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Abstract

In this paper, we propose a new method to systematically address the issue of structural shape and topology optimization on
free-form surfaces. A free-form surface, also termed manifold, is conformally mapped onto a 2D rectangle domain where the level
set function is defined. With the conformal mapping, the covariant derivatives on the manifold can be represented by the Euclidean
gradient operators multiplied by a scalar. Keeping this intrinsic relation in mind, we derive the Euclidean form for the Riemannian
Hamilton–Jacobi equation governing the boundary evolution on the manifold, which can be solved on a 2D plane using classical
level set methods, such as the upwind finite difference or fast marching method. By reducing the dimension of the problem, the
topology optimization problem on the manifold embedded in the 3D space can be recast as a 2D topology optimization problem
in the Euclidean space. Compared with other approaches which need project the Euclidean differential operators to the manifold,
the proposed method can not only reduce the computational cost but also preserve all the advantages of conventional level set
methods. The proposed method reveals the fundamental relation between topology optimization on manifolds and Euclidean planes.
It provides a unified level-set-based computational framework for the generative design of conformal structures with increasing
applications in different fields of interests.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Topology optimization on surfaces: State of the art

Topology optimization is an optimization-driven method capable of generating an optimal design without
depending on the designers’ intuition, experience, and inspiration. Topology optimization is playing a crucial and
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rapidly expanding role for design innovation in the 3D printing age. As an important subcategory of topology
optimization, topology optimization of shell structures has been extensively studied for their broad applications both
in academia and industry, for example, architectural design [1], conformal flexible electronics [2,3], automotive and
aviation structure design [4], and so on. Recently, with the maturation of additive manufacturing (AM) technologies
which can provide the designers with extra design freedom when paired with topology optimization, people’s desires
to obtain conformal shell structure designs on free-form surfaces have been inflated. One trend of the pioneering
research is to optimize the laminated composite shells. Lund and Stegmann et al. [5–7] presented a new method
for concurrently optimizing the material distribution and fiber orientation on a fixed design domain. In contrary
to the fiber-reinforced method which assumes shells with a fixed thickness and shape [5–7], the element-based
topology optimization approaches, such as the homogenization-based topology optimization method [8–10] or the
Solid Isotropic Material with Penalization (SIMP) method [11,12], can optimize the shell thickness distribution and
its shape. In particular, the SIMP-based topology optimization method has gained significant popularity. Fauche
et al. [13] employed SIMP method to optimize the material distribution for a thin-shell bridge. Nakayama and
Shimoda [14] proposed a method for simultaneous shape and topology optimization of shell structures, which
improved the numerical stabilities by coupling the H 1 gradient-based approach with the SIMP method. Later, Ansola
et al. [15] devised an integrated framework to find the optimum shape and material layout on a shell structure. In
a later contribution, Ansola extended this work to simultaneously optimize the shape and reinforcement layout on
a surface [16]. In order to optimize on general surfaces, Hassani et al. [17] introduced the Non-Uniform Rational
B-Spline (NURBS) technology into the SIMP model for the surface generation. In spite of the aforementioned
advantages, the SIMP-based topology optimization is vulnerable to checkerboard patterns caused by numerical
instabilities [18]. Therefore, post-processing approaches, such as the noise cleaning technique [17], automated image
interpolation methods [19,20], neural networks [21], or support vector machine (SVM) [22], oftentimes have to
be employed to convert the density results into crisp designs. Alternatively, minimum length scale constraints, as
proposed by Guest [23], or the Monotonicity based minimum LEngth scale (MOLE) method [24], can also be
employed to regulate the designs for better final optimization results.

Compared with the aforementioned element-based methods, the level set methods and some recently developed
explicit approaches, such as Moving Morphable Components (MMC) [25–27], Moving Morphable Void (MMV) [28]
or the geometry projection method [29–31], can provide a design with clear boundaries. Those explicit methods have
demonstrated superiority in handling design-dependent problems, as well as better compatibility with manufacturing.
Moreover, higher-order geometric information, such as normal vectors or curvatures, is naturally embedded in the
geometric level set model [32–35]. Such information can be utilized to realize direct integration between topology
optimization and additive manufacturing [36], which makes the level-set-based topology optimization approach a
powerful tool for generative design.

However, conventional level set functions are defined in Euclidean space R2 or R3 on a fixed Cartesian coordinate
system. To meet the demand of doing topology optimization on free-form surfaces, the conventional level-set-based
topology optimization methods need to be extended from Euclidean space to Riemann surfaces.

1.2. Solving partial differential equations (PDEs) on manifolds

As a PDE-driven approach [37], level-set-based topology optimization on manifolds is essentially a variational
problem on surfaces, which has been studied in the field of differential geometry and applied to computer graphics.
One popular method for solving such problems is based on numerical approximation, where the manifold is discretized
to a triangle mesh [38], point sets [39], NURBS or B-spline [40,41], and the solution to the global PDEs is
approximated by solving local PDEs on each segment. Recently, the NURBS-based Isogeometric Analysis (IGA)
method has been employed for solving higher-order PDEs on manifolds [40,41]. The numerical approximation
approach is straightforward and can be conveniently integrated with commercial FEA or CAD solvers.

