in Pu, we have S
equals the Zariski closure of ψ(T12) in Pu.

Define A := ρ(P ∩ M). Then A is the set of distinct elements in the list A′ = (ρ(m1), · · · , ρ(mu)). By 
Remark 4.2, we can remove the duplicates in A′, so that S ∼= XA.

Now we only need to show that ρ(P ∩ M) = ρ(P ) ∩ M12 and Q := ρ(P ) is a full dimensional very ample 
lattice polytope in M12. We first show that Q is a lattice triangle in (M12)R. Recall that P has the following 
facet presentation:

P = {z ∈ MR | 〈vi, z〉 ≤ ai for i = 0, 1, · · · , n} (5)

for some ai ∈ Z (see [6, p. 66], [4, 2.2.1]). Since the normal fan of P is ΣX , P has exactly n + 1 facets 
Fi whose outer normal vectors are vi, i = 0, · · · , n respectively. The reason that ai ∈ Z is as follows: Fix 
i ∈ {0, 1, · · · , n}. Let m be a vertex of the facet Fi. Then m is a vertex of P , so m ∈ M . Since m ∈ Fi, we 
in fact have 〈vi, m〉 = ai. Thus ai ∈ Z since vi ∈ N .

Let z = (z1, · · · , zn) ∈ MR. Then ρ(z) = (z1, z2). By definition of ui and vi in (3), we have 〈vi, z〉 =
〈ui, ρ(z)〉 − (z3mi,3 + · · · + znmi,n) for i = 0, 1, 2, and 〈vj , z〉 = zj for j ∈ J = {3, 4, · · · , n}. Therefore z ∈ P

if and only if 〈ui, ρ(z)〉 ≤ ai + (z3mi,3 + · · · + znmi,n) for i = 0, 1, 2 and zj ≤ aj for j ∈ J . Recall that 
every mi,j ≥ 0. As a result, y ∈ Q if and only if 〈ui, y〉 ≤ ai + (a3mi,3 + · · · + anmi,n) for i = 0, 1, 2. Define 
qi := ai + (a3mi,3 + · · · + anmi,n) for i = 0, 1, 2. Then
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Q = {y ∈ (M12)R | 〈ui, y〉 ≤ qi, for i = 0, 1, 2}. (6)

Indeed (5) is a facet presentation of Q. Thus Q is a triangle in (M12)R.
It remains to show that Q is a lattice triangle. A point z ∈ P (or Q) is a vertex of P (or Q) if and only if 

z lives in all but one facets. By the facet presentation (5) of P , m is a vertex of P if and only if 〈vi, m〉 = ai

for all vi but one. Suppose that ξ0, ξ1, ξ2 are the vertices of P where ξi lives in the n facets except Fi. We 
claim that ρ(ξ0), ρ(ξ1) and ρ(ξ2) are the three vertices of Q. Indeed, we need only to prove this for ξ0. Let 
ξ0 = (z1, · · · , zn). Then aj = 〈vj , ξ0〉 = zj for j ∈ J , and ak = 〈vk, ξ0〉 = 〈uk, ρ(ξ0)〉 −(z3mk,3 + · · ·+znmk,n)
for k = 1, 2. By definition, this shows that 〈uk, ρ(ξ0)〉 = qk for k = 1, 2. Let F ′

i be the facet of Q normal to 
ui, for i = 0, 1, 2 (see (6)). Then ρ(ξ0) = F ′

1 ∩ F ′
2 is a vertex of Q. Since P is a lattice polytope, ξ0 ∈ M , 

so ρ(ξ0) ∈ M12. Repeat this argument for ξ1 and ξ2. Then ρ(ξ0), ρ(ξ1) and ρ(ξ2) are distinct vertices of Q. 
Therefore Q is a lattice triangle. By Lemma 4.4, any lattice triangle in M12 is very ample, so Q is very 
ample. Hence we verified that Q is a full dimensional very ample lattice polytope.

It remains to show ρ(P ∩ M) = ρ(P ) ∩ M12. By definition, ρ(P ∩ M) ⊆ ρ(P ) ∩ M12. Conversely, suppose 
y = (z1, z2) ∈ ρ(P ) ∩ M12. Then y = ρ(z) where z := (z1, z2, a3, · · · , an). By (6), we have 〈ui, y〉 ≤ qi for 
i = 0, 1, 2. Hence 〈ui, ρ(z)〉 ≤ qi = ai + (a3mi,3 + · · · + anmi,n) for i = 0, 1, 2. The argument preceding 
(6) shows that z ∈ P . Since z1, z2, all ai and all mi,j are integers, we have z ∈ M . Thus ρ(P ) ∩ M12 ⊆
ρ(P ∩M). We conclude that ρ(P ∩M) = ρ(P ) ∩M12. Therefore, S = Xρ(P )∩M12 is normal. Furthermore, by 
Proposition 4.6, the fan of S in N12 is the normal fan of Q with respect to N12, hence is spanned by u0, u1
and u2. By (3), the fan spanned by u0, u1 and u2 is a fan of P(a, b, c). As a conclusion, S ∼= P(a, b, c). �
5. Intersection products on weighted projective spaces

