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ABSTRACT

The emergence of IoT devices and the predicted increase in the

number of data-driven and delay-sensitive applications highlight

the importance of dispersed computing platforms (e.g. edge comput-

ing and fog computing) that can intelligently manage in-network

computation and data placement. In this paper, we propose the

DECO (Data-cEntric COmputation) framework for joint computa-

tion, caching, and request forwarding in data-centric computing

networks. DECO utilizes a virtual control plane which operates on

the demand rates for computation and data, and an actual plane

which handles computation requests, data requests, data objects

and computation results in the physical network. We present a

throughput optimal policy within the virtual plane, and use it as

a basis for adaptive and distributed computation, caching, and re-

quest forwarding in the actual plane. We demonstrate the superior

performance of the DECO policy in terms of request satisfaction

delay as compared with several baseline policies, through extensive

numerical simulations over multiple network topologies.
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1 INTRODUCTION

Centralized clouds have dominated IT service delivery over the

past decade. Operating over the internet, and the clouds’ low cost

of operation [20] has made them the primary means of achieving

energy efficiency and computation speed-up for resource-poor de-

vices [1, 7]. Computation offloading to the cloud for mobile users
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has been studied extensively in the literature. Notable software

platforms for computational offloading using device and network

profiling are introduced in [6, 9, 14, 16]. Analytical models for op-

timal offloading are also proposed in [22, 24]. Recently, the cost

efficiency and scalability of centralized cloud have been challenged

by the emergence of Internet of Things (IoT) devices and the pre-

dicted increase in services with ultra low latency requirements

(one millisecond or less)[19, 20]. This has made paradigms such as

fog computing [2] and mobile edge computing more appealing. In

this paper we refer to the family of such paradigms as dispersed

computing.

In the fog computing paradigm, networking, computation and

storage resources are distributed at different hierarchical levels

from the core of the network to the edge. In mobile edge computing,

these resources are distributed throughout the mobile edge close to

the users. As the number of delay-sensitive applications increases,

these platforms have the potential to outperform centralized cloud

architectures in terms of request satisfaction delay [19]. The poten-

tial benefits of such paradigms are accompanied by challenges in

distributed implementation and control. Another challenge is the

increased popularity of media-rich and data-driven applications

where computations are often designed to be performed on large

pieces of data stored in the network. Medical data analytics [4, 5],

data processing for wearable devices [11], intelligent driving and

transportation systems [28] and in-network image/video processing

[17] are examples of such applications.

A fundamental question in dispersed computing is how to op-

timally utilize the processing, storage and bandwidth resources

in the network to accomplish data-centric computation with high

throughput and low latency. Specifically, how should one forward

computation requests, perform computations, and move and store

data in the network? For instance, should one bring data to the

computation-requesting node for computation or take the com-

putation to the data server? How can one provide a solution in a

distributed and adaptive1 manner within networks with general

topology and request patterns?

While previous work has addressed aspects of the fundamental

question raised above, the problem has never been solved as a

coherent whole. To the best of our knowledge, this paper is the

first to study joint computation, forwarding, data placement and

caching within an adaptive and distributed setting.

In this paper, we consider a data-centric dispersed computing

network with arbitrary topology and arbitrary processing, com-

munication and storage resources available at each node. Users

issue computation requests for performing a computation task on

1By adaptive, we mean that control algorithms do not require knowledge of computa-
tion request rates.
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a required piece of data. (e.g. processing a 3D map of the envi-

ronment in AR/VR applications). This computation request, along

with input arguments (e.g. the feature map of users’ point of view

in AR/VR applications), is forwarded through the network until

a node decides to perform the task locally. This node can process

the computation only when it has the required data object, either

from its own cache or fetched from the other nodes by issuing

a data request. After the data request arrives at a data server or

caching point, a copy of the data is sent back to the data requester

on the reverse path. Each node on the path can optionally cache

the data for future use. The data requester then processes the task

and sends the result back to the original computation requester

on the reverse path (of the computation request). The question is

how nodes should decide on computation request forwarding, data

request forwarding, computation and caching in an adaptive and

distributed manner.

To solve this challenging problem, we propose the DECO (Data-

cEntric COmputation) framework. DECOutilizes twometrics, called

virtual computation interest (VCI) and virtual data interest (VDI), to

capture the measured demand for computations and data objects,

respectively. Virtual interest as a metric for measured demand was

first introduced in [25] for caching networks where a virtual plane

was employed to handle the virtual interests. Similarly, here we

deploy a virtual plane that operates on the VCIs and VDIs, and

an actual plane which handles actual computation requests, data

requests, data objects and computation results in the physical net-

work. This separation between virtual and actual plane allows us

to design the elegant DECO joint computation/caching/forwarding

algorithm. The DECO algorithm is proved to be throughput optimal

in the virtual plane, and is used in the actual plane to decide on

forwarding, computation and caching actions in the network. The

superior performance of the DECO algorithm, relative to many

baseline algorithms, is shown through extensive simulation studies.

Our key contributions in this work can be summarized as follows:

• We present an adaptive and distributed framework called

DECO for joint computation, caching and request forwarding

in a data-centric dispersed computing networkwith arbitrary

topology, data catalog and task catalog consisting of single-

stage computations.

• The proposed DECO framework consists of a virtual con-

trol plane and an actual plane. This allows us to design an

elegant algorithm which is shown to be throughput optimal

in the virtual plane, and is used for decision making in the

actual plane. The throughput optimal algorithm takes into

account demand for both computation and data to optimize

computation, caching, and forwarding decisions.

• We present new proofs for the stability region and through-

put optimality of the DECO policy. This is necessitated in

part by new dynamics caused by internally generated data

demand from computation requests.

• We evaluate the performance of the DECO framework in

terms of computation request satisfaction latency through

extensive simulations. We show that the DECO solution

significantly outperforms a number o baseline schemes over

all network topologies tested.

2 RELATEDWORK

Task scheduling and resource allocation in a heterogeneous com-

puting platform have been studied in research and practice. Authors

in [21] studied the problem of static task scheduling and proposed a

centralized heuristic called HEFT for scheduling tasks represented

by a DAG (Directed Acyclic Graph). Pegasus [10] and CIRCE [15]

were proposed as frameworks for mapping of tasks to computers

in a dispersed computing system. Distributed assignment of tasks

to computers was studied in [18]. These works present frameworks

for task assignment problem but do not provide any optimality

guarantee on the performance of the computing network.

The problem of virtual function placement in a computing net-

work was studied in [8] where the objective is to minimize the

cost of setting up functions and requesting service. Authors in [12]

studied a similar problem in a distributed cloud network where com-

putation services are modeled as a chain of consecutive tasks, and

there is a linear cost associated with setting up and utilizing compu-

tation and communication resources. They propose a throughput

optimal method for task scheduling and request forwarding based

on minimization of Lyapunov drift plus penalty to minimize the

cost while keeping the computation queues stable. A throughput

optimal policy for uni-cast and multi-cast flows was proposed in

[27] based on a layered graph model. A throughput optimal policy

for more general DAG-based service models was proposed in [23].

Although these methods stabilize the computation queues, in

a data-centric computing network the solution should also take

stabilization of data queues into account. Authors in [3] proposed

a solution to joint caching and computation at the mobile edge

where caching is used to store the final result of computations.

Similarly, authors in [26] studied the problem of task scheduling

and image placement in order to minimize the request satisfaction

delay. In contrast to our work, these works study specific one-hop

and two-hop topologies in a centralized fashion where request rates

are known in prior.

3 COMPUTATION NETWORK MODEL

Consider a network of computing nodes, each capable of processing

computation tasks, caching data objects and communicating with

other computing nodes in the network. We model the network as a

directed graph G(V, E) withV and E representing network nodes

and links respectively. Assume that (b,a) ∈ E whenever (a,b) ∈ E.

Each node v ∈ V is equipped with a processor with capacity of

Pv (in instructions per second) and a cache with capacity of Cv (in

bits). We let the transmission capacity on link (a,b) ∈ E be Cab
(in bits per second). There is a set F of tasks which all nodes are

capable of processing. These computation tasks operate on a set

D of data objects, each stored somewhere in the network. A user

interested in computation services issue a computation request

from the set of available requests R ⊆ F × D. Each requests

for performing themth task on the kth data object is associated

with unique user-specified inputs with negligible size compared

to the required data object k . We assume computation load and

size of the results are determined by the computation taskm and

the data object k , and not by the user specified inputs. Thus we

specify a computation request in the network by a pair (m,k) ∈ R.

Assume the size of the kth data object to be Lk (in bits) and the
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where computation result sizes are also equal, the LP for transmis-

sion rates (5)-(6) turns into a backpressure algorithm on each link.

Finally in a scenario where computation loads are equal, the LP

problem for processing rates (3)-(4) turns into a backpressure-like

algorithm between VCI and VDI queues at each node. Consider a

network where all data sizes are equal (Lk = L ∀k ∈ D), all result

sizes are equal (Z(m,k ) = Z ∀(m,k) ∈ R) and all computation

loads are equal (q(m,k ) = q ∀(m,k) ∈ R). We can show that in

this situation algorithm 1 is reduced to a simple backpressure and

sorting algorithm.

Algorithm 2. In a network with Lk = L, Z(m,k ) = Z , q(m,k ) =

q, at the beginning of each time slot t , observe the counts for VCIs

(Y
(m,k )
n (t))n∈V,(m,k )∈R and VDIs (V k

n (t))n∈V,k ∈D and decide on

processing, forwarding and caching in the virtual plane as follows.

Processing: at each node n, for each (m,k) ∈ R choose:

µ
(m,k )
n,proc (t) =

{

Pn
q W ∗

n,proc (t) > 0 and (m,k) = (m,k)∗

0 otherwise.

(9)

W
(m,k )
n,proc (t) = Y

(m,k)
n (t) −V k

n (t) (10)

(m,k)∗ = arдmax
(m,k)

W
(m,k )
n,proc (t)

W ∗
n,proc (t) = (W

(m,k )∗

n,proc (t))
+

Transmission: at each node n, for each (m,k) ∈ R and each

k ∈ D choose:

µ
(m,k)

nb
(t) =

{

cbn
Z

W ∗
nb

(t )

Z ≥
G∗
nb

(t )

L ,W ∗
nb

(t) > 0, (m,k) = (m,k)∗∗

0 otherwise.

(11)

νk
nb

(t) =

{

cbn
L

G∗
nb

(t )

L >
W ∗
nb

(t )

Z ,G∗
nb

(t) > 0,k = k∗

0 otherwise.

W
(m,k )

nb
(t) = Y

(m,k )
n (t) − Y

(m,k )

b
(t), Gk

nb
(t) = V k

n (t) −V k
b
(t)

(12)

(m,k)∗∗ = arдmax
(m,k )

W
(m,k )

nb
(t), k∗ = arдmax

k

Gk
nb

(t)

W ∗
nb

(t) = (W
(m,k )∗

nb
(t))+, G∗

nb
(t) = (Gk∗

nb
(t))+

Caching: at each node n, let (d1,d2, . . . ,dK ) be a permutation of

D such that V
d1
n ≥ V

d2
n ≥ · · · ≥ V

dK
n let in = ⌊

Cn
L ⌋, then choose

skn (t) =

{

1 k ∈ {k1,k2, . . . ,kin }

0 otherwise.

In Algorithm 2, each node n at each time t allocates the entire

normalized processor capacity (
Pn
q ) to process the VCIs of (m,k)∗

which has the maximum difference between its VCI count and

VDI count for the required data object k as shown in (9)-(10). The

intuition behind this is important. The optimal policy allocates the

processing capacity to the computation request for which there is

relatively high local demand (i.e. large VCI count) and low local

demand for the required data object (i.e. low VDI count, often due

to the data object being cached in close vicinity).

Each node n at each time t for transmission on any outgoing

link (n,b) ∈ E chooses the VCI or VDI that has the maximum

backlog difference on the link normalized by size (Z for VCIs and L

for VDIs) and allocates the entire normalized reverse link capacity

(normalized by Z if the chosen count is a VCI and by L if the chosen

count is a VDI) to it as shown in (11)-(12). As for caching, each

node n with capacity to cache in = ⌊
Cn
L ⌋ data objects, chooses in

data objects with highest VDI counts to be cached in the virtual

plane. We note that in Algorithm 2, at each node the computational

complexity isO(|F |× |D|) for processing policy,O(|V|× |F |× |D|)

for transmission policy and O(|D|) for caching policy.

In the following section we show that algorithm 1 maximizes the

throughput in the virtual plane discussed in section 4 with proper

constraints on processing rates, transmission rates and caches.