An alternative way to solve PDEs on surfaces is the so-called embedding method. Its key idea is to construct a space
surrounding the manifold in R3 , either explicitly (the closest point method [42]) or implicitly (level set methods [43]),
and then replace the PDEs on the surface with its standard representation defined in R3. Ruuth et al. [42] employed
the closest point method to numerically approximate PDEs on a surface as close as possible with PDEs defined in
R3. This embedding approach is efficient due to the reason that the computation is only carried out on a grid near
the surface [42,44]. However, since the embedding PDE is only valid initially, an extension step is needed to ensure
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the computational accuracy. Macdonald and Ruuth [45] combined the closest point method with level set methods to
evolve the interfaces on general surfaces. Similar to the closest point method, the implicit method uses an embedding
PDE defined in the embedding space. While the embedding space is defined implicitly in one higher dimension by
using level set representations, and the PDEs are solved in the Cartesian coordinate system [46,43,47]. This approach
is both robust and accurate in dealing with deforming surfaces. Chen et al. [48] utilized the variational method [43,49]
to identify the point-wise correspondence of the material during the level set evolution. Nonetheless, as stressed in the
work of King et al. [44], the implicit method cannot handle complex surfaces as the closest point method does.

In this paper, we employ conformal mapping [50,51] to solve PDEs on manifolds, which can be explicitly
calculated using the conformal geometry theory [52,53]. With conformal parameterization, a manifold is mapped
to a 2D domain. Meanwhile, the corresponding covariant derivatives on a surface can be represented by the Euclidean
differential operators multiplied by a scalar factor [54]. By reducing the dimension of the problem, the variational
problems defined on a 3D surface is transformed into a variational problem on a 2D plane. The proposed method not
only reduces the computing cost but also lowers the implementation complexity of the algorithm. More importantly,
it reveals the intrinsic relation between topology optimization on Euclidean planes and manifolds, which offers us a
significant advantage to reformulating the level-set-based topology optimization problem on a free-form surface as
a 2D problem in the Euclidean space. Consequently, we propose a new computational framework to systematically
address the problem of structural shape and topology optimization on manifold using level set methods and conformal
mapping theory. The major contribution is that we extend the conventional level-set-based topology optimization
method from Euclidean space to free-form surfaces with arbitrary topologies.

The paper is organized as follows: Section 2 introduces the background regarding conventional level set methods.
Section 3 presents the conformal mapping theory. In Section 4, we formulate the mean compliance optimization
problem on the surface and derive the shape sensitivity equations. The algorithm and the implementation of our
extended level set method (X-LSM) are presented in Section 5, followed by the four demonstration examples in
Section 6. In Section 7, a mechanics experiment has been carried out to validate the performance of a thin-shell
structure with optimized conformal ribs. Section 8 summarizes the paper, discussing the pros and cons of the proposed
method and outlining the future work.

2. Method overview

The proposed method combines the level-set-based topology optimization approach with the conformal mapping
theory. Using conformal mapping, the geometric information is transported between the manifold and the 2D
computational domain in the Euclidean space. The level set function is defined on the 2D domain and evolved by
solving the modified Hamilton–Jacobi equation. The sensitivity analysis is calculated using the adjoint sensitivity
analysis method. The structure performance is evaluated using finite element analysis (FEA), where the 3D manifold
is modeled as a linear elastic thin shell structure. It is worth noting that the FEA can also be done in the 2D plane
using the conformal mapping, which is beyond the current scope of this paper. The flowchart is shown in Fig. 1. By
extending the conventional level-set-based topology optimization framework to manifolds, the proposed method can
directly achieve optimal design on surfaces with arbitrary topologies. The key advantages of the method are threefold:

1. General: the method is valid to free-form surfaces with arbitrary topologies. In addition, the method is not
only designed for the minimum compliance problem but also can be easily transformed to solve other topology
optimization problems with different objective functions and constraints.

2. Compatible: the proposed method can be easily coupled with the conventional level set framework and is well
compatible with finite element analysis methods. With the proposed method, researchers can take full advantage
of existing level-set-based topology optimization codes without needing to start from scratch.

3. Efficient: with conformal parameterization, the 3D shell structure optimization problem is solved on the 2D
domain, which greatly reduces the computing costs. Besides, with the conformal mapping theory, the derived
formulation of the covariant derivatives in Euclidean space is in the simplest form and thus easy to calculate.

2.1. Classical level set methods

Conventionally, the level set function φ is a Lipschitz continuous real-valued function defined in Rn [32]. The
boundary of the design ∂Ω is implicitly represented as the zero level set of the function φ, as demonstrated in Fig. 2.
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Fig. 1. The flow chat of X-LSM.

Fig. 2. A schematic of level set representation.