We prove Theorem 1.1 and Theorem 1.2 in this section. In Section 3 we constructed a fan ΣX for 
X = P(a, b, c, d1, · · · , dn−2), under the assumption (i) of Theorem 1.1. Recall that S is defined as the 
intersection of Yj for j ∈ J , where J = {3, 4, · · · , n}. By Lemma 3.3 (ii), S is isomorphic to P(a, b, c).

We start with a review of the intersection products of various torus-invariant divisors on X and S. Let 
Ad(X) be the Chow group of d-dimensional cycles in X. Since X is a complete simplicial toric variety, by 
[4, Lem. 12.5.1], Ad(X) is generated by the classes of torus-invariant subvarieties [VI ] where |I| = n − d. In 
particular, An−1(X) is generated by the classes of torus-invariant Weil divisors {[Di] | i = 0, 1, 2, · · · , n}. 
The divisor class group Cl(X) of X is isomorphic to Z by [4, Ex. 4.1.5]. Let A be a pseudo-effective Weil 
divisor on X which generates Cl(X). Then in An−1(X) = Cl(X) we have

[D0] = a[A], [D1] = b[A], [D2] = c[A], [Dj ] = dj−2[A], for j ≥ 3. (7)

Now ΣX is simplicial (Notation 3.1). By [4, Lem. 12.5.2], we have the following intersection products:

[A]n = 1
abcd1 · · · dn−2

,

[D3] · [D4] · . . . · [Dn] = [VJ ],

[VJ ] · [Di] = [VJ∪{i}], for i = 0, 1, 2,

[D1] · [D2] · [VJ ] = 1
a

, [D0] · [D2] · [VJ ] = 1
b

, [D0] · [D1] · [VJ ] = 1
c

·

(8)

By Notation 3.1, N12 = Z{e1, e2}. Let ΣS in (N12)R be the fan of S generated by ray generators u0, u1 and 
u2 (see (3)). Define Bi := V (σ{i}) to be the torus-invariant divisors of S corresponding to ui. By [4, Ex. 
4.1.5], Cl(S) ∼= Z. Let B be a pseudo-effective Weil divisor on S which generates Cl(S). Then

[B0] = a[B], [B1] = b[B], [B2] = c[B], [B]2 = 1
. (9)
abc
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Next we recall a result by Fulton and Sturmfels [7]. Let W be a toric variety of a fan Σ ⊂ N = Zn. As in 
[7], define Nσ as Z(N ∩ σ), the sublattice spanned by σ in N . Let L be a saturated d-dimensional sublattice 
of N . Let Y be the Zariski closure of the subtorus TL = L ⊗ZC∗ in W . For every lattice point w ∈ N , define

Σ(w) := {σ ∈ Σ : LR + w meets σ in exactly one point}.

Here LR + w := {x + w | x ∈ LR}.

Definition 5.1. [7, §3] w is called generic (with respect to L) if dim σ = n − d for all σ ∈ Σ(w).

Lemma 5.2. [7, Lem. 3.4] Let W , L and Y be defined as above. If w ∈ N is a generic point with respect 
to L, then

[Y ] =
∑

σ∈Σ(w)

mσ[V (σ)] ∈ Ad(W ),

where mσ := [N : L + Nσ] is the index of the lattice sum L + Nσ in N .

For simplicity, when there are no ambiguity of the choice of L, and when the toric variety W has a 
simplicial fan Σ spanned by rays r0, r1, · · · , rn, we write mσI

= [N : L + Nσ] as mI , for I ⊂ {0, 1, · · · , n}. 
When I = {i}, we write mσI

as mi.

Lemma 5.3. Let X, Yj and S be defined as in Definition 3.2. Then [Yj ] = [Dj ] for all j ∈ J , and [S] = [VJ ].

Proof. Fix j ∈ J . By Notation 3.1, Lj := Z{e1, e2, · · · , êj , · · · , en}. By Definition 3.2, Yj is the Zariski 
closure of Tj = Lj ⊗Z C∗ in X. We apply Lemma 5.2 to W = X, Y = Yj and L = Lj . First, ej is generic 
with respect to Lj . Indeed if j /∈ I, then (Lj)R + ej does not meet σI . If j ∈ I, then σI intersects (Lj)R + ej

at a single point if and only if I = {j}. Hence Σ(ej) = {σ{j}}. Since σ{j} is a 1-dimensional cone, ej is 
generic. By Lemma 5.2, [Yj ] = mj [Dj ], and mj equals the index of Lj + Nσ{j} in N , which equals to 1, so 
[Yj ] = [Dj ].

