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Abstract—Understanding the feasible power flow region is of
central importance to power system analysis. In this paper,
we propose a geometric view of the power system loadability
problem. By using rectangular coordinates for complex voltages,
we provide an integrated geometric understanding of active and
reactive power flow equations on loadability boundaries. Based
on such an understanding, we develop a linear programming
framework to 1) verify if an operating point is on the loadability
boundary, 2) compute the margin of an operating point to the
loadability boundary, and 3) calculate a loadability boundary
point of any direction. The proposed method is computationally
more efficient than existing methods since it does not require
solving nonlinear optimization problems or calculating the eigen-
values of the power flow Jacobian. Standard IEEE test cases
demonstrate the capability of the new method compared to
the current state-of-the-art methods. Understanding the feasible
power flow region is of central importance to power system
analysis. This paper proposes a geometric view of the power
system loadability problem. By using rectangular coordinates for
complex voltages, this paper provides an integrated geometric
understanding of active and reactive power flow equations on
loadability boundaries. Based on such an understanding, this
paper develops a linear programming framework to 1) verify if
an operating point is on the loadability boundary, 2) compute
the margin of an operating point to the loadability boundary,
and 3) calculate a loadability boundary point of any direction.
The proposed method is computationally more efficient than
existing methods since it does not require solving nonlinear
optimization problems or calculating the eigenvalues of the
power flow Jacobian. Standard IEEE test cases demonstrate the
capability of the new method compared to the current state-of-
the-art methods.

I. INTRODUCTION

The loadability of electrical networks considers whether
operating points are feasible under physical constraints and its
study has long been an integral part of power systems planning
and operation. In the planning phase, loadability analysis can
be used to determine the need for shunt compensation, new
transmission lines [1], reserves [2], and other system additions
[3]. In the operation phase [4], a load flow solution can be
used to find stability margins in preventing voltage collapses
caused by large load variation and saddle-node bifurcation
[5]. As more renewable resources are integrated into the
aging electrical infrastructure and systems operate closer to
their limits, characterizing the loadability of power systems is
becoming increasingly important [6].

The most well-known example of a loadability limit is
the power-voltage (PV) curve for a 2-bus system, where the
maximum loading occurs at the tip of the curve [7]. For larger
systems, visualizing and computing the loadability boundary
becomes more difficult. A typical approach is to increase the
load on all buses by the same factor from a given base load
until a power flow solution cannot be found [8]. However,
as the load increases, the power flow Jacobian becomes ill-
conditioned and standard first and second order algorithms
become numerically unstable [9].

Overcoming the computational challenges at near the load-
ability limits has received considerable attention from the
community. The work in [10] develops a robust continua-
tion power flow method for obtaining solutions on the P-V
curve and [11] proposes an angle-reactive-power (AQ) bus
to mitigate the numerical issues. A notable subset of these
studies are the non-divergent power flow methods [12]-[14].
In these methods, a voltage update increment is adjusted via
computing a multiplier to avoid divergence while minimizing
the norm of voltage error residuals. Other algebraic methods
have been used to more directly study the properties of power
flow solutions.

In order to characterize the loadability boundary, [15] uses
Thevenin equivalent and P-Q-V curve technique for charac-
terizing the boundary. However, the method brings approx-
imation error when Thevenin equivalent-based reduction is
used. More formally, one can characterize the loadability
points in a set, leading to the development of the concept of
security region for situational awareness. For this purpose, [16]
presents voltage stability regions by using decoupled power
flow approximation and assuming that the generators can be
modeled by constant sources. As a follow-up, [17] constructs
voltage stability regions based on destabilizing behavior of
onload tap changers (OLTC), assumption of impedance loads
and the decoupled reactive power-voltage relations. [18] an-
alyzes the Shrinking stability regions and voltage collapse in
power systems based on on-load tap-changing, load dynamics,
and generator excitation limiting. While these methods give
insight into the system security region, further research are
needed to relax assumptions, such as on decoupled power
flow, constant sources. Notably, there are also other methods
for characterizing the voltage stability region, such as using
Fast Fourier Transform (FFT) and differential equations [19].
For a comprehensive review on voltage stability assessment
techniques, please refer to [20].

A popular approach of loadability analysis is to examine
the eigenvalues of the power flow Jacobian [21], although
the singularity of the Jacobian is necessary but insufficient
to conclude that a solution is on the boundary. A set of
studies in [22]-[25] research on how to use local information
to understand whether a point is operating on the boundary
or close to it. Finally, polynomial homotopy continuation
methods can be employed to find all the power flow solutions,
although often at prohibitively high computational costs [26].
There are also recent research on reactive power margins
under severe generation imbalance [27], decentralized security
region detection [28], and linear security region boundary for
distribution grid [29].

These developments have proven to be quite useful in
practice, but three challenges still remain. First, the geometric
intuition of the loadability in 2-bus PV curve needs to be
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extended to larger systems for loadability calculation. Second,
most of the existing methods increase loads at all the buses
by the same factor, thus limiting the exploration of the full re-
gion. Third, there are various approximation techniques, such
as decoupled power flow and constant power sources [16],
which shall be avoided. Finally, since nonlinear optimization
problem is often employed, the computational requirements
are nontrivial.