By cutting the level set function at the zero level, the whole computational domain D is defined as three parts according
to the value of the level set function, which are the material, the boundary, and the void, respectively. The properties
of the level set function can be formulated as Eq. (1):⎧⎨⎩φ(x, t) > 0, x ∈ Ω , material

φ(x, t) = 0, x ∈ ∂Ω = Γ (t), boundary
φ(x, t) < 0, x ∈ D/Ω , void

(1)

where x is the spatial coordinate of a point inside the computational domain; t represents the time; Γ (t) is the dynamic
boundary of the design. Embedding the design in one higher dimension allows the flexibility in topological changes
such as boundary merging or splitting in the design process while keeping the boundary of the design clearly defined.
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The boundary evolution is governed by the Hamilton–Jacobi (H–J) equation as Eq. (2) shows [55]:

∂φ

∂t
− V · ∇φ = 0, (2)

where V = ẋ is the velocity field.

3. Conformal mapping theory

The conventional level-set-based topology optimization method is a PDE-driven approach [37]. In order to extend
the level set approach to manifolds, we first formulate the new H–J equation which governs the boundary motion
on the manifold. Then, we transform the PDE from the manifold into the 2D Euclidean plane where the modified
H–J equation can be solved with conventional upwind finite difference schemes [56] or fast marching method [57].
The complexity of the modified H–J equation depends on the parameterization of the manifold, which may result in
derivative terms and non-constant coefficients [52]. By applying conformal parameterization that preserves angles,
the formula of the covariant derivative is simple and similar to the usual Euclidean ones [58,54]. Thus, it brings great
advantage in solving the modified H–J equation with conventional level set schemes in R2 or R3, and at the same time,
greatly reduces the computational complexity.

This section presents the theoretical background of conformal mapping. Moreover, the differential operators and
the H–J equation on manifolds with conformal parameterization are introduced. The algorithm for computing the
conformal mappings rests on Hamilton’s Ricci flow theory [59], which has been applied for the proof of Poincaré’s
conjecture. The discrete Ricci flow theory is based on the variational principle on polyhedral surfaces. The basic
theory of discrete Ricci flow is introduced in Appendix B. For more details on Ricci flow, we refer the interested
readers to the paper [60]. A complete survey on numerical algorithms of conformal mapping can be found in the
paper [61].

3.1. Conformal mapping of Riemann surfaces

The conformal mapping theory originates from differential geometry on the Riemannian manifold [58]. Specifi-
cally, a Riemannian manifold is defined as a smooth manifold M with a given Riemannian metric g, which is normally
a 2D symmetric tensor field [62]. We can consider the Riemannian metrics as objects which describe the length of the
tangent vectors and the length of the curves on the Riemannian manifold. Suppose given two Riemannian surfaces
(S1, g1) and (S2, g2), where g1 and g2 are Riemannian metric tensors, a C1 smooth mapping ϕ : S1 → S2 is called
conformal if the pull-back metric induced by ϕ and the original metric on the source differ by a scalar function.
Specifically, there exists a real function λ : S → R, such that

ϕ∗g2 = e2λg1,

where λ is the conformal factor quantifying the scaling effect of the conformal mapping.
Thus, intuitively, the derivative map dϕ : T S1(p) → T S2(ϕ(p)) is a scaling transformation, which maps

infinitesimal circles to infinitesimal circles. As shown in Fig. 3, a surface is conformally mapped onto a 2D disk,
and the infinitesimal circles on the surface as Fig. 3a are preserved on 2D as Fig. 3b. Therefore, ϕ preserves
angles.

In conclusion, the conformal mapping can be considered as a local scaling process governed by the scalar function
e2λ. The Riemannian metric of conformal mapping has a simple formula related to the conformal factor. It is proven
in [52] that by using conformal mapping the covariant derivatives on the surface in R3 are equivalent to the Euclidean
gradient operators apart from the scalar function. Thus, with conformal mapping, PDEs on surfaces can be formulated
to 2D with modified variational operators. For example, at each point p ∈ (S, g), there is a neighbor U (p), which
can be conformally mapped onto the unit disk D2 on the plane. Suppose the planar coordinates are (u, v), then the
Riemannian metric can be written as

g = e2λ(u,v)(du2
+ dv2),

where (u, v) is called the isothermal parameters of the surface.
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Fig. 3. Conformal mapping from the 3D surface to the 2D disk preserves infinitesimal circles.

3.2. Differential operators on Riemannian surfaces

Given a Riemannian surface S and ϕ : R2
→ S is a conformal mapping and an arbitrary function f : S → R

which is defined on the manifold, we can reparameterize f with ϕ, so that its derivatives can be easily calculated on
the 2D Euclidean space R2. Suppose the conformal factor of ϕ is e2λ, we can define the partial derivative of f respect
to x ∈ S as [54,52]:

∂x f = lim
△x→0

f ◦ ϕ(x + △x, y) − f ◦ ϕ(x, y)
dS(x + △x, x)

= lim
△x→0

f ◦ ϕ(x + △x, y) − f ◦ ϕ(x, y)
√

e2λ △ x

= e−λ ∂ f ◦ ϕ

∂x
,

(3)

where dS(x, y) is the distance between x, y ∈ S and f ◦ϕ = f (ϕ(x, y)). Similarly, we can define the partial derivative
of f with respect to y

∂y f = lim
△y→0

f ◦ ϕ(x, y + △y) − f ◦ ϕ(x, y)
dS(y + △y, y)

= lim
△y→0

f ◦ ϕ(x, y + △y) − f ◦ ϕ(x, y)
√

e2λ △ y

= e−λ ∂ f ◦ ϕ

∂y
.