Similarly, N12 := Z{e1, e2}, and S is the Zariski closure of T12 := N12 ⊗Z C∗. The same argument above 
shows that Σ(ω) = {σJ}, where ω = (0, 0, 1, · · · , 1) ∈ N is generic with respect to N12. Apply Lemma 5.2
to W = X, Y = S and L = N12. Then we have [S] = mJ [VJ ]. Here mJ = 1 since N12 + NσJ

= N . �
Definition 5.4. Let N1 = Z{e1} and T1 := N1 ⊗Z C∗. Let C1 be the Zariski closure of the subtorus T1 in S.

Lemma 5.5. Let C1 be defined as above. Then

(i) The irreducible curve C1 equals the closure of the subtorus T1 in X.
(ii) The class [C1] = −y0[VJ∪{0}] − y1[VJ∪{1}] ∈ A1(X).
(iii) The class [C1] = y2[VJ ] · [D2] ∈ A1(X).
(iv) The class [C1] = y2[B2] = cy2[B] ∈ A1(S).

Proof. Let T1 be the closure of T1 in X. By definition, T1 is contained in S. Since S is closed in X, T1 is 
contained in S. Therefore C1 = T1. Hence, both C1 and C are irreducible. This proves (i). For (ii), we work 
in N = Zn. Define w = (w1, w2, 1, · · · , 1) ∈ N such that (w1, w2) lies in the interior of the cone spanned 
by u0 and u1. We claim that w is generic with respect to N1. Indeed, by the definition of ui (see (3)), the 
second coordinates of u0 and u1 are negative and the second coordinate of u2 is positive. Hence w2 < 0. 
Suppose the line 
 := (N1)R +w intersects σI . Then J ⊂ I. Since w2 < 0, 
 misses σJ and σJ∪{2}, and meets 
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σJ∪{0} and σJ∪{1} at a unique point. In the remaining case, I = J ∪ {i1, i2} with distinct i1, i2 ∈ {0, 1, 2}, 
so 
 intersects σI at infinitely many points. As a conclusion, Σ(w) = {σJ∪{0}, σJ∪{1}}, so w is generic.

Apply Lemma 5.2 to W = X, Y = C1 and L = N1. We have

[C1] = mJ∪{0}[VJ∪{0}] + mJ∪{1}[VJ∪{1}].

By definition, mJ∪{0} = [N : N1 +NσJ∪{0} ]. Since N1 +NσJ∪{0} is spanned by e1, e3, · · · , en together with v0, 
the index equals to the absolute value of the second coordinate of v0. That is, mJ∪{0} = |y0|. Recall our 
assumption in Section 3 that y0, y1 < 0 and y2 > 0. Hence mJ∪{0} = −y0. Similarly we have mJ∪{1} = −y1. 
This proves (ii). Now use formulas (7) and (8):

[C1] = −y0[VJ∪{0}] − y1[VJ∪{1}] = −y0[VJ ] · [D0] − y1[VJ ] · [D1]

= [VJ ] · [−y0a[A] − y1b[A]] = cy2[VJ ] · [A] = y2[VJ ] · [D2].

This proves (iii).
Finally consider C1 as a curve on S. The fan ΣS lives in (N12)R (see Notation 3.1). We have Σ(e2) = {B2}. 

Therefore e2 = (0, 1) is generic with respect to N1. Apply Lemma 5.2 to W = S, Y = C1 and L = N1. Then 
[C1] = m2[B2] ∈ A1(S) where m2 = [Z2 : (N1)R + Zu2] = |y2| = y2. This proves (iv). �
Lemma 5.6. Consider the class [B] ∈ A1(X). Then we have [B].[Yj ] = dj−2

abc
, for j ∈ J .

Proof. By Lemma 5.5, [C1] = cy2[VJ ] · [A] ∈ A1(X), and [C1] = cy2[B] ∈ A1(S). Therefore cy2[B] =
cy2[VJ ] · [A] in A1(X), so [B] = [VJ ] · [A] = 1

a
[VJ ] · [D0] in A1(X). Then

[B].[Yj ] = 1
a

[VJ ] · [D0] · dj−2

b
[D1] = dj−2

abc
. �

Now we prove Theorem 1.1.

