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Abstract—We built and compared several machine learning
models to predict future self-reported wellbeing labels (of mood,
health, and stress) for next day and for up to 7 days in the future,
using multi-modal data. The data are from surveys, wearables,
mobile phones and weather information collected in a study from
college students, each providing daily data for 30 or 90 days.
We compared the performance of multiple models, including
personalized multi-task models and deep learning models. The
best personalized multi-task linear model showed mean absolute
errors of 12.8, 11.9, and 13.7 on a continuous-100 pt scale for
estimating next days mood, health, and stress value, while the best
multi-task neural network model, applied to 3-way high/med/low
classification of the wellbeing values showed F1 scores of 0.71,
0.74, and 0.66 on mood, health, and stress metrics, respectively.
We found that features related to weather, and morning academic
activities are strongly associated with wellbeing labels. We further
found greater prediction accuracy among participants with the
least fluctuations in their wellbeing labels.

Index Terms—Wellbeing Prediction, Personalized models,
Multi-task Learning, LSTM, CNN, Regression, 3-class classifi-
cation, Mood, Health, Stress, Wearables, Mobile phone

I. INTRODUCTION

Wellbeing - the presence of positive emotions and moods
and physical health [1]- is composed of multiple mental and
physical factors that are usually measured with self-report
surveys [2]. Since wellbeing is associated with health, produc-
tivity, and disease risks [3], studying wellbeing is important
for individuals and society.

Research for measuring or predicting wellbeing has been
conducted using objective physiological and behavioral sen-
sors [4] [5]. We designed the SNAPSHOT study [6] to
quantify physiological and behavioral factors related to human
wellbeing using multi-modal data from surveys, wearable
sensors and mobile phones. Our ultimate goal is predicting
an individual’s wellbeing trend and providing personalized
warnings and interventions before wellbeing-related problems
become severe. We have defined daily wellbeing using self-
reported mood, health and stress on non-numeric (scored as
0-100) scales. Our previous work predicted these perceived
wellbeing labels using machine learning [7] [8] and showed
that multi-task learning based personalized regression [8] and
binary (high/low; top and bottom 40 % of the scale) prediction
models can predict the next day’s self-reported mood, health,
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and stress using current and previous days’ data [7]. Previous
work also showed that using 7 days of time-series data with
recurrent neural network (RNN) models can give acceptable
results in wellbeing prediction without building personalized
models [9]. These published studies have limitations, includ-
ing: (i) They framed the prediction tasks as binary (keeping
only the highest 40% and lowest 40% of the wellbeing labels
and discarded all data in the middle 20% of the range.) (ii)
They used RNN models that were designed for the overall
dataset instead of learning representations for each individual,
and (iii) They explored only a limited number of learning
models: convolutional neural networks (CNN) have not yet
been evaluated.

In this paper, we extend the prior work and develop person-
alized regression models for predicting self-reported mood,
health and stress on a continuous non-numeric scale and
personalized three-class classification models for predicting
high/mid/low states of labels. We compare several machine
learning algorithms, including multitask linear models, RNN
models and CNN models to evaluate how well they predict
future wellbeing labels based on time-series data from the past.

II. METHODS

A. Dataset

We used the dataset collected in the SNAPSHOT study
[6] that includes multi-modal physiological and behavioral
data from 251 college students in one university (total 8430
days). The data recorded include gender, Big Five Personality
scores [10], wrist wearable sensor data (acceleration, skin
conductance and temperature), mobile phone data (call, sms,
screen on/off logs, location), weather data (obtained using
DarkSky API [11]), daily survey data (sleep, academic, exer-
cise activities and social interactions), and self-reported daily
evening wellbeing (non-numeric scales of mood, health and
stress later scored 0-100). Between 2013-2017, consecutive
30-day data were recorded for 236 participants and consecutive
90-day data were recorded for 15 participants.

We computed 420 features including timing and duration
of calls, sms, and screen usage; mobility patterns (radius,
distance); number of steps; skin temperature and conductance
responses; self-reported caffeine and drug intake; academic
and exercise activity timing and duration; and weather metrics.

B. Multi-Task Learning

Multi-tasking learning (MTL) can optimize multiple related
tasks together [12] by sharing the information and representa-
tions in the learning process. The generalization effect of the



associated MTL is usually superior to that of the single task
learning [13].

Our data include similarities and differences among partici-
pants. One condition for study participation was knowing other
people in the study. Therefore, some participants in the study
may have similar study, sleep and exercise schedules as well
as the usual commonalities across college students. Therefore,
in this paper, we applied MTL to data from (i) different
participants (persons as tasks) and (ii) different groups of
participants clustered using Gaussian mixture models for Big
Five personality types and gender (a group of people as tasks)
as related tasks. The number of clusters (groups) was finalized
by the highest silhouette scores.