(4)

The gradient of f can be derived based on

∇g f = ∂x f i + ∂y f j, (5)

where

i =
∂√

⟨
∂
∂x , ∂

∂x ⟩∂x
= e−λ ∂

∂x
,

j =
∂√

⟨
∂
∂y , ∂

∂y ⟩∂y
= e−λ ∂

∂y
.
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Therefore, the Riemannian gradient defined on manifolds can be expressed in terms of Euclidean differential
operators, as shown in Eq. (6):

∇g f = e−2λ ∂ f ◦ ϕ

∂x
+ e−2λ ∂ f ◦ ϕ

∂y
, (6)

which lays the mathematical foundation for the modified H–J equation.

3.3. Modified Hamilton–Jacobi equation

Following the conformal geometry theory, we can conformally parameterize the manifold onto a 2D rectangular
domain and evolve the level set function on the plane to optimize the design. Given a level set function φ(x, t), the
boundary is defined as the zero level set, that is,

φ(x, t) = 0. (7)

Conventionally, the H–J equation is achieved by differentiating Eq. (7) with respect to time t . Similarly, as
explained in Section 3, we can derive the H–J equation on surface with the Riemannian gradient, as formulated
in Eq. (8):

∂φ

∂t
− ẋ · ∇gφ = 0, (8)

where ẋ is the continuous velocity field in the local tangential plane to the manifold; ∇gφ is the Riemannian gradient
of φ on the manifold. The scalar form of Eq. (8) can be rewritten as follows:

∂φ

∂t
− vn|∇gφ|g = 0, (9)

where vn is the normal velocity field on the manifold.
Let f be the conformal mapping between a manifold M and a 2-D domain: f : M → R2. Following the conformal

geometry theory [58,54], we can use Eq. (6) to formulate the relation between the Riemannian gradient ∇gφ and its
Euclidean counterpart ∇φ as Eq. (10):

|∇gφ|g = e−λ
|∇φ|, (10)

where the λ is the conformal factor. By substituting Eq. (10) into Eq. (8), we can deduce the Euclidean representation
of the level set equation on the manifold:

∂φ

∂t
− e−λvn|∇φ| = 0. (11)

We define Eq. (11) as the modified Hamilton–Jacobi equation. In this way, the problem of boundary evolution on
the manifold can be equivalently solved on the 2D domain with the modified H–J equation. It is also worth noting that
only with the conformal mapping we can attain such a concise Euclidean representation of the level set equation on
the manifold, which otherwise would be extremely complex and computationally formidable.

4. Level-set-based topology optimization on surfaces

4.1. Problem formulation

In this study, the structural stiffness of a free-form surface is optimized subject to a volume constraint. The free-
form surface is modeled as a linear elastic thin-shell structure using finite element method. The optimization problem
is formulated as follows:

Minimize : J =

∫
Ω

ϵi j (u)Ci jklϵkl(u)dΩ ,

Subject to : a(u, v) = l(v), ∀v ∈ Uad

V (Ω ) = V ∗,

(12)
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Fig. 4. A schematic of general boundary conditions.

where Uad is the space kinematically admissible displacement [63], V denotes the volume of the manifold shell; V ∗

stands for the target volume; ϵ is the linear strain tensor. Ci jkl is the fourth-order constitutive tensor; Ω is the region
occupied with the linear elastic material. The volume V (Ω ), internal virtual energy a(u, v), and exterior virtual energy
l(v) are defined as follows:

V (Ω ) =

∫
D

H (φ)dΩ ,

a(u, v) =

∫
Ω

ϵi j (u)Ci jklϵkl(v)dΩ ,

l(v) =

∫
Ω

f · vdΩ +

∫
ΓN

g · vdΓ ,

where D is the design domain; Γ = ∂Ω is the boundary of the design; a(u, v) is a symmetric bilinear function in
terms of the displacement u and the test function v, that is, a(u, v) = a(v, u); l is a linear function in terms of the
body force f and the traction force g on the Neumann boundary conditions ΓN , as illustrated in Fig. 4.

4.2. Shape sensitivity analysis

In this section, the shape sensitivity analysis is derived using the adjoint sensitivity analysis. The first step is to
formulate the Lagrangian of the optimization problem [25,35,64,65]:

L(u, v) = J + a(u, v) − l(v) + λ(V (Ω ) − V ∗), (13)

where the λ is a Lagrange multiplier, and v becomes the adjoint displacement in the adjoint sensitivity analysis.
Eq. (13) can be reformulated as:

L(u, v) = a(u, u) + a(u, v) − l(v) + λ(V (Ω ) − V ∗). (14)

The material derivative of Eq. (14) with respect to a pseudo time t is formulated as follows [63,66,67]

d L(u, v)
dt

=
∂L(u, v)

∂t
+

∂L(u, v)
∂Ω

, (15)

where the partial derivative with respect to time results in the so-called adjoint equation:

∂L(u, v)
∂t

= L ′
= a′(u, u) + a′(u, v), (16)

and

a′(u, u) = 2
∫
Ω

ϵi j (u′)Ci jklϵkl(u)dΩ ,

a′(u, v) =

∫
Ω

ϵi j (u′)Ci jklϵkl(v)dΩ .

