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1. Introduction

We study the question whether the blow-up of a projective, Q-factorial toric variety over C of Picard
number one, at the identity point p of the open torus, is a Mori Dream Space (MDS).

Mori Dream Spaces were introduced by Hu and Keel in [14]. By [1], log Fano varieties over C are Mori
Dream Spaces. Projective, Q-factorial toric varieties, being log Fano, are MDS. The property of being a
MDS is nevertheless not a birational invariant. In fact, the blow-up of P at r very general points stops
being a MDS if r > 8 for P? and P4, r > 7 for P3, and 7 > n + 3 for n > 5 [16]. One of the motivations
to study blow-ups of toric varieties at the identity point comes from the proof by Castravet and Tevelev [3]
that the moduli spaces of stable rational curves Mo,n are not MDS when n > 133, which was later improved
to n > 12 by Gonzdlez and Karu [8] and to n > 9 by Hausen, Keicher and Laface [12]. The proof of [3] used
the examples of not MDS blow-ups of weighted projective planes (see 1.4 and 1.5) by Goto, Nishida and
Watanabe [11].
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The discussion above prompts the question of searching for not MDS blow-ups of toric varieties of small
Picard numbers, which was formulated in [2]. Historically, much research work was done for surfaces. For a
weighted projective plane S = P(a, b, ¢), let p be the identity point of the open torus. If the anticanonical
divisor —K of the blow-up Bl, S of S at p is big, then Bl, S is a MDS [5]. If one of a, b, ¢ is at most 4 or equals 6
then Bl,, S is a MDS [5][17]. The first examples where Bl,, S is not a MDS were given in [11]. A generalization
was achieved by Gonzélez and Karu [8] for toric varieties of Picard number one whose corresponding polytope
A has specific numbers of lattice points in its columns. The question can be formulated as an interpolation
problem on the lattice points in A and leads to 3 families of new nonexamples [13]. We note that for any
weighted projective space X, Bl, X is a MDS if and only if the Cox ring of Bl, X is a finitely generated
C-algebra, which is also equivalent to the finite generation of the symbolic Rees algebra associated to X
[5][11], which is of independent interest.

In higher dimensions not much was known until the recent work [9]. In [9] Gonzdlez and Karu constructed
higher dimensional toric varieties X of Picard number one with Bl, X not a MDS, by exhibiting a nef but
not semiample divisor on Bl, X. Their examples include some weighted projective 3-spaces X = P(a, b, ¢, d)
such that Bl, X is not a MDS.

In this paper, we give a sufficient condition (Theorem 1.2) so that the blow-up of the weighted projective
n-space X = P(a,b,c,d1,da, - ,d,—2) at the identity p is not a MDS. We show new examples of such X
in all dimensions n > 3.

We sum up our results below. We work over the complex numbers C. Let N = Z? and M be the dual
lattice of N. Let S be a normal projective, Q-factorial toric surface of Picard number 1, with fan g in
N ®z R = RZ%. Then a polarization H = Ha on S is determined by a rational triangle A in M ®z R
whose normal fan is Yg. Let the sides of A have rational slopes s; < s < s3. We choose A so that after
translating one vertex of A to (0, 0), the opposite side passes through (0, 1). Then the width of this A equals
w = 1/(s2 — s1) + 1/(s3 — s2). This w is called the width of the polarized toric surface (S, Ha) (see [8,
Thm. 1.2]).

A weighted projective plane S = P(a, b, c) is an example of normal Q-factorial toric surfaces of Picard
number 1. A triple (e, f, —g) is called a relation between the weights (a, b, c) if e, f,g € Z~¢ and ae+bf = cg
[8, Thm. 1.5]. Then there exists a polarization Ha such that the width w of (S, Ha) is smaller than 1 if
and only if there exists a relation (e, f, —g) with cg?/ab = w < 1. Such (e, f, —g) is unique if it exists, even
when permuting the weights a, b, c. Therefore for a relation (e, f, —g) we define the width of (e, f, —g) to be
cg®/(ab).

Given £ = (e, f,—g) a relation with width w < 1, we can construct a fan X¢ of S and the polytope A¢
with width w as follows: By [13, Prop. 5.1], there exists a unique integer r such that 1 <r < g, g|er—b
and g | fr + a. Then the following vectors are primitive and span Z?:

'Lm(erg_b,e), U1<frg+aaf>> uz = (—r,9). 1)

Clearly aug + bu; + cup = 0. Hence the fan ¥¢ with ray generators ug,u; and us is a fan of P(a,b, ¢). The

triangle A¢ has vertices

a a

which is normal to X¢ and has width w = cg?/(ab) (see Fig. 1).
Throughout this paper, we always assume that the weights qg,q1,- - - , ¢, of a weighted projective n-space
P(qo,q1," - ,qn) are well-formed, i.e., any n weights are relatively prime.
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Fig. 1. The triangle A¢ from the relation & = (e, f, —g).

For any weighted projective space X, let p be the identity point of the open torus in X. For S = P(a, b, ¢),
let B be the pseudo-effective divisor on S generating C1(S) = Z. Let e be the exceptional divisor of the
blow-up 7 : Bl, § — S. Our main result is:

Theorem 1.1. Let X = P(a,b,c,dy,ds,- - ,d,—2) where a,b,c are pairwise coprime. Let S = P(a,b,c).
Suppose there is a negative curve C' on Bl, S, different from e, with C ~g Am*B — pe for some A\, pn € Q.
Suppose all the following hold:

(i) every d; lies in the semigroup gemerated by a,b and c¢ (i.e., d; is a linear combination of a,b,c with
non-negative integer coefficients),
b
(ii) d; < % for every i,
(iii) Bl,P(a,b,c) is not a MDS.

Then Bl, X is not a MDS.

We show a special case of Theorem 1.1 when there is a relation (e, f, —g) between the weights (a, b, ¢)
with w < 1. In this case, there exists a negative curve C' ~ cgn*B — e on Bl, S, and we have:

Theorem 1.2. Let X = P(a,b,c,dy,ds, -+ ,dn—_2) be a weighted projective n-space where a,b,c are pairwise
coprime. Let p be the identity point of the open torus in X. Suppose all the following hold:

(i)

(i)

(iii) d?w < abe for every i,

(iv) Bl,P(a,b,c) is not a MDS.

there is a relation between the weights (a,b,c) such that the width satisfies w < 1,
every d; lies in the semigroup generated by a,b and c,

Then Bl, X s not a MDS.

In particular, if all d; = a and a < b < ¢ with w < 1, then d?w = a?w < a® < abc. Thus we have the
following corollary:
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Corollary 1.3. Assume that a < b < ¢ are pairwise coprime. Suppose Bl,P(a,b,c) is not a MDS, and there
is a relation between the weights (a,b,c) such that the width satisfies w < 1. Then Bl,P(a,b,c,a,--- ,a) is
not a MDS.

Example 1.4. By [11], the Cox ring of the blow-up of P(a, b, ¢) at the identity point is not finitely generated
as a C-algebra when (a,b,c) = (7m — 3,8m — 3, (5m — 2)m) for m > 4 and 3 { m. Equivalently, the blow-up
at p is not a MDS. The sequence of weights has relation (e, f, —g) = (m,m,—3) so that w < 1.

By Theorem 1.2, we conclude that Bl, P(7m — 3,8m — 3, (5m — 2)m,dy, - - ,dp—2) is not a MDS when

(i) m >4 and 31 m,
(ii) every d; lies in the semigroup generated by 7m — 3,8m — 3 and (5m — 2)m, and
(iii) every d; < (7Tm — 3)(8m — 3)/3.

By Corollary 1.3, B, P(7m — 3,8m — 3, (5m — 2)m,7m — 3,--- ,7m — 3) is not a MDS for m > 4 and
3t m.

Example 1.5. Another infinite sequence given by [11] where the blow-ups at p are not MDS is (a,b,c) =
(Tm —10,8m — 3,5m? — 7m + 1) for any m > 5 such that 3 1 7m — 10 and m # —7 (mod 59) (By [8] the
blow-up at p is also not a MDS when m = 3). The sequence of weights has relation (e, f, —g) = (m, m—1, —3)
so that w < 1.