Proof of Theorem 1.1. By definition X = P(a, b, c, d1, · · · , dn−2) is a weighted projective n-space. By Propo-
sition 3.3, S = P(a, b, c) is a weighted projective plane. Hence both X and S are normal projective Q-factorial 
varieties, with finitely generated Picard groups. By Proposition 3.3, S = ∩n

j=3Yj . By assumption, C is a 
negative curve on Blp S and C �= e. To apply Theorem 2.1 to X, Yj , S and C, we need only verify that 
(f∗C) · Blp Yj < 0 for j = 3, 4, · · · , n. Here (f∗C) · Blp Yj = f∗C · (π∗

XYj − E), and C ∼Q λπ∗B − μe. Hence 
by Lemma 5.6 and projection formula:

f∗C · (π∗
XYj − E) = (πX)∗f∗[C] · [Yj ] − f∗[C] · [E]

= λ[B].[Yj ] − μ = λdj−2

abc
− μ < 1.

By Theorem 2.1, Blp X is not a MDS. This proves the theorem. �
Finally we prove Theorem 1.2.

Proof of Theorem 1.2. Suppose there is a relation (e, f, −g) between the weights (a, b, c) such that the width 
w = cg2/(ab) < 1.

We need only show that there exists a non-exceptional negative curve C on Blp S satisfying the assumption 
in Theorem 1.1 with λ = cg and μ = 1, and di < abcμ/λ = ab/g for all i = 0, 1, · · · n − 2. We first choose 
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a specific fan ΣS and use ΣS to define ΣX . Indeed, by [13, Prop. 5.1], there exists a unique integer r with 
1 ≤ r ≤ g, g | er − b and g | fr + a. Let ui = (xi, yi) be given by (1):

u0 =
(

er − b

g
, −e

)
, u1 =

(
fr + a

g
, −f

)
, u2 = (−r, g). (10)

Then ui span a fan of S. Let this fan be ΣS . We check that y0 = −e < 0, y1 = −f < 0 and y2 = g > 0, 
so all the assumptions in Section 3 are satisfied. Then we can use ui to define vi and the fan ΣX as in (3). 
Consider the curve C1 in Definition 5.4. Let C be the proper transform of C1 in Blp S. Then C ∼ π∗C1 − e

on Blp S. By Lemma 5.5 (iv), C ∼ cgπ∗B − e. Hence λ = cg and μ = 1. By (9), [B]2 = 1/abc. Hence 
[C1]2 = g2c2/abc = cg2/ab = w, and [C]2 = [C1]2 − 1 = w − 1 < 0. Since π(C) = C1 is not a point, C is 
not e. As a result, C is a non-exceptional negative curve on Blp S. Finally by assumption (ii) of Theorem 1.2, 
for every i, d2

i w < abc. Therefore d2
i cg2/(ab) < abc. That is, di < ab/g. By Theorem 1.1, we conclude that 

Blp X is not a MDS. �
6. Comparison with González and Karu’s examples

We compare the 3-dimensional case of Theorem 1.2 with [9, Thm. 2.3, Cor. 2.5].

Definition 6.1. Consider a n-dimensional convex polytope Δ in Rn such that all its vertices have rational 
coordinates.

(i) For n = 3, we say such a polytope is of González–Karu type if the vertices of Δ are (0, 0, 1), (0, 1, 0), 
PL and PR, with PL and PR and 0 collinear, and x(PL) < 0 < x(PR) ≤ x(PL) + 1, where x(PR) and 
x(PL) are the x-coordinates (see [9, §2.2]).

(ii) For n = 2, we say such a polytope is of González–Karu type if Δ is a triangle with vertices (0, 0), PL

and PR, with PL and PR and (0, 1) collinear, and x(PL) < 0 < x(PR) < x(PL) + 1.
(iii) In both dimension 2 and 3, define the width of a polytope of González–Karu type to be x(PR) −x(PL).

By definition, 3-dimensional polytope Δ of González–Karu type has some evident properties:

(a) The cross sections of Δ at x = i ∈ N are isosceles right triangles.
(b) Projecting Δ ∈ R3 of González–Karu type and of width < 1 to xy-plane or xz-plane, and then trans-

lating by the vector (0, −1) will give a triangle of González–Karu type with the same width.

We first recall the following numerical criteria from [8], [9] for the weights for P(a, b, c, d) or P(a, b, c) to 
have a polytope of González–Karu type. We rephrase the criteria as follows:

Lemma 6.2.