(17)
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The convection term of the material derivative forms the shape derivative which is formulated as follows:
∂L(u, v)

∂Ω
=

∫
Γ

ϵi j (u)Ci jklϵkl(u)vnds +

∫
Γ

ϵi j (u)Ci jklϵkl(v)vnds

−

∫
Γ

f · vvnds −

∫
Γ

[
∂(g · v)

∂n
+ κg · v]vnds + λ

∫
Γ

vnds.
(18)

Solving Eq. (16), we can get the adjoint variable v = −2u. Substitute v = −2u to Eq. (18) and ignore the body
force, we can get

∂L(u, v)
∂Ω

=

∫
Γ

[ϵi j (u)Ci jklϵkl(u) + λ]vnds. (19)

By using the steepest-descent method, we can construct the normal velocity field as

vn = −ϵi j (u)Ci jklϵkl(u) − λ, (20)

where the first term εi j (u)Ci jklεkl(u) is the strain energy density of the linear elastic structure. Specifically, the explicit
expression of Eq. (20) can be derived from the shell formulation [63] as follows

vn = −[2ϵ1
i j (u)Ci jklϵ

1
kl(u)|J| +

2
3
ϵ2

i j (u)Ci jklϵ
2
kl(u)|J|] − λ, (21)

where ϵ1
i j (u) and ϵ2

i j (u) are the membrane-shear stain and bending strain respectively. The first term of Eq. (21) denotes
the displacement of the middle shell surface. The bending and shear deformation represents the rotation of the cross
section. In this paper, for simplicity, the volume constraint is handled by using the fixed Lagrangian method [32]. The
detailed derivation is provided in Appendix A.

5. Numerical implementation

5.1. Algorithm

In our proposed method, the geometric information is transported using conformal mapping from the manifold
to the Euclidean plane, as in Section 3. Instead of solving the variation problem directly on the surface, a modified
Hamilton–Jacobi equation is solved on 2D to evolve the boundary. Compared with other methods, the proposed
method can guarantee a lower computational cost when optimizing the conformal surface structures.

The framework can be decomposed into seven steps as shown in Algorithm 1 . The input is a triangle mesh surface
S1. In the first step, a 2D triangular mesh rectangle Q1 is achieved utilizing the conformal mapping parameterization.
Then, we construct a 2D quad mesh on Q1 where we define the level set function subsequently. The third step is
to transport the level set values from 2D onto the surface. The level set values on the 2D triangular mesh can be
interpolated from the values on the 2D quad mesh. From conformal mapping, the relationship of the vertices on S1
and Q1 is given, which means a vertex on Q1 is corresponding to one specific vertex on the surface S1. Since the
level set value on each vertex can be considered as a constant, the transportation from 2D to a surface can be naturally
made by the calculated conformal mapping parameterization. Steps 4 and 5 are about to solve the equilibrium physics
equations and do shape sensitivity analysis to construct the design velocity field on the surface. Next, by solving the
modified H–J equation, the level set function is updated. The steps 2 through 6 are repeated until the convergence
criterion is fulfilled.

Algorithm 1: A Framework for Level-Set-Based Shape and Topology Optimization on Manifold
Input: A triangle meshed surface
Output: The 3D minimum compliance design

1 Given S1, compute the global conformal parameterization from S1 onto the 2D rectangle Q1;
2 Initialize the level set function φ on the 2D rectangle domain Q1;
3 Transport the value of φ onto S1 by using Barycentric interpolation method;
4 Solve equilibrium equation on S1 to obtain strain energy field;
5 Calculate shape sensitivity to construct the design velocity field;
6 Update level-set function by solving the M-H-J Equation on Q until getting converged;
7 Obtain the topology optimization design S2 from φ;
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Fig. 5. Mean curvature flow on a human face surface.

6. Numerical examples

6.1. Curvature flow on surface

The mean curvature flow, also known as the curvature-shortening flow, is the most natural evolution depending on
extrinsic geometry, and has been extensively studied. In this example, we test the X-LSM with the surface motion at
a curvature-dependent speed:

vn = −κ = −∇ · n, (22)

where ∇ is the nabla operator and n is the normal vector of the boundary. The initial boundary is a star-shape [56] on
the 2D rectangular domain, as shown in Fig. 5b. By using conformal mapping, the star-shape interface is mapped to
the surface, as in Fig. 5a. Eventually, on both the 2D plane and the surface, the interface morphs from a ‘sunflower’
to a circle and shrinks through round circles to a point until it disappears.