We conclude by Theorem 1.2 that Bl, P(7m —10,8m —3,5m? —7m+1,ds,- -+ ,dn_2) is not a MDS when

(i) m>3,3t7m — 10 and m # —7 (mod 59),
(ii) every d; lies in the semigroup generated by 7m — 10,8m — 3 and 5m? — 7m + 1, and
(iii) every d; < (7Tm — 10)(8m — 3)/3.

Example 1.6. The infinite sequence (a,b,c¢) = (7,15 + 2¢,26 + 3t) for ¢ > 0 has the relation (e, f,—g) =
(1,3,—2). The weights (a, b, c) are pairwise coprime if and only if 71 ¢ — 3. They all satisfy the criterion of
[8, Thm. 1.5}, so Bl, P(a, b, ¢) is not MDS for every ¢ > 0, where the width

 4(26+3t) 104+ 12t

= = <1
YT TA52t) 105+ 14t

for t > 0. Theorem 1.2 (3) then gives the upper bound

d< a_bc ab 7(15+2t).
w g 2

7(15 + 2t
Note that when ¢t > 0, a + b = 2t + 22 < u

BL, P(7,15 + 2t,26 + 3t,d4, - - - ,dp—2) is not a MDS when

. Hence d = a + b is on the list. As a result,

(i) t>0and 71t —3,
(ii) every d; lies in the semigroup generated by 7,15 4 2t and 26 + 3¢, and
(iii) every d; < 7(15 + 2¢)/2.

The paper is organized as follows. In Section 2, we give a sufficient condition (Theorem 2.1) for the blow-up
Bl, X of a normal projective variety X with Picard number 1 not to be a MDS, with p a smooth point on X.
Such Bl, X has a nef but not semiample divisor. Sections 3 and 4 consider weighted projective n-spaces
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X with properties described in Theorem 1.1. We show that X contains a closed subvariety isomorphic to
S =P(a,b,c). Section 5 verifies the conditions in Theorem 2.1 for X and S, applying a result of Fulton and
Sturmfels 7, Lem. 3.4]. In particular, we prove that Bl, X is not a MDS.

In Section 6, we compare our results with the examples in [9]. Proposition 6.6 describes the overlap of
our list in dimension 3 with Gonzédlez and Karu’s in [9]. The only common examples are X = P(a, b, ¢, cg)
where (e, f, —g) is a relation between (a, b, ¢), and Bl, P(a, b, c) is not a MDS and satisfies the assumptions
in [9, Cor. 2.5]. Note that we give more examples beyond the overlap (Examples 1.4, 1.5 and 1.6).

In Section 7, we apply Theorem 1.1 to the case when X = P(a,b,¢,dy,ds, - ,dp—_2) where S = P(a,b, c)
being of the form considered in [10, Ex. 1.4]. Hence Bl, S is again not a MDS. This leads to new examples
where Bl, X is not MDS in Corollary 7.1.

2. Blow-ups of varieties of Picard number one

Let X be a normal, projective, Q-factorial variety of Picard number 1 and dimension n > 3. Suppose
Y1, -+, Y,_o are prime Weil divisors of X (Y; not necessary normal), such that the set-theoretic intersection
S = ﬂ;’;lei, with the reduced subscheme structure on .S, is a normal, projective, Q-factorial surface of
Picard number 1. In addition, suppose both Pic(X) and Pic(S) are finitely generated.

Let us blow up S and X at a point p € S which is smooth in X, S and each Yj. Let f:Bl, S — Bl, X
be the natural inclusion. Let E be the exceptional divisor of the blow-up 7x : Bl, X — X and e be the
exceptional divisor of 7 : Bl, S — §.

Theorem 2.1. Let X,Y;, S and f be defined as above. Suppose there exists an irreducible curve C in Bl, S,
different from the exceptional divisor e in Bl, S, with C* < 0, such that for every i, (f.C).Bl,Y; < 0 in
Bl, X. Then if Bl,, S is not a Mori Dream Space (MDS), then Bl, X is not a Mori Dream Space.

Proof. Here both Bl, S and Bl, X have Picard number 2. Since C? < 0 in Bl, S, C spans an extremal
ray of the Mori cone NE(BI, S) [15, Lem. 1.22]. Since e is numerically equivalent to a general line in the
exceptional divisor E of Bl, X, [e] spans an extremal ray in both NE(BI, X) and NE(BL, S).

Let C4 be the image of C'in Bl, X, and e; be the image of e in Bl, X. We show that [C4] spans the other
extremal ray of W(Blp X). Since C is irreducible, C is irreducible. Suppose towards a contradiction that
(' is not extremal in W(BIP X). Then Cy = r1Fy + siey for some effective curve F; and some rational
numbers 71,7 > 0. Then there exists an irreducible component F5 of F} such that Fy = roFy + sqeq for
some rational numbers 72 > 0 and s > 0. Therefore we can assume at the beginning that Fj is irreducible.
By assumption, C; -Bl, Y; < 0 for every 4. Since Bl, Y; is isomorphic to the proper transform of ¥; in X, and
the class of e; is the class of a line in E, we have e; - Bl, Y; > 0. Therefore F; - Bl, Y; < 0. The irreducibility
assumption of F; implies that F; C Bl,Y;. Run this for every ¢, and we have F; C n;Bl,Y; = Bl, S.
Consider the pushforward f, : Ny (Bl, S) — N1 (Bl, X) and the pullback f* : N*(Bl, X) — N'(Bl, ). Since
N'(Bl, S) is spanned by [f*H] and [e] where H = 7% Hy is the total transform of a very ample divisor
Hp on X, and e = f*F, we have f* is surjective. The dual paring between N'(Bl, X) and N; (B, X)
(respectively N*(Bl, S) and N;(Bl, S)) is perfect. Hence f, is injective by the projection formula. Now
f«(C —r1Fy —s1e) = C1 —r1F1 — s1e1 = 0. By injectivity, C — r1 F} — sye = 0. Then the ray R>([C] is not
extremal in NE(BI, S), which is a contradiction. Hence the ray R>o[Cy] is extremal in NE(BL, X).

Finally, suppose Bl, X is a MDS. Since X is Q-factorial, and p is smooth in X. Bl, X is also Q-factorial.
Then the nef cone of Bl, X is generated by semiample divisors. In particular, there is a semiample divisor
D such that D.Cy; = 0. Therefore f*D - C = f.(f*D-C) = D - f.C = D - Cy = 0 by projection formula.
Hence [f*D] spans an extremal ray of Nef(Bl, S). Now f*D is also semiample. This shows that Bl, S is a
MDS. O
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3. Divisors on weighted projective spaces

In this section we construct the fan of the weighted projective n-space X = P(a,b,¢,dy,- - ,dn_2) and
define n — 2 divisors Y; on X for j = 3,4,--- ,n, under the assumption (i) of Theorem 1.1. Then we show
that the set-theoretic intersection of those Y; equals the Zariski closure of a 2-dimensional subtorus in X.

Notation 3.1. We list some notations and terminology for later use.

o For any integer n > 3, let J := {3,4,--- ,n}.

o Let N = Z™ (n > 3) be a lattice. Let Ty = N ®z C*. Then Ty is a torus of dimension n. Let
M = Hom(N, Z) be the dual lattice of N. Then M = Hom(Tn, G,,), so each u € M defines a character
x* on Ty.

o If e1,e92,-- ,e, form a basis of IV, then ef,---, e} form the dual basis of M. Write x; := XEJ*‘. Then
Tn =SpecClx1, X7+ Xns Xa )-

e For any lattice L, define Lg := L ®z R.

o Let Ny := Z{e;1} be the sublattice of N spanned by e;. Let Njs := Z{ey, ea} be the sublattice spanned
by e; and es. Let T7 := N7 ®z C* and Ti2 := Nis ®z C* be the corresponding subtori of T . Let
Mo := Hom(N12,Z).

o Let L; :=Z{e1,ea, -+ ,€, - ,en} for j € J. Let Tj := L; ®z C*.

e Let X be a full dimensional fan in Ng. If X is the toric variety corresponding to the fan ¥, then
Ty is the open torus in X. For any full dimensional cone o € %, let U, := SpecC[e¥ N M]. Then
{Us | 0 € ¥ is full dimensional} is an affine open cover of X.

o Write 7 < o if 7 is a face of 0. For any cone 7 € ¥, let O(7) be the T-orbit associated to 7 in X. Then
for a full dimensional cone ¢ and any cone 7 in ¥, O(7) C U, if and only if 7 < o (see [4, 3.2.6¢]).

o Let V(7) be the Zariski closure of O(7) in X. Then V(7) is a torus-invariant closed subvariety of X.

e A fan ¥ is simplicial if any cone o € ¥ is generated by linearly independent generators. Assume that 3
is a simplicial fan in R™ with n+1 rays Ry, Ry, - - , R,, where every n of them are linearly independent.
For every I C {0,1,---,n}, let oy € ¥ be the cone spanned by {R; | i € I}. Every cone 0 €
corresponds to a unique subset I in the way above. Let 3 (k) be the k-dimensional cones in 3. Then
Y(k) ={or | I| = k}. We write V(or) as V7, and O(oy) as Oy. Then Oy is a torus of dimension n — |1].
If I = {i}, then we write the torus-invariant divisor V(o) as D;:.