This paper overcomes these three challenges by 1) extending
the geometrical loadability intuition in the PV curve to more
than 2 buses and to include reactive power, and 2) presenting
a linear programming approach to test whether an operating
point is on the loadability boundary, to find the distance be-
tween the point and the boundary, and to locate any loadability
boundary point of interest. Notably, there is no approximation
in our formulation, making our results to be global optimum
in all three cases. The starting point of our analysis is using
rectangular coordinates to represent complex voltages and
studying the power flow equations and Jacobian matrices [30]—
[32]. Formally, the loadability boundary of a system is the set
of points on the Pareto-Front of active powers [33], where
the load on one bus cannot be strictly increased without
decreasing the load at some other buses while satisfying the
physical constraints. Therefore, this Pareto-Front represents
the limit of operating a system. This paper makes the following
contributions:

1) From rectangular coordinates, this paper develops a geo-
metric visualization for systems with more than 2 buses
that integrates real and reactive powers, motivating the
analysis later on.

2) The paper shows that the eigenvalues of the power flow
Jacobian are insufficient to describe system loadability
boundary. Instead, this paper presents a linear program-
ming approach to test whether an operating point is on
the boundary.

3) Based on the linear programming approach, this paper
characterizes the loadability margins of operating points.
This paper also formulate a linear programming problem
to characterize the power flow feasibility boundary points.

4) The proposed method is different than the past meth-
ods, where there are assumptions and approximations
such as decoupled power flow and no reactive power
constraints. Our method can also handle both resistive
and reactive impedance network, and include constraints
that are hard to include in some methods, e.g., reactive
power constraints. Finally, our method is based on convex
optimization and is exact.

Our approaches are validated by simulations on different trans-
mission grids such as the 14-, 300-, and 13659-bus networks
and two distribution grids (the 8 and 123-bus networks [34]).
For example, this paper benchmarks our margin method with
Kessel margin [35], reactive margin [4], and energy margin
[36], [37]. Promising results are observed across the numerical
section.

The rest of the paper is organized as follows: Section I mo-
tivates the rectangular coordinate-based analysis and provides
an integrated geometric view of active/reactive power flow

equations. Section III shows the linear Jacobian matrix and its
application for security boundary point verification. Section IV
quantifies margins of points that are not on the boundary.
Section V shows how to search for all of the boundary points.
Section VI evaluates the performance of the new method and
Section VII concludes the paper.

II. RECTANGULAR COORDINATES AND GEOMETRY OF
POWER FLOW

In this section, we first review the polar coordinate-based
power flow equations. Then, we present the rectangular
coordinate-based formulation and discuss the benefit of using
the later representation.

A. Visualization of Complex Power Flow

The power flow equations in polar coordinates are [9]:

n

pd = Z [vallvk| (gar cos Oar, + bar sinbax),  (la)
k=1

qa = Z [val vk | (gax sin Oax — bax cosOar),  (1b)
k=1

where n is the number of buses in the network; pg; and qg
are the active and reactive power injections at bus d; vq is the
complex phasor at bus d and |vg] is its voltage magnitude;
Oqr = 01 — 0, is the phase angle difference between bus k&
and bus d; gqr and by are the electrical conductance and
susceptance between bus d and bus k. Together, yqr = gar +
7 - bgr, forms the admittance, where j is the imaginary unit.

These equations have been the central objects of interest in
power system analysis for decades. Because of the nonlinear
interaction of sinusoidal and polynomial functions, the power
flow-based loadability analysis remains challenging. For some
simple cases, such as a 2-bus system, PV curve visualizes
the system loadability. However, this geometric picture is
hard to extend while keeping all system information for joint
loadability analysis. For example, the PV curve has been
extended to large systems by multiplying each bus by a loading
factor, then visualizing the impact on voltage stability as this
loading factor changes [5], [25]. But this approach hides the
local behavior of each bus and picking a good starting load is
not always easy.

B. Rectangular Coordinate-based Power Flow

One difficulty in (1) for loadability analysis lies in its diverse
functional types, e.g., sinusoidal and polynomial. To reduce
the functional types for easier loadability analysis, this paper
adopts the rectangular coordinates for complex voltages. Let
va,r = Re(vg) and vg,; = Im(v,) be the real and imaginary
parts of the complex voltage at bus d, respectively.
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Specifically, v, |va|cos By and vy, |vg]| sin 84,
turning (1) into
Z Vk,rGkd t Vi Z Uk, iJkd
kEN(d keN(d)
”dr Z Jkd — Z Jkd
keEN(d) keN (d)
+ Vg Z Vi, rbkd — Va,r Z Uk, ibka
EEN (d) keN(d)
Z 9kd * Ug,r + Z Vk,r9kd * Vd,r
keEN (d) keN (d)
- Z Uk,ibkd'vd,r} +[ Z Vk,iGkd * Vd,i
kEN (d) kEN (d)
+ Z Vk,rbkd - va,i — Z Gkd - Uﬁ,z}
keN (d) kEN (d)

2 2
=ta1 Vg, +td2 Var +td1 vy, ttas - vai.  (2)

Similarly, expanding the equation for ¢; and collecting terms

gives
S b 3)

2
qq = (vd7,,. + vd i

kEN (d)
- Z (Vi,rbrd + Vi,iGkd) | Vdr
L kEN(d) ]
+ Z (Vk,rGkd — Vk,ibra) | Va,i
L kEN(d)
th,wd,r 14,304, + tq 4Ud — td 2Vd, i (€]

where t4.1,%4,2,t4,3,tq,4 are given in (6).
Then, the power flow equations in (1) become

(52)
(5b)

2 2
Pd =1td,1 Vg, tta2 Var +lan-vg; a3 Vi,
2 2
qd =tda - Vg, —1d,3 Vdr +1da-vg; +taz2 - va,,

in rectangular coordinates, where

ta1 = Z Ikd, ta2 = Z (Vk,rGkd — Vk,ibra), (6a)
keN(d) keN(d)
taz= Y (Vkrbra+ Okigka), taa= Y bra, (6b)
keN (d) keEN(d)

where A/ (d) is the neighbors of bus d.