(i) Given w ∈ Q ∩ (0, 1). Consider P(a, b, c) with a, b, c pairwise coprime. Then P(a, b, c) has a polytope Δ
of González–Karu type of width w if and only if there exist a relation (e, f, −g) with ae + bf = cg (up 
to a permutation of the weights a, b, c) and w = cg2/ab. Furthermore, up to switching a with b, and up 
to a shear transformation (x, y) �→ (x, y + kx) for some k ∈ Z, Δ has vertices given by (2), i.e.,

(0, 0),
(

−eg
, −er − b

)
,

(
fg

,
fr + a

)
, (11)
b b a a
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where r is the unique integer such that 1 ≤ r ≤ g, g | er − b and g | fr + a [13, Prop. 5.1], and Δ is 
normal to the fan with ray generators given in (1). In particular, when w < 1, the numbers of lattice 
points on slices of Δ are determined by a, b, c.

(ii) Given W ∈ Q ∩ (0, 1). Consider P(a, b, c, d) with every 3 weights relatively prime. Then P(a, b, c, d) has 
a polytope Δ of González–Karu type of width W if and only if there exist positive integers e, f, g1, g2
such that up to a permutation of the weights a, b, c and d, we have

ae + bf = cg1 = dg2, W = (dg2)3/(abcd), gcd(e, f, g1) = gcd(e, f, g2) = gcd(g1, g2) = 1.

The following definition is from [9]:

Definition 6.3. [9, §2.2] Suppose Δ is a 2 or 3-dimensional polytope of González–Karu type. Suppose m is 
a positive integer such mΔ is a lattice polytope. For any integer i such that m · x(PL) ≤ i ≤ m · x(PR), 
the slice at x = i is the set of lattice points in mΔ with x-coordinates i. When dim Δ = 2, a slice of mΔ
consists of consecutive lattice points on a line. When dim Δ = 3, a slice of mΔ forms a right triangle with 
the same number n of lattice points on each side. Then say the slice at x = i has size n.

To avoid ambiguity, in the following we use Γ to represent a 2-dimensional polytope of González–Karu 
type. We recall the following criteria in [8] and [9] for Blp X to be not a MDS where X is a toric surface or 
toric 3-fold with a polytope of González–Karu type.

Theorem 6.4. [8, Thm. 1.2] Suppose S is a toric surface with fan Σ in R2. Suppose Γ ⊂ R2 is a triangle of 
González–Karu type with width w and normal fan Σ. Let m > 0 be a sufficiently large and divisible integer 
so that mΓ is a lattice triangle. Then Blp S is not a MDS if the following hold:

(i) Let the slice at m · x(PL) + 1 of mΓ have exactly n elements. Then the slice at m · x(PR) − n + 1 of 
mΓ has exactly n elements.

(ii) ns2 /∈ Z, where s2 := (y(PR) − y(PL))/w is the slope of the line through PL and PR.

Theorem 6.5. [9, Cor. 2.5] Suppose X is a toric 3-fold with fan Σ in R3. Suppose Δ ⊂ R3 is a polytope of 
González–Karu type with width W and normal fan Σ. Let m > 0 be a sufficiently large and divisible integer 
so that mΔ is a lattice polytope. Then Blp X is not a MDS if the following hold:

(i) Let the slice at m · x(PL) + 1 of mΔ have size n. Then the slice at m · x(PR) − n + 1 of mΔ has size n.
(ii) n(sy, sz) /∈ Z2, where sy := (y(PR) − y(PL))/W and sz := (z(PR) − z(PL))/W are the y, z-slopes of 

the line through PL and PR.

Now a natural question is that whether there are examples of P(a, b, c, d) meeting assumptions in Theo-
rem 1.2 and [9, Cor. 2.5]. The following proposition provides a precise answer on the overlap:

Proposition 6.6. Suppose P(a, b, c, d) has a polytope Δ of González–Karu type and satisfies the assumptions 
including (i)–(iv) of Theorem 1.2. Then d = cg, where (e, f, −g) is the unique relation between (a, b, c) with 
w < 1.

Conversely, every weighted projective 3-space P(a, b, c, cg) such that (a, b, c) has a relation (e, f, −g) with 
w < 1, and P(a, b, c) has a polytope satisfying the conditions in [8, Thm. 1.2] with width w, will satisfy the 
assumptions in both Theorem 1.2 and [9, Cor. 2.5].

Remark 6.7. In the proof of Theorem 1.2, we in fact showed that weighted projective spaces P(a, b, c, d)
meeting the conditions of the theorem must contain the weighted projective plane S = P(a, b, c) where Blp S
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is not a MDS. Recall Theorem 3.3 that S is the Zariski closure of the subtorus T12 = L12 ⊗C∗, where (L12)R
is the xy-plane.

Question: Is there any P(a, b, c, d) such that Blp P(a, b, c, d) is not a MDS, but for any 2-dimensional 
subtorus T ′ of the open torus TN , the blow-up Blp T ′ of the Zariski closure of T ′ is a MDS?