We compared the multiple algorithms that included inter-
pretable linear models as well as neural network models that
are hard to interpret. We describe the algorithms that we used
in the next subsection: (i) linear regularized models (Lasso
and /5 ;) (ii) neural network (iii) long-short term memory
neural network (LSTM), and (iv) convolutional neural network
(CNN).

C. Multi-Task Regularized Linear Models

Linear models are interpretable and widely-used in solv-
ing regression and classification problems. We apply two
regularized MTL linear regression and classification models
(MTL Lasso and MTL /5 ;). For MTL ¢;-norm, known as
Lasso regularization, introduces the sparsity into the models
and reduces complexity of learning. The MTL /5 ;-norm
regularization selects features jointly so that all tasks have
same sparsity on features. These two models select features
automatically and we can interpret the contributing features to
each wellbeing label.

The objective function for MTL Linear model:

0 = argming Y loss{0] X;,Yi} + {\l0]lr, or A21[10]]2.1}
i=1

The loss function for linear regression is: ||07 X; — Yi||3;
The loss function for logistic regression(classification) is:
S log(1 + exp(=Y; (0] Xi j + ¢i))) where X; represents
the input matrix of the i-th task, and Y; is the label of the
corresponding task. 6 is the matrix of weights of the model.
A1 and Aoy are Lagrange multipliers for each of algorithms
as the part of regularized terms.

For the Lasso model, the regularization parameter \; of the
norm term controls the sparsity of weights for the single task;
whereas in the ¢ j-norm form, Ay ; controls the sparsity for
all tasks together. We tuned the parameters via grid search
(A1:0.005, Ag.1: 200). Linear models were implemented via
MALSAR [16].

D. Multi-Task Neural Network

Building a neural network for multitasking is building a
network structure that can handle multiple inputs and multiple
outputs, with hidden layers that are shared by all tasks (Fig.1).
We used the shared hidden layers to summarize and extract
participants both common and different characteristics. For
example, mood may be influenced by sleep behavior on

previous nights for almost everyone but the frequency of phone
usage might only influence specific participants’ mood.

In order to avoid overfitting, a dropout method was used
with a factor of 0.5 after grid searching.

Fig. 1. Structure of Multi-Task Neural Network
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E. Recurrent Neural Network

Long Short-Term Memory (LSTM) network structures is
an extended structure of RNN that can learn long-term depen-
dencies [17] and has been used in time-series problem such
as natural language processing [18].
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Fig. 2. Structure of long-short term memory neural network. T represents
time steps. FC is the fully connected layer.

We used a multi-layer LSTM for sequential learning using
each participants previous 7 days of data, with one day as per
time step (Fig. 2). After grid searching though cross-validation,
we adopted the following structure and parameters: 3 layers of
LSTM with 32 recurrent units are connected, incorporating 0.4
recurrent dropout and 0.25 dropout rates in each layer. This
is followed by a fully-connected layer with 250 hidden units
with a dropout rate 0.5. The Adam optimizer with learning
rate 0.005 was also adopted.

We extended this LSTM structure for MTL and followed
the multi-task LSTM method used by H. Suresh er al [15].
There are two approaches to designing the multi-task neural
network models: (i) the output is generated directly from a
large shared full connection layer, or (ii) there are unique
hidden layers for each output. For our prediction tasks, we
chose the first approach because in our experiments comparing
these two approaches on our dataset, we found that (i) due
to the constraints of the data volume, overfitting problem of
unique layers model led to similar performance of two, and
(i1) the training time of the second model was significantly
longer than that of the first model.

E. Convolutional Neural Network (CNN)

CNNs are actively used in deep learning. We use convolu-
tion kernels not only to process features in the input matrix
but also to extract relationships among them across the time
steps. After designing and experiments, we chose an MTL
CNN structure as shown in Figure 3. In this structure, the
input matrix is composed of the observations(participants) x
features with time steps and outputs will be the prediction
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Fig. 3. The structure of Convolutional Neural Network

vector with elements corresponding to each participant. Theo-
retically, this structure takes the advantages of both MTL and
time series learning. With dropout probability 0.25 in the dense
layer and 0.01 weighted /2 penalty terms in each convolution
layer, we also alleviated the over-fitting problem.