One benefit of using (5) comes from its capability of
visualizing active and reactive power flow equations in the
same space. Such an understanding will directly give intuitive
meaning of Pareto Front for the loadability boundary con-
sidered in the next section. Specifically, for fixed constants
tq,1,ta,2,t4,3,td,4, (5a) and (5b) describe two circles in the
vq,, and vgq,; space. Note that the circle concept is different
than the power circle concept in the past [38], [39]. The next
lemma characterizes the centers and radii of the active and
reactive power flow circles.

Lemma 1. The centers and radii: The coordinates of circle

_ta2 _ tags
2tg,1°  2tgn

for bus d. Its radius decreases when p, increases. The

coordinates of circle center D for the reactive power flow

center E for the active power flow are

are (;:(1‘347—2” 2 ) for bus d. Its radius decreases when qq
increases.
Proof. See Appendix A. O

For example, consider the 3-bus network in Fig. 1, where
bus 1 is the slack bus, and bus 2 and 3 are PQ load buses. Let
the admittance be 1—0.55 for all the lines, po = 0.7, ps = 0.9,
power factor= 0.95. Fig. 1(b) and Fig. 1(c) show the circles
formed by (5) for bus 2 and bus 3, respectively. In this case,
the intersection points between the two circles in Fig 1(b) are
far apart, whereas the two points on the intersection of the
two circles in Fig. 1(c) are close together. This suggests that
the system is operating close to its limit and small changes
may lead to insolvability of the power flow equations at bus
3. Notably, Fig 1(b) and Fig 1(c) is a generalization of the
well-studied concept of PV curve for power systems.

III. THE BOUNDARY OF POWER FLOW REGION: BEYOND

THE JACOBIAN

In this section, we will first talk about the limitation of
singularity analysis of Jacobian matrix. Based on such an ob-
servation and our linear Jacobian form, we will propose three
applications on loadability boundary with exact solutions.

First, when the system is approaching the loadability bound-
ary, e.g., nose point of a 2-bus system, the point A and
point B will come closer. Therefore, we need to algebraically
characterize the operating points, especially for those on or
close to the boundary of the feasible power flow region.
Commonly, these types of analysis are done through the power
flow Jacobian, and in particular, the singularity of the Jacobian
matrix has long been used to characterize the solvability and
stability of power flow solutions [40]. In this section, we
show that the Jacobian is not always sufficient to identify the
boundary of the power flow region, and we propose a different
method of identifying whether a solution is on the boundary
by using a linear program in the rectangular coordinates.

A. The Limitation of Singularity Analysis of Jacobian Matrix

The power flow Jacobian matrix, J, is normally defined by
the first order partial derivatives of active and reactive powers
with respect to the state variables. In our analysis, these partial
derivatives are taken with respect to the real and imaginary
parts of bus voltages:

op  Op
i-|% %
ov,. ov;
where the elements are given by

apd _ th,lvd,’l‘ + td,27 if d = k? (7a)
Ovgr | GrdVar +bravai,  if d # k.
Opa [ 2tg1v4; +tas, if d =k, (7b)
vy, i —brava,r + grava,i, if d # k.
a(Jd _ 2td,4vd,7‘ - td,37 if d= k? (7C)
O 1 —brava,r + gravai, if d # k.
990 | 2tg4v4; +tas, if d =k, (7d)
vy ; —GkdVd,r — bkava,q, if d # k.
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Fig. 1: A three bus network and the circles formed at buses 2 and 3. The closeness of the intersections at bus 3 indicates that
the system is operating close to the boundary of the feasible region.

For the partial derivatives above, 4,1 and ¢4 4 are both constant
given network parameters, and tg9 and ¢4 3 are linear in the
variables. Therefore, each of the partial derivatives in (7) is
linear in the state variables v4, and vq ;.

The Jacobian is normally used via the inverse function
theorem, which states that the power flow equations stabilize
around an operating voltage if the Jacobian is non-singular.
This condition is necessary since every stable point must
have a nonsingular Jacobian. However, the singularity of the
Jacobian is insufficient [12], especially for the loadability
boundary. As the next example will show, a singular Jacobian
does not imply that the operating voltage is at the boundary
of the power flow feasibility region.

Again, consider the 3-bus network in Fig. 1. For simplicity,
we assume the lines are purely resistive (all line admittances
are 1 per unit) and only consider active powers. Let bus 1
be the slack bus and buses 2 and 3 be load buses consuming
positive amount of active powers. In this case, the Jacobian
becomes:

o 1-— 41)2 + U3 (%]

J V3 1—4U3+’U2 ’

®)
where vy and w3 are the voltages at bus 2 and bus 3,
respectively. Fig. 2 shows the feasible power flow region of
power consumptions at buses 2 and 3. The red lines show the
points where the Jacobian is singular.

Here, we focus on two particular points in Fig. 2, points F’
and H. At these points, v1 = vo = v due to the symmetry of
the network. Then, finding the determinant of J and equating
it to 0, we obtain v = 0.25 (point H) or v = 0.5 (point F').
We emphasize that these two points are qualitatively different.
Point F' is on the boundary of the feasible region, and therefore
is a loadability point. However, point H is well within the
strict interior of the “feasible region”, therefore it is not on the
loadability boundary. Points like H are sometimes called cusp

bifurcation points in stability analysis [41], [42]. Therefore, if
we are interested in finding whether a point is on the boundary
or characterizing its loadability margin, just looking at the
determinant of the Jacobian is insufficient.

0.4 T
0.35
0.3

0.25

0.1
0.05

0 0.1 0.2 0.3 0.4
P

Fig. 2: Feasible power flow region for the 3-bus network.
The red points denote operating points when the Jacobian is
singular. They separate into two parts: the boundary of the
region (e.g., point F) and points in the strict interior (e.g.,
point H).