4.2.1 Virtual Plane Stability Region. Here we show that algorithm 1

maximizes the throughput of virtual plane in the network G(V, E)

with appropriate constraints. We assume

• Exogenous computation request arrival processes (which are

also VCI arrival processes asmentioned before) {A
(m,k)
n (t); t =

1, 2, . . . } are mutually independent with respect to n, (m,k).

• {A
(m,k )
n (t); t = 1, 2, . . . } are i.i.d with respect to t for all

n ∈ V, (m,k) ∈ R

• For all n ∈ V, (m,k) ∈ R, A
(m,k )
n (t) ≤ A

(m,k )
n,max for all t

where A
(m,k )
n,max ∈ R+.

As for the constraints, during each time slot a node cannot store

more than its cache capacity and cannot process computation re-

quests more than processor capacity. For each computation interest

packet sent on a link, a result comes back on the reverse link even-

tually and for each data interest packet sent on a link, a data object

traverses back on the reverse link. Since we assume the size of

interest packets are negligible compared to results and data ob-

jects, when sending interest packets on a link (a,b) we need to take

into account the reverse link capacity. These constraints should be

reflected in the virtual plane and can be summarized as follows:
∑

k ∈D

Lks
k
n (t) ≤ Cn ∀n ∈ V (13)

∑

(m,k )∈R

q(m,k )µ
(m,k )
n,proc (t) ≤ Pn ∀n ∈ V (14)

∑

k ∈D

Lkν
k
ab

(t) +
∑

(m,k )

Z(m,k )µ
(m,k )

ab
(t) ≤ Cba ∀(a,b) ∈ E (15)

In order to show the throughput optimality, we present the virtual

plane stability region in this section. Stability for VCI and VDI

queues at node n is defined as:

lim sup
t→∞

1

t

t
∑

τ=1

1
[Y

(m,k )
n (τ )>ξ ]

→ 0 as ξ → ∞

lim sup
t→∞

1

t

t
∑

τ=1

1[V k
n (τ )>ξ ] → 0 as ξ → ∞

where 1{. } is the indicator function. The stability region Λ is the

is the closure of the set of all computation arrival rates defined
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as λ
(m,k)
n ≜ limt→∞

1
t

∑t
τ=1A

(m,k )
n (τ ) for which there exists some

feasible processing, forwarding, and caching policy which can stabi-

lize all VCI and VDI queues. By feasible, we mean that at any time t ,

the caching vectors
(

skn (t)
)

k ∈D,n∈V
satisfy (13), the processing rate

vector
(

µ
(m,k )
n,proc

)

(m,k )∈R,n∈V
satisfy (14) and the forwarding rate

vector
(

µ
(m,k )

ab

)

(m,k)∈R,(a,b)∈E
satisfy transmission constraints in

(15). The following theorem characterizes the stability region in the

virtual plane:

Theorem 1. The stability region for virtual computation and data

interests of the network G(V, E) with caching, computation and

transmission capacity constraints given by (13)-(14)-(15) and queue

dynamics (1)-(2), is the set Λ consisting of all computation request

arrival rates λ
(m,k )
n such that there exists computation flow variables

(f
(m,k )

ab
)(m,k )∈R,(a,b)∈L , data flow variables (dk

ab
)k ∈D,(a,b)∈L , pro-

cessing flow variables (f
(m,k )
n,proc )(m,k )∈R,n∈N and caching variables

(βn,i )n∈N;i ∈Ψn satisfying

f
(m,k )

ab
≥ 0, f

(m,k )
nn = 0, f

(m,k )

src(k )n
= 0∀a,b,n ∈ N , (m,k) ∈ R (16)

f
(m,k )

ab
= 0 ∀a,b ∈ N , (m,k) ∈ R, (a,b) < L (17)

dk
ab

≥ 0,dknn = 0,dk
src(k )n

∀a,b,n ∈ N ,k ∈ D (18)

dk
ab
= 0 ∀a,b ∈ N ,k ∈ D, (a,b) < L (19)

0 ≤ βn,i ≤ 1 i ∈ Ψn (20)

f
(m,k )
n,proc ≥ 0 ∀n ∈ N , (m,k) ∈ R (21)

λ
(m,k )
n ≤

∑

b ∈V

f
(m,k )

nb
−

∑

a∈V

f
(m,k )
an + f

(m,k )
n,proc ∀n ∈ N , (m,k) ∈ R

(22)
∑

a∈V

dkan +
∑

m

f
(m,k )
n,proc ≤

∑

b ∈V

dk
nb
+ rn

∑

i ∈Ψn

βn,i1[k ∈ Bn,i ]

∀n ∈ N , (m,k) ∈ R (23)
∑

(m,k )∈R

Z(m,k) f
(m,k )

ab
+

∑

k ∈D

Lkd
k
ab

≤ Cba ∀(a,b) ∈ L (24)

∑

i ∈Ψn

βn,i = 1 ∀n ∈ N (25)

∑

(m,k )∈R

q(m,k ) f
(m,k )
n,proc ≤ Pn ∀n ∈ N (26)

Where Ψn is the set of feasible cache combination for node n.

Proof. See Appendix A of the technical report in [13]. □

To our knowledge, Theorem 1 is the first description of the sta-

bility region of a data-centric computing network that incorporates

the effect of computation, transmission and caching all together.

4.2.2 Throughput Optimality. We now show that Algorithm 1 sta-

bilizes all VCI and VDI queues in the network for any λ ∈ int(Λ),

without any knowledge of λ. As a result Algorithm 1 is throughput

optimal in the sense of adaptively maximizing the throughput of

virtual computation interests.

Theorem 2. (Throughput Optimality) If there exists ϵ =

(ϵ
(m,k )
n )n∈V,(m,k)∈R ≻ 0 such that λ + ϵ ∈ Λ, then there exists

(ϵ
(m,k )′

n )n∈V,(m,k )∈R , (ϵ
k ′
n )n∈V,k ∈D ≻ 0 such that the network of

virtual interest queues under algorithm 1 satisfies:

lim sup
t→∞

1

t

t
∑

τ=1

(

∑

n,(m,k )

E[Y
(m,k )
n (τ )] +

∑

n,k

E[V k
n (τ )]

)

≤
NB

ϵ ′
(27)

where B ≜ 1
2N

∑

n∈V (µmax
n,out+µ

max
n,proc+r

max
n )2+(µmax

n,in +µ
max
n,proc+

Amax
n )2, ϵ ′ ≜min{(ϵ

(m,k )′

n )n∈V,(m,k )∈R , (ϵ
k ′
n )n∈V,k ∈D }

µmax
n,proc ≜

Pn
min {q(m,k ) }

, µmax
n,out ≜

∑

b Cbn
min {Z(m,k ),Lk }

,

µmax
n,in ≜

∑

a Cna
min {Z(m,k ),Lk }

, rmax
n ≜ rn |D|,Amax

n ≜
∑

(m,k )A
(m,k )
n,max

(ϵ
(m,k )′

n )n∈V,(m,k )∈R , (ϵ
k ′
n )n∈V,k ∈D are defined in Appendix A of

the technical report in [13].

Proof. See Appendix B of the technical report in [13]. □

We wish to point out that the proof is different in nature from

the previous proofs for stability, in the sense that ϵ ′ used in the

stability bound in Theorem (2) is a value first introduced in this

paper in order to show the stability of VCI and VDI queues. This is

due to the internal generation of demand for data in the network

(as described in section 4.1), and the existence of ϵ ′ is proved in

Appendix A of [13].

4.3 Computation, Caching, and Request

Forwarding in the Actual Plane

Our goal in this section is to design a distributed joint policy for

performing computation, request forwarding and caching in the ac-

tual plane based on the throughput optimal algorithm we obtained

in section 4.2 for the virtual plane.

We keep a separate queue for each (m,k) ∈ R and k ∈ D at each

node in the actual plane of DECO. In contrast to the virtual plane,

as described in the section 3 and in Figure. 2, when nodes decide to

perform a computation request (m,k), they send the computation

to the processor if they are the source of data object k or have k

stored in their cache. Otherwise they put the computation request

in the PCR(k) queue and issue a data interest packet for k . When k

returns to the node, it sends all computation requests in the PCR(k)

queue to the processor. As for caching, nodes can only cache data

objects when they are traversing back on the reverse path to the

data requester.

4.3.1 Performing Computation Requests. At each time slot t , each

node n performs computation requests of (m,k) ∈ R with rate

µ
(m,k )∗

n,proc (t) where µ
(m,k )∗

n,proc (t) is the optimal processing rates in the

virtual plane at node n in time slot t obtained by solving (3),(4).