We start with the fan of the weighted projective plane P(a,b,c). The assumption and conclusion of
Proposition 1.1 are symmetric about a,b and ¢. Hence up to a permutation on (a,b,c), we can choose a
fan g of S with ray generators u; = (z;,y;) such that both yo,y1 < 0 and y» > 0. Note that we have
aug + buy + cug = 0.

Consider N = Z". Fix a basis e1,ea, - , e, of N. By assumption (ii), there exist nonnegative integers
{m;;} such that d;_o = amg ; + bmy j + cmo j for every j € J. Define the following vectors in N:

Vo = (x()?yOv —mop,3," " 7_m0,n);
v1 = (T1, Y1, =M1z, , —M1p), )
vy = (T2, Y2, —Mm23," - ,—m2,n),

v; =e;, for jeJ={3,4,--- ,n}

Note that for every j € J, at least one of the integers mgj,m1;, mo; is necessarily nonzero.
Those v; satisfy the relation

avy + bvy + cvg +divz + - + divipo + - - + dp—2v, = 0.
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Moreover, each v; is primitive, and together they span the lattice V. As a result, if we let X x be the fan in
Np spanned by the n + 1 rays along v; (i =0,1,---,n), then Xx is a fan of X =P(a,b,c,dy, - ,dp_2).

Definition 3.2. Let the fan ¥ x of X = P(a,b,¢,dy,--- ,d,—2) be defined as above. For every j € J, let Y;
be the Zariski closure of the subtorus 7 = L; ®z C* in X. Define S to be the set-theoretic intersection
N}_3Yj. Let Z be the Zariski closure of the subtorus 712 = Ni2 ®z C* in X.

By definition, all the Y; and Z are irreducible. We claim:
Proposition 3.3.

(i) The set-theoretic intersection S equals Z.
(ii) With the reduced subscheme structure, S is isomorphic to P(a,b,c). In particular, S is normal.

We prove (ii) of Proposition 3.3 in the next section. Here we prove (i) by showing that Z is the unique
irreducible component of the intersection S. We will reduce the question to the affine case and apply the
following lemma.

Lemma 3.4. Let o in Ng be a simplicial cone spanned by n linearly independent rays R;, i = 1,--- ,n. Let
U, := SpecCloY N M]. For any u € M such that u is primitive and u # 0, let T, be the subtorus of Ty
defined by x* = 1, and take the Zariski closure T, in U,. Then we have:

(i) If T < o such that u € TV U (—=7V) and u ¢ T, then the set-theoretic intersection T,, N O(7) = 0. In
particular:
(a) Fort =Ry, ifud tt, then T, N O(T) = 0.
(b) Ifu € o¥ U (—a"), then T, N O(c) = .

(i) Ifu €t andu € 0V U (—0aV), then T, N O(1) has codimension at least 1 in O(T).

Proof. When 7 = R; is a ray, 7V U (—7¥) = M. When 7 = o, 7+ = o1 = {0}. Therefore the two special
cases (a) and (b) of (i) follow from the general result. Now let 7 be a d-dimensional face of o such that
u€7VU(—7Y),and u ¢ 7. Then O(7) = Spec C[7+ N M] is a (n — d)-dimensional torus (see Notation 3.1).
Let V(7) be the closure of O(7) in U,. Then V(1) = Spec C[t* N ¢V N M]. Then the inclusions

O(1) 2 SpecClrt N M] — V(1) = SpecC[r NV N M] — U, = Spec C[oV N M|
correspond to the maps of C-algebras
Clo¥ N M] 25 Clrt no¥ N M] — Clrt n M|,

where ¢, sends " to x* if u € 7+, and 0 otherwise. To prove that T, does not intersect O(7), it suffices
to show that there is a regular function f vanishing on T, but not vanishing anywhere on O(7). There are
two cases.

Case I. u € 0¥ U (—0) and u ¢ 7+. Note that ¢V C 7V since 7 < 0. Suppose u € —¢". Then —u € V.
By definition, T,, = T_,,, so we can assume u € o¥. Now f := x* — 1 = x* — x" € C[¢V N M] is a regular
function on U,. Since u ¢ 7+, ¢, (x*) = 0. Since 0 € 7+, ¢,(x°) = 1. Therefore ¢, (f) = —1 is a regular
function on V' (7) which does not vanish on O(r).

Case II. 7 # o is a proper face, u € 7V U (—7V) and u ¢ 0¥ U(—0") and u ¢ 7. Foreach i = 1,--- ,n,
let r; be the ray generator of the ray R;. Without loss of generality, we can assume 7 is the face spanned
by r1,-+,7aq, with d < n, and uw € 7V. Let (-,) : N X M — Z be the dual pairing. Then (r;,u) > 0 for
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i=1,...,d, with (r;,u) > 0 for some i < d, and (r;,u) < 0 for some j € {d+1,--- ,n}. We claim there
exist p,q € 0¥V N M — {0} and k € Z-( such that ku = p — ¢ and ¢ € 7*. Indeed, since o is simplicial,
ri,- -+ ,ry form a basis of N ®z Q. Let r},--- ,r) be the dual basis of M ®7 Q. Then v = uir] + - +u,r;,
for rational numbers u;, i = 1,--- ,n. Define

p = E wiry, and ¢’ == — E wiry.

u; >0 u; <0

Then u = p’ — ¢'. Indeed both p’ and ¢ are in ¢V. Since (r;,u) > 0 for some i < d, and (rj,u) < 0 for some
je{d+1,---,n}, we have p’ # 0 and ¢’ # 0. Take any k € Z~( such that kp’ and kq' are both in M. Let
p:=kp' and q := kq’, then ku = p—q and p,q € 0¥ N M — {0}, which proves the claim. Now let f = x9 —xP.
Then f € Clo¥ N M]. We have f = x4 — x? = —x?(x** — 1). Since x* — 1 divides x** — 1, and x? has no
poles on T, f must vanish everywhere T},. On the other hand, since u ¢ 7+ and ¢ € 7+, p = ku +q ¢ 7+.
Therefore ¢-(x?) =0, and ¢, (f) = ¢-(x?) = x?. When restricted to O(7), x9 is a nonzero monomial in the
coordinate functions on O(7), therefore x? does not vanish anywhere on the torus O(7). This proves (i).

By the symmetry between u and —u, to prove (ii), we need only prove for the case when u € 7+ NoV.
In this case, ¢, (x*) = x%, so x* — 1 is a regular function of O(7). Now T, is contained in the zero locus
of x* — 1. By assumption, u # 0, so x* # 1. Restricting to O(7), x* # 1 is a monomial of the coordinate
functions on O(7), so x* = 1 defines a subtorus of codimension 1 in O(7). This proves (ii). O

Proof of Proposition 3.3(i). By Definition 3.2, S is the set-theoretic intersection of Yj, j € J. Since each Y
has codimension one in X, the codimension of each irreducible component of S in X is at most n — 2. For
every j € J, since Tho C T}, Z is contained in Y. Hence Z is contained in S. Therefore it suffices to prove
that Z is the unique irreducible component of S of dimension at least 2.

Here the fan X x is simplicial, spanned by ray generator v;. By Notation 3.1, ¥x = {o; | I C
{0,1,---,n}}. To prove that Z is the unique irreducible component of S of dimension at least 2, we need
only show that SN O; is contained in a curve for every 1 < |I| < n — 2. Indeed, suppose SN Oy is contained
in a curve for every 1 < |I| < n — 2. Then X\Ty is a disjoint union of Ty-orbits Oy for 1 < |I| < n — 2,
with dim O; = n — |I|. Therefore, if we assume there is some irreducible component S’ of S disjoint from Z,
then S’ is contained in X\Ty, hence dim S’ < 1. This proves that Z is the unique irreducible component
of S of dimension at least 2.