Note that the Zariski closure T ′ may have Picard number 1 or 2.

We first prove Lemma 6.2. We note the following fact:

Lemma 6.8 (See [8, §1]). Suppose a, b, c are pairwise coprime positive integers. Then there exist at most one 
relation (e, f, −g) of (a, b, c) with cg2 < ab, even when permuting a, b, c.

Proof of Lemma 6.2. First we prove (i). Suppose P(a, b, c) has a relation of weight w < 1, then the polytope 
in (2) is of González–Karu type with width w. Conversely, suppose S = P(a, b, c) has a polytope Γ of 
González–Karu type with width w < 1. Then S has a fan ΣS normal to Γ. Say the ray generators of ΣS is 
ri = (xi, yi), i = 1, 2, 3. Then we can assume y1 < 0, y2 < 0, y3 > 0, ar1+br2 +cr3 = 0, and PL = s(y1, −x1), 
PR = t(−y2, x2) for some s, t ∈ Q. Since ri span the fan of P(a, b, c), the absolute values of the 2 × 2 minors 
of the following matrix should equal to (c, b, a) respectively:

(
x1 x2 x3
y1 y2 y3

)
.

Now the collinearity of PL, PR and (0, 1) gives w = PR − PL = stc. The condition that PLPR being 
perpendicular to r3 gives bs = at = |y3| = y3. Therefore w = stc = y2

3c/ab < 1. So ay1 + by2 + cy3 = 0 and 
y2

3c/ab < 1. Now gcd(a, b, c) = 1, so gcd(y1, y2, y3) = 1. Write y1 = −e, y2 = −f and y3 = g. By Lemma 6.8, 
(e, f, −g) is the unique relation. After a shear transformation of the form (x, y) �→ (x, y + kx) for some 
k ∈ Z, we can assume 1 ≤ x3 ≤ g. Then gx1 = ex3 ± b and gx2 = −fx3 ∓ a. So up to switching a with b, x3

is the unique integer r such that 1 ≤ r ≤ g, g | er − b and g | fr + a. This shows that Γ is of the required 
form, up to a reflection about the y-axis and a shear transformation. The shear transformations add the 
same integer k to the slopes of sides of Γ. Hence the numbers of lattice points on the slices are unchanged.

Next we prove (ii). Suppose P(a, b, c, d) has a polytope Δ of González–Karu type, with PR = (x, y, z), 
x > 0 and PL = λ(x, y, z) for some λ < 0. The fan Σ is normal to Δ. Therefore the four rays R1, · · · , R4 of 
Σ are the outer normal vectors of the four faces of Δ. Direct calculation shows that Ri is spanned by the 
vector ri:

r1 = (1 − y − z, x, x), r2 = (λy + λz − 1, −λx, −λx),

r3 = (y, −x, 0), r4 = (−λz, 0, λx).
(12)

Now let r′
i be the first lattice point in the ray Ri. Because x > 0 and λ < 0, there must exist positive 

integers e, f, g1, g2 and integers R, S, T, U such that

r′
1 = (R, e, e), r′

2 = (S, f, f), r′
3 = (T, −g1, 0), r′

4 = (U, 0, −g2).

Since Σ is the fan of P(a, b, c, d), up to a permutation of the weights, we have ar′
1 + br′

2 + cr′
3 + dr′

4 = 0. 
Take the last two components, we have ae + bf = cg1 = dg2. Since Σ is a fan of P(a, b, c, d), the weights 
(a, b, c, d) equal to the 3 ×3 minors of the matrix with rows r′

1, · · · , r′
4. For any 3 vectors v1, v2 and v3 in R3, 

we denote by det(v1, v2, v3) the determinant of the square matrix with row vectors v1, v2 and v3. Then we 
have
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a = |det(r′
2, r′

3, r′
4)| = g1g2

x
|Sx + fy + fz| = g1g2

x

∣∣∣∣ (λy + λz − 1)f
−λ

+ fy + fz

∣∣∣∣ = −fg1g2

λx
,

b = |det(r′
1, r′

3, r′
4)| = g1g2

x
|Rx + ey + ez| = g1g2

x
|(1 − y − z)e + ey + ez| = eg1g2

x
,

where we used that each r′
i is a scalar multiple of ri. Note that the other two equations of c and d do not 

give new algebraic relations. As a result,

x = eg1g2

b
, λ = −bf

ae
, (13)

W = x(PR) − x(PL) = x − λx = eg1g2

b

(
1 + bf

ae

)
= eg1g2

b
· dg2

ae
= cg1 · dg2 · dg2

abcd
= (dg2)3

abcd
. (14)

