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ABSTRACT

The emergence of IoT devices and the predicted increase in the
number of data-driven and delay-sensitive applications highlight
the importance of dispersed computing platforms (e.g. edge comput-
ing and fog computing) that can intelligently manage in-network
computation and data placement. In this paper, we propose the
DECO (Data-cEntric COmputation) framework for joint computa-
tion, caching, and request forwarding in data-centric computing
networks. DECO utilizes a virtual control plane which operates on
the demand rates for computation and data, and an actual plane
which handles computation requests, data requests, data objects
and computation results in the physical network. We present a
throughput optimal policy within the virtual plane, and use it as
a basis for adaptive and distributed computation, caching, and re-
quest forwarding in the actual plane. We demonstrate the superior
performance of the DECO policy in terms of request satisfaction
delay as compared with several baseline policies, through extensive
numerical simulations over multiple network topologies.
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1 INTRODUCTION

Centralized clouds have dominated IT service delivery over the
past decade. Operating over the internet, and the clouds’ low cost
of operation [20] has made them the primary means of achieving
energy efficiency and computation speed-up for resource-poor de-
vices [1, 7]. Computation offloading to the cloud for mobile users
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has been studied extensively in the literature. Notable software
platforms for computational offloading using device and network
profiling are introduced in [6, 9, 14, 16]. Analytical models for op-
timal offloading are also proposed in [22, 24]. Recently, the cost
efficiency and scalability of centralized cloud have been challenged
by the emergence of Internet of Things (IoT) devices and the pre-
dicted increase in services with ultra low latency requirements
(one millisecond or less)[19, 20]. This has made paradigms such as
fog computing [2] and mobile edge computing more appealing. In
this paper we refer to the family of such paradigms as dispersed
computing.

In the fog computing paradigm, networking, computation and
storage resources are distributed at different hierarchical levels
from the core of the network to the edge. In mobile edge computing,
these resources are distributed throughout the mobile edge close to
the users. As the number of delay-sensitive applications increases,
these platforms have the potential to outperform centralized cloud
architectures in terms of request satisfaction delay [19]. The poten-
tