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a b s t r a c t

Surface meshing plays a fundamental important role in Visualization and Computer Graphics, which
produces discrete meshes to approximate a smooth surface. Many geometric processing tasks heavily
depend on the qualities of the meshes, especially the convergence in terms of topology, position,
Riemannian metric, differential operators and curvature measures.

Normal cycle theory points out that in order to guarantee the convergence of curvature measures,
the discrete meshes are required to approximate not only the smooth surface itself, but also the normal
cycle of the surface. This theory inspires the development of the remeshing method based on conformal
parameterization andplanarDelaunay refinement,which uniformly samples the smooth surface, and pro-
duces Delaunay triangulations with bounded minimal corner angles. This method ensures the Hausdorff
distances between the normal cycles of the resultingmeshes and the smooth normal cycle converges to 0,
the discrete Gaussian curvature and mean curvature measures of the resulting meshes converge to their
counter parts on the smooth surface.

In the current work, the conformal parameterization based remeshing algorithm is further improved
to speed up the curvature convergence. Instead of uniformly sampling the surface itself, the novel
algorithm samples the normal cycle of the surface. The algorithm pipeline is as follows: first, two param-
eterizations are constructed, one is the surface conformal parameterization based on dynamic Ricci flow,
the other is the normal cycle area-preserving parameterization based on optimal mass transportation;
second, the normal cycle parameterization is uniformly sampled; third, the Delaunay refinement mesh
generation is carried out on the surface conformal parameterization. The producedmeshes can be proven
to converge to the smooth surface in terms of curvature measures.

Experimental results demonstrate the efficiency and efficacy of proposed algorithm, the convergence
speeds of the curvatures are prominently faster than those of conventional methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Surface meshing and remeshing are of the fundamental impor-
tance in visualization and computer graphics, as well as many en-
gineering and medicine fields, including geometric modeling, dig-
ital geometry processing and medical imaging. Typically, surface
meshing finds a set of sample points on the surface with a curved
triangulation, then approximates each face by a Euclidean triangle
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in R3, thereby approximating the underlying smooth surface by a
polyhedral triangular surface, which is called a triangular mesh.

1.1. Different levels of convergence

Many downstream geometric processing algorithms, such as
editing, parameterization, analyzing, registration, deformation,
storing and transmission, fundamentally rely on the mesh quali-
ties. It is required that the discrete meshes converge to the smooth
surface with different levels of accuracies. Generally speaking,
there are three major levels of convergence:

(1) Topological convergence, the discretemeshes and the smoo-
th surface are homeomorphic.
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(2) Positional convergence, the Hausdorff distance between the
discrete mesh and the surface limits to zero.

(3) Curvature measure convergence, the Gaussian and mean
curvature measures of the discrete mesh converge to the
counter parts on the smooth surface. This is equivalent to
the convergence in terms of normal, Riemannian metric
(including area element) and the Laplace–Beltrami operator.

The lower level convergence does not imply the higher level con-
vergence. For example, the famous Schwartz’s lantern [1] has the
positional convergence, but not the area convergence. In order
to guarantee the curvature measure convergence, one needs the
guidance from normal cycle theory [1–3].

1.2. Normal cycle

Normal cycle theory [1–3] unifies the concepts of curvatures
for both smooth surfaces and discrete meshes, and quantitatively
measures the approximation accuracy, convergence rate of the
curvature measures. Essentially, normal cycles that close in the
Hausdorff distance induce similar curvature measures.

Suppose S is a C2 smooth convex surface, embedded in the three
dimensional Euclidean space E3. The Gaussian curvature is well
defined. Assume p ∈ S is a point on the surface, the normal at p
is denoted as n(p). The offset surface of S is defined as

N(S) := {p+ n(p)|p ∈ S} . (1)

Since S is convex, the offset surface N(S) is also convex, embedded
in E3.

Similarly, suppose M is a convex mesh, the discrete Gaussian
curvature can be defined as the angle deficit at the vertices. A
supporting plane of M is a plane that has both of the following
properties:

• M is entirely contained in one of the two closed half-spaces
bounded by the plane.
• M has at least one point on the plane.

The normal cone at the point p is defined as the set of all normals
to the supporting planes through p, and denoted as NC(p). Similar
to Eq. (1), the discrete offset surface ofM is defined similarly,

N(M) := {p+ n|p ∈ M, n ∈ NC(p)} (2)

SinceM is convex, N(M) is convex and embedded in E3.
Now suppose we want to use a sequence of discrete meshes

{Mn} to approximate the smooth surface S, even if the Hausdorff
distance betweenMn and S converges to 0,

lim
n→∞

dH (Mn, S) = 0,

where dH (·, ·) represents theHausdorff distance, the discrete Gaus-
sian curvature measure, or the areas, geodesics, Laplace–Beltrami
spectra of Mn may not converge to the corresponding geometric
quantity of S. In contrast, if the Hausdorff distance between the
discrete and the smooth offset surfaces converges to 0,

lim
n→∞

dH (N(Mn),N(S)) = 0,

then by the theory of Steiner (chapter 16, [1]), the discrete cur-
vature measure of Mn converges to the curvature measure of the
smooth surface. Furthermore, the area element, geodesics, and
Laplace–Beltrami spectra of Mn converge to those of the smooth
surface as well. Therefore, we should consider the Hausdorff dis-
tance between N(S) and N(M) to guarantee the higher order con-
vergence.

Unfortunately, when S is non-convex, its offset surface N(S)
may have self-intersection, then it is difficult tomeasure the Haus-
dorff distance between the offset surfaces. In order to avoid the

Fig. 1. Conformal parameterization preserves infinitesimal circles, therefore pre-
serves Delaunay triangulations.

self-intersection, the offset surface is generalized to the concept
of normal cycle. The key difference is that the offset surface is
embedded in E3, whereas the normal cycle is embedded in the
product space E3

× S2. We use N(S) to represent the normal cycle.
Formally, the normal cycle for S is defined as

N(S) := {(p,n(p))|p ∈ S} . (3)

and the discrete normal cycle forM is defined

N(M) := {(p,n)|p ∈ S,n ∈ NC(p)} . (4)

The normal cycle theory [1] shows that in order to improve the
curvature convergence speed, one needs to improve the approxi-
mation accuracy to the normal cycle, instead of that to the surface
itself.

1.3. Sampling strategies

Based upon normal cycle theory, for the purpose of curvature
convergence, the meshing algorithm needs to meet two criteria,
one is the angle criteria, the other one is the sampling density
criteria:

(1) Angle criteria: there is a positive constant c > 0, such that
the minimal corner angles of all meshes are greater than c .

(2) Density criteria: suppose S is a smooth surface embedded
in E3, Sε is an ε-sample of S, namely, for each point p ∈ S,
the ball B(p, ε lfs(p)) contains at least one sample point in Sε ,
where lfs(p) denotes the local feature size [4] of S at the point
p.

In order to satisfy these two criteria, different algorithms choose
different strategies. Roughly speaking, there are three major types
of algorithms:

1. Sampling the Surface inE3 Themethod [4] directly samples the
surface in E3, and computes the Delaunay tetrahedralization of the
interior volume. The restriction of the Tetrahedral triangulation on
the surface gives the meshing result.

2. Sampling the parameter domain Because the conformal map-
ping preserves infinitesimal circles, Delaunay triangulations have
the empty-circle property, therefore conformalmapping preserves
Delaunay triangulations (see Fig. 1). Comparing to volumetric De-
launay triangulation, planar Delaunay triangulation is much more
efficient.

The algorithms introduced in [5] and [3] compute surface con-
formal parameterization, thenuse the conformal factor as the grad-
ing factor, samples on the parameter domain. The Delaunay trian-
gulation is constructed on the parameter domain, and induces the
surface triangulation. This method produces uniform samplings
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Fig. 2. Conformal parameterization (CFP), Curvature adaptive parameterization (CAP) and Remeshing result for Gargoyle model. The original model is 68k vertices and the
remeshed mesh is 4k vertices.

on the surface, and the resulting Delaunay triangles are uniformly
sized.

3. Sampling the Normal Cycle In the current work, we propose
a novel algorithm by sampling the normal cycle of the original
surface directly. The normal cycle is defined in the 6 dimensional
space, it is highly expensive to sample it using high dimensional
Delaunay triangulation directly. Therefore, we utilize parameter-
ization to map the two-dimensional normal cycle embedded in
the 6-dimensional space to a planar domain, and sample the 2D
parameter domain. In order to control the sampling density, we
utilize the area-preserving parameterization from the normal cycle
to the planar domain. The area-preserving parameterization only
requires the Riemannian metric of the normal cycle, which can be
easily calculated as

ds2N := ⟨dp, dp⟩ + ⟨dn, dn⟩ (5)

where p is the position vector of the point, n is the normal vector.
We uniformly sample the area-preserving parameter domain of

the normal cycle, then map the samples to the conformal parame-
ter domain of the surface, and calculate the Delaunay triangulation
on the conformal parameter domain, which induces a Delaunay
geodesic triangulation on the original surface (see Fig. 2).

1.4. Contributions

This work introduces a novel curvature adaptive remeshing
algorithm based on normal cycle theory, which has the following
merits:

(1) Most conventionalmethods uniformly sample the input sur-
face, in contrast, the proposed method samples the normal
cycle of the surface, this greatly improves the speed of cur-
vature measure convergence.

(2) This method adopts the dynamic discrete Yamabe flow
method for conformal parameterization. Comparing to con-
ventional discrete Ricci flowmethod, dynamic Yamabe flow
is very robust to themesh quality, and the solution existence
has theoretic guarantee.

(3) The proposed method has solid theoretic foundations, the
convergence of the curvature measures of the result meshes
can be easily proven.

(4) The discrete optimal mass transportation map offers great
flexibility for sampling, for example, it supports different
levels of emphasis of the curvature measures and region of
interests.

2. Previous work

2.1. Surface remeshing

Surface remeshing has been an active research subject for
nearly two decades, see a nice survey given by Alliez et al. [6].

Most of the early methods work either in a 2d parameterization
space [5,7] or directly in the 3d space [8], and their focus is to
create isotropic 3d surfacemeshes. Thesemethods usually provide
no guarantee on the convergence between their resulting meshes
and the approximating surfaces.

Later on, theoreticalmethods based on restrictedDelaunay trian-
gulation (RDT) have been developed. Edelsbrunner and Shah [9] in-
troduced Delaunay triangulation of topological spaces, and proved
the reconstructed simplicial complex is homeomorphic to the sam-
pled topological space; Cheng, Dey and Levine used Delaunay re-
finement for the meshing purpose in [10], and proved the method
is topology preserving. Amenta and Bern proposed surface recon-
struction by Voronoi filtering in [11], developed the concept of
ε-sample, and showed the convergence in terms of both topology
and normal; Morvan and Thibert showed the restricted Delaunay
triangulation based on ε-sampling guarantees the convergence of
the surface [12]. Cohen-Steiner andMorvan proved reconstruction
results based on ε-sampling and DRT ensures the convergence of
curvature. Boissonnat andOudot generalized the ε-sample to loose
ε-sample in [13], and proved the convergence in terms of topology,
normal, area and curvature.

Centroidal Voronoi Tessellation (CVT) [14–18] has been devel-
oped. In practice, CVT method can achieve high quality meshing
results. These methods are able to guarantee the topology, but the
formal proofs for the convergence on geometry and curvature have
not been reported. Many recent methods have been developed
for creating anisotropic surface meshes [19–25]. In particular, the
methods in [24,25]will result in a curvature-adapted surfacemesh
by using the normal (Gaussian map) of the surface. However, for
discrete surfaces, they provide no proof for curvature convergence.

2.2. Meshing

The Delaunay refinement algorithms were originally designed
for meshing planar domains, and were later generalized for mesh-
ing surfaces and volumes. Chew’s first algorithm [26] splits any
triangle whose circumradius is greater than the prescribed short-
est edge length parameter e and hence generates triangulation
of uniform density and with no angle smaller than 30◦. But the
number of triangles produced is not optimal. Chew’s second al-
gorithm [27] splits any triangle whose circumradius-to-shortest-
edge ratio is greater than one, and hence in practice produces grade
mesh. Similar split criterion was used in Ruppert’s algorithm [28],
which has the theoretical guarantee of theminimal angle of no less
than 20.7◦. Shewchuk [29] unified the pioneeringmesh generation
algorithms of L. Paul Chew [26] and Jim Ruppert [28], improved the
algorithms in several minor ways, and helped to solve the difficult
problem of meshing non-manifold domains with small angles.
Dey et al. developed a series of algorithms for surface meshing
and remeshing based on volumetric Delaunay refinement [30–32],
which belong to the approaches in the first category. We refer
readers to [33] for full details.
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2.3. Ricci Flow

Ricci flow conformally deforms the Riemannian metrics, such
that during the flow, the infinitesimal circles are preserved. This
phenomenon inspired Thurston to develop the circle packing
method. In his work on constructing hyperbolic metrics on 3-
manifolds, Thurston [34] studied a Euclidean (or a hyperbolic)
circle packing on a triangulated closed surface with prescribed
intersection angles. Thurston conjectured that the discrete con-
formal mapping based on circle packing converges to the smooth
Riemann mapping when the discrete tessellation becomes finer
and finer. Thurston’s conjecture has been proven by Rodin and
Sullivan [35]. He and Schramm gave another proof in 1996 [36].
Chow and Luo established the intrinsic connection between circle
packing and surface Ricci flow [37].

The rigidity for classical circle packing was proved by Thurston
[34], Marden-Rodin [38], Colin de Verdiére [39], Chow–Luo [37],
Stephenson [40], and He [36].

Bowers–Stephenson [41] introduced inversive distance circle
packing which generalizes Andreev–Thurston’s intersection angle
circle packing. See Stephenson [40] formore information. Guo gave
a proof for local rigidity [42] of inversive distance circle packing.
Luo gave a proof for global rigidity in [43].

Luo introduced and studied the combinatorial Yamabe problem
for piecewise flat metrics on triangulated surfaces [44] . Spring-
born, Schröder and Pinkall [45] considered this combinatorial con-
formal change of piecewise flat metrics and found an explicit for-
mula of the energy function. Glickenstein [46,47] studied the com-
binatorial Yamabe flow on 3-dimensional piecewise flatmanifolds.
Bobenko–Pinkall–Springborn introduced a geometric interpreta-
tion to Euclidean and hyperbolic Yamabe flow using the volume of
generalized hyperbolic tetrahedron in [48]. Combinatorial Yamabe
flow on hyperbolic surfaces with boundary has been studied by
Guo in [49]. The existence of the solution to Yamabe flow with
topological surgeries has been proved recently in [50] and [51].

The Euclidean virtual radius circle packing first appeared in [52].
The hyperbolic and spherical virtual radius circle packing are
introduced in [53].

The Euclidean mixed type circle packing appeared in [52] and
Glickenstein’s talk [54]. Thiswork introduces hyperbolic and spher-
ical mixed type schemes.

Glickenstein [55] set the theory of combinatorial Yamabe flow
of piecewise flat metric in a broader context including the theory
of circle packing on surfaces. [53] focused on the hyperbolic and
spherical unified frameworks.

The variational approach to circle packing was first introduced
by Colin de Verdiére [39]. Since then, many works on variational
principles on circle packing or circle pattern have appeared. For
example, see Brägger [56], Rivin [57], Leibon [58], Chow–Luo [37],
Bobenko–Springborn [59], Guo–Luo [60], and Springborn [61].
Variational principles for polyhedral surfaces including the topic
of circle packing were studied systematically in Luo [62]. Many
energy functions are derived from the cosine law and its derivative.
Tangent circle packing is generalized to tangent circle packingwith
a family of discrete curvature. For exposition of this work, see also
Luo–Gu–Dai [63].

Recently, Gu et al. established discrete uniformization theorem
based on Euclidean [50] and hyperbolic [51] Yamabe flow. In a se-
ries of papers on developing discrete uniformization theorem [64–
66] and [67], Sa’ar Hersonsky proved several important theorems
based on discrete harmonic maps and cellular decompositions. His
approach is complementary to the work mentioned above.

2.4. Convergence

Amenta et al. [4] derived an algorithm of the reconstruction
of surfaces from unorganized sample points in R3 which is based
on the three-dimensional Voronoi diagram. Assuming given good
sampling, they proved the output of the algorithm is guaranteed to
be topologically correct and convergent to the original surface as
the sampling density increases. This is the first work for meshing
with a provable guarantee.

Cohen-Steiner and Morvan [2] derived a simple and new def-
inition of the curvature tensor for polyhedral surfaces building
upon the theory of normal cycles, which yields an efficient and
reliable curvature estimation algorithm.Moreover, they bound the
difference between the estimated curvature and the one of the
smooth surface in the case of restricted Delaunay triangulations.

Morvan and Thibert [68] compared the normal vector field of a
smooth surface S with the normal vector field of another surface
differentiable almost everywhere. They gave an upper bound on
angles between the normals of S and the normals of a triangulation
T close to S.

Suppose the triangulation is obtained from a sampling of a
smooth parametric surface, Xu [69] showed theoretically that the
approximation has quadratic convergence rate if the surface sam-
pling satisfies the so-called parallelogram criterion.

Hildebrandt, Polthier and Wardetzky [70] studied the conver-
gence of polyhedral surfaces and their discrete geometric prop-
erties to smooth surfaces embedded in Euclidean 3-space. They
showed that convergence of the following properties is equivalent
under the assumption of convergence of surfaces in Hausdorff dis-
tance: surface normals, surface area, metric tensors, and Laplace–
Beltrami operators.

Li et al. [3] focused on the curvature measure convergence
for the conformal parameterization based Delaunay refinement
algorithms. They gave explicit estimates for theHausdorff distance,
the normal deviation, and the differences in curvature measures
between the surface and the mesh.

3. Theoretic background

In this section, we briefly introduce the theoretic foundation
of our framework. We refer readers to [52] and [71] for detailed
treatments.

3.1. Dynamic discrete surface Ricci flow

In practice, smooth surfaces are approximated by discrete trian-
glemeshes. A trianglemesh is denoted asM = (V , E, F ),whereV , E
and F represent vertex, edge and face sets, respectively. A discrete
Riemannian metric is formulated as an edge length function l :
E → R+, which satisfies the triangle inequality on each face. The
corner angles are determined by the cosine law:

θi = cos−1
l2j + l2k − l2i

2ljlk
(6)

where the vertices are vi, vj and vk, the length of the edge against
vi is li, the corner angle at the vertex vi is θi. The discrete Gaussian
curvature for an interior vertex is defined as 2π minus the sum
of the surrounding corner angles, while the Gaussian curvature
for a boundary vertex is computed by π minus the sum of the
surrounding corner angles:

K (vi) =

{
2π −Σfijk∈F θ

jk
i , vi /∈ ∂M

π −Σfijk∈F θ
jk
i , vi ∈ ∂M

(7)

where θ jki denotes the corner angle adjacent to the vertex vi in the
face fijk, and ∂M represents the boundary of the meshM .
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According to the Gauss–Bonnet theorem, the total curvature is
a topological invariant,∑
vi∈V

Ki = 2πχ (M), (8)

where χ (M) is the Euler characteristic number of M . We define a
discrete conformal factor u on vertices as u : V → R. Suppose eij is
an edge which has end vertices vi and vj, and dij is the edge length
of eij induced by the Euclidean metric. Then the edge length lij in
the discrete Ricci flow is defined as:

lij = exp(ui)dij exp(uj). (9)

Let Ki be the discrete Gaussian curvature defined on vertex vi, and
K̄i be the target curvature. The discrete Euclidean (and Hyperbolic)
Yamabe flow is defined as:
dui

dt
= K̄i − Ki. (10)

The following theorem guarantees the existence of the solution,

Theorem 1 (Discrete Uniformization [50]). If the target curvature
satisfies the Gauss–Bonnet condition and K̄i < 2π holds for each
vertex vi, then the solution to the dynamic discrete Ricci flow exists
and is unique up to a constant.

Moreover, this solution is the unique optimal point of the fol-
lowing convex discrete Ricci energy:

E(u) =
∫ u

0

n∑
i=1

(K̄i − Ki)dui, u = (u1, u2, . . . , un). (11)

In practice, we employ Newton’s method to optimize the Ricci
energy. The gradient of the Ricci energy is the curvature difference,

∇E(u) = (K̄i − Ki)T , (12)

The Hessian matrix of the Ricci energy is given as follows:

∂2E(u)
∂ui∂uj

=

{
wij, i ̸= j

−Σkwik, i = j
(13)

where wij is the cotangent edge weight of eij:

wij = cot θk + cot θl, (14)

where θk and θl are two corner angles against the edge eij. During
the flow, the triangulation is dynamically updated by edge swap-
ping, such that the triangulation is Delaunay with respect to the
current Riemannianmetric, namely, the cotangent edgeweightwij
for each edge eij is always non-negative during the flow, therefore
the Hessian matrix is always positive definite in the subspace∑

i ui = 0, namely the Ricci energy is convex. Dynamic Ricci flow
ismuchmore robust than conventional methods by preserving the
Delaunay triangulation.

3.2. Discrete optimal mass transportation

Let X and Y be domains in the Euclidean space Rn. Two prob-
ability measures µ and ν are given respectively with equal total
measures,

∫
X µ =

∫
Y ν. A map T : X → Y is measure preserving

if for any measurable set B ⊂ Y , the following condition holds:∫
T−1(B) µ =

∫
B ν. If T minimizes the following transportation cost,

E(T ) :=
∫
X
|x− T (x)|2dµ(x),

then T is called an optimal mass transportation map.
In practice, we formulate the optimal transportation problem in

the discrete setting by sampling the target domain into a discrete

point set. Suppose µ has a compact support on X , define Ω =
Supp µ = {x ∈ X |µ(x) > 0}, and assumeΩ is a convex domain in
X . The space Y is discretized into Y = {y1, y2, . . . , yk} with Dirac
measure ν =

∑k
i=1 viδ(y− yi).

We define a height vector h = (h1, h2, . . . , hk) ∈ Rk, consisting
of k real numbers. For each yi ∈ Y , we construct a hyper-plane
defined on X:

πi(h) : ⟨x, yi⟩ + hi = 0, (15)

where ⟨, ⟩ is the inner product in Rn. Define a piece-wise linear
function:

uh(x) = max
1≤i≤k
{⟨x, yi⟩ + hi}, (16)

then uh is a convex function. We denote its graph by E(h), which
is an infinite convex polyhedron with supporting planes πi(h).
Namely, E(h) is the upper envelope of the planes {πi(h)}. The pro-
jection of E(h) induces a power cell decomposition ofΩ , denoted as
V(h),

Ω =

k⋃
i=1

Wi(h), Wi(h) := {x ∈ X |uh(x) = ⟨x, yi⟩ + hi} ∩Ω. (17)

The measure of cellWi(h) is denoted as wi(h):

wi(h) :=
∫
Wi(h)

dµ. (18)

The dual to the power cell decomposition is theweightedDelaunay
triangulation of the point set Y , denoted as T (h).

Theorem 2 (Discrete Optimal Mass Transport). For any given mea-
sures µ on X with convex supportΩ ⊂ X, and Dirac measure ν on Y ,
such that

∫
Ω
dµ =

∑k
i=1 νi, νi > 0, there must exist a height vector

h unique up to adding a constant vector (c, c, . . . , c), the convex
function in Eq. (16) induces the power cell decomposition of Ω as
Eq. (17), such that the following measure-preserving constraints are
satisfied for all cells,

wi(h) = νi, i = 1, 2, . . . , k. (19)

Furthermore, the gradient map ∇uh optimizes the following trans-
portation cost

E(T ) :=
∫
Ω

|x− T (x)|2dµ(x), . (20)

The existence and uniqueness have been first proven byAlexan-
drov [72] using a topological method. The existence has also been
proven by Aurenhammer et al. [73].

Recently, Gu et al. [71] have given a novel proof for the existence
and uniqueness based on variational principle. They proved the
optimal height vector is the minimizer of the following convex
energy:

E(h) =
∫
Ω

uh(x)dµ(x)−
k∑

i=1

νihi. (21)

The gradient of the energy is given by:

∇E(h) = (w1(h)− ν1, w2(h)− ν2, . . . , wk(h)− νk)T . (22)

The Hessian of the energy can be formulated as follows. Suppose
two cellsWi(h) andWj(h) intersect at a face fij(h) = Wi(h)∩Wj(h)∩
Ω , then there is an edge in the weighted Delaunay triangulation
connecting yi and yj, denoted as eij ∈ T (h). We define the edge
weight

τij :=
1

|yj − yi|

∫
fij(h)

dµ (23)
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The Hessian of E(h) is the discrete Laplace–Beltrami matrix with
the edge weight τij, in detail:

∂2E(h)
∂hi∂hj

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k

τik i = j

−τij i ̸= j, yi ∼ yj
0 otherwise

(24)

Due to the convexity of the volume energy (Eq. (21)), the global
minimum can be obtained efficiently using Newton’s method.