In addition to the purely resistive network to generate Fig. 2,
we also plot the feasibility region and the points where the
Jacobian is singular for a network with complex impedances
as in Fig. 3. Other cases have results similar to Fig. 2 and
Fig. 3.

B. Verify Loadability Points via Pareto-Front Method

To isolate just the points on the boundary, we need to look
deeper into the power flow equations than just the determinant
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P,

Fig. 3: The active power injections where the Jacobian is
singular for a 3-bus fully connected network, with reactance
7 per unit on each of the lines. There are two distinct types
of points (marked in red), the boundary and the interior, that
both have a singular Jacobian matrix.

of the Jacobian. Here, we focus on a network where the buses
are loads. Geometrically, a point is on the loadability boundary
(or simply boundary) if there does not exist another point that
can consume more power:

Definition 1. Let v be the complex voltages and p =
(p1,- - ,pn) be the corresponding bus active powers. We say
that the operating point is on the loadability boundary if there
does not exist another operating point p = (p1,- -+, ppn) such
that py, > px for all bus index k (nonnegative change in load)
and pg > pq for at least one d # k (positive change in at
least one load).

This definition coincides with the definition of the Pareto-
Front since we are modeling each bus (except the slack) as a
load bus. It can be easily extended to a network where some
buses are generators by changing the direction of inequalities
in the definition above. Instead of looking at the determinant
of the Jacobian, the next theorem gives a linear programming
condition for the points on the boundary:

Theorem 2. Checking whether an operating point is on the
boundary of the feasible power flow region is equivalent to
solving a linear programming problem, e.g., (11).

Let

_ 1 Opa Opa Opa
vy, vy, Ovg,’

be the gradient of p,; with respect to all the state variables.
Therefore, hg is the transpose of the dt" row of the Jacobian
matrix. Let z € R?" be a direction, towards which we
move the real and imaginary part of the voltages. Then, by
Definition 1, a point is on the boundary if there does not
exist a direction to move where the consumption of one bus is
increased without decreasing the consumption at other buses.

Therefore, we can check if there is a direction y that makes
the following problem feasible. Suppose that hy,--- , h,, are

ha T eRr™ (9

b
(%n,i

given.
yThy>0, foralld=1,--- ,n, (10a)
n
ZyThd =1. (10b)
d=1

The constraint (10a) specifies that moving in the direction y
cannot decrease any of the active powers. The constraint (10b)
is equivalent to stating that at least one bus’ active power must
strictly increase. This comes from the fact that y is not a
constraint. Therefore, as long as yThd > (O for some d, the
sum Y_)_, yTh, can be scaled to be 1. If the problem (10) is
feasible, the corresponding power pair is not on the boundary.
If the problem (10) is infeasible, this means that the point is
on the Pareto-Front. So, it is on the loadability boundary.

By adding a constant objective, we can encode this condi-
tion in a linear programming (LP) feasibility problem. This is
because, in a constraint optimization problem, a solver usually
tries to firstly find a feasible set by using the constraints. Then,
it will use searching methods, e.g., gradient descent method,
for the objective in the feasible region. Therefore, by convert-
ing the feasibility problem (10) into an optimization form, we
can use the state-of-the-art solver in convex optimization tool
set, which is quite efficient.

Then, we solve the following:

min 1 (11a)
Yy
st.yThg >0, foralld=1,---,n, (11b)
ZyThd =1. (11c)
d=1

In this optimization problem, the objective is irrelevant since
we are only interested in whether the problem is feasible.
Finally, an operating point is on the boundary if and only
if the problem in (11) is infeasible.

A system operating on the boundary limit will lose stability
before our conditions are checked. So, we provide an alarm
when a system is approaching this boundary for practical
interest. In the following, we change the optimization (11)
slightly to provide an alarm by setting up an € value for earlier
alarming.

min 1 (12a)
Yy
st.yThg>e foralld=1,---,n, (12b)
> yTha=1. (12¢)
d=1

Remark In the system operating on or near the loadability
boundary, computation speed is important, otherwise the sys-
tem may lose stability before we can compute anything. The
algorithm we propose involves solving a simple linear program
that is on the order of the system size, e.g., bus numbers,
making the computational speed very short even for large sys-
tems. In contrast, some of other nonlinear calculators require
iterative methods that solve successive nonlinear problems,
resulting in a much slower process.

For the example in Fig. 2, point A is given by v, = v3 = 0.5
and point B is given by ve = vz = 0.25. Using (7), we have
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(a) Margin according to Thevenin method.
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(b) Margin using the proposed method.

Fig. 4: Comparison of the margin computed by (a) the Thevenin equivalent method and (b) our proposed method.

hy = [-0.5,0.5]T and hs = [0.5,—0.5]7 at point A, and
hy = h3 = [0.25,0.25]7 at point B. It is easy to check that a
y feasible for (11) exists at point B. However, it is impossible
to find such a y at point A. Therefore, we can conclude that A
is on the boundary whereas B is not, even though both have
singular Jacobians. For how to add more constraint, please
refer to Appendix B.

IV. LOADABILITY MARGINS

In addition to asking if a point is on the boundary, we
are sometimes more interested in how close a point is to
the boundary. For this purpose, we will apply a simple
modification to (11) for measuring the distance, or the margin.