It remains to show S N Oy is contained in a curve for every 1 < |I| < n — 2. By Notation 3.1, {U, | 0 €
Y x(n)} is a torus-invariant open affine cover of X. For every Tn-orbit Oy with 1 < |I| < n — 2, we choose
some ¢’ € ¥ x(n) such that o; < ¢’. Then O C U, . By definition, Y; is the Zariski closure of Te; in X.
Indeed, Te; CTy CU, . Let Yj’ be the restriction of Y} to this Uys. Then Yj’ equals the Zariski closure of
Ter in Uyr. We apply Lemma 3.4 to 0 =o', 7 = 07 and u = e;. Recall (3) that —m,; < 0 is the j-th entry
of v; for i =0,1,2, j > 3. Define the following index sets:

I, :=1n{0,1,2},
J_:={j € J\I | my; >0 for some i € I, },

In:={jelInJ|m;;=0foralliel}.

There are 4 possible cases: (a) I = 0; (b) I+ # 0 and J_ # 0; (c) I+ # 0 and Iy # 0; and (d) I+ # ) and
J_ =TIy =0.

In Cases (a) (b) and (c), we apply Lemma 3.4 (i) to show that there exists j € J such that Y/ N Oy = 0)
for some j € J and for every choice of o7 < ¢’. Hence SNO; = 0. For (d), we apply Lemma 3.4 (ii) to show
that S N Oy is contained in a curve by choosing a specific o’.
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(a) Iy = 0. Choose any j € I. Then e} ¢ o and e} € of. Apply Lemma 3.4 (i) to any full dimensional
o' such that o7 < o', 7 =07 and u = €}. Then Y/ N Or = 0.

(b) I+ # 0 and J_ # (). Then choose any j € J_. We have (v;,ef) = —m;; < 0 for some i € I, and
(vi,e3) <0 forall i € I. Hence € € —o and e} ¢ —o7. Therefore Y/ N O; = 0.

(c) I+ # 0 and Iy # (). Choose any j € Io. Then (vj,ef) =1 > 0.1f i € I and i # j, then either i € J
orie€ I, . IfieJ, then v; =¢; and i # j, so (vi,e;f> =0.Ifi e I, then <vi,e;‘-> = —m,;; = 0 since j € Io.
Hence e} € o} and €} ¢ o7, s0 Y/ N O = 0.

(d) I+ #0and J_ = Iy = 0. Since |I| < n—2, and I} # 0, it must be that J ¢ I. Therefore I # {0,1,2}
(otherwise for every j € J\I, there exists an m;; > 0, so j € J_), so [I| = 1 or 2. Fix some j € J\I.
Since J_ =0, m;; = 0 for all ¢ € I;. Therefore e; € ot . For this j € J\I, define I’ = {0,1,2,--- ,5, coun}
and let ¢’ := 0. Define Yj' to be the restriction of Y; to U,  as discussed above. Then U, contains Oy,
with ef € —(0”)Y. In Lemma 3.4 (ii), let 0 = o', 7 = oy and u = €j. Then Y/ N Oy is of codimension at
least one in Oy and is contained in the zero locus of x; — 1, regarded as a regular function on Oy. Now the
number of such j equals |J\I| =n—-2—|INJ| =n—-2—(|I| — |I4+]). Since n — |I| = dim Oy, we have
|J\I| = dimO; — (2 — |I+]). Recall that M = Z{e}, - ,e%} and O; = SpecClo+ N M]. Since |1 | = 1
or 2, the semigroup o N M is generated by {e} | i € J\I} if || =2, or by {e} | i € J\I} together with
some ¢ € Z{ej,e5} if |I1]| = 1. Therefore each x;, j € J\I restricts to different coordinate functions on Oj.
Hence, the intersection of the zero loci of all those x; — 1 (j € J\I) has dimension exactly 2 — |I|, which
is either 1 or 0. Therefore S N Oy is contained in a curve. This finishes Case (d) and the proof. O

4. Normality of the closure of subtori

In this section we prove (ii) of Proposition 3.3, namely that the surface S is normal and isomorphic to
the weighted projective plane P(a, b, ¢).

We recall the following construction in [4, §2.1] of a projective toric variety X4 out of a finite set of
lattice points A C M. Let N = Z" and M = Hom(N,Z). Then each m € M gives a character x™ of the
torus T. Any list of k lattice points A = (my,--- ,my) C M defines a morphism ¢4 from Ty to P*~1:

(Z)A : TN — Tk i> Pkil,
Eer (X)X (@) = X e X))

(4)

where T}, = (C*)* and p : Ty, — P*~1 maps T} to the open torus {[z¢ : -+ : xx_1] | all z; # 0} of P*~1.

Definition 4.1. [4, Definition 2.1.1] We denote by X4 the not necessarily normal toric variety given by the
Zariski closure of the image ¢ 4(Ty) in PF~1.

Remark 4.2. Up to isomorphism, the definition of X 4 only depends on the set of points appearing in A. So
up to isomorphism we can ignore the order of the points in A, and can remove possible duplicates from A.

We note that by definition, X 4 is projective. However X 4 need not be normal. One of the ways to obtain
normal toric varieties is from polytopes. Let P be a full dimension polytope in Mg. Call P a lattice polytope
if the vertices of P are in M. Now consider a semigroup S C M, with the addition inherited from M. Recall
that S is said to be saturated if for every m € M, every k € Z — {0}, km € S implies m € S.

Definition 4.3. [4, Definition 2.2.17] A lattice polytope M is very ample if for every vertex m € P, the
semigroup Sp ., generated by the set P N M — m is saturated in M.

Lemma 4.4. [/, Cor. 2.2.19] If P is a full dimensional lattice polytope, then kP is very ample if k > dim P—1.
In particular, if P is a lattice polygon in R? then P is very ample.
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Definition 4.5. [4, Definition 2.3.14] Suppose that P C Mg is a full dimensional lattice polytope. Then define
the toric variety Xp to be X4 with A = kP N M, for any integer k£ > 0 such that kP is very ample.

The toric variety Xp is well defined since Xipnas and Xypnps are isomorphic when both kP and ¢P are
very ample (see [4, §2.3]).

Lemma 4.6. If P is a full dimensional very ample lattice polytope, then Xpnpr is a normal projective toric
variety, whose fan in N is the normal fan % of P.

Proof. This follows from [4, Thm. 2.3.1, Thm. 1.3.5]. O
Now we are ready to prove that .S is normal and isomorphic to P(a, b, ¢).

Proof of Proposition 3.3(ii). Let Mo = Z{e},e5}. We first show that S is a normal projective variety. By
Lemma 4.6, we need only show S = Xgnn,, for some full dimensional very ample lattice polytope @ in
(Mi2)r. Consider X =P(a,b,c,dy,- - ,dn—2), with the fan X x defined by generators v; in (3). Choose any
lattice polytope P in My whose normal fan is ¥ x. By replacing P with some multiple kP, we can assume
P is very ample. By Lemma 4.6, we have X = Xp = Xpnp. Let mg, mq, -, m, be the distinct lattice
points of PN M. Let ¢ := ¢pnps be the map defined in (4). Then

Y =¢pam: Tn — Tyy1 — P,

te (XM @), X)X () = T () X)X ()

Then X equals the Zariski closure of ¢(T) in P*. Let p : M — M3 be the projection map. If ¢ € Tio, then
X™i(t) = x?("™i)(t) for every i. Therefore, the restriction of ¢ on Tio equals

1[}|T12 : T12 — Tu+1 — ]Pu,

RN (Xp(mo)(t), . ,X”(mu)(t)) N [Xp(mo)(t) c X”(mu)(t)].

By Proposition 3.3 (i), S equals to the Zariski closure of ¥(T12) in X. Since X is closed in P*, we have S
equals the Zariski closure of (T2) in P*.

Define A := p(P N M). Then A is the set of distinct elements in the list A" = (p(m1),-- -, p(my)). By
Remark 4.2, we can remove the duplicates in A, so that S = X 4.

