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Abstract— Accurately forecasting well-being may enable peo-
ple to make desirable behavioral changes that could improve
their future well-being. In this paper, we evaluate how well
an automated model can forecast the next-day’s well-being
(specifically focusing on stress, health, and happiness) from
static models (support vector machine and logistic regres-
sion) and time-series models (long short-term memory neural
network models (LSTM)) using the previous seven days of
physiological, mobile phone, and behavioral survey data. We
especially examine how using only a portion of the day’s data
(e.g. just night-time, or just daytime) influences the forecasting
accuracy. The results show that accuracy is improved, across
every condition tested, by using an LSTM instead of using
static models. We find that daytime-only physiology data from
wearable sensors, using an LSTM, can provide an accurate
forecast of tomorrow’s well-being using students’ daily life data
(stress: 80.4%, health: 86.0 %, and happiness: 79.1%), achieving
the same accuracy as using data collected from around the
clock. These findings are valuable steps toward developing a
practical and convenient well-being forecasting system.

I. INTRODUCTION

Early detection indicators that one’s well-being is getting
worse can enable new kinds of interventions to potentially
prevent a series of bad stress or bad mood days from taking
a turn into depression. Stress is well-known to increase
susceptibility to infection and illness [1]. Self-reported health
strongly relates to actual health and all-cause mortality [2].
Self-reported happiness is strongly correlated to measures of
depression [3]. The ability to forecast well-being levels, and
identify what specifically changes them, could enable better
self-management of one’s behavioral choices in ways that
might prevent poor well-being and subsequently prevent its
damage to physical and mental health. The ability to model
and forecast well-being could be immensely beneficial, espe-
cially if such a forecast could be made using data collected
in a privacy-sensitive, convenient and unobtrusive way.

Previous work has shown that tomorrow’s well-being
(good/poor mood, high/low stress and good/poor health
levels) can be predicted with 78-82% classification accuracy
based on today’s physiological and behavioral data by using

personalized machine learning models [4]. Other work has
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shown that using seven days of time-series data with long
short-term memory neural network models (LSTM) can give
acceptable results in well-being prediction without the need
to build personalized prediction models for forecasting the
next-day’s stress [5]. These previous works assumed the use
of a whole day of data (typically 20-23 hours of sensor
and smartphone data, plus a few mins/day of daily surveys).
However, if an accurate forecasting system could be built
using only daytime data, then a person could be “sensor free”
for the evening, which might afford them more privacy and
comfort, while also using lower power and making batteries
last longer. Depending on a person’s schedule, other intervals
of the day may also be most informative and convenient.

Some previous work has focused on using skin conduc-
tance, skin temperature and acceleration data from only
daytime working hours to forecast long-term stress, stress
scores from Perceived Stress Scale questionnaire [6] [7].
However, for early detection of worsening well-being, higher
granularity well-being prediction would be more effective.
We desire to create daily well-being forecasting that is so
unobtrusive and convenient that somebody finds it easy
enough to participate for a month or longer, as long-term
data can help a person learn patterns that may enable them
to significantly lower their stress, decrease days of sickness,
and increase days with positive mood.

In this paper, we evaluate the next-day’s well-being
forecasting accuracies from static models (support vector
machine (SVM) and logistic regression (LR)) and time-
series models (LSTM) using the previous seven days of
physiological, mobile phone, and behavioral survey data. We
investigate whether well-being can be forecasted accurately
using only a portion of the day’s data such as just daytime
or night-time (defined in this paper’s analysis “daytime” as
10am-5pm and “night-time” as 0-10am, based on the sleep-
wake patterns of the participating college students). Given
that current and future human mental conditions are affected
by the past days [1], we hypothesized that an LSTM model
may achieve a sufficiently accurate well-being forecast using
one week of a portion of the day’s data from a participant.

This paper makes new contributions that advance the
capability of forecasting well-being in daily life. We provide
significantly novel results showing that daytime physiology
data from wearable sensors, using an LSTM, can provide an
accurate forecast (79-86%) of next-day’s well-being ratings
in students’ daily life. These performance is equivalent to the
accuracy of prior work that required the data from around the
clock. Furthermore, we will also show that the new LSTM
method can achieve the high well-being forecasting accuracy



using daytime physiology data plus a survey, if we can ask
a few minutes of daily survey (stress: 82.3%, health: 87.5%,
and happiness: 83.5%). These contributions make this work
valuable toward developing the first practical system for
forecasting and improving well-being, while letting people
keep their night-time life private and unmonitored.