In other words, at each time slot t each node n takes µ
(m,k )∗

n,proc (t)

computation interest packet of type (m,k) out of its corresponding

queue and sends them to the processor if n = src(k) or has the

data object k in its cache. Otherwise it puts them in the PCR(k)

queue and generates µ
(m,k )∗

n,proc (t) data interest packets for data object

k . When data object k reaches to the node n on the reverse path (of

the data interest packet), node sends all the pending computation

requests in the PCR(k) queue to the processor.

4.3.2 Transmission of Computation and Data Interest Packets. At

each time slot t , each node n transmits µ
(m,k )∗

nb
(t) computation
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interest packets of request (m,k) and transmits νk
∗

nb
(t) data interest

packets of data object k on each outgoing link (n,b) ∈ E where

µ
(m,k)∗

nb
(t) and νk

∗

nb
(t) are optimal transmission rates for VCIs and

VDIs in the virtual plane at node n in time slot t obtained by solving

(5),(6).

4.3.3 Caching Data Objects. As we mentioned, in the actual plane

nodes can only cache data objects when they are traversing back

on the reverse path to the requester. We noticed that using virtual

caching decisions at each time slot directly in the actual plane leads

to oscillatory caching behaviour since data objects can get cached

or removed from the cache instantly in the virtual plane. Here we

propose a method that results in more stable caching behaviour.

For a given window sizeT , let the cache score for object k at node n

at time t be

CSkn (t) =
1

T

t
∑

τ=t−T+1

sk
∗

n (τ )V k
n (τ ) (28)

Where sk
∗

n (t) is the optimal caching decision for data object k in

the virtual plane at node n in time slot t obtained by solving (7)-(8).

This cache score averages over the VDI counts for data object k

in the time slots at which node n decided to cache k in the virtual

plane, over a sliding window of size T prior to time slot t . When

a data objects knew travels back to the requester node, each node

on the reverse path cache the data object as long as it has space

left in its cache. If the cache is full, the node compares the cache

score for knew and the set of currently cached data objects Kn,old .

If all data objects are of equal size, let kmin ∈ Kn,old be a current

cached object with the smallest cache score. If knew has a higher

cache score than kmin , then kmin is evicted and replaced with knew .

Otherwise, the cache is unchanged. If data objects have different

sizes, the optimal set of objects is chosen to maximize the total

cache score under the cache space constraint. This is a knapsack

problem that can be solved using approximation techniques at each

node.

5 NUMERICAL EVALUATION

This section demonstrates our experimental evaluation of DECO

framework. The simulations are performed on four different net-

work topologies: the Abilene topology shown in Figure. 5(a), a fog

computing topology shown in Figure. 5(b), the GEANT topology

shown in Figure. 5(c) and LHC (Large Hadron Collider) topology

which is a prominent data-intensive computing network for high

energy physics applications shown in Figure. 5(d).

Experiment Setup. In the Abilene topology, the cache capac-

ity is 30GB and the processor capacity is 5 × 105 instructions/sec

for all nodes. The link capacity (in both directions) is 240 Gbps

for all links. In the Fog topology, the cache capacity is 5GB for

U 1, U 2, . . . , U 12 and 25GB for B1, B2, B3, B4 and 50GB for S1,

S2, S3. The processor capacity is 106 instructions/sec for U 1, U 2,

. . . , U 12 and 5 × 106 instructions/sec for B1, B2, B3, B4 and 107

instructions/sec for S1, S2, S3. The link capacity (in both directions)

is 40 Gbps for the links between the bottom layer to the second

layer (U 1,B1), (U 2,B1), . . . , (U 11,B4), (U 12,B4) and 200 Gbps for

(B1,B2), (B2,B3), (B3,B4), (B1, S1), (B2, S1), (B3, S2), (B4, S2) and

400 Gbps for (S1, S2), (S1, S3), (S2, S3). In the GEANT topology,

the cache capacity is 30GB and the processor capacity is 25 × 105

Table 2: Experimental Parameters and Setup

Abilene Fog GEANT LHC

|F | 100 200 100 100

|D | 100 200 100 500

Lk 3GB 500MB 3GB 60GB

Z(m,k ) 300MB 50MB 1.5GB 6GB

q(m,k ) 5 × 104 5 × 104 5 × 104 105

Interest

Packets’