Now we only need to show that p(P N M) = p(P) N Mz and Q := p(P) is a full dimensional very ample
lattice polytope in Mio. We first show that @ is a lattice triangle in (Mi2)g. Recall that P has the following
facet presentation:

P={ze Mg | (v,z) <a;fori=0,1,--- ,n} (5)

for some a; € Z (see [6, p. 66], [4, 2.2.1]). Since the normal fan of P is Y¥x, P has exactly n + 1 facets
F; whose outer normal vectors are v;, ¢ = 0,--- ,n respectively. The reason that a; € Z is as follows: Fix
i €{0,1,--- ,n}. Let m be a vertex of the facet F;. Then m is a vertex of P, so m € M. Since m € F;, we
in fact have (v;,m) = a;. Thus a; € Z since v; € N.

Let z = (z1,-++ ,2n) € Mg. Then p(z) = (21,22). By definition of w; and v; in (3), we have (v;,2z) =
(ui, p(2)) = (zgmig+ -+ 2zomy ) for i = 0,1,2, and (vj,2) = z; for j € J = {3,4,--- ,n}. Therefore z € P
if and only if (u;, p(2)) < a; + (z3mi3 + -+ + zpmyy) for i = 0,1,2 and z; < a; for j € J. Recall that
every m; ;j > 0. As a result, y € Q if and only if (u;,y) < a; + (azm; 3+ --- + a,m; ) for i = 0,1, 2. Define
g = a; + (asm; 3+ - + apm; ) for i =0,1,2. Then
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Q={y e (M2)r | (u;,y) < g, fori =0,1,2}. (6)

Indeed (5) is a facet presentation of Q. Thus @ is a triangle in (Mi2)g.

It remains to show that @ is a lattice triangle. A point z € P (or Q) is a vertex of P (or Q) if and only if
z lives in all but one facets. By the facet presentation (5) of P, m is a vertex of P if and only if (v;, m) = a;
for all v; but one. Suppose that &y, &1, &2 are the vertices of P where ; lives in the n facets except F;. We
claim that p(&o), p(&1) and p(&2) are the three vertices of Q. Indeed, we need only to prove this for &. Let
& = (21, ,2n). Then a; = (v;,&) = z; for j € J, and ar = (v, &) = (uk, p(&o)) — (zsmu 3+ +2nMp )
for k = 1,2. By definition, this shows that (ug, p(§0)) = qr for k = 1,2. Let F] be the facet of @) normal to
u;, for i = 0,1,2 (see (6)). Then p(&) = Fj N F} is a vertex of Q. Since P is a lattice polytope, & € M,
so p(&) € Mi2. Repeat this argument for &; and &;. Then p(&), p(£1) and p(&2) are distinct vertices of Q.
Therefore @ is a lattice triangle. By Lemma 4.4, any lattice triangle in M1, is very ample, so @Q is very
ample. Hence we verified that @ is a full dimensional very ample lattice polytope.

It remains to show p(P N M) = p(P) N Mi3. By definition, p(P N M) C p(P) N M;2. Conversely, suppose
y = (2z1,%2) € p(P) N My2. Then y = p(z) where z := (21, 22,a3,--- ,a,). By (6), we have (u;,y) < ¢; for
i =0,1,2. Hence (u;, p(2)) < ¢; = a; + (asmy3 + -+ + apm; ) for ¢ = 0,1,2. The argument preceding
(6) shows that z € P. Since z1, 22, all a; and all m; ; are integers, we have z € M. Thus p(P) N Mz C
p(PNM). We conclude that p(PNM) = p(P)N Mia. Therefore, S = X,(p)nas,, is normal. Furthermore, by
Proposition 4.6, the fan of S in Njs is the normal fan of Q with respect to 12, hence is spanned by wg, uy
and ug. By (3), the fan spanned by ug, u; and us is a fan of P(a, b, ¢). As a conclusion, S = P(a,b,¢). O

5. Intersection products on weighted projective spaces

We prove Theorem 1.1 and Theorem 1.2 in this section. In Section 3 we constructed a fan Xx for
X = P(a,b,c,dy, - ,dp—_2), under the assumption (i) of Theorem 1.1. Recall that S is defined as the
intersection of Y; for j € J, where J = {3,4,--- ,n}. By Lemma 3.3 (ii), S is isomorphic to P(a, b, c).

We start with a review of the intersection products of various torus-invariant divisors on X and S. Let
Aq(X) be the Chow group of d-dimensional cycles in X. Since X is a complete simplicial toric variety, by
[4, Lem. 12.5.1], A4(X) is generated by the classes of torus-invariant subvarieties [V;] where |I| = n —d. In
particular, A4,,_1(X) is generated by the classes of torus-invariant Weil divisors {[D;] | i = 0,1,2,--- ,n}.
The divisor class group C1(X) of X is isomorphic to Z by [4, Ex. 4.1.5]. Let A be a pseudo-effective Weil
divisor on X which generates C1(X). Then in A,_1(X) = Cl(X) we have

[Do] = alA], [D1] =0b[A], [D2] =c[A], [D;]=d;_2[A], for j >3. (7)

Now X x is simplicial (Notation 3.1). By [4, Lem. 12.5.2], we have the following intersection products:

A" = abed, .1-.dn_2’
[Ds] - [D4] - ...~ [Dyn] = [VJ],
(V)] - [Di] = [Viuga), fori=0,1,2,

(D] (D] Vs = =, (Dol [Da] - Va] = 5. (Dol (4] V] = -

By Notation 3.1, Njo = Z{e1,ea}. Let Xg in (N12)r be the fan of S generated by ray generators wug, u; and
uy (see (3)). Define B; := V(oy;y) to be the torus-invariant divisors of S corresponding to u;. By [4, Ex.
4.1.5], C1(S) = Z. Let B be a pseudo-effective Weil divisor on S which generates C1(S). Then

1

[Bo = alBl, B =b[B], (B =clB], [BP=—. (9)
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Next we recall a result by Fulton and Sturmfels [7]. Let W be a toric variety of a fan ¥ C N = Z". As in
[7], define N, as Z(N No), the sublattice spanned by o in N. Let L be a saturated d-dimensional sublattice
of N. Let Y be the Zariski closure of the subtorus T = L ®z C* in W. For every lattice point w € N, define

Y(w) :={o € ¥ : Lr + w meets o in exactly one point}.
Here Lg + w:={z + w | z € Lgp}.
Definition 5.1. [7, §3] w is called generic (with respect to L) if dimo =n — d for all o € Z(w).

Lemma 5.2. [7, Lem. 3.4] Let W, L and Y be defined as above. If w € N is a generic point with respect
to L, then

Y= 3 mo[V(o)] € Au(W),
ceX(w)

where my := [N : L+ N,] is the index of the lattice sum L+ N, in N.

For simplicity, when there are no ambiguity of the choice of L, and when the toric variety W has a
simplicial fan 3 spanned by rays rg,r1,- - , 7y, we write my,, = [N : L + N,| as my, for I C {0,1,--- ,n}.
When I = {i}, we write m,, as m,.

Lemma 5.3. Let X, Y; and S be defined as in Definition 5.2. Then [Y;] = [Dj] for all j € J, and [S] = [V].

Proof. Fix j € J. By Notation 3.1, L; := Z{e1,e2, -+ ,€;, -+ ,en}. By Definition 3.2, Y; is the Zariski
closure of T = L; ®z C* in X. We apply Lemma 5.2 to W = X, Y =Y} and L = L;. First, e; is generic
with respect to L;. Indeed if j ¢ I, then (L;)r + e; does not meet o;. If j € I, then o intersects (L;)r + ¢,
at a single point if and only if I = {j}. Hence X(e;) = {oy;}}. Since oy;} is a 1-dimensional cone, e; is
generic. By Lemma 5.2, [Yj] = m;[D;], and m; equals the index of L; + Ny, in N, which equals to 1, so
1¥;] = (D).

Similarly, Nyg := Z{e1,e2}, and S is the Zariski closure of T15 := Nj3 ®z C*. The same argument above
shows that ¥(w) = {o;}, where w = (0,0,1,---,1) € N is generic with respect to N13. Apply Lemma 5.2
to W = X,Y = S and L = Nj3. Then we have [S] = m;[V;]. Here my = 1 since N1+ N,, = N. O

Definition 5.4. Let N3 = Z{e;} and T} := Ny ®z C*. Let C be the Zariski closure of the subtorus 7 in S.