3.3. Normal cycle

For the completeness, we briefly introduce the normal cycle
theory. For a more thorough treatment, we refer readers to the
work in [1].

3.3.1. Basic concepts
Intuitively, the normal cycle of a surface is its offset surface

embedded in the higher dimensional Euclidean space. The concept
of normal cycle of a smooth surface has been introduced in Sec-
tion 1.2. Here we generalized the concept to polyhedral surfaces.

Suppose V is a convex body, whose boundary M = ∂V is a
polyhedral surface. The normal cone NCV (p) of a point p ∈ V
is the set of support vectors. The normal cycle of M is given by
N(M) := {(p,n)|p ∈ M,n ∈ NCV (p)}. For general volume V
with a polyhedral boundary surface M , one can triangulate V by
tetrahedra, V =

⋃
i ti, i = 1, 2, . . . , n. The normal cycle of V and

M is defined by inclusion–exclusion formula:

N(V ) = N(M) :=
n∑

k=1

(−1)k+1
∑

1≤i1<···ik≤n

N(∩k
j=1tij ).

It can be shown that the normal cycle N(V ) is independent of
triangulations. Similarly, the set-valued mapping from M to its
normal cycle N(M) is denoted as i : M → N(M), i(p) = (p,n),n ∈
NCV (p).

3.3.2. Unified curvature
Normal cycles are embedded in the space E3

× E3, with global
coordinates (x1, x2, x3, y1, y2, y3). The curvatures of smooth sur-
face and discrete mesh can be unified using the following three
differential 2-forms:

ωA
= y1dx2 ∧ dx3 + y2dx3 ∧ dx1 + y3dx1 ∧ dx2

ωG
= y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2

ωH
= y1(dx2 ∧ dy3 + dy2 ∧ dx3)+

y2(dx3 ∧ dy1 + dy1 ∧ dx3)+

y3(dx1 ∧ dy2 + dy1 ∧ dx2).

(25)

Let B ⊂ E3 be a Borel set, the Gaussian curvature measure for a
smooth surface S is

φG
S (B) :=

∫
B∩S

G(p)dp,

where G(p) is the Gaussian curvature of S at point p. Similarly, the
mean curvature measure is given by

φH
S (B) :=

∫
B∩S

H(p)dp,

where H(p) is the measure curvature of S at point p. For discrete
mesh, the Gaussian curvature measure is given by

φG
M (B) :=

∑
v∈B∩M

K (v), (26)

where K (v) is the discrete Gaussian curvature. Themean curvature
measure is given by

φH
M (B) :=

∑
e∈M

length(e ∩ B)β(e),

where β(e) is the angle between the normals to the faces adjacent
to the edge e. The sign of β(e) is chosen to be positive if e is convex
and negative otherwise.

The curvature measure of a surface (no matter smooth or dis-
crete) is equal to the integration of the specific differential form on
its normal cycle,∫
N(M)

ωG
|i(B∩M) = φG

M (B)∫
N(M)

ωH
|i(B∩M) = φH

M (B)∫
N(M)

ωA
|i(B∩M) = Area(B ∩M)

(27)

whereM can be a smooth surface or a discrete mesh.

3.3.3. Curvature measure convergence
Given a Riemannian surface (S, g), a conformal parameteriza-

tion is denoted as ϕ : S → D, where D is the parameter domain.
Then we sample D and construct a triangulation T of D to produce
a discrete mesh M , the piecewise linear mapping from M to T is
denoted as τ : M → T . The composition map is denoted as π =
ϕ−1 ◦ τ : M → S. The following curvature measure convergence
theorem was proven in [3] using normal cycle theory:

Theorem 3 (Curvature Measure Convergence). Let S be a surface
embedded in E3. For any given upper bound ε of the circumradius, the
Delaunay refinement algorithm on the conformal parameter domain
will produce a triangulation with bounded aspect ratio, and induce a
polyhedral triangular mesh M, which satisfies the following proper-
ties: let B ⊂ E3 be a relative interior of a union of triangles of M, then

|φG
M (B)− φG

S (π (B))| < Kε
|φH

M (B)− φH
S (π (B))| < Kε

(28)

where for fixed S

K = O(area(B ∩ S))+ O(length(∂B ∩ S)).

This means, if one can construct triangulations with bounded
minimal corner angle and the edge length, the resulting meshes
have the curvature measure convergence property.

In our proposed method, given a topological disk (S, g) em-
bedded in E3, we compute the conformal parameterization ϕ :
S → D, where D is the planar disk. Furthermore, we construct
an area-preserving parameterization τ : NC(S) → D. Then we
uniformly sample on the image of τ , the sample set is denoted as
P . On the image of ϕ, we start with P and use Delaunay refinement
method (such as Chow’s method) to construct a triangulation T
with bounded corner angles, in turn construct a discrete M by T ,
then by the above theorem, M has the curvature measure estima-
tion as in Eq. (28). Hence, we obtain the following corollary.

Corollary 1. The curvature adaptive remeshing algorithm produces
meshes with Gaussian curvature measure , mean curvature measure,
area measure convergence property.

4. Computational algorithm

In this section, we explain all the algorithms in detail.
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Fig. 3. Remeshing Algorithm Pipeline. Frame (a) shows the input mesh. Frame (b) and (c) show the CAP and CFP, respectively. The second row illustrates the detailed steps
of our remeshing algorithm: first, we uniformly sample the CAP domain, as shown in Frame (d); second, we map the samples onto CFP domain, illustrated by Frame (e);
third, we perform the Delaunay Triangulation algorithm on the CFP domain, shown in Frame (f); finally we pull back the triangulation to the original surface, to obtain the
remeshing result, illustrated in Frame (g).

4.1. Pipeline

The algorithm pipeline is summarized in Alg. 1 and illustrated
by Fig. 3. The inputmesh is a genus zeromeshwith a single bound-
ary. The mesh quality of the input mesh could be very low, which
does not affect our algorithm. The conformal parameterization
(CFP) of the input surface uses the dynamic discrete surface Yam-
abe flowmethod [50],which is robust enough tohandle lowquality
meshes. The area-preserving parameterization (APP) of the normal
cycle is based on the discrete optimal mass transportation using
variational approach [71], which has also been adopted in [74–76].
The curvature sensitive parameterization (CAP) is also based on the
discrete optimal mass transportation method.

Algorithm 1: Remeshing Algorithm Pipeline.
Input: The input meshM and the number of samples n
Output: The remeshing result M̃ with n vertices
1. Compute the Conformal parameterization of the input surface
(CFP);
2. Compute the Curvature Adaptive Parameterization of the
normal cycle (CAP);
3. Sample n points P uniformly on CAP domain;
4. Map P to CFP domain to get Q;
5. Delaunay triangulate Q to get a triangulation T ;
6. Pull back T to the original meshM to get the final result.

In the following, we explain the details of each step. The the-
oretic proofs for the existence of solutions to dynamic discrete
Yamabe flow can be found in [50]. The theoretic aspects of the
discrete optimal transportation map are covered by [71].

4.2. Dynamic discrete surface Yamabe flow

The dynamic Yamabe flow algorithm mainly optimizes the fol-
lowing convex energy in Eq. (11)with the linear constraint

∑
i ui =

0. The gradient is the difference between the target curvature and
the current curvature, as shown in Eq. (12). The Hessian matrix
is the classical discrete Laplace–Beltrami matrix in Eq. (13), con-
sisting of the cotangent edge weight in Eq. (14). During the flow,
the triangulation is preserved to be Delaunay by edge swapping
operator. The details of the algorithm can be found in Alg. 2.

The dynamic Yamabe flow can handle meshes with low quali-
ties. In our current work, we set the target curvature of the interior
vertices to be zero everywhere, the target curvatures of the bound-
ary vertices to be constant. After obtaining the target edge length,
we can flatten the whole mesh face by face, such that the input
simply connected mesh is mapped onto a planar convex domain.

4.3. Optimal mass transportation map

In the current work, the source domain Ω is the canonical
convex domain in R2, the target is a set of discrete points Y =
{q1, q2, . . . , qk}which densely samplesΩ . The source measure on
Ω is the uniform measure µ = 1 everywhere. The target measure
on Y is prescribed by the user, ν = {ν1, ν2, . . . , νk}, such that∑k

i=1 νi equals the total area ofΩ .

4.3.1. The target measure
In order to compute the area-preserving parameterization of

the normal cycle, we need to set the area element as the target
measure ν.