A. Measure the Loadability Margin

In the optimization problem (11), we check if it is possible
to move the operating point in a direction such that the active
powers can be increased. For a point close to the boundary,
we are interested in how much a point can be moved before
reaching the boundary. Therefore, we use the optimal objective
value in (13) to measure the stability margin of an operating
point. Again, let h] be the d** row of the Jacobian matrix at
an operating point of interest. Then, we solve

m = maXZyThd (13a)
v d=1

st.yThg >0, foralld=1,--- ,n, (13b)

llyll2 = 1. (13¢0)

In this problem, we look for a unit vector y such that the
sum of the active powers can be increased by the maximum
amount. The value of the optimization problem is denoted
by m, which we think as the margin or the distance to the
boundary. Note that the constraint in (21a) may seem non-
convex, but for any point that is not on the boundary, (21a) can
be relaxed to ||y||o < 1 without changing the objective value,
due to special coefficient components of the object and the

coefficients of constraints. Please see Appendix C for a proof.
Therefore, (13) can be easily solved by standard solvers.

We can also consider using L; norm to replace the Lo norm
in (13). Similar to the discussion above, we can use “<” to
replace “=".

m = maXZyThd (14a)
Yoo

st.yThg >0, foralld=1,--- ,n, (14b)

lyll2 < 1. (14¢)

Notably, the L; norm-based constraints can be converted into
linear constraint to make the problem into a linear program-
ming problem below. The proof is in Appendix D.

n

T
=, max, D y'ha 152
st.yThyg>0, foralld=1,--- ,n, (15b)
S1+ -+ s, > —1, (15¢)
Yi < —Si,Yi = Siy Vi (15d)

Remark There are also other distance metrics for margins.
For example, in long-term voltage stability problems, the
margin is usually calculated in rectangular coordinate domain.
Specifically, let v,,00 = Vpow,r +J - VUnow,; be the current oper-
ating voltage in complex domain. Let Vit = Verit,r+J Verit,i
be the critical voltage, beyond which there will be a voltage
collapse. Then, the margin can be represented as an Euclidean
distance, e.g., margin = ||[Vpow — Verit]|. However, in the
proposed paper, the margin is defined as max (3°;_; y* hq).
This represents the objective on having the maximum sum of
the active powers at all buses that can be increased without
system collapse. Hence, this margin is in power domain. It
is also important to highlight that the method is convex and
also does not have approximations like decouple power flow
analysis.

B. A Comparison to Thevenin-Equivalent Margin

Here, we compare the solution of (13) with the solution
of widely adopted Thevenin-equivalent method for margin
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calculation [43]. Specifically, [43] describes a technique to
find the margin and condition for maximum loadability. The
bus of interest is considered as the load bus and the rest
of the system is replaced with a Thevenin impedance and
Thevenin voltage. Originally, there are two voltage solutions
for a given power transfer. As the power transfer reaches
its maximum value, there is only one voltage solution and
this point is known as bifurcation point. Mathematically,
Kirchhoff’s current law leads to (p+jq) - 3., = v-(v—e)*,
where e is the voltage at the aggregated infinite bus and (-)*
is the complex conjugate operator. At the system bifurcation
point, v = (e — v)*. Therefore, zapp - ¢ = (27hev - ). This
leads to |zapp| = |27hev]-

Hence, by tracking how close the Thevenin impedance is
to the load impedance, we can know the margin for the
maximum loading condition. When 2ppe, = 2zgpp, there is
only one voltage solution and hence the maximum power
transfer capacity is reached. For ease of illustration, we adopt
the 3-bus system with bus 1 being the generator (and slack),
buses 2 and 3 being loads. We set the active power at buses
2 and 3 to be equal and increase it until the system becomes
unstable. The resulting margin is shown in Fig. 4.

From Fig. 4, we see that both methods show that the system
has a margin of 0 when the load is at 0.25 p.u. However, the
Thevenin equivalent method is much more conservative than
ours. For example, when the load is half of the maximum load
(0.125 p.u.), the Thevenin equivalent method has a relatively
small margin, which may lead an operator to conclude that
the load cannot be increased much more and operate con-
servatively. This would result in inefficiencies in operations,
especially in an aging grid that is facing more complex loading
environments [44]. In contrast, our method provides a much
larger margin when the load is far away from the maximum,
and the margin decreases rapidly once the load approaches the
maximum. This allows operators to better gauge the state of
the system, leading to more efficient and reliable operations.

Remark The Thevenin-based margin calculates the margin
considering a bulk network to be a single node. It is not
an accurate representation of the system, but Thevenin-based
margin is good to identify weak buses in a network. Dif-
ferently, the proposed method calculates the margin without
network reduction and approximation. As the form is convex,
the solution is exact, giving confidence to the relative margin
values. Finally, thanks to the model flexibility, our method
can include constraints and conditions that were unavailable
in some past work. For example, our method can (1) evaluate
the margin in arbitrary direction of power combinations, (2)
include various constraints in the optimization problem, and
(3) have both system resistance and reactance.

V. LOCATING ALL LODABILITY BOUNDARY POINTS VIA
PARETO-FRONT

In the last two sections, we have explored how to determine
whether a point is on the Pareto-Front and its “distance” to the
front. In this section, we ask the question of whether we can
determine the Pareto-Front itself. To answer this question, we
observe that by definition, for any point p on the Pareto-Front,

there exists a vector z such that z7p is the maximum among
all possible active power vectors. Conversely, by varying z
and maximizing over p, we can find the Pareto-Front. Here,
z physically means the direction that the powers at different
buses are growing. Depending on the direction or the ratio of
loads on different buses, one can find a boundary at certain
loading ratio conditions.

Of course, for a large system, exhaustively varying z is
impractical. However, in many cases, there are a few z’s of
special interest. For example, if z is the all-ones vector 1, we
are looking for the maximum sum power that the network can
support. In other settings, there are a few classes of loads, and
z has only a few distinct values.