Lemma 5.5. Let C be defined as above. Then

(i)
(ii) The class [C1] = —yo[Viugor] — v1lViugy] € A1(X).
(i) The class [C1] = y2[Vy] - [D2] € A1(X).

) The class [C1] = y2[Bs] = cy2[B] € A1(S5).

The irreducible curve Cy equals the closure of the subtorus T1 in X.

(iv

Proof. Let T} be the closure of T} in X. By definition, T} is contained in S. Since S is closed in X, T} is
contained in S. Therefore C; = T;. Hence, both C; and C' are irreducible. This proves (i). For (ii), we work
in N = Z". Define w = (w1,ws,1,---,1) € N such that (wq,ws) lies in the interior of the cone spanned
by ug and u;. We claim that w is generic with respect to N;. Indeed, by the definition of u; (see (3)), the
second coordinates of uy and u; are negative and the second coordinate of usy is positive. Hence wy < 0.
Suppose the line £ := (N )r +w intersects o7. Then J C I. Since wo < 0, £ misses o7 and o jy2y, and meets
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o jufoy and o1y at a unique point. In the remaining case, I = J U {i1,i2} with distinct i1,42 € {0,1,2},
so £ intersects oy at infinitely many points. As a conclusion, ¥(w) = {UJU{O}, UJu{l}}, SO w is generic.
Apply Lemma 5.2 to W = X, Y = Cy and L = N;. We have

[C1] = m ooy [Viugoy] + mauiy Vo]

By definition, m j 01 = [V : N1+ No, 0, ]- Since N1+No, o,

the index equals to the absolute value of the second coordinate of vg. That is, m g0y = |yo|. Recall our

is spanned by e, e3, - - - , e, together with vy,

assumption in Section 3 that yo,y1 < 0 and y2 > 0. Hence m j (0} = —yo. Similarly we have m j 1y = —y1.
This proves (ii). Now use formulas (7) and (8):

[C1] = =yo[Viugoy] = v1lViugy] = —wo[Vs] - [Do] — ya[Vi] - [D1]
= [Vi] - [=yoalA] — y1b[A]] = cya[V] - [A] = y2[Vi] - [D2].
This proves (iii).
Finally consider C as a curve on S. The fan Xg lives in (N12)g (see Notation 3.1). We have ¥(e2) = {Ba}.

Therefore es = (0, 1) is generic with respect to N1. Apply Lemma 5.2 to W = S, Y = C; and L = Ny. Then
[C1] = ma[Ba] € A1(S) where my = [Z? : (N1)g + Zuz] = |y2| = y2. This proves (iv). O

Lemma 5.6. Consider the class [B] € A1(X). Then we have [B].[Y;] =

di_
J 2, forjeJ.
abc

Proof. By Lemma 5.5, [C1] = cya[Vy] - [4] € A1(X), and [C1] = cyz2[B] € A1(S). Therefore cy2[B] =
cy2[Vy] - [A] in A1(X), so [B] = [Vy] - [A] ! [Vy] - [Do] in A1(X). Then

a

dj,Q
b

di_o
Dy = 2=,
[P abc H

1
[B].[¥;] = _[Vs] - [Do] -
Now we prove Theorem 1.1.

Proof of Theorem 1.1. By definition X = P(a,b,c,dy, -+ ,d,_2) is a weighted projective n-space. By Propo-
sition 3.3, S = P(a, b, ¢) is a weighted projective plane. Hence both X and S are normal projective Q-factorial
varieties, with finitely generated Picard groups. By Proposition 3.3, S = N7_3Y;. By assumption, C' is a
negative curve on Bl, S and C' # e. To apply Theorem 2.1 to X,Y};, § and C, we need only verify that
(f:C)-Bl,Y; <O0for j =3,4,--- ,n. Here (f.C)-BL Y; = f.C - (n%Y; — E), and C ~g Ar*B — pe. Hence
by Lemma 5.6 and projection formula:

O - (nxY; — E) = (1x). f[C] - [Y;] = £[C] - [E]
_ Adj2
~ abe

= ABLIY)] - —u<t.

By Theorem 2.1, Bl, X is not a MDS. This proves the theorem. 0O

Finally we prove Theorem 1.2.
Proof of Theorem 1.2. Suppose there is a relation (e, f, —g) between the weights (a, b, ¢) such that the width
w = cg?/(ab) < 1.

We need only show that there exists a non-exceptional negative curve C on Bl,, S satisfying the assumption
in Theorem 1.1 with A = ¢g and g = 1, and d; < abep/X\ = ab/g for all i = 0,1,---n — 2. We first choose
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a specific fan Y g and use Xg to define X x. Indeed, by [13, Prop. 5.1], there exists a unique integer r with
1<r<g,g|ler—bandg]| fr+a. Let u; = (z;,y;) be given by (1):

ug = <erg_b7€)7 up = (fr;_aaf)7 UQZ(*T,Q)~ (10)

Then u; span a fan of S. Let this fan be 3g. We check that yg = —e < 0, y1 = —f <0 and y» = g > 0,
so all the assumptions in Section 3 are satisfied. Then we can use u; to define v; and the fan Y x as in (3).
Consider the curve C in Definition 5.4. Let C be the proper transform of Cy in Bl, S. Then C' ~ 7*Cy —e
on Bl, S. By Lemma 5.5 (iv), C ~ cgn*B — e. Hence A = cg and u = 1. By (9), [B]?> = 1/abc. Hence
[C1]? = g*c?/abc = cg*/ab = w, and [C]> = [C1]?> =1 = w — 1 < 0. Since 7(C) = C} is not a point, C is
not e. As a result, C is a non-exceptional negative curve on Bl,, S. Finally by assumption (ii) of Theorem 1.2,
for every i, d?w < abc. Therefore d?cg?/(ab) < abc. That is, d; < ab/g. By Theorem 1.1, we conclude that
Bl, X is not a MDS. O

6. Comparison with Gonzalez and Karu’s examples

We compare the 3-dimensional case of Theorem 1.2 with [9, Thm. 2.3, Cor. 2.5].

Definition 6.1. Consider a n-dimensional convex polytope A in R™ such that all its vertices have rational
coordinates.

(i) For n = 3, we say such a polytope is of Gonzdlez—Karu type if the vertices of A are (0,0,1), (0,1,0),
Pp, and Pgr, with Pr, and Pg and 0 collinear, and z(Pr) < 0 < z(Pr) < (Pr) + 1, where z(Pg) and
x(Ppr) are the z-coordinates (see [9, §2.2]).

(ii) For n = 2, we say such a polytope is of Gonzélez—Karu type if A is a triangle with vertices (0,0), Pr,
and Pg, with P, and Pr and (0, 1) collinear, and z(Pr) < 0 < z(Pr) < z(Pr) + 1.

(iii) In both dimension 2 and 3, define the width of a polytope of Gonzalez—Karu type to be z(Pr) —x(Pr).

By definition, 3-dimensional polytope A of Gonzédlez—Karu type has some evident properties:
(a) The cross sections of A at x =i € N are isosceles right triangles.
(b) Projecting A € R? of Gonzélez-Karu type and of width < 1 to zy-plane or xz-plane, and then trans-

lating by the vector (0, —1) will give a triangle of Gonzdlez—Karu type with the same width.

We first recall the following numerical criteria from [8], [9] for the weights for P(a, b, ¢,d) or P(a,b,c) to
have a polytope of Gonzéalez—Karu type. We rephrase the criteria as follows:

Lemma 6.2.
(i) Givenw € QN (0,1). Consider P(a,b, c) with a,b, c pairwise coprime. Then P(a,b,c) has a polytope A
of Gonzdlez—Karu type of width w if and only if there exist a relation (e, f, —g) with ae +bf = cg (up

to a permutation of the weights a,b,c) and w = cg*/ab. Furthermore, up to switching a with b, and up
to a shear transformation (x,y) — (z,y + kx) for some k € Z, A has vertices given by (2), i.e.,

a a
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where 1 is the unique integer such that 1 <r < g, g|er—b and g | fr+a [13, Prop. 5.1], and A is
normal to the fan with ray generators given in (1). In particular, when w < 1, the numbers of lattice
points on slices of A are determined by a, b, c.