6.2. Convection on a torus with a constant speed

In this example, a numerical experiment of interface moving on a torus is applied to demonstrate the performance
of the proposed method in handling boundary changes on manifolds with more complex topologies. As shown in
Fig. 6a, a circle is moving at a constant speed on torus surface. The corresponding motion on the 2D Euclidean plane
is shown in Fig. 6b, where the 2D velocity field is constant along a specified direction. By applying periodic boundary
conditions, the circle can move continuously on the torus.

6.3. Topology optimization of a vase shell

In this example, we apply the X-LSM to optimize the mean compliance of a vase shape thin shell structure. The
target volume ratio is 40%. The linear elastic material is assumed with a Poisson’s ratio of ν = 0.3 and Young’s
modulus E = 1 GPa. To avoid singularity, a dummy material with Young’s modulus E = 10−6 GPa is set for the
void. The boundary conditions of the vase model are shown in Fig. 7. The height and width of the vase are both 0.4 m
and the thickness is 0.01 m. A vertically distributed load and a moment along the z-direction are applied on the top of
the vase, in which the bottom boundary is fixed.

Following Algorithm 1, we mesh the vase surface with 39 764 triangular elements and map it onto a 2D rectangle
domain Q1. Then the level set function is constructed on Q1 with a 75 × 101 quad mesh. The initial design domain
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Fig. 6. Convection on a torus with a constant speed.

Fig. 7. Boundary conditions of the vase.

is set to be a surface with 40 circular holes. The topology optimization process on the 2D plane is shown in Fig. 8a,
and the corresponding designs on the manifold are shown in Fig. 8b.

The optimization curve is presented in Fig. 9, where the mean compliance of the vase is minimized and the volume
constraint is satisfied after 300 iterations. In addition, it is noticeable that on the vase surface the local shape of the
design is preserved from the 2D design, which is consistent with the conformal mapping theory. Two prototypes have
been printed using a Stratasys Connex R⃝ Objet260 multi-material 3D printer. The optimized vase frame, as shown in
Fig. 10a, is printed using an acrylic-like material called VeroWhite. The printed result for the whole vase with the
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Fig. 8. Topology optimization on a vase surface.

Fig. 9. The optimization history of a conformal vase frame design.

surface and frame is shown in Fig. 10b, where the frame is printed using VeroWhite, and the vase surface is printed
with a transparent rubber-like material called TangoPlus.

6.4. Topology optimization of conformal reinforcement on a chair surface

In this section, we apply the X-LSM to design the conformal reinforcement structure of a chair surface. The span
of the oval armchair is approximately 0.6 m × 0.5 m and the thickness is 0.04 m. The design domain is discretized
into 59 685 triangular elements. The original design and boundary conditions of the armchair surface are shown in
Fig. 11. Three concentrated loads along the z-direction are applied at the arms and the seat area with a force on the
back along the y-axis. In the meantime, a portion of the bottom is fixed. The target volume ratio is 40%. We minimize
the mean compliance of the shell. The linear elastic material is assumed with a Poisson’s ratio ν = 0.3 and Young’s
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Fig. 10. The 3D-printed vase design.

Fig. 11. Boundary conditions of the chair.

modulus E = 1 GPa, and Young’s modulus E = 10−6 GPa is set for the void. The initial design starts with 48 circular
holes on the 2D rectangular plane which is discretized with a 120 × 167 quad mesh. The design evolutions in the
2D rectangular domain and on the chair surface are shown in Fig. 12. Fig. 13 shows the rendering results of the chair
surface with our optimized conformal reinforcement design.

6.5. Topology optimization of a toroidal shell structure

The minimum compliance optimization problem on a toroidal shell is studied by using the same material properties
as Section 6.3. The inner and outer radius of the torus is 0.1 m and 0.06 m, respectively. The shell thickness is 0.002 m.
The target volume ratio is 50%. The design domain along with the boundary conditions is shown in Fig. 14a. Similarly
to the vase model, a concentrated load and a moment of force along the z-direction are applied to the top of the model.
A small area on the torus bottom is fixed. The surface is meshed with 3200 triangular elements, and the 2D plane is
discretized with a 101 × 36 quad mesh. The design results are shown in Fig. 14.

7. Experiment

To validate the performance of the optimized design, we conduct a compression test on three semi-cylinder shells
with different inner reinforcing structures, as shown in Fig. 15. The first one is a semi-cylinder shell structure
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Fig. 12. Topology optimization on a conformal chair structure.

Fig. 13. Final results of the chair model.

reinforced with the optimized inner ribs obtained by the X-LSM. Other two designs are the reinforced semi-cylinder
shell with conformal lattice structure structures and a uniform thickness semi-cylinder, which have been reported in
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Fig. 14. Topology optimization of a toroidal shell structure.

our recent paper [68]. In order to make an apple-to-apple comparison, we follow the same experiment settings as [68],
where the three semi-cylinders have same dimensions and mass.

Before doing the mechanics experiment, we first apply the X-LSM to optimize the semi-cylinder surface with
a 40% volume-ratio target. The semi-cylindrical structure is fixed at the bottom with a compression on top. The
optimized design is a shell structure with curved ribs connecting the top and bottom boundaries, as shown in
Fig. 15(B). We can observe that the ribs have a non-uniform width, which is wider at the center area due to a higher
strain energy density.