At last, the coprime conditions follow from the assumption that every 3 of a, b, c, d are relatively prime, 
and the expression of a, b, c, d as the determinants of r′

i with R, S, T and U are integers. This proves the 
‘only if’ direction. Conversely, suppose ae + bf = cg1 = dg2 and W = (dg2)3/(abcd). We can always choose 
integers T and U such that gcd(T, g1) = gcd(U, g2) = 1. Let y = Tx/g1 and z = Ux/g2, with x and λ given 
above in (13). The parameters x, y, z, λ determine a fan Σ′ with rays ri from (12), and a polytope Δ′ with 
PR = (x, y, z), x > 0 and PL = λ(x, y, z). Then it is straightforward that Σ′ is a fan of P(a, b, c, d), and Δ′

is of González–Karu type with width W , whose normal fan is Σ′. This proves the ‘if’ direction. �
Finally we prove Proposition 6.6.

Proof of Proposition 6.6. Suppose P(a, b, c, d) has a polytope Δ of González–Karu type and meets the as-
sumptions of Theorem 1.2. Then by Lemma 6.2, there exist e, f, g1, g2 ∈ Z>0 such that ae + bf = cg1 = dg2

(up to a permutation of the weights a, b, c and d), and the width W of Δ equals (dg2)3/(abcd) ≤ 1. In this 
equation, a and b are symmetric. The weights c and d are also symmetric. Hence up to symmetry either 
Blp P(a, b, c) is not a MDS or Blp P(b, c, d) is not a MDS.

Case I. Blp P(a, b, c) is not a MDS, with relations (E, F, −G) such that the width w < 1. By the argument 
above,

1 ≥ W = (dg2)3

abcd
= cg2

1g2

ab
.

We claim W < 1. Otherwise W = 1. Then cg2
1g2 = ab, so c | ab, which contradicts the assumption of 

Theorem 2.1 that a, b, c are pairwise coprime.
Hence cg2

1/ab < 1/g2 ≤ 1. By Lemma 6.2, gcd(e, f, g1) = 1. Now (e, f, −g1) is a relation between (a, b, c)
with gcd(e, f, −g1) = 1 and width c(g1)2/(ab) = cg2

1/(ab) < 1. By Lemma 6.8, we must have e = E, f = F

and g1 = G, ae + bf = cg1, and the width of (e, f, −g1) is

w = cG2

ab
= cg2

1
ab

<
1
g2

≤ 1.

Suppose g2 ≥ 2. Then w ≤ 1/2. By Theorem 2.5 and 2.6 of [13], if w ≤ 1/2, then Blp P(a, b, c) is a MDS, 
which contradicts the assumption. Therefore g2 = 1, and d = cg1.

Case II. Blp P(b, c, d) is not a MDS, and gcd(b, c, d) = 1. This together with cg1 = dg2 implies that 
g1 = kd and g2 = kc for some k ∈ Z>0. Now

1 ≥ W = cg2
1g2 = k3c2d2

.

ab ab
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Hence k3c2d2 ≤ ab. On the other hand, kcd = cg1 = ae +bf ≥ a +b ≥ 2
√

ab. Hence k3c2d2 ≥ k·(4ab) > ab, so 
we reached a contradiction. This shows Case II does not happen and proves the first half of Proposition 6.6.

Next we prove the second half of Proposition 6.6. Consider any S = P(a, b, c) such that a, b, c are pairwise 
coprime, (e, f, −g) is a relation between (a, b, c) of width w < 1 and S satisfies the assumptions in [8, Thm. 
1.2]. Then Blp P(a, b, c) is not a MDS.

Now X := P(a, b, c, cg) satisfies conditions (i), (ii) and (iv) of Theorem 1.2. Since d = cg, we have 
d2w/(abc) = cg2w/(ab) = w2 < 1. This verifies condition (iii). Hence X = P(a, b, c, cg) is an example of 
Theorem 1.2.

It remains to show that X = P(a, b, c, cg) satisfies the two assumptions in [9, Cor. 2.5]. Indeed, here 
ae + bf = cg = d · 1 with cg2/ab < 1. By Lemma 6.2, X and S = P(a, b, c) have polytopes Δ and Γ of 
González–Karu type. Let r be the unique integer such that 1 ≤ r ≤ g, g | er − b and g | fr + a. Recall the 
proof of Lemma 6.2. By setting T = −r and U = 0, we can determine the parameters x, y, z and λ to give

PL =
(

−fg

a
,

fr

a
, 0

)
, PR =

(eg

b
, −er

b
, 0

)
.