(ii) Given W € QN (0,1). Consider P(a,b, c,d) with every 3 weights relatively prime. Then P(a,b,c,d) has
a polytope A of Gonzdlez—Karu type of width W if and only if there exist positive integers e, f, g1, g2
such that up to a permutation of the weights a,b,c and d, we have

ae +bf = cg1 = dga, W = (dg2)*/(abed), ged(e, f, 1) = ged(e, f, g2) = ged(g1, g2) = 1.
The following definition is from [9]:

Definition 6.3. [9, §2.2] Suppose A is a 2 or 3-dimensional polytope of Gonzalez—Karu type. Suppose m is
a positive integer such mA is a lattice polytope. For any integer ¢ such that m - x(Pr) < i < m - x(Pg),
the slice at x = i is the set of lattice points in mA with z-coordinates i. When dim A = 2, a slice of mA
consists of consecutive lattice points on a line. When dim A = 3, a slice of mA forms a right triangle with
the same number n of lattice points on each side. Then say the slice at © = ¢ has size n.

To avoid ambiguity, in the following we use I' to represent a 2-dimensional polytope of Gonzalez—Karu
type. We recall the following criteria in [8] and [9] for Bl, X to be not a MDS where X is a toric surface or
toric 3-fold with a polytope of Gonzéalez—Karu type.

Theorem 6.4. /S, Thm. 1.2] Suppose S is a toric surface with fan ¥ in R?. Suppose I' C R? is a triangle of
Gonzdlez—Karu type with width w and normal fan X. Let m > 0 be a sufficiently large and divisible integer
so that mI' is a lattice triangle. Then Bl, S is not a MDS if the following hold:

(i) Let the slice at m - x(Pr) + 1 of mI' have exactly n elements. Then the slice at m - x(Pr) —n + 1 of
mI has exactly n elements.
(ii) nsy ¢ Z, where so := (y(Pr) — y(Pr))/w is the slope of the line through Pj, and Pg.

Theorem 6.5. [9, Cor. 2.5] Suppose X is a toric 3-fold with fan ¥ in R3. Suppose A C R? is a polytope of
Gonzilez—Karu type with width W and normal fan 3. Let m > 0 be a sufficiently large and divisible integer
s0 that mA is a lattice polytope. Then Bl, X is not a MDS if the following hold:

(i) Let the slice at m-x(Pr)+1 of mA have size n. Then the slice at m-z(Pr) —n+1 of mA has size n.
(ii) n(sy,ss) ¢ Z?, where s, == (y(Pr) — y(PL))/W and s, := (2(Pr) — 2(P1))/W are the y,z-slopes of
the line through Py and Pg.

Now a natural question is that whether there are examples of P(a, b, ¢, d) meeting assumptions in Theo-
rem 1.2 and [9, Cor. 2.5]. The following proposition provides a precise answer on the overlap:

Proposition 6.6. Suppose P(a,b, c,d) has a polytope A of Gonzilez—Karu type and satisfies the assumptions
including (i)—(iv) of Theorem 1.2. Then d = cg, where (e, f,—g) is the unique relation between (a,b,c) with
w < 1.

Conversely, every weighted projective 3-space P(a, b, c,cg) such that (a,b,c) has a relation (e, f, —g) with
w < 1, and P(a,b,c) has a polytope satisfying the conditions in [8, Thm. 1.2] with width w, will satisfy the
assumptions in both Theorem 1.2 and [9, Cor. 2.5].

Remark 6.7. In the proof of Theorem 1.2, we in fact showed that weighted projective spaces P(a,b, c,d)
meeting the conditions of the theorem must contain the weighted projective plane S = P(a, b, ¢) where Bl,, S
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is not a MDS. Recall Theorem 3.3 that S is the Zariski closure of the subtorus Ths = L12 ® C*, where (L12)r
is the zy-plane.

Question: Is there any P(a,b,c,d) such that Bl,P(a,b,c,d) is not a MDS, but for any 2-dimensional
subtorus T" of the open torus Ty, the blow-up Blpﬁ of the Zariski closure of T' is a MDS?

Note that the Zariski closure 77 may have Picard number 1 or 2.

We first prove Lemma 6.2. We note the following fact:

Lemma 6.8 (See [8, §1]). Suppose a,b, c are pairwise coprime positive integers. Then there exist at most one
relation (e, f,—g) of (a,b,c) with cg*> < ab, even when permuting a, b, c.

Proof of Lemma 6.2. First we prove (i). Suppose P(a, b, ¢) has a relation of weight w < 1, then the polytope
in (2) is of Gonzalez—Karu type with width w. Conversely, suppose S = P(a,b,c) has a polytope I' of
Gonzalez—Karu type with width w < 1. Then S has a fan >g normal to I'. Say the ray generators of Xg is
r; = (x4,9i), 1 = 1,2,3. Then we can assume y; < 0, y2 < 0, y3 > 0, ar; +bra+crs = 0, and Py, = s(y1, —21),
Pr = t(—y2, z2) for some s,t € Q. Since r; span the fan of P(a, b, ¢), the absolute values of the 2 x 2 minors
of the following matrix should equal to (¢, b, a) respectively:

r1 T2 X3
Y1 Y2 Y3 )’

Now the collinearity of Pr, Pg and (0,1) gives w = Pp — Py = stc. The condition that PpPr being
perpendicular to r3 gives bs = at = |yz| = y3. Therefore w = stc = y3c/ab < 1. So ay1 + byz + cys = 0 and
y3c/ab < 1. Now ged(a, b, c) = 1, so ged(y1, y2,y3) = 1. Write y; = —e,y2 = —f and y3 = g. By Lemma 6.8,
(e, f,—g) is the unique relation. After a shear transformation of the form (z,y) — (x,y + kz) for some
k € Z, we can assume 1 < x3 < g. Then gz = ex3 +b and gzrs = — fx3 F a. So up to switching a with b, x3
is the unique integer r such that 1 <r < g, g | er —b and g | fr + a. This shows that T is of the required
form, up to a reflection about the y-axis and a shear transformation. The shear transformations add the
same integer k to the slopes of sides of I". Hence the numbers of lattice points on the slices are unchanged.

Next we prove (ii). Suppose P(a, b, ¢,d) has a polytope A of Gonzilez—Karu type, with Pr = (z,v, 2),
x > 0 and P, = A(z,y, 2) for some A < 0. The fan ¥ is normal to A. Therefore the four rays Ry, , R4 of
3} are the outer normal vectors of the four faces of A. Direct calculation shows that R; is spanned by the

vector r;:

rlz(l—y—z,x,x), r2:()\y—|—)\z—l,—)\x,—>\x),

(12)
r3 = (y7 —.’L’,O), T4 = (_)‘2707)‘$)'
Now let . be the first lattice point in the ray R;. Because z > 0 and A < 0, there must exist positive
integers e, f, g1, g2 and integers R, S, T, U such that

rllz(R,e,e)7 Té:(safvf), Té:(Ta_glaO)7 Tﬁl:(U,Ov _92)~

Since ¥ is the fan of P(a, b, ¢,d), up to a permutation of the weights, we have ar] 4+ brh, + cr + drjy = 0.
Take the last two components, we have ae + bf = cg; = dgs. Since ¥ is a fan of P(a, b, ¢, d), the weights
(a,b,c,d) equal to the 3 x 3 minors of the matrix with rows 71, - - , 7. For any 3 vectors vy, vs and vz in R3,
we denote by det(vy,va,v3) the determinant of the square matrix with row vectors v, ve and vs. Then we
have
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Ay +Az—1
a = det(rh 1) = L8|S0 4y 4 o) = 992 | QUHANZD gy g S0
x x -2 Ax
e
b= |det(r],rs,ry)| = glxﬁu%m +ey+ez| = % (1-y—2z2)et+ey+ez|= 9;92,

where we used that each 7} is a scalar multiple of r;. Note that the other two equations of ¢ and d do not
give new algebraic relations. As a result,

€g192 bf
=00 (13)

- - _eg192 bf\ _egige dga  cgi-dga-dgy  (dga)?
W =2(Pr) —a(PL) =z - Az = b (1+ ae) b ae abed T abed (14)

At last, the coprime conditions follow from the assumption that every 3 of a, b, ¢, d are relatively prime,
and the expression of a,b,c,d as the determinants of v} with R, S,T and U are integers. This proves the
‘only if’ direction. Conversely, suppose ae + bf = cg; = dgo and W = (dg2)?/(abed). We can always choose
integers T and U such that ged(T, g1) = ged(U, g2) = 1. Let y = Tx /g1 and z = Ux/go, with z and X given
above in (13). The parameters z,y, z, A determine a fan ¥’ with rays r; from (12), and a polytope A’ with
Pg = (z,y,2), © > 0 and Pr, = A(z,y, z). Then it is straightforward that ¥/ is a fan of P(a, b, ¢,d), and A’
is of Gonzalez—Karu type with width W, whose normal fan is ¥’. This proves the ‘if’ direction. O

Finally we prove Proposition 6.6.