The three semi-cylinder designs with different inner structures are 3D printed using the VeroWhite material. As
shown in Fig. 15, from left to right are the printed semi-cylinder shells with a conformal inner lattice structure, the
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Fig. 15. Semi-cylindrical designs with different reinforcing structures: (A). reinforced with inner conformal lattice structure, (B). reinforced with
optimized inner ribs, (C). uniform thickness design.

optimized inner ribs, and uniform thickness, respectively. The compression test is operated by the MTS Model 43
testing system. The specimens are loosely placed vertically between the two compression platens, and then the upper
compression platen moves downward with a constant speed of 0.085 mm/s, at the meantime, the reaction force made
by the specimens is recorded every 0.001 s. Fig. 16 shows the initial placement of the semi-cylinder shells and their
corresponding status with 3 mm vertical deformation. The reaction force vs. deformation plots for semi-cylinder
designs with different reinforcing structures is shown in Fig. 17. The x-axis represents the deformation rate, and the
y-axis denotes the reaction force. This chart demonstrates that at every deformation rate, the semi-cylinder reinforced
with ribs generates higher reaction force than the other two designs, while the semi-cylinder with uniform thickness
shows the lowest reaction force. As seen, the slope of the plot of the surface with inner optimized ribs is the steepest
among the three. Specifically, by increasing the deformation, the reaction force of the rib-reinforced semi-cylinder
surface rises more quickly, which indicates the rib-reinforced structure possesses higher stiffness under the same
deformation compared with the other two designs. In general, we can conclude that both the rib-reinforces structures
and the conformal lattice structures can increase the stiffness of the semi-cylinder shell.

8. Conclusions

In this paper, we propose a new computational framework for structural shape and topology optimization on
manifolds. By employing the conformal mapping theory, we extend the level-set-based topology optimization
approach from the Euclidean space R2 or R3 to surfaces with arbitrary topologies. Following the conformal geometry
theory, we can conformally map a manifold onto a 2D rectangle plane, where the level set function is defined. With
conformal mapping, the corresponding covariant derivatives on a manifold can be represented by the Euclidean
differential operators multiplied by a scalar. Therefore, the topology optimization problem on a free-form surface
can be formulated as a 2D problem in the Euclidean space. To evolve the boundaries on a free-form surface,
we propose a modified Hamilton–Jacobi equation and solve it on the 2D plane. In this way, we can fully utilize
the conventional computational schemes for level set methods. Compared with other established approaches, the
computational complexity of our method is highly reduced, while all the advantages of conventional level set methods
are well preserved. The numerical experiments results indicate the robustness and effectiveness of X-LSM in solving
topology optimization problems on manifolds.

Although the minimum compliance problem is studied in this paper to verify the performance of the proposed
method in handling shape and topology optimization on free-form surfaces. The framework can be easily extended
to other applications. For instance, to improve the antenna performances [69], one can use the X-LSM to optimize
the conductive material distribution on the surface of the substrate. Moreover, because of the unique advantage of
the conformal mapping theory that reveals the intrinsic geometric relationship between the surface and its conformal
2D domain, we can apply the X-LSM to optimize the deformation demanded surfaces, for example, the stretchable
circuits [70,71], conformal electronics [3] and the metamaterial absorber on curved surfaces [72]. In addition, the
X-LSM are also desirable for designing soft robotics on shell or plate. For instance, Shian and Betoldi et al. [73]
illustrated the dielectric elastomer based gripper designs by placing a few stiff fibers into voltage-actuated dielectric
elastomer beams. With the X-LSM, one can optimize the fibers’ location and design the gripper without intuitions or
inspirations. Further work will be focused on the generative structural designs on free-form surfaces for the above-
mentioned problems.
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Fig. 16. Semi-cylindrical designs with different reinforcing structures: before deformation (left), and 3 mm vertical displacement load (right).

Fig. 17. Force-deformation curve for semi-cylinders with different reinforcing structures.
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Fig. 18. The schematic figure of shell structure.
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Appendix A. The strain energy density of a linear elastic shell structure

In this section, the background information of the linear elastic shell structure is introduced, and the derivation
of the strain energy density is derived. Typically, a shell structure consists of a curved external surface as well as a
uniform thickness, as shown in Fig. 18. Let ξ1, ξ2 be the two curvilinear coordinates in the middle surface, and ξ3 be
the coordinate in the thickness direction varying within [−1 1] [74,75]. Thus, any point on the shell structure can be
represented as x(ξ1, ξ2, ξ3) [76,77].

x(ξ1, ξ2, ξ3) = xn(ξ1, ξ2) + ξ3
t(ξ1, ξ2)

2
n(ξ1, ξ2). (23)

The Jacobian matrix of the mapping between the physical coordinates and the reference coordinates is

J =
∂xi

∂ξ j
. (24)

For linear elastic material, the strain tensor is defined as

ϵi j (u) =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
),

ϵi j (u) =
1
2

(
∂ui

∂ξm

∂ξm

∂x j
+

∂u j

∂ξm

∂ξm

∂xi
),

(25)