Given the input mesh M = (V , E, F ), for each face f ∈ F ,
we compute the normal to it nf . The vertex normal is defined
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Fig. 4. Different parameterization methods for the Sophie model: CFP, CAP and APP (Area Preserving Parameterization).

Fig. 5. Comparison of Hausdorff distances between the surfaces and the normal cycles based on APP and CAP methods.

Fig. 6. Comparison between remeshing based on curvature adaptive sampling and uniform sampling. (a) is the original oldman face model with 140k vertices. (b) and (c)
are the remeshing results by APP with 5k vertices. (d) and (e) are obtained by CAP with 5k vertices. The curvature adaptive remeshing preserves the geometric details better.

Fig. 7. Comparison of the curvature convergence of the remeshing results based on APP and CAP. (a) shows the original oldman face model with two ROIs, the eye area and
the nose region. (b) and (c) show the curvature convergence curves, the blue and red curves are based on APP and CAP respectively. The horizontal axis indicates the number
of vertices, the vertical axis is the curvature error. It is obvious the CAP remeshing has higher curvature convergence rate.
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Fig. 8. Comparison of the curvature convergence of the fish model. (a) is the fish model with 2 ROIs, the lip and the side regions. (b) and (c) show the curvature convergence
curves for the lip and side regions respectively. The blue (red) curves show the results based on APP (CAP). It is obvious that the CAP remeshing has faster convergence rate.

Algorithm 2: Dynamic Discrete Surface Yamabe Flow.

Input: The input meshM and the target curvature K̄ , threshold ε
Output: The edge length which realizes the target curvature
Compute the initial edge lengths {βij};
Initialize the conformal factor to be zeros;
while true do

Compute the edge lengths using Eq. (9);
Update the triangulation to be Delaunay by edge swapping;
Compute the corner angles using Eq. (6);
Compute the cotangent edge weights using Eq. (14);
Compute the vertex curvature using Eq. (7);
if ∀|K̄i − Ki(h)|< ε then

Break;
Compute the gradient of the Yamabe energy using Eq. (12);
Compute the Hessian of the Yamabe energy using Eq. (13);
Solve the linear system Hess(u)δu = ∇E(u)
u← u+ δu;

return the edge length {lij}

as a linear combination of the normals to the surrounding faces,
weighted by the areas,

nv =
∑

v∈f nf Af

|
∑

v∈f nf Af |
,

where Af is the area of the face f . The discrete Riemannian metric
of the normal cycle N(M) is denoted as d : E → R+, for each edge
[vi, vj],

dij =
√
|vj − vi|

2
+ |nj − ni|

2,

where ni and nj are the normals to the vertices vi and vj respec-
tively.

For each vertex vi ∈ V , the target point qi is defined as its planar
conformal parameter, the target measure νi is defined as

νi :=
1
3

∑
vi∈f

Af + λ|K (vi)|, (29)

namely, a linear combination of the surface area element and the
Gaussian sphere area element, where λ is a positive constant.

4.3.2. Power diagram and weighted delaunay triangulation
For each target point qi ∈ Y , we construct a hyperplane in

R3, πi(h) : ⟨qi, p⟩ + hi, i = 1, 2, . . . , k. Then we compute the
upper envelope of these hyperplanes. For each hyperplane πi(h),
we construct a dual point π∗i (h) ∈ R3 as follows: assume the

Algorithm 3: Discrete Optimal Mass Transportation Map

Input: A convex domainΩ ⊂ R2 and a set of discrete points
Y = {q1, · · · , qn}, discrete target measure
ν = {ν1, · · · , νn}, such that

∑
i νi = Area(Ω)

Output: A partition ofΩ ,Ω = ∪iWi, such thatWi ↦→ qi is the
optimal mass transportation map.

Translate and scale Y , such that Y ⊂ Ω
Initialize the height vector h, such that hi ← 1/2⟨qi, qi⟩

while true do
for i← 1 to k do

Construct the plane πi(h) : ⟨qi, p⟩ + hi
Compute the dual point of the plane π∗i (h)

Construct the convex hull C(h) of the dual points {π∗i (h)}
Compute the dual of the convex hull to obtain the upper
envelope E(h) of the planes {πi(h)}
Project C(h) to obtain the weighted Delaunay triangulation
T (h) of Y
Project E(h) to obtain the power cell decomposition V(h) ofΩ
for i← 1 to k do

Compute the area ofWi(h), denoted as wi(h)
Construct the gradient Eq. (22);
Construct the Hessian matrix Eq. (23) and Eq. (24);
Solve the linear equation Hess(h)δh = ∇E(h)
λ← 1
Compute the power diagram A(h+ λδh) ofΩ
while ∃wi(h+ λ(δh)) is empty do
λ← 1/2λ
Compute the power diagram A(h+ λδh) ofΩ

h← h+ λδh
if ∀|wi(h)− νi|< ε then

Break

return the mapping {Wi(h) ↦→ qi, i = 1, 2, · · · , k}

coordinates of qi ∈ R2 are (xi, yi), then the dual point is π∗i (h) =
(xi, yi,−hi), i = 1, 2, . . . , k. Then we compute the convex hull
of {π∗1 (h), π

∗

2 (h), . . . , π
∗

k (h)} using incremental convex hull algo-
rithm as described in [77], denoted as C(h).We remove all the faces
of C(h), facing upwards. The dual of C(h) is the upper envelope
of the hyperplanes, denoted as E(h). The projection of the upper
envelope is the power diagram, denoted as V(h). The projection of
the convex hull is theweightedDelaunay triangulation of Y , denoted
as T (h).
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4.3.3. Convex optimization
The main focus of the algorithm is to optimize the convex

energy Eq. (21) with the linear constraint
∑k

i=1 hi = 0. The gra-
dient is the difference between the target measure and the current
measure of each power cell in Eq. (22). Each Delaunay edge is dual
to a unique Voronoi edge, the ratio between lengths is defined
as the edge weight in Eq. (23). The Hessian matrix is the discrete
Laplace–Beltrami operator in Eq. (24). We use Newton’s method to
iteratively optimize the energy. During the optimization process,
we need to ensure the height vector h is admissible, namely, in the
power cell decomposition V(h), each cell Wi(h) is non-empty. In
our algorithm, if the height vector exceeds the admissible space,
the step length is reduced by half. The details of the algorithm can
be found in Alg. 3.

4.4. Remeshing

The conformal parameterization (CFP) is denoted as ϕ : M →
D0, the area-preserving parameterization of the normal cycle (CAP)
is denoted as ψ : D0 → D1, where both D0 and D1 are the planar
unit disks, with different measures. We uniformly sample the CAP
domainD1 to obtain the sample point set P . The inverse of the CAP
ψ−1 maps P to the CFP domain D0, furthermore the inverse of the
CFPϕ−1 maps the sample points to the originalmeshM . On the CFP
domain, we compute the restricted Delaunay triangulation T , then
ϕ−1 pulls back T to the meshM , then induce a triangulation onM .
Because ϕ is conformal, T is Delaunay on D0, it is also Delaunay on
M . In this way, we obtain the remeshing result M̃ .

5. Experimental results

We implemented the proposed algorithms in generic C++, using
VISUAL Studio on Windows platform. All the experiments are car-
ried out on a laptop with 2.3 GHz dual core CPU and 8GB memory.
We report our results in the following four subsections, which
demonstrate that our algorithm allows users to control the sam-
pling distribution and produce high quality meshes. We have con-
ducted our experiments on surfaces either manually constructed
(the old man head) or scanned from real objects: the human face
model 4, the fish model 8 and some other models.

Normal cycle hausdorff distance. Fig. 4 shows different parameter-
ization methods for the Sophie facial surface model. Fig. 5 shows
the comparison of Hausdorff distances between the surfaces and
the normal cycles based on APP and CAP methods. The horizontal
axis indicates the number of samples, the vertical axis shows
the Hausdorff distance. The blue (red) curve shows the distance
between the original surface and the remeshing results based on
APP (CAP). It is obvious that curvature adaptive sampling method
achieves smaller Hausdorff distances between the normal cycles
than uniform sampling method.

Curvature convergence. Fig. 6 shows the reconstruction results
based on uniform sampling (APP) and curvature adaptive param-
eterization (CAP). By visual comparison, it is clear that the CAP
method better preserves subtle geometric features, such as the eye
lids, the wrinkles of the skin and the contour of the ears.