This gives a polytope Δ of González–Karu type. The fan Σ of X can be chosen as the fan with ray generators

r′
1 =

(
er − b

g
, e, e

)
, r′

2 =
(

fr + a

g
, f, f

)
, r′

3 = (−r, −g, 0), r′
4 = (0, 0, −1).

Define Γ to be the projection of Δ to the xy-plane, after translating (0, 1) to (0, 0) and a reflection about 
y-axis. Then Γ is the triangle given by (2), which is a polytope of S = P(a, b, c).

Now let Γ′ be the reflection of Γ about the y-axis. By the hypothesis and Lemma 6.2 (i), either (S, Γ) or 
(S, Γ′) meets the assumptions of [8, Thm. 1.2]. By symmetry we can assume the case (S, Γ). Then [8, Thm. 
1.2] (i) says that for some m > 0, the slice at m · x(PL) + 1 of mΓ has exactly n elements, and the slice at 
m ·x(PR) −n +1 of mΓ has exactly n elements too. By Definition 6.3, every slice of Δ forms a right triangle 
with the same number of lattice points on each right side. Hence, both slices of mΔ at m · x(PL) + 1 and 
m · x(PR) − n + 1 of mΔ have size n. This shows that (i) of [9, Cor. 2.5] holds. For (ii) of [9, Cor. 2.5], 
we have sy equals s2 of the triangle Γ in xy-plane. If Γ meets the assumption (ii) of [8, Thm. 1.2], then 
nsy = ns2 /∈ Z, so Δ meets the assumption (ii) of [9, Cor. 2.5]. Therefore, X satisfies the two assumptions 
in [9, Cor. 2.5]. �
Remark 6.9. Consider X = P(a, b, c, cg) in the overlap described in Proposition 6.6. A comparison with [9, 
Lem. 5.1, 5.2] shows that the curve C ⊂ Blp X we constructed in Definition 5.4, whose class is extremal in 
the Mori cone NE(Blp X) (by Theorem 2.1), is the same curve C constructed in [9, Lem. 5.1, 5.2].

Example 6.10. An example in such family of P(a, b, c, cg) is P(7, 15, 26, 52). By [8], Blp P(7, 15, 26) is not a 
MDS. The relation is (e, f, −g) = (1, 3, −2). Both Theorem 1.2 and [9, Cor. 2.5] apply to P(7, 15, 26, 52), so 
Blp P(7, 15, 26, 52) is not a MDS.

7. Application

We apply Proposition 1.1 to the following examples in [10]. By [10, Ex. 1.4], the blow-up Blp S of the 
following S = P(a, b, c) at the identity point p is not a MDS:

(a, b, c) = ((m + 2)2, (m + 2)3 + 1, (m + 2)3(m2 + 2m − 1) + m2 + 3m + 1), (15)

where m is a positive integer.
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We briefly review the geometry on those Blp S. By [10, Thm. 1.1], for every positive integer m ≥ 1, there 
exists an irreducible polynomial ξm ∈ C[x, y] such that ξm has vanishing order m at (1, 1) and the Newton 
polygon of ξm is a triangle with vertices (0, 0), (m − 1, 0) and (m, m + 1). Now the weighted projective plane 
S above satisfies the conditions of [10, Thm. 1.3]. Then by [10, Thm. 1.3] and its proof, the polynomial 
ξm above defines a curve H in S, passing through p with multiplicity m, such that the proper transform 
C of H in Blp S is a negative curve. Then C �= e. The proof of [10, Thm. 1.3] in fact shows that H is the 
polarization given by the triangle Δ with vertices (−α, 0), (m − 1 + β, 0), (m, m + 1), with

α = 1
(m + 2)2 , β = (m + 2)2 + 1

(m + 2)3 + 1 .

Therefore on S we have

H2 = 2Area(Δ) = (m + 1)2c

ab
.

Let B be the pseudo-effective divisor on S generating Cl(S) ∼= Z. Then H ∼ rB for some r ∈ Q>0. 
Since B2 = 1/abc and H2 = r2B2, we have r = c(m + 1), so [H] = c(m + 1)[B] ∈ Cl(S). Therefore 
C ∼ c(m + 1)π∗B − me.

When m ≥ 2, those S above have width w ≥ 1, so Theorem 1.2 does not apply to S. Nevertheless, by 
Proposition 1.1, we have the following examples:

Corollary 7.1. Let X = P(a, b, c, d1, d2, · · · , dn−2) where

(a, b, c) = ((m + 2)2, (m + 2)3 + 1, (m + 2)3(m2 + 2m − 1) + m2 + 3m + 1),

such that m ∈ Z>0, every di lies in the semigroup generated by a, b and c, and that every di < abm/(m +1). 
Let p be the identity point of the open torus in X. Then Blp X is not a MDS.
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