To find an active power vector p such that z”p is the
maximum, we again look at the partial derivatives of active
power with respect to the voltages. On the Pareto-Front and
given a z tangent to it, the gradients of active power with
respect to voltages are orthogonal to z. Let hl be the d*"
row of the Jacobian, which we decompose into two parts:
hgr is the first n components corresponding to the d** row
of % and thj is the last » components corresponding to the

d*" row of %' We then look for operating points such that
2Thy,=0and z2Th,; =0foralld=1,--- ,n.

Rectangular coordinates make this problem much easier to
solve. As shown in (7), the elements of the Jacobian are
linear in the real and imaginary parts of the bus voltages.
Therefore, for a given z, the system of equations zTh,,. = 0
and zThg; = 0 for all d = 1,--- ,n becomes a system of
linear equations:

(2tg1va,r +ta2) za + Z (grava,r + bravaq) 2z = 0, (16a)

k#d
(2tg,1va,i +ta,3) za + Z (9kdvd,; — bkava,r) z = 0, (16b)
k#d
d=1,---,n.
Recall that tg1 = — keN (d) Ikd and every equation is linear

in vg, and vq; once z and the network are given.

Fig. 5 shows the solution of (16) for the 3-bus network in
Fig. 1 with all line admittances being 1’s and z = [1,1]7. In
this case, the network is purely resistive and its Jacobian is
given in (8). Solving (16) gives vo = 0.5 and v = 0.5, which
corresponds to the point A (p; = 0.25, p3 = 0.25) on the
boundary in Fig. 2.

Remark So far, we considered two bus types in our modeling:
the reference bus and the load bus. We did not consider
the generator bus type because the solar generator in the
distribution grid can be modeled as a PQ bus [45].

VI. SIMULATIONS

In this section, we perform extensive simulations on both
transmission grids and distribution grids. The transmission
grid cases include the standard IEEE transmission bench-
marks (4, 9, 14, 30, 39, 57, 118, 300-bus networks) and the
MATPOWER test cases (3, 5, 6, 24, 89, 145, 1354, 1888,
1951, 2383, 2736, 2737, 2746, 2848, 2868, 2869, 3012, 3120,
6468, 6470, 6495, 6515, 9241, 13659-bus networks) [46], [47].
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TABLE I: Feasibility Boundary

Bus No. 3 4 5 6 9Q Otarget 14 24 30 30pwl 30Q 39 57 89
On Boundary? No No No No No No No No No No No No No No
Time(s) 1.5 1.6 1.6 1.6 1.6 14 1.7 1.9 1.6 2.0 1.8 1.7 1.6 1.7
Bus No. 118 145 300 1354 1888 1951 2383 2736 2737 2746wop 2746wp 2848 2868 2869
On Boundary? No No No No No No No No No No No No No No
Time(s) 1.6 1.6 1.8 3.2 54 5.0 6.4 9.7 9.0 8.7 8.9 11.8 11 12.1
Bus No. 3012 3120 6468 6470 6495 6515 9241 13659 8 (Dist.) 123 (Dist.)
On Boundary? No No No No No No No No No No
Time(s) 12,5 12.9 17.5 18.6 424 20.1 28.7 39.0 14 1.5
TABLE II: Loadability Margins via the Proposed Method
Bus No. 3 4 5 6 9Q Otarget 14 24 30 30pwl 30Q 39 57 89
Margin 13.5 27 156.5 6.4 74 14.0 7.7 38.7 6 6 6 20 20 30
Time(s) 33 33 34 34 33 33 34 33 33 3.6 3.5 34 33 34
Bus No. 118 145 300 1354 1888 1951 2383 2736 2737 2746wop 2746wp 2848 2868 2869
Margin 8.6 1606 69.9 32.1 3602 3455 210 14.6 141 10.9 11.0 6799 6726 3538
Time(s) 3.5 35 3.7 5.1 7.5 74 10.7 105 10.7 10.4 104113 116 127
Bus No. 3012 3120 6468 6470 6495 6515 9241 13659 8 (Dist.) 123 (Dist.)
Margin 16.4 15.7 1741.5 1769.3  1754.0 1756.6 23.1 17.1 79 424
Time(s) 11.7 124 455 50.6 424 448 1021 2819 15 2.0
in Table I. From the computation times in Table I, we can see
v, v220 that for systems with thousands of buses, the condition in (11)
can be checked in around 10 seconds (using the CVX package
oP; P, in Matlab [48], [49]) with an ¢5 laptop and 8GB memory.
v, 't + v, 2 20 Next, we check the loadability margin of the operating

"~ Corresponding to
the boundary Point
in the power
domain.

1

Fig. 5: A point on the Pareto-Front for the three bus network
in Fig. 1 obtained from solving (16) with z = [1 1]Z. This
point maximizes the sum power P; + Ps.

The distribution grids include standard IEEE 8 and 123-bus
networks. The goal is to illustrate the three applications: 1)
verifying if a point is on the loadability boundary, 2) measuring
the loadability margins if the points are not on the boundary,
and 3) locating boundary points. As our proposed methods
are based on linear programming and convex optimization,
the computation time scales quite well with the size of the
networks. The results on most of the test cases are similar to
each other and we provide several representative examples in
the followings.

A. Boundary and Loadability Margins

First of all, we use (7) to calculate the partial derivatives and
then use (11) to test whether the operating points contained in
the test cases are on the loadability boundary with Table 1. Not
surprisingly, none of the points are on the boundary as shown

points, recorded in Table II. Note that some systems are
actually operating with fairly small margins, e.g., the 2746-
bus, 9241-bus, and 13659-bus systems. This means that they
may not be robust under perturbations. The computational
time again scales quite well with the size of the network.
For comparison, we also list partial result of the Thevenin-
Equivalent margin in Table III. The margin number is much
smaller than the margin calculated from the proposed method
in Table II. So, our method provides a much larger margin
when the load is far away from the maximum. This allows
operators to better gauge system states for reliable operations.