II. DATA AND METHODS
A. Dataset

The data in this experiment measured Sleep, Networks,
Affect, Performance, Stress, and Health using Objective
Techniques (SNAPSHOT) [8], which gathered 30-day multi-
modal data, including physiological, mobile phone, and
behavioral survey data from college students in one US
university. The study participants obtained compensation
based on their contribution to the study. Stress, health and
happiness scores were collected every evening, using self-
reported scores from O (stressed out) - 100 (calm), O (sick)
- 100 (healthy), and O (sad) - 100 (happy), respectively. In
this paper, for stress, we used a total of 1,231 periods of 8
consecutive days of data from 142 participants (these periods
are overlapping, resulting in a total of 2,276 days of data
being used). We used 1,246 periods for health, and 1,133
periods for happiness, respectively.

B. Feature Calculation

We computed 375 daily features including 37 behavioral
survey (excluding self-reported well-being scores), 173 phys-
iology, 150 mobile phone, and 15 mobility features. The
feature modalities are explained in detail below.

(a) Survey:

Participants filled out a survey about their daily behaviors
every evening. They self-reported the timing and duration of
a variety of activities, including sleep, academic activities,
extracurricular activities, and exercise. Whether the partici-
pant engaged in social activity before bed, amount of caffeine
intake, and whether a positive or negative social interaction
was experienced were also self-reported. The survey typi-
cally took a few minutes to complete. We defined 20 features
as “sleep survey” related to sleep such as bedtime, sleeping
duration, efficiency, pre-sleep activity, whether or not the
participant slept, the number of minutes the participant spent
awake after going to bed at night, and time spend napping.
(b) Physiology:
The physiological measurements were collected by wrist-
worn Affectiva Q sensors at 8 Hz; they include 24-hour-a-
day electrodermal activity (EDA) measured as skin conduc-
tance (SC), skin temperature (ST), and 3-axis accelerometer.
Features such as step count, stillness, and SC responses
were calculated — all of which relate to emotional arousal
and stress. EDA, acceleration and ST were collected to
measure sympathetic nervous activity, physical activity, sleep
patterns, circadian rhythm, and stress responses [9]-[11].
Following [12] and [4], for each time period (0-24H, O-
3H, 3-10H, 10-17H, 17-24H) the following sets of features
were computed: EDA Peak features (for all detected peak
features and for only non-artifact peaks [13]), SC level

features, accelerometer features, temperature features, and
various combinations of the three physiological data streams.
We defined data during 10-17H (10am-5pm) as “daytime”
data (most students were active then), data during 0-10H (0-
10am) as “night-time” data (most student sleep took place
during this interval), and data during 0-10 and 17-24H (5-
11:59pm) as “other-time” data.

(c) Phone:
The phone log data consisted of information about the
timing, type, and duration of phone calls and SMS messages,
and times the screen was turned on and off. We assumed
that there are two main mechanisms through which screen
logs and communication information can affect well-being:
(1) light from the screen can disrupt circadian rhythms and
therefore sleep [14], and (2) the amount of social support in
a person’s life is strongly linked to resilience to depression
[15], [16]. As with physiology, the features were computed
over the time intervals spanning the course of the day. We
defined daytime data (10-17H) and other-time data (0-10,
17-24H) the same as physiology features.

(d) Mobility:
In addition to communication and screen events, the phone
app logged the participants’ GPS coordinates throughout the
day, as well as whether they were using Wifi or cellular data.
Previous studies have shown that mobility patterns are linked
with mental health states [17], [18]. We followed the method
described in [19] to down-sample the signal and compute
features such as the total distance traveled, statistical features
about distance traveled in 5 minutes, and the amount of time
spent on campus. These data were only included in two set
of comparisons where they were used all features around the
clock and just only this set.

III. EXPERIMENTS

We conducted a series of experiments to examine whether
we could improve the well-being forecasting accuracy using
collected various time data.

A. Classification Labels

We framed the problem as a binary classification: days on
which a participant reported a stress-calm, a sick-healthy, and
a sad-happy score in the top 40% of all scores are labeled as
a low-stress, a low-sick, and low-sad day, and days in which
participants reported a well-being score in the bottom 40%
are labeled as a high-stress, a high-sick, and a high-sad day.
We discarded only the middle 20% of scores, similarly to
Taylor et al. [4].

B. Methods

(1) Long Short-Term Memory Networks (LSTM):
LSTM Networks [20] have the ability to learn long-term
dynamics while avoiding vanishing and exploding gradient
problems and have recently gained great success in sequence
learning tasks such as speech recognition and machine
translation. Fig. 1 presents an overview of our LSTM. We
designed our LSTM as three layers with a single hidden-
layer with 32 nodes and a dropout of 0.2. Drop-outs were
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Fig. 1. Overview of our LSTM method

used between the LSTM and dense layers. The output of the
last cell of the LSTM layer was connected to a dense layer.
Finally, a sigmoid activation layer predicted the high/low
well-being levels. We trained our LSTM using RMSprop [21]
with binary cross-entropy loss.
(2) Static Methods:

For comparison to the LSTM, we used static models, in-
cluding an SVM classifier with a radial basis function kernel
and LR, as a baseline for learning algorithms because these
methods were used in previous studies for mood prediction
[4], [19], [22]. Because SVM and LR cannot directly handle
time series data, we concatenated the time series feature
values to create a single feature vector, allowing SVM and
LR to learn a forecast model based on the same information.