ϵi j (u) =
1
2

(
∂ui

∂ξm

1
Jmj

+
∂u j

∂ξm

1
Jmi

)

= sym(
∂ui

∂ξm
J−1

mj ),
(26)
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where ξm represents the reference coordinates. The energy bilinear form for linear elasticity is shown as

a(u, v) =

∫
Ω

ϵi j (u)Ci jklϵkl(v)dΩ , (27)

where u stands for the displacement, and v is the test function.
According to the Reissner–Mindlin theory of plate [78], we can assume that the displacement along the thickness

is linear and the cross section of the shell structure remains flat after deformation. Then the deformation on shell can
be written as [79]

u = u1(ξ1, ξ2) + ξ3u2(ξ1, ξ2), (28)

where on the right-hand side, the first term represents the membrane deformation, and the second term stands for the
bending and shear deformation.

For the thin shell which the thickness is very small and can be neglected, the Jacobian is considered to be a function
of only ξ1, ξ2 coordinates. Thus Eq. (26) can be simplified as [79]:

ϵi j (u) = ϵ1
i j (u) + ξ3ϵ

2
i j (u), (29)

where ϵ1
i j (u) and ϵ2

i j (u) are the membrane-shear stain and bending strain respectively.
Substitute Eq. (29) into Eq. (27) and integrate from ξ3 ∈ [−1, 1], we can rewrite the energy bilinear form as [63,79]

a(u, v) =

∫ 1

−1

∫∫
[ϵ1

i j (u) + ξ3ϵ
2
i j (u)]Ci jkl[ϵ1

i j (v) + ξ3ϵ
2
i j (v)]|J|dξ1dξ2dξ3

=

∫ 1

−1

∫∫
[ϵ1

i j (u)Ci jklϵ
1
i j (v) + ξ3ϵ

1
i j (u)Ci jklϵ

2
i j (v)

+ ξ3ϵ
2
i j (u)Ci jklϵ

1
i j (v) + ξ 2

3 ϵ2
i j (u)Ci jklϵ

2
i j (v)]|J|dξ1dξ2dξ3.

(30)

since the second and third terms are odd functions over the interval ξ3 ∈ [−1, 1], and thus Eq. (30) can be simplified
as below [63]

a(u, v) =

∫
A
[2ϵ1

i j (u)Ci jklϵ
1
kl(v)|J| +

2
3
ϵ2

i j (u)Ci jklϵ
2
kl(v)|J|]d A. (31)

Appendix B. Discrete surface Ricci flow

Practically, surfaces are represented as triangular meshes. A discrete metric on a mesh is the edge length function,
denoted as l : E → R+, which satisfies the triangle inequality. The discrete Gauss curvature is the angle deficit,
defined on vertices, K : V → R,

K (v) =

⎧⎪⎪⎨⎪⎪⎩
2π −

∑
jk

θ
jk

i , v ̸∈ ∂ M

π −

∑
jk

θ
jk

i , v ∈ ∂ M
, (32)

where θ
jk

i is the corner angle at vi in the face [vi , v j , vk], and ∂ M represents the boundary of the mesh.
The discrete Gaussian curvature is determined by the discrete Riemannian metric via the cosine law,

l2
i = l2

j + l2
k − 2l j lk cos θi . (33)

The Gauss–Bonnet theorem still holds in the discrete case. The total curvature equals the product of 2π and the Euler
characteristic number χ ,∑

v ̸∈∂ M

K (v) +

∑
v∈∂ M

K (v) = 2πχ(M). (34)

The cotangent edge weight plays an important role. Given an interior edge [vi , v j ] adjacent to two faces [vi , v j , vk]
and [v j , vi , vl], the cotangent weight is defined as

wi j = cot θ i j
k + cot θ j i

l . (35)
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If the edge is on the boundary, adjacent to the face [vi , v j , vk], then the cotangent weight is

wi j = cot θ i j
k . (36)

A triangulation of the mesh is called Delaunay, if all cotangent edge weights are non-negative.
Given a triangular mesh M , the discrete conformal factor is a function defined on each vertex u : V → R, and the

length of an edge [vi , v j ] is given by

li j = exp(ui )βi j exp(u j ), (37)

where βi j is the initial edge length.

Definition B.1 (Discrete Surface Ricci Flow). The discrete surface Ricci flow is defined as

dui (t)
dt

= K̄i − Ki (t), (38)

where K̄i is the target curvature at the vertex vi , and the discrete metric is given in Eq. (37). During the flow, the
triangulation is updated to be Delaunay.

The existence of the Ricci flow has recently been proved in [80].

Theorem B.2 (Discrete Uniformization [81,82]). Given a target curvature K̄ satisfying the Gauss–Bonnet condition
in Eq. (34), and for each vertex K̄i ∈ (−∞, 2π ), then there exists a solution to the Ricci flow equation (38). The
solution is unique up to a constant.

Furthermore, the discrete Ricci flow is the negative gradient flow of the discrete Ricci energy:

EΣ (u) =

∫ u n∑
i=1

(K̄i − Ki )dui . (39)
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