Furthermore, Fig. 7 shows the comparison between the curva-
ture convergence rates quantitatively. In frame (a), a neighborhood
of the right eye and a neighborhood of the nose tip are selected. The
discrete Gaussian curvature measure of each region is calculated
using Eq. (26). Frame (b) shows the total curvature errors in the
eye region on the original surface and the reconstructed mesh
with different sampling rate based on APP. Frame (c) shows the
curvature error-sampling rate curve based on CAP. It is clear that
the CAP based method outperforms the APP based one. Fig. 8
illustrates the results for the same experiment for the fish model,
and demonstrates that the curvature adaptive remeshing achieves
higher curvature convergence rate.

Table 1
Comparison with state-of-the-art methods.
Input #Samples Methods Ndist Cdist Time (s)

Oldman (140k) 20k

[RAR] 0.105 0.039 3.87
[Vorpaline] 0.107 0.029 16.984
[CVT] 0.098 0.038 6.484
[APP] 0.055 0.024 6.687
[CAP] 0.067 0.015 6.203

Buddha (47k) 30k

[MAI] 0.146 0.085 555
[RAR] 0.168 0.109 3.04
[Vorpaline] 0.142 0.102 19.203
[CVT] 0.112 0.085 5.141
[APP] 0.103 0.050 4.86
[CAP] 0.099 0.023 5.532

Skull (19k) 15k

[MAI] 0.136 0.085 219
[RAR] 0.076 0.042 1.09
[Vorpaline] 0.060 0.025 7.953
[CVT] 0.058 0.022 2.344
[APP] 0.045 0.019 2.281
[CAP] 0.049 0.011 1.97

Bunny (23k) 19k

[MAI] 0.055 0.094 245
[RAR] 0.045 0.089 1.37
[Vorpaline] 0.048 0.091 7.953
[CVT] 0.061 0.030 3.047
[APP] 0.047 0.016 2.765
[CAP] 0.035 0.009 2.891

Bimba (15k) 12k

[MAI] 0.085 0.057 255
[RAR] 0.092 0.029 0.97
[Vorpaline] 0.084 0.023 5.766
[CVT] 0.077 0.022 2.188
[APP] 0.061 0.021 1.765
[CAP] 0.075 0.013 1.953

Comparison with state-of-the-art methods. We compare our cur-
vature adaptive remeshing method with several state-of-the-art
approaches, as explained in the following: Hu et al. proposed a fea-
ture preserving surface remeshing algorithm with bounded err in
[78], denoted as MAI; Botsch et al. proposed an adaptive remesh-
ing method for real time mesh deformation in [79], denoted as
RAR; Levy and Bonneel proposed a variational anisotropic surface
meshing algorithm with Voronoi parallel linear enumeration in
[80], denoted as Vorpaline; Yan et al. proposed isotropic remeshing
algorithm with fast and exact computation of restricted Voronoi
diagram in [18], denoted as CVT.

Figs. 9 and 10 visually compare the resulting results obtained by
the state-of-the-art methods and our proposed methods. Quanti-
tative comparison is summarized in Table 1, where we compute
the mean value of the normal distance (Ndist) and the curva-
ture distance (Cdist). First, each vertex on the remeshed result is
pulled back to the original surface, then the deviation between
the normals on the pair of corresponding points is calculated. If
the source point is interior of a triangle face, we use barycentric
coordinates to linearly interpolate thenormals at the vertices of the
face. The curvature distance is carried out similarly. From Table 1,
it is obvious that our proposed algorithm gives the optimal results
in terms of normal and curvature distances.

6. Conclusions

This work proposes a novel framework for curvature adaptive
remeshing based on normal cycle theory, which guarantees the
curvature measures of the resulting meshes converge to those of
the smooth surface. Furthermore, the normal cycle theory guides
the sampling scheme. The method uniformly samples the normal
cycle, instead of the original surface, this improves the speed of
curvature convergence. Our experimental results demonstrate the
efficiency and efficacy of the proposed method.
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Fig. 9. Comparison with state-of-the-art approaches for the oldman model.

Fig. 10. Comparison with state-of-the-art approaches for the Buddha model, ROI means region of interest, which is select manually.

In the future, wewill generalize the proposed isotropic remesh-
ingmethod to anisotropicmethod for better adapting to the geom-
etry of the input surfaces; furthermore, we will combine normal
cycle theory with Centroidal Voronoi Tessellation (CVT) method,
design meshing algorithm with better curvature convergence.

Acknowledgments

Theproject is partially supported byNSFC61772379, 61772105,
61432003 and 61720106005, NSF CMMI-1762287 Collaborative
Research: Computational Framework for Designing Conformal
Stretchable Electronics, Ford URP Topology Optimization of Cel-
lular Mesostructure’s Nonlinear Behaviors for Crash Safety and
NSF DMS-1737812 Collaborative Research: ATD: Theory and Al-
gorithms for Discrete Curvatures on Network Data from Human
Mobility and Monitoring.

References

[1] Morvan JM. Generalized curvatures. Geometry and computing, Springer Ver-
lag; 2008.

[2] Cohen-Steiner D, Morvan J-M. Restricted Delaunay triangulations and normal
cycle. In: Proceedings of the nineteenth annual symposium on computational
geometry. SCG ’03, 2003, p. 312–21.

[3] Li H, Zeng W, Morvan JM, Chen L, Gu XD. Surface meshing with curvature
convergence. IEEE Trans Vis Comput Graphics 2014;20(6):919–34. http://dx.
doi.org/10.1109/TVCG.2013.253.

[4] Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruc-
tion algorithm. In: Proceedings of the 25th annual conference on computer
graphics and interactive techniques. SIGGRAPH ’98, NewYork, NY, USA: ACM;
1998, p. 415–21. http://dx.doi.org/10.1145/280814.280947, URL http://doi.
acm.org/101145/280814280947.

[5] Alliez P, Meyer M, Desbrun M. Interactive geometry remeshing. ACM Trans
Graph 2002;21(3):347–54.

[6] Alliez P, Attene M, Gotsman C, Ucelli G. Recent advances in remeshing of
surfaces. In: Shape analysis and structuring. Springer; 2008, p. 53–82.

[7] Surazhsky V, Gotsman C. Explicit surface remeshing. In: Proceedings of eu-
rographics symposium on geometry processing. Aachen, Germany; 2003, p.
17–28.

[8] Frey PJ, Borouchaki H. Geometric surface mesh optimization. Comput Vis Sci
1998;1(3):113–21.

[9] Edelsbrunner H, Shah NR. Triangulating topological spaces. Int J Comput
Geom Appl 1997;7(4):365–78.

[10] Cheng S-W, Dey TK, Levine JA. A practical Delaunay meshing algorithm for
a large class of domains. In: Proc. 16th international meshing roundtable.
Sandia National Laboratories; 2007, p. 477–94.

[11] Amenta N, Bern MW. Surface reconstruction by Voronoi filtering. In: Pro-
ceedings of the fourteenth annual symposium on computational geometry,
Minneapolis, Minnesota, USA, June 7-10, 1998. 1998, p. 39–48.

[12] Morvan J-M, Thibert B. On the approximation of the area of a surface. In: Tech.
Rep. RR-4375. INRIA; 2002.

[13] Boissonnat JD, Oudot S. Provably good sampling and meshing of surfaces.
Graph Models 2005;67:405–51.

[14] Du Q, Faber V, Gunzburger M. Centroidal Voronoi tessellations: Applications
and algorithms. SIAM Rev 1999;41(4):637–76.

[15] Alliez P, d. Verdière EC, Devillers O, Isenburg M. Isotropic surface remeshing.
In: Proceedings of the shape modeling international 2003. Washington, DC:
IEEE Computer Society; 2003, p. 49.

[16] Lévy B, Liu Y. Lp centroidal voronoi tesselation and its applications. In: ACM
transactions on graphics (SIGGRAPH conference proceedings). 2010.

[17] Chen Z, Cao J, Wang W. Isotropic surface remeshing using constrained cen-
troidal Delaunay mesh. Comput Graph Forum 2012;31(7–1):2077–85.

[18] Yan D, Lévy B, Liu Y, Sun F, Wang W. Isotropic remeshing with fast and
exact computation of restricted voronoi diagram. Comput Graph Forum
2009;28(5):1445–54.

[19] Alliez P, Cohen-Steiner D, Devillers O, Lévy B, Desbrun M. Anisotropic polyg-
onal remeshing. In: ACM SIGGRAPH 2003 papers. New York, NY: ACM; 2003,
p. 485–93.