C. Experimental conditions

We examine how accurately the previous seven days’
multi-modal data using only a portion of the day’s data can
forecast a next-day’s evening high/low well-being level. We
used accuracy as evaluation metrics. The baseline accuracy
(random classifier) was 54.1% for stress, 51.5% for health,
and 50.0% for happiness, respectively. The full dataset was
then used in a five-fold cross validation with 80% of the data
for training and validating the models, and 20% for testing
for each fold. While it’s possible that days could have been
repeated within the training/validation loops, the days in the
test set were kept completely independent of the training
and validation data (i.e., day-independent, but participant-
dependent model). Specifically, within the training and val-
idation set, we used 80% of the dataset for training and
20% as validation and selected the hyperparameters (LSTM:
iteration number, SVM: C, LR: C) that yielded the highest
accuracy on the validation set. For evaluating accuracy we
computed the average and the standard deviation of the test
set for the five folds.

Using the set-up above, we compare the accuracies of
the three machine learning methods. Specifically, we learn
p(Yt41|2t, ..., vi—¢), the probability of the person’s well-
being given the previous seven days’ data, where xz; is all
the data collected from behavioral surveys, wearable sensors,
and mobile phones on day ¢, and y;4; is the next-day self-
reported binary well-being label. We also train models and
compute metrics for each of the models when using a single
data modality (e.g., physiology), and using only daytime,
night-time, other-time data, and each combination. Table I
describes each features’ combination and the experimental
conditions.

TABLE 1
FEATURES (ABOVE) AND EXPERIMENTAL CONDITIONS (BELOW)

Survey Physiology Phone Modality
Sleep  Other Daytime  Night-time Other Daytime Other ‘Whole time
(10-17H)  (0-10H)  (0-10, 17-24H) | (10-17H)  (0-10,17-24H) | (0-24H)
a b c d e f g h
Features (#)
All (375)  a+b+c+d+e+f+g+h
Survey (37) a+b
Physiology (173) c+d+e
Phone (150) f+g
Mobility (15) h
Sleep Survey (20) a
Other Survey (17) b
Daytime Physiology (44) c
Night-time Physiology (87) d
Other time Physiology (129) e
Daytime Phone (21) f
Other time Phone (129) g
Daytime Physiology and Sleep Survey (64) c+a
Daytime Physiology and Survey (81) c+a+b
Night-time Physiology and Sleep Survey (107) d+a
Night-time Physiology and Survey (124) d+a+b
Other time Physiology and Sleep Survey (149) e+a
Other time Physiology and Survey (166) e+a+b
Daytime Physiology and Daytime Phone (65) c+f
Other time Physiology and Other time Phone (258) e+g

IV. RESULTS AND DISCUSSION

A. Stress-forecasting results

The stress-forecasting accuracies of the SVM, LR and
LSTM models using seven days of data are shown in Fig. 2.
The results further show that accuracy is improved by using
an LSTM instead of the static SVM or LR, regardless of
which feature sets are used. The best results obtained for
each model were as follows: for the LSTM: 84.2% accuracy
using all features, for the SVM: 77.7% using other time
physiology and sleep survey features, and for LR : 66.4%
using physiology features. Using the LSTM, the accuracy
based on daytime physiology features (80.4%) showed no
significant decrease compared to the best result using all
features (p>0.0025, one way analysis of variance, Tukey’s
honest significant difference test and Bonferroni correction).
This result means we can automatically forecast next-day’s
stress levels with high accuracy using an LSTM processing
passive daytime wearable sensor data. Furthermore, we also
see using the combination of the daytime physiology data and
survey data give strong results for forecasting stress (82.3%,
p>0.0025).

We computed the mean absolute weights of each feature
across all connected nodes in the input layer of the LSTM in
using daytime-only physiology features. Features with higher
weights indicate a stronger influence on forecasting stress.
The top five features were related EDA: (1) the median of
5-minute epochs of the number of EDA peaks normalized by
the number of steps, (2) the percentage of signal containing 1
minute epochs with greater than five no-artifact EDA peaks,
(3) SC level’s percentage of period where sensor is off, (4)
the median of the number of EDA peaks per 30 minute
epoch, and (5) the number of no-artifact EDA peaks per 30
minute epoch. These weights are consistent with the results
of prior works [9] [23] [24] that daytime EDA features are
good indicators for stress.
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B. Health-forecasting results

The health-forecasting accuracies of the SVM, LR and
LSTM models using seven days of data are shown in Fig. 3.
The best results overall were obtained for the LSTM: 89.6%
accuracy using physiology features, for the SVM: 71.7%
using night-time physiology and survey, and for LR : 73.4%
using physiology data. As with stress forecasting, using the
LSTM, the accuracy with daytime physiology features data
(86.0%) showed a similar accuracy to the best results (using
physiology features, p>0.0025).