TABLE III: Thevenin-Equivalent Margin for Comparison

Bus No. 57 89 118 145 300 1354 1888 1951
Margin 54 35 34 1.1 1 3 3 1.1
Time(s) 25 21 26 22 26 31.12 689 8.3

As including the reactive power constraint is a unique
contribution of this paper, we quantify the impact of reactive
power limits on the proposed method by conducting a case
study by adding a reactive power limit —50 < gg9 < 50 at
bus 69 of the IEEE 118-bus test case. Then, we compute the
margin with such a reactive power limit. The margin is 6.1.
We also obtain the margin without such a reactive power limit,
which is 8.6. Therefore, the reactive power limit is binding at
the operating point, which reduces the margin from 8.6 to 6.1.

B. Going Towards the Boundary

Here, we move the operating points of a network in a di-
rection until it hits the Pareto-Front. We first use the operating
point calculated by running power flow from Matpower. Then,
we use the obtained voltages, namely the operating point,
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(a) Margins vs. increasing active power for the IEEE 14-bus system.
Here, we successively increase the load on the buses (proportionally) to

observe the change with respect to the margin.
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Fig. 6: The Thevenin method alone and the comparison with other methods after margin normalization
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(b) Comparison of feasible power flow region with and without
reactive limit on the generator bus for a 3-bus network.

Fig. 7: Impact from reactive power constraints.

as a direction in the state space to find the boundary point.
Subsequently, we change the voltage step-by-step from the
Matpower-based voltage state to the boundary point that we
obtain. The x-axis of Fig. 6a shows the normalized active
power as we successively increase the load on the IEEE 14-
bus system, and the y-axis plots the change in the margin.
As expected, the margin decreases when the point is moving
towards the boundary point. When it is on the boundary point,
the margin becomes zero.

Although the highlight of our margin comes from its convex
form with exact solution, we compare the margin curve with
other popular margins in Fig. 6b. Specifically, the dotted green
curve represents the Kessel margin [35]. The dashed red line
represents the reactive margin in [4]. The yellow dot dashed
line represents the energy margin coming from [36], [37].
Finally, the blue curve comes from the proposed method in
this paper. From this figure, we can see that our margin is
relatively flat when compared to the others.

Notably, there are indicators that are linear in the literature.

However, a very few indicators can include power system
control devices, VAR limits etc. The proposed method can give
an indication of the margin as well be able to accommodate
the VAR limits or control devices, etc., in its optimization
framework. The figure also shows that the proposed method’s
margin plot is a better representation (conservative) when
compared to the other three margins shown in it. It is important
to note that the proposed method’s margin plot is by no means
linear but it has its benefit in understanding the system with
exact solutions.

1) The Impact of Adding More Constraints: To visually
observe the impact of reactive power limits, we start with a
2-bus network. We assume that bus 1 is the slack bus with
a reactive limit, and bus 2 is the PQ load bus. The reactive
power limit in this case simply puts a limit on the amount
of active power that can be transferred from bus 1 to bus
2. Fig. 7a plots the active power transfer limit at bus 2 as
a function of the reactive limit at bus 1. When the reactive
power limit increases at bus 1, the maximum power transfer
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(a) Points on the Pareto-front for the 3-bus network in Fig. 2. The (b) Points on the Pareto-front for the IEEE 14-bus network. The achievable

located points are the same as true boundary points in Fig. 2.

power at bus 4 and bus 5 are displayed.

Fig. 8: Pareto-front for the 3-bus system and 14-bus network. They are obtained by solving (16) with different 2z’s.

at bus 2 increases. But, the increasing speed decreases. For a
3-bus system, (17) also applies. Again, suppose that bus 1 is
the generator (also slack) bus and is limited by reactive power.
Fig. 7b shows the feasible regions at bus 2 and bus 3, having
dramatically different coverage with or without reactive power
constraints or not. Interestingly, the boundaries are parallel.

C. Locating Boundary Points

Given a network and by varying the search direction z,
we can use (16) to find boundary points. For example, Fig.
8a shows the result for the network in Fig. 2. By varying z,
we successfully locate the boundary points in Fig. 8a, when
compared to exhaustive computations in Fig. 2. For larger
system with asymmetric structures and parameters, we can
use the following method to visualize. Specifically, we fix
the power of all the buses except the power on 2 buses. For
example, Fig. 8b is such a demonstration in IEEE 14-bus case,
where we fix all the bus powers, except the power on bus 4
and bus 5. Then, we use linear programming to calculate the
loadability boundary (pareto front) point of IEEE 14-bus case
with respect to the powers on bus 4 and bus 5.

VII. CONCLUSION

In general, power flow problems are hard to solve. This
paper proposes to use rectangular coordinate, which not only
provides an integrated geometric understanding of active and
reactive powers simultaneously but also a linear Jacobian
matrix for loadability analysis. By using such properties,
this paper proposes three optimization-based approaches for
(1) loadability verification, (2) calculating the margin of an
operating point, and (3) calculating the boundary points. Due
to the linear Jacobian structure in the rectangular coordinates
and the pareto front definition, the three problems above
can be solved exactly without approximations. Numerical
results demonstrate the capability of the new method. Future

work includes applying the geometric understanding to other
analysis in power systems.
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APPENDIX
A. Proof of Lemma 1
From (2), we can complete the square to write it as an
equation of a circle
2 2
fi. thJ) + <Ud,i +
td,s

2
4td,1
2tgq1

tis
= =
Aty 4

2
ta,3
2a1)

) with the

Pa
tq1

— ta,2 —
2tq,1°
2

Therefore, the center of the circle is (

t2 2 .
i,
since tq1 = — Zk@\/(d) gra 1s always negative, as the load
pq increases, the radius approaches 0. This places an upper
bound on the possible active power consumption at a bus.