[20] Jiao X, Colombi A, Ni X, Hart JC. Anisotropic mesh adaptation for evolving
triangulated surfaces. In: Proc. 16th international meshing roundtable. 2006.

[21] Boissonnat JD, Wormser C, Yvinec M. Locally uniform anisotropic meshing.
In: Proc. 24th ann. symp. on comput. geom.. 2008.

[22] Canas GD, Gortler SJ. Surface remeshing in arbitrary codimensions. Vis Com-
put 2006;22(9):885–95.

[23] Lai Y-K, Zhou Q-Y, Hu S-M, Wallner J, Pottmann H. Robust feature classifica-
tion and editing. IEEE Trans Vis Comput Graphics 2007;13(1):34–45.

http://refhub.elsevier.com/S0010-4485(18)30233-1/sb1
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb1
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb1
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb2
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb2
http://dx.doi.org/10.1109/TVCG.2013.253
http://dx.doi.org/10.1109/TVCG.2013.253
http://dx.doi.org/10.1109/TVCG.2013.253
http://dx.doi.org/10.1145/280814.280947
http://doi.acm.org/101145/280814280947
http://doi.acm.org/101145/280814280947
http://doi.acm.org/101145/280814280947
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb5
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb5
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb5
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb6
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb7
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb8
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb9
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb9
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb9
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb10
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb10
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb10
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb10
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb10
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb11
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb11
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb11
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb11
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb11
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb12
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb12
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb12
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb13
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb14
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb14
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb14
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb15
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb16
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb16
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb16
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb17
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb17
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb17
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb18
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb19
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb19
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb19
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb19
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb19
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb20
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb20
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb20
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb21
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb21
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb21
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb22
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb22
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb22
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb23
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb23
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb23


12 K. Su, N. Lei, W. Chen et al. / Computer-Aided Design 111 (2019) 1–12

[24] Lévy B, Bonneel N. Variational anisotropic surface meshing with voronoi
parallel linear enumeration. In: Proc. 21st international meshing roundtable.
2012, p. 349–66.

[25] Dassi F, Si H. A curvature-adapted anisotropic surface re-meshing method.
Springer International Publishing; 2015, p. 19–41.

[26] Chew LP. Guaranteed-quality triangular meshes. Department of Computer
Science Tech Report 89-983, Cornell University; 1989.

[27] Chew LP. Guaranteed-quality mesh generation for curved surfaces. In: Proc.
9th ann. sympos. computat. geom.. 1993, p. 274–80.

[28] Ruppert J. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. J Algorithms 1995;18:548–85.

[29] Shewchuk JR. Delaunay refinement algorithms for triangular mesh genera-
tion. Comput Geom 2002;22(1–3):21–74.

[30] Cheng S-W, Dey TK, Ramos EA, Ray T. Sampling and meshing a surface
with guaranteed topology and geometry. SIAM J Comput 2007;37(4):1199–
227. http://dx.doi.org/10.1137/060665889, URL http://dx.doi.org/10.1137/
060665889, http://arxiv.org/abs/http://dx.doi.org/10.1137/060665889.

[31] Dey TK, Ray T. Polygonal surface remeshing with Delaunay refinement. Eng
Comput 2010;26(3):289–301. http://dx.doi.org/10.1007/s00366-009-0162-
1, URL http://dx.doi.org/10.1007/s00366-009-0162-1.

[32] Dey TK, Levine JA. Delaunay meshing of isosurfaces. In: Proc. shape modeling
international. 2007, p. 241–50.

[33] Cheng S-W, Dey TK, Shewchuk JR. Delaunay mesh generation. CRC Press;
2012.

[34] ThurstonW. The geometry and topology of 3-manifolds. Princeton University
Press; 1997.

[35] Rodin B, Sullivan D. The convergence of circle packings to the Riemann
mapping. J. Differ Geom 1987;26(2):349–60, http://projecteuclid.org/euclid.
jdg/1214441375.

[36] He Z-X, Schramm O. On the convergence of circle packings to the Rie-
mann map. Invent Math 1996;125(2):285–305. http://dx.doi.org/10.1007/
s002220050076, URL http://dx.doi.org/10.1007/s002220050076.

[37] Chow B, Luo F. Combinatorial Ricci flows on surfaces. J. Differ Geom
2003;63(1):97–129.

[38] Gu DX, Zeng W, Luo F, Yau S-T. Numerical computation of surface conformal
mappings. Comput Methods Funct Theory 2011;11(2):747–87.

[39] de Verdiére YC. Un principe variationnel pour les empilements de cercles.
Invent Math 1991;104:655–69.

[40] Stephenson K. Introduction to circle packing: The theory of discrete analytic
functions. Cambridge University Press; 2005.

[41] Bowers PL, Stephenson K. Uniformizing dessins and Belyi maps via circle
packing. Mem Amer Math Soc 2004;170(805).

[42] Guo R. Local rigidity of inversive distance circle packing. Trans AmerMath Soc
2011;363:4757–76.

[43] Luo F. Rigidity of polyhedral surfaces, III. Geom Topol 2011;15(4):2299–319.
[44] Luo F. Combinatorial yamabe flow on surfaces. Contemp. Math.

2004;6(5):765–80.
[45] Springborn B, Schröder P, Pinkall U. Conformal equivalence of triangle

meshes. ACM Trans Graph 2008;27(3):77:1–77:11. http://dx.doi.org/10.
1145/1360612.1360676, URL http://doi.acm.org/10.1145/1360612.1360676.

[46] Glickenstein D. A combinatorial yamabe flow in three dimensions. Topology
2005;44(4):791–808.

[47] Glickenstein D. A maximum principle for combinatorial Yamabe flow. Topol-
ogy 2005;44(4):809–25.

[48] Alexander Bobenko BS. Discrete conformal maps and ideal hyperbolic poly-
hedra. Geom Topol 2015;19:2055–215.

[49] GUO R. Combinatorial yamabe flow on hyperbolic surfaces with
boundarY. Commun Contemp Math 2011;13(05):827–42. http:
//dx.doi.org/10.1142/S0219199711004464, http://arxiv.org/abs/http:
//www.worldscientific.com/doi/pdf/10.1142/S0219199711004464, URL
http://www.worldscientific.com/doi/abs/10.1142/S0219199711004464.

[50] Gu X, Luo F, Sun J, Wu T. A discrete uniformization theorem for polyhedral
surfaces. J Differ Geom 2018;109(2):223–56.

[51] Gu X, Luo F, Sun J, Wu T. A discrete uniformization theorem for polyhedral
surfaces. J Differ Geom 2018;109(3):431–66.

[52] Zeng W, Gu X. Ricci flow for shape analysis and surface registration. Springer
briefs in mathematics, Springer New York; 2013.

[53] ZhangM,GuoR, ZengW, Luo F, Yau S-T, GuX. Theunified discrete surfaceRicci
flow. Graph. Models 2014;76(5):321–39. http://dx.doi.org/10.1016/j.gmod.
2014.04.008, URL http://dx.doi.org/10.1016/j.gmod.2014.04.008.

[54] Glickenstein D. Problems in combinatorial and numerical ricci flow, Talk in
Workshop: Perspective Of The Ricci Flow (2 2013).

[55] Glickenstein D. Discrete conformal variations and scalar curvature on
piecewise flat two and three dimensional manifolds. J Differential Geom
2011;87(2):201–38.

[56] Brägger W. Kreispackungen und Triangulierugen. Enseign Math
1992;38:201–17.

[57] Rivin I. Euclidean structures of simplicial surfaces andhyperbolic volume. Ann
Math 1994;139:553–80.

[58] LeibonG. Characterizing the Delaunay decompositions of compact hyperbolic
surface. Geom Topol 2002;6:361–91.

[59] Bobenko AI, Springborn BA. Variational principles for circle patterns and
Koebe’s theorem. Trans Amer Math Soc 2004;356(2):659–89.

[60] Guo R, Luo F. Rigidity of polyhedral surface II. GeomTopol 2009;13:1265–312.
[61] Springborn B. A variational principle forweightedDelaunay triangulation and

hyperideal polyhedra. J Differential Geom 2008;78(2):333–67.
[62] Luo F. Rigidity of polyhedral surfaces. J Differential Geom 2014;96(1)

241–302.
[63] Luo F, Gu X, Dai J. Variational principles for discrete surfaces. Advanced

lectures in mathematics, High Education Press and International Press; 2007.
[64] Hersonsky S. Boundary value problems on planar graphs and flat surfaces

with integer cone singularities, I: The Dirichlet problem. J Reine AngewMath
2012;(670):65–92.