A non-MTL CNN model which inputs the data of time steps
x features was build as a comparison. We used a 7 x 7 kernel
conv layers with a 3 X 3 max-pooling layer, a 5 x 5 kernel
conv layers with a 2 x 2 max-pooling layer followed by a 512
hidden units dense layer, and the output size was 1. We also
applied weighted /5 penalty terms by 0.01 and 0.25 dropout.

G. Imputation

The dataset has missing data for multiple reasons (e.g.,
sensor broke, participant did not complete a diary or forgot
to wear sensors). The previous work has demonstrated that an
auto-encoder approach can result in better performance than
mean or median imputation especially when a larger portion
of data are missing [19]. An auto-encoder is an artificial neural
network to extract a representation in an unsupervised method
[20]. One application of an auto-encoder is the denoising auto-
encoder (DAE), which can reconstruct data corrupted by data-
missing noise. In this project, we implement the DAE in Keras
[14] to process the missing values.

III. EXPERIMENT

Our tasks are formulated in two ways for evaluation. As a
regression, the problem is to predict next day’s mood, health
and stress wellbeing scores, each in the range of 0-100. As
a classification, the problem is to predict for each next day’s
wellbeing score whether it will be in the range high, mid, or
low (defined here as 100-67, 66-34, or 33-0). In both problems,
the system can use the data up to and including the current
day in formulating its prediction for next day’s label. We
conducted several different comparisons: (i) We compared the
performances of using different modalities of features to train
the model; (ii) We compared the number of previous N days of
data (current day, previous 3, 5, 7 days) to predict next day’s
mood, health and stress and (iii) We compared predicting N
days into the future.

We shuffled the dataset 5 times for each person in all
train/validation/test datasets, and applied a cross validation
method in parameters searching and training the models. We
evaluated mean absolute errors for the regression models and
F1 scores for classification tasks (i.e., train/validation/test:
60%/20%/20%). Principal component analysis (PCA) was
applied with 0.99 of explained variance for dimensionality
reduction in each fold of cross validation. After PCA, there are
148 features left per day across 251 participants. In addition,
we adopted focal loss [21] as the objective function in the

TABLE I
PREDICTION PERFORMANCE WITH DIFFERENT ALGORITHMS
(MTL:PERSONS AS TASKS, REGRESSION[MEAN ABSOLUTE VALUE] &
CLASSIFICATION[F1 SCORE])

Algorithms Mood+(SD) | Health£(SD) | Stress£(SD)
Linear Models MTL Lasso 13.7 (0.3) 13.5 (0.3) 15.4 (0.3)
(Regression) MTL /51 12.8 (0.3) 11.9 (0.2) 13.7(0.4)
MTL NN 12.8 (0.2) 12.8 (0.6) 13.7 (0.3)
Neural Networks LSTM 145 (0.3) 12.4 (0.5) 153 (0.5)
(Regression) MTL LSTM 132 (0.1) 12.4 (0.4) 149 (0.4)
CNN 18.4 (0.5) 17.6 (0.7) 19.1 (0.5)
MTL-CNN 13.9 (0.7 13.0 (0.6) 14.5 (0.7)
Logistic Models MTL Lasso 0.63 (0.01) 0.67 (0.01) 0.59 (0.01)
(Classification) MTL /31 0.65 (0.01) 0.68 (0.01) 0.61(0.02)
MTL NN 0.71 (0.01) 0.74 (0.01) 0.66 (0.02)
Neural Networks LSTM 0.66 (0.02) 0.73 (0.01) 0.63 (0.01)
(Classification) MTL LSTM 0.69 (0.02) 0.74 (0.01) 0.65 (0.01)
CNN 0.51 (0.01) 0.53 (0.01) 0.50 (0.01)
MTL-CNN 0.68 (0.01) 0.72 (0.01) 0.67 (0.01)

classification tasks to mitigate the unbalanced sample size in
the 3 classes, as the low:mid:high ratios were 3:9:8, 1:3:3,
and 5:9:6, for mood, health, and stress respectively. The Adam
optimizer [22] was used in training the neural networks, with
a learning rate of 0.005 and 0.9, 0.999 for 5; and (5.

IV. RESULTS & DISCUSSION

The next-day prediction results from regression and 3-class
classification using the past-7-day data are shown in Table I.
In the linear regularized models, the f3 ; method has better
prediction performance and shows statistically significantly
lower mean absolute errors compared with the Lasso algorithm
(paired t-test; p<<0.05). In the neural network models, the
MTL-NN showed a significantly better performance for mood
and stress prediction in both regression and classification task
(ANOVA, Tukey; p<0.05); whereas MTL-LSTM produced
significantly better health prediction results (p < 0.05). Over-
all, {2, linear model performed the best for the regression
task and MTL-NN had a better performance for mood and
stress prediction for the classification task, while MTL-LSTM
performed the best for health prediction. Limited by the size of
data set, LSTM and MTL-LSTM structure have the over-fitting
problem; whereas linear model and MTL-NN can achieve
better results by regularization in the labels of mood and stress.