As with stress forecasting, we computed the mean ab-
solute weights in daytime physiology data. The five top-
weighted features were the same for forecasting stress, but
just switched the order of the 2nd and 3rd features. These
weights show that EDA features might be used as a bio
marker for sickness.
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C. Happiness-forecasting results

The happiness-forecasting accuracies of the SVM, LR
and LSTM models using seven days of data are shown
in Fig. 4. The best results overall were obtained for the
LSTM: 83.5% accuracy using daytime physiology features
and survey, for the SVM: 73.4% using physiology features,
and for LR : 71.1% using all features. As with stress
and health forecasting, the daytime physiology showed a
similar accuracy (79.1%) to the best result (using daytime
physiology features and survey, p>0.0025).

We also computed the mean absolute weights in using
daytime-only physiology features. The top five features were
(1) the median of 5-minute epochs of the number of EDA
peaks normalized by the number of steps, (2) the percentage
of signal containing 1 minute epochs with greater than
five no-artifact EDA peaks, (3) the minimum of the raw
temperature signal, (4) the sum of the area under the curve
(AUC) of all EDA peaks for this period where the amplitude
of peak was calculated as difference from base tonic signal,
and (5) the sum of AUC of EDA peaks where the amplitude
was calculated as difference from 0. These weights are
consistent with the results of prior work [25] that EDA
features might be an indicator of differentiating happy and
neutral emotion.

D. Summary of results

To summarize the well-being ((A) stress, (B) health, and
(C) happiness) results, we found that daytime-only physi-
ology data from wearable sensors can provide an accurate
forecast of next-day’s well-being (bold letters in Fig. 2, 3,
and 4), achieving the same accuracy as using data collected
from around the clock. We also saw that only night-time
physiology and other time physiology showed strong results
for forecasting (A) stress and (C) happiness. For forecasting
(B) health, the combination of night-time physiology and a
survey (or a sleep survey) data was also effective. These



results might be desirable for some people who prefer
wearing a sensor during night-time instead of daytime. It is
especially effective using physiological data for forecasting
(B) health. We think one of the reason is that physiology data
were more directly measured from participants’ body than a
phone or survey, and self-reported health strongly relates to
actual health [2].

V. CONCLUSIONS AND FUTURE WORKS

In this work, we tackled the hard problem of forecasting
next-day’s well-being levels of stress, happiness, and health,
using data provided by college students. We compared the
use of static models (SVM and LR) and time-series models
(LSTM), each using the previous seven days of data —
including physiological, mobile phone, and behavioral survey
data. Different from previous work, we also built models
that could operate using only daytime, night-time, other-time
data, or their combinations. In some cases (e.g. children
at school, or a team in an office) people may desire to
wear sensors for only a limited portion of their day. We
found that the LSTM model we trained was able to take
daytime-only physiology data from wearable sensors, and
accurately forecast the next-day’s well-being in students’
daily life, achieving accuracies of stress: 80.4%, health:
86.0%, and happiness: 79.1%. The model trained here, with
these extensive comparisons, demonstrates a valuable step
towards developing a practical well-being forecasting system
that is more convenient than requiring continuous all-day
wearing of sensors and collecting of data.

This work has several limitations. The dataset is from
New England college students and might not generalize
to other student populations or to other groups such as
older office workers. We plan to collect daytime-only data
from office workers, which they can use (privately) to get
feedback that may improve their well-being. Further, we plan
to examine not only classification of next-day’s anticipated
state of health (limited in this work to high/low values of the
stress, health, and happiness) but also allow for the model
to perform regression to anticipate more subtle changes.
This can be done using other LSTM structures and deep
learning structures to improve future well-being forecasting
accuracies.

Finally, this work has focused on the hard problem of
the forecasting and has not addressed several other very
important problems, such as what to do with the forecasts.
In particular, if a person gets a forecast saying tomorrow
they are likely to have worse stress and worse health than
today, then they will want to know what they can do
to change the forecast. We are working on models that
provide evidence-based recommendations to improve your
well-being tomorrow. Thus, the ideal model will not only
make it easy (passive data, minimal interaction) to let you
know if tomorrow your well-being is on track to be the same
or better, but it will also help you identify what you can
most easily change to have a better outcome tomorrow (e.g.
go to bed earlier, call a good friend or do something that
elicits a positive social interaction). The work here does not

yet help people identify the best behaviors to change, nor
does it support them in making those changes, both of which
will be important parts of a complete system to help people
significantly improve their future well-being.
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