[65] Hersonsky S. The triple intersection property, three dimensional extremal
length, and tiling of a topological cube. Topology Appl 2012;159(10–
11):2795–805.

[66] Hersonsky S. Boundary value problems on planar graphs and flat surfaces
with integer cone singularities, II: the mixed Dirichlet-Neumann problem.
Differential Geom Appl 2011;29(3):329–47.

[67] Hersonsky S. Energy and length in a topological planar quadrilateral. Euro-
pean J Combin 2011;29(1):208–17.

[68] Morvan J-M, Thibert B. Approximation of the normal vector field and the
area of a smoothsurface. Discrete Comput Geom 2004;32(3):383–400. http://
dx.doi.org/10.1007/s00454-004-1096-4, http://dx.doi.org/10.1007/s00454-
004-1096-4.

[69] Xu G. Convergence analysis of a discretization scheme for Gaussian curvature
over triangular surfaces. Comput Aided Geom Design 2006;23(2):193–207.
http://dx.doi.org/10.1016/j.cagd.2005.07.002, URLhttp://dx.doi.org/10.1016/
j.cagd.2005.07.002.

[70] Hildebrandt K, Polthier K, Wardetzky M. On the convergence of metric and
geometric properties of polyhedral surfaces. GeomDedicata 2006;123(1):89–
112. http://dx.doi.org/10.1007/s10711-006-9109-5, URL http://dx.doi.org/
101007/s10711-006-9109-5.

[71] Gu X, Luo F, Sun J, Yau S-T. Variational principles for Minkowski type prob-
lems, discrete optimal transport, and discrete Monge-Ampere equations,
arXiv:13025472 (2013) 1–13.

[72] Andreev EM. Convex polyhedra of finite volume in Lobachevsky space. (Rus-
sian) Mat Sb (N.S.) 1970;83(125):256–60.

[73] Aurenhammer. Power diagrams: properties, algorithms and applications.
Siam J Comput. 2006;16(1):78–96.

[74] Su K, Cui L, Qian K, Lei N, Zhang J, Zhang M, Gu XD. Area-preserving mesh
parameterization for poly-annulus surfaces based on optimal mass trans-
portation. Comput Aided Geom Design 2016;46(C):76–91.

[75] Su K, Chen W, Lei N, Cui L, Jiang J, Gu XD. Measure controllable volumetric
mesh parameterization. Comput Aided Des 2016;78(C):188–98.

[76] Su K, Chen W, Lei N, Zhang J, Qian K, Gu X. Volume preserving mesh pa-
rameterization based on optimal mass transportation. Comput Aided Des
2017;82:42–56.

[77] Mark de Berge MvK, Otfried Cheong, Overmars M. Computational geometry:
Algorithm and application. 3rd ed.. Springer Verlag; 2008.

[78] Hu K, Yan D-M, Bommes D, Alliez P, Benes B. Error-bounded and feature
preserving surface remeshing with minimal angle improvement, IEEE Trans-
actions on Visualization and Computer Graphics.

[79] Dunyach M, Vanderhaeghe D, Barthe L, Botsch M. Adaptive remeshing
for real-time mesh deformation. In: Eurographics (Short Papers). 2013
p. 29–32.

[80] Lévy B, Bonneel N. Variational anisotropic surface meshing with voronoi
parallel linear enumeration. In: Proceedings of the 21st internationalmeshing
roundtable. Springer; 2013, p. 349–66.

http://refhub.elsevier.com/S0010-4485(18)30233-1/sb24
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb24
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb24
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb24
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb24
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb25
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb25
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb25
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb26
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb26
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb26
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb27
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb27
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb27
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb28
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb28
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb28
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb29
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb29
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb29
http://dx.doi.org/10.1137/060665889
http://dx.doi.org/10.1137/060665889
http://dx.doi.org/10.1137/060665889
http://dx.doi.org/10.1137/060665889
http://dx.doi.org/http://arxiv.org/abs/http://dx.doi.org/10.1137/060665889
http://dx.doi.org/10.1007/s00366-009-0162-1
http://dx.doi.org/10.1007/s00366-009-0162-1
http://dx.doi.org/10.1007/s00366-009-0162-1
http://dx.doi.org/10.1007/s00366-009-0162-1
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb32
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb33
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb33
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb33
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb34
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb34
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb34
http://projecteuclid.org/euclid.jdg/1214441375
http://projecteuclid.org/euclid.jdg/1214441375
http://projecteuclid.org/euclid.jdg/1214441375
http://dx.doi.org/10.1007/s002220050076
http://dx.doi.org/10.1007/s002220050076
http://dx.doi.org/10.1007/s002220050076
http://dx.doi.org/10.1007/s002220050076
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb37
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb37
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb37
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb38
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb38
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb38
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb39
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb39
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb39
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb40
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb40
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb40
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb41
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb41
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb41
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb42
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb42
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb42
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb43
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb44
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb44
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb44
http://dx.doi.org/10.1145/1360612.1360676
http://dx.doi.org/10.1145/1360612.1360676
http://dx.doi.org/10.1145/1360612.1360676
http://doi.acm.org/10.1145/1360612.1360676
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb46
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb46
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb46
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb47
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb47
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb47
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb48
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb48
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb48
http://dx.doi.org/10.1142/S0219199711004464
http://dx.doi.org/10.1142/S0219199711004464
http://dx.doi.org/10.1142/S0219199711004464
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219199711004464
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219199711004464
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0219199711004464
http://www.worldscientific.com/doi/abs/10.1142/S0219199711004464
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb50
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb50
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb50
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb51
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb51
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb51
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb52
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb52
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb52
http://dx.doi.org/10.1016/j.gmod.2014.04.008
http://dx.doi.org/10.1016/j.gmod.2014.04.008
http://dx.doi.org/10.1016/j.gmod.2014.04.008
http://dx.doi.org/10.1016/j.gmod.2014.04.008
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb55
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb55
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb55
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb55
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb55
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb56
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb56
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb56
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb57
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb57
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb57
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb58
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb58
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb58
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb59
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb59
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb59
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb60
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb61
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb61
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb61
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb62
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb62
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb62
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb63
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb63
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb63
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb64
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb64
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb64
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb64
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb64
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb65
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb65
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb65
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb65
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb65
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb66
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb66
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb66
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb66
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb66
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb67
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb67
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb67
http://dx.doi.org/10.1007/s00454-004-1096-4
http://dx.doi.org/10.1007/s00454-004-1096-4
http://dx.doi.org/10.1007/s00454-004-1096-4
http://dx.doi.org/10.1007/s00454-004-1096-4
http://dx.doi.org/10.1007/s00454-004-1096-4
http://dx.doi.org/10.1007/s00454-004-1096-4
http://dx.doi.org/10.1016/j.cagd.2005.07.002
http://dx.doi.org/10.1016/j.cagd.2005.07.002
http://dx.doi.org/10.1016/j.cagd.2005.07.002
http://dx.doi.org/10.1016/j.cagd.2005.07.002
http://dx.doi.org/10.1007/s10711-006-9109-5
http://dx.doi.org/101007/s10711-006-9109-5
http://dx.doi.org/101007/s10711-006-9109-5
http://dx.doi.org/101007/s10711-006-9109-5
http://arxiv.org/abs/13025472
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb72
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb72
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb72
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb73
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb73
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb73
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb74
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb74
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb74
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb74
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb74
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb75
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb75
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb75
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb76
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb76
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb76
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb76
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb76
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb77
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb77
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb77
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb79
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb79
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb79
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb79
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb79
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb80
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb80
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb80
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb80
http://refhub.elsevier.com/S0010-4485(18)30233-1/sb80

	Curvature adaptive surface remeshing by sampling normal cycle
	Introduction
	Different levels of convergence
	Normal cycle
	Sampling strategies
	Contributions

	Previous work
	Surface remeshing
	Meshing
	Ricci Flow
	Convergence

	Theoretic background
	Dynamic discrete surface Ricci flow
	Discrete optimal mass transportation
	Normal cycle
	Basic concepts
	Unified curvature
	Curvature measure convergence


	Computational algorithm
	Pipeline
	Dynamic discrete surface Yamabe flow
	Optimal mass transportation map
	The target measure
	Power diagram and weighted delaunay triangulation
	Convex optimization

	Remeshing

	Experimental results
	Conclusions
	Acknowledgments
	References