Our results showed that MTL performed significantly better
in our dataset, especially with persons as tasks rather than
groups of people as tasks. Our MTL /5 ; regression models
- groups of people as tasks (clustering based on personalities
surveys and genders with highest Silhouette score, 251 par-
ticipants were divided into 21 groups) showed 14.7, 14.4 and
16.2 for mood, health and stress, which are less effective than
MTL /5 ; - persons as tasks(p < 0.05). And our performances
in regression tasks also show improvements compared to the
prior persons-as-tasks work whose average MAE values of
mood, health and stress were 13.0, 12.9 and 14.1 [8].

We analyzed when our models showed high and low errors.
In regression, we observed larger errors when the labels in the
previous days had larger fluctuations. In the confusion matrices
of classification tasks, we found that our models have higher
performance at predicting mid & high mood, high health, and
low stress classes by 10-19% compared to other ranges in
these labels. We also examined top/mid/bottom 33% label split
models and found 10% lower F1 scores compared to the 100-
67/66-34/33-0 data split pattern. By examining the confusion
matrix, we found that the main reason for this change was the
prediction performance of the mid labels was lower.



In the classification task, high accuracy (100%) was also
achieved in only 18-39 participants. For the health label, the
prediction accuracy on 39 of the participants were 100%, while
that on one participant was only 16%. We found that the
participants on whom the methods had better performance
had flat labels in training (mean: 68.4; SD:7.7) and testing
data (mean:68.3; SD:6.3), while the participants on whom
our methods often made errors had widely fluctuating la-
bels in training (mean:45.8; SD:20.8) and testing (mean:61.9;
SD:16.2) data. We also found that there are statistical dif-
ferences in some features between participants on whom we
had good prediction accuracy and those on whom we had
bad accuracy. For example, in the mood prediction, there
were statistically significant differences between good and
poor accuracy in the median EDA signal of participants and
the use of mobile phone screen between 3-10 am (p <
0.05, respectively). Our results also showed that the health
prediction models performed better than the stress models.
We compared the mean and variance of the two labels and
found that the health labels (mean:64.3, SD:24.9) have higher
mean value and lower SD than the stress labels (mean:52.6,
SD:26.2) and models are able to predict better with low SD
health labels.

We found that the combination of all modalities: surveys,
wearable, mobile phone and weather performed the best but
the combination of wearable, weather and mobile phone
features or the combination of wearable and mobile phone
performed better than wearable only or phone only. In the
comparison of the prediction performance using the previous
1, 3, 5 or 7 days of data, mood and health regression and
classification models performed the best with 7 days of data.
Stress models performed the best with 5 and 7 days of data
(one-way ANOVA, tukey test, p < 0.05). This suggests that the
length of the data to approximately 7 days improves the pre-
diction performance; this result was consistent with a previous
study that showed that human wellbeing is affected by week-
long weather and behaviors [23]. In addition to predicting
next day’s wellbeing, we predicted mood, health and stress
scores for the next 3, 5 and 7 days using the best performing
regression and classification algorithms, MTL linear model
and MTL NN. In the regression task, we found that the
prediction of next day’s labels generally had significantly
smaller MAE values (0.5-0.8) than the predictions of further
into the future labels(p < 0.05).

One of the advantages of the linear model is that we can
observe the weights of the training model and then analyze the
most important features of the model. MTL /5 ; linear model
performed the best in the regression task. In the health model,
weather features (such as air quality of day, visibility, and air
pressure) and no scheduled activities in the morning showed
higher weights. In the stress model, both weather factors and
academic activity showed higher contributions. Our finding
matched prior results that having fewer academic activities
is associated with less stress for students [24]. Our findings
are also consistent with prior work showing weather impacts
human mood [26], health, and stress [25].

V. CONCLUSION

In this paper, we compared the performance of mood,
health and stress prediction models using several MTL and
deep learning algorithms. Our results showed that MTL-linear
models, and MTL-NN and MTL-LSTM performed the best
for regression and 3-class classification. Our models showed
that weather features and features about first schedules in the
morning and academic activities contributed highly to well-
being labels. Our analysis also showed that high fluctuations
in the previous days of wellbeing labels were associated with
larger errors in the prediction models. As future work, we
will investigate other model structures such as a CNN-LSTM
model and validate our models with data from other student
and non-student populations.
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