Similarly, we can write (4) as

radius being the square root of ;:L—dl + . Interestingly,

qd t3,3 t?i,Z (v, — tq,3 2+ N taz2 2
taa A3, 4t3, T g YT dtga)
ta,s td,2

which is a circle with center (

Stes —Qt“) with the radius
2

t3 5 t
d,3 d.2
5~ + 3

g, Atg

> kEN () ?)k.d is alwaxs negative (assumlng?y transmission lines
are inductive), the radius decreases as g4 increases.

being the square root of t‘fﬁ + . Again, since {44 =

B. Incorporating Practical Constraints into Pareto-Front
Method

Adding Active Power Constraints. Box and linear constraints
on the active power can be easily added to (11) by restricting
the direction of movements. Given an operating point, for
the constraints on active power that are tight, we can add
constraints into (11) such that y must move the active powers
to stay within the constraint.
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Adding Reactive Power Constraints. The reactive power
limits can be visualized in our approach by adding a linear
constraint in our algorithms. Similar to the definition of h, let
ga = [aaszu 881;1;27 8?;1;7‘ e aa%fi]T € R?" be the gradient of
qa With respect to all the state variables, that is, the transpose
of the (n + d)** row of the Jacobian matrix.

To account for the limit of the reactive power constraint,
suppose bus k is at its reactive limit, then we modify (11) to
be

min 1 (172)
y
st.yThg >0, foralld=1,--- ,n, (17b)
yTgs, <0, for bus k at reactive power limit, (17¢c)
>y ha=1, (17d)
d=1

where (17c) specifies that reactive power cannot increase at
the buses that hit the limit.

Adding Voltage and Current Constraints. In addition to
power constraints, other constraints exist in the system and
may become binding before loadability limits are reached.
In our approach, incorporating current and voltage limits is
straightforward. For example, in the problem in this subsec-
tion, we are interested in checking whether a voltage operating
point is on the boundary of the feasible region. To include
voltage constraints, we can simply add in these as bounds
in the voltage space. Similarly, since a current is linear in
voltage, current limits can be presented as constraints in the
voltage space. After checking these constraints, we can then
apply Theorem 2 again, which states that checking whether a
point is on the boundary can be accomplished by solving a
linear program.

C. Proof of no loss of exactness when relaxing the constraint
Iyl =110 [lyll<1

Proof. As the optimization is

n
m = max E vy hy
Yoa=

(18a)

st lyll2 <1, (18b)

we can see that there is a linear objective with respect to y.
And, there is a ball constraint on y. One can grow the objective
linear until it can not go any more. At this point, the hyper
plane formed by ».)_; yThy = m is tangent to the ball.
Otherwise, one can grow the objective further. Therefore, the
optimization result of (19b) is equivalent to the optimization
when changing ||y||2 <1 into ||y||o = 1 and vice versa.
For example, we can have

m = max (y1 + y2) (19a)
Y1,Y2
stoyl+ys <1, (19b)

Clearly 31 = y» = /2/2 is the solution and one can not
increase the objective while be within the boundary. As the
solution is on the boundary, the optimization is equivalent to

m = max (y; + y2) (20a)
Y1,Y2
stoyl 492 =1. (20b)

12

Now, we can add y"hy >0, forall d=1,--- ,n to (19b)
and obtain the optimization relationship in the paper.

T
m = ma h 2la
yx;y a (21a)
st.y’hy >0, foralld=1,--- ,n, (21b)
llyll2 < 1. (21¢)

One important observation of this optimization is that y” hy >
0 is a half space that comes across the origin. This means
that the constraints form a structure with a shape in between
a cone and polyhedra. Another observation is that the sum
of slope h; in each constraint equals to the slope of the
objective. This means that the objective can grow towards to
its direction without violating the constraint on y’hy > 0
for any d. The objective can be maximized until the hyper
plane of 22:1 y’hy; = m is tangent to the empty ball
constraint ||y||2 = 1. Therefore, the result will always on the
boundary of the ball. This means that the optimization in (21)
is equivalent to the optimization when we replace ||y||2 < 1
with ||y|]2 = 1. O

D. Proof of the equivalence between (13) and (15)

In the following, we prove that the L; constraint can be
rephrased when it is added to the linear programming type of
problems forming (13).

Proof. As a preparation, we Let z € R. Then, the absolute
value of x can be written as an optimization problem, e.g.,

|z| =mint (22a)
s.t. x < t,andz > —t. (22b)
Equivalently,
|| = —maxs (23a)
s.t. £ < —s,andz > s. (23b)

For our optimization on margin calculation, it is more conve-
nient to look at —|x|, so

(24a)
(24b)

Therefore, the L1 norm expression can be represented as

—|z| =maxs

s.t. x < —s,andx > s.

—|x1| = |x2| — -+ — |zn] =maxs; +s2+ -+ 5, (252)
s.t. x; < —s; and x; > s; Vi.

(25b)

Now, consider the margin optimization in (15). We can use

the knowledge above to replace the constraint ||y|[; = 1 in

(15). Specifically, ||y|l1 <1 is equivalent to sy + - - + 8, >

-1, y; < —s;, and y; > s; for all 7. So, (15) can be changed
into

max_ i: yThy

m=_ma (26a)
R d=1

st.yThg >0, foralld=1,---,n, (26b)

S1 4t sy > —1, (26¢)

yi < =85,y > 84, Vi (26d)
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