Size

60KB 10KB 60KB 60KB

Source

Nodes

Seattle

Sunnyvale

Los Angles

S3 10, 11, . . . , 21

MIT, WSC

PRD, FNL

VND, UFL

NBR, UCSD

Requesting

Nodes

Atlanta

Washington

New York

U1, U2,

. . . , U12
0, 1, . . . , 9

MIT, WSC

PRD, FNL

VND, UFL

NBR, UCSD

instructions/sec for all the nodes. The link capacity (in both direc-

tions) is 240 Gbps for all the links. In the LHC topology, for "MIT",

"WSC", "PRD", "FNL", "VND", "UFL", "NBR" and "UCSD", the cache

capacity is 3TB and processing capacity is 3000, 5000, 5000, 2000,

1000, 1000, 3000, and 2000 instructions/sec respectively. The Cache

and processor capacity is zero for all other nodes. The link capacity

(in both directions) is 480 Mbps for all links. Other simulation pa-

rameters can be seen in Table 2 for each topology. The designated

source for each data object is chosen uniformly at random among

the source nodes mentioned in Table 2. At each requesting node,

computation requests arrive according to a Poisson process with an

overall rate λ (in request/node/sec). Each arriving request selects

from the set of available tasks (independently) uniformly at random.

In the Abilene, Fog and GEANT, we pair the ith computation task

with ith data object to form a computation request. In the LHC, we

select from the available data objects (independently) according to

a Zipf distribution with parameter 1 and pair the selected task and

data to form a computation request.

We calculate shortest paths from each node to the source for each

data object and populate the forwarding tables of the nodes with

this information, beforehand. In all topologies, the buffers holding

the computation interest packets, data interest packets, data packets

and result packets are assumed to have infinite size. Data packets

and result packets share the same queue on the reverse paths and

are served on a First-Come-First-Served basis.

Policies and Measurements. We compare DECO with five

baseline policies in terms of computation request satisfaction de-

lay. In the RD-LRU policy, RD stands for "Retrieve Data": Each

computation request is performed at the entry node of the request

and if necessary, a data interest packets is generated according

to the procedure we discussed. All data interest packets in each

node share one queue and are forwarded to the source on a First-

Come-First-Serve basis. Each node caches the data objects when

they travel back on the reverse path to the requesting node and

if the cache is full, nodes use LRU as cache eviction policy. The

RD-LFU is similar to the RD-LRU policy but uses LFU as its cache
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as the difference between the fulfillment time (i.e., time of arrival

of the last result packet) and the creation time of the computation

interest packet. We sum over all the delays and divide it by the

total number of generated requests and the number of requesting

nodes. The computation request satisfaction delay (in second per

request per node) is plotted for different arrival rates (in number of

requests per node per second) for each topology in Figure 6.

We can see that the DECO policy outperforms all other schemes

by a large margin. For instance, at arrival rate of λ = 45, the DECO

has around 80% delay improvement in the Abiline topology and 90%

delay improvement in the GEANT topology compared to the closest

policy. Another observation is that the second best policy may vary

from STS, RD-LFU, or CBP-LFU depending on the size of data

objects, computation load, caching, processing and link capacities

in each topology. None of the baseline methods is competitive with

the DECO, which takes local demand for both computation and

data into account for decision making.

6 CONCLUSION

We address the problem of joint computation, caching, and request

forwarding in a distributed data-centric computing network where

users issue requests for performing a computation task on a piece

of data. Our framework utilizes a virtual plane that characterizes

the dynamic of demands for computation and data in the networks

using virtual computation interest and virtual data interest metrics.

We characterize the stability region for the virtual interests and

propose a throughput optimal control policy within the virtual

plane based on the Lyapunov drift minimization. We show that the

optimal policy takes into account virtual data interests as well as

virtual computation interests when deciding on computation and

forwarding within the virtual plane. By utilizing optimal decisions

and counts in the virtual plane, we design a distributed joint request

forwarding, computation scheduling and caching policy in the

actual plane without any prior knowledge of request arrival rates.

Extensive numerical simulations show the superior performance

of our method compared to popular baseline policies in terms of

computation request satisfaction delay.
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