Proof of Proposition 6.6. Suppose P(a,b, ¢, d) has a polytope A of Gonzalez—Karu type and meets the as-
sumptions of Theorem 1.2. Then by Lemma 6.2, there exist e, f, g1, g2 € Z~q such that ae+bf = cg1 = dgs
(up to a permutation of the weights a,b, c and d), and the width W of A equals (dg2)3/(abcd) < 1. In this
equation, a and b are symmetric. The weights ¢ and d are also symmetric. Hence up to symmetry either
Bl, P(a, b, c) is not a MDS or Bl, P(b, ¢, d) is not a MDS.

Case I. Bl, P(a, b, ¢) is not a MDS, with relations (E, F, —G) such that the width w < 1. By the argument
above,

(dg2)® _ cgige
12W= abed ~ ab
We claim W < 1. Otherwise W = 1. Then cg?go = ab, so ¢ | ab, which contradicts the assumption of
Theorem 2.1 that a, b, ¢ are pairwise coprime.
Hence cg?/ab < 1/ga < 1. By Lemma 6.2, ged(e, f,91) = 1. Now (e, f, —g1) is a relation between (a, b, c)
with ged(e, f, —g1) = 1 and width ¢(g1)?/(ab) = cg?/(ab) < 1. By Lemma 6.8, we must have e = E, f = F'
and g1 = G, ae + bf = cg1, and the width of (e, f,—g1) is

2 2
1
cG _ i Lo
ab ab g2

Suppose g2 > 2. Then w < 1/2. By Theorem 2.5 and 2.6 of [13], if w < 1/2, then Bl,P(a,b,c) is a MDS,
which contradicts the assumption. Therefore go = 1, and d = cg; .
Case II. Bl,P(b,¢,d) is not a MDS, and ged(b,c,d) = 1. This together with cg1 = dgo implies that
g1 = kd and g9 = kc for some k € Z~y. Now
cgiga  k3cAd?

1> — frd
=W ab ab
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Hence k3c?d? < ab. On the other hand, ked = cg1 = ae+bf > a+b > 2v/ab. Hence k3c2d? > k-(4ab) > ab, so
we reached a contradiction. This shows Case II does not happen and proves the first half of Proposition 6.6.

Next we prove the second half of Proposition 6.6. Consider any S = P(a, b, ¢) such that a, b, ¢ are pairwise
coprime, (e, f,—g) is a relation between (a, b, ¢) of width w < 1 and S satisfies the assumptions in [8, Thm.
1.2]. Then Bl, P(a,b, c) is not a MDS.

Now X := P(a,b,c,cg) satisfies conditions (i), (ii) and (iv) of Theorem 1.2. Since d = cg, we have
d*w/(abc) = cg*w/(ab) = w? < 1. This verifies condition (iii). Hence X = P(a,b,¢c,cg) is an example of
Theorem 1.2.

It remains to show that X = P(a,b,c,cg) satisfies the two assumptions in [9, Cor. 2.5]. Indeed, here
ae +bf = cg = d- 1 with cg?/ab < 1. By Lemma 6.2, X and S = P(a,b,c) have polytopes A and T' of
Gonzédlez—Karu type. Let r be the unique integer such that 1 <r < g, g |er —b and g | fr + a. Recall the

proof of Lemma 6.2. By setting T'= —r and U = 0, we can determine the parameters x,y, z and X\ to give
PL: _ﬁuﬁ,o ) PR:(ﬂv_gao)‘
a’ a b b

This gives a polytope A of Gonzélez—Karu type. The fan 3 of X can be chosen as the fan with ray generators

—-b
’)"/1_<erg ’e’e>’ T/Q_(fr;a’f,f)’ 7':/3:(77"’7970)7 7{1:(0’0’71)'

Define T to be the projection of A to the xy-plane, after translating (0,1) to (0,0) and a reflection about
y-axis. Then T is the triangle given by (2), which is a polytope of S =P(a, b, ¢).

Now let T be the reflection of T about the y-axis. By the hypothesis and Lemma 6.2 (i), either (S,T) or
(S,T) meets the assumptions of [8, Thm. 1.2]. By symmetry we can assume the case (S,T'). Then [8, Thm.
1.2] (i) says that for some m > 0, the slice at m - z(Pr) + 1 of mI" has exactly n elements, and the slice at
m-x(Pr) —n+1 of mI has exactly n elements too. By Definition 6.3, every slice of A forms a right triangle
with the same number of lattice points on each right side. Hence, both slices of mA at m - x(Pr) + 1 and
m - x(Pr) —n+ 1 of mA have size n. This shows that (i) of [9, Cor. 2.5] holds. For (ii) of [9, Cor. 2.5],
we have s, equals sy of the triangle I' in zy-plane. If I" meets the assumption (ii) of [8, Thm. 1.2], then
ns, = nsy ¢ Z, so A meets the assumption (ii) of [9, Cor. 2.5]. Therefore, X satisfies the two assumptions
in [9, Cor. 2.5]. O

Remark 6.9. Consider X = P(a,b, ¢,cg) in the overlap described in Proposition 6.6. A comparison with [9,
Lem. 5.1, 5.2] shows that the curve C' C Bl, X we constructed in Definition 5.4, whose class is extremal in
the Mori cone NE(Bl, X) (by Theorem 2.1), is the same curve C constructed in [9, Lem. 5.1, 5.2].
Example 6.10. An example in such family of P(a,b, ¢, cg) is P(7,15,26,52). By (8], Bl, P(7,15,26) is not a
MDS. The relation is (e, f, —g) = (1,3, —2). Both Theorem 1.2 and [9, Cor. 2.5] apply to P(7,15,26,52), so
Bl, (7,15, 26, 52) is not a MDS.

7. Application

We apply Proposition 1.1 to the following examples in [10]. By [10, Ex. 1.4], the blow-up Bl, S of the
following S = P(a, b, ¢) at the identity point p is not a MDS:

(a,b,¢) = (m+2)%,(m+2)>+1,(m+2)3(m? +2m — 1) + m? +3m + 1), (15)

where m is a positive integer.
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We briefly review the geometry on those Bl, S. By [10, Thm. 1.1], for every positive integer m > 1, there
exists an irreducible polynomial &, € C[z, y] such that &, has vanishing order m at (1,1) and the Newton
polygon of &,, is a triangle with vertices (0,0), (m —1,0) and (m, m+1). Now the weighted projective plane
S above satisfies the conditions of [10, Thm. 1.3]. Then by [10, Thm. 1.3] and its proof, the polynomial
& above defines a curve H in S, passing through p with multiplicity m, such that the proper transform
C of H in Bl, S is a negative curve. Then C # e. The proof of [10, Thm. 1.3] in fact shows that H is the
polarization given by the triangle A with vertices (—«,0), (m — 1+ §,0), (m,m + 1), with

Therefore on S we have

(m+ 1)20.

H? = 2Area(A) =
rea(A) "

Let B be the pseudo-effective divisor on S generating C1(S) = Z. Then H ~ rB for some r € Qsg.
Since B? = 1/abc and H? = r?B?, we have r = c¢(m + 1), so [H] = ¢(m + 1)[B] € CI(S). Therefore
C ~c(m+1)m*B — me.

When m > 2, those S above have width w > 1, so Theorem 1.2 does not apply to S. Nevertheless, by
Proposition 1.1, we have the following examples:

Corollary 7.1. Let X = P(a,b,c,dy,da, -+ ,dn—2) where
(a,b,¢) = ((m+2)%,(m+2)> +1,(m+2)*(m? +2m — 1) + m? + 3m + 1),

such that m € Zsq, every d; lies in the semigroup generated by a,b and ¢, and that every d; < abm/(m+1).
Let p be the identity point of the open torus in X. Then Bl, X is not a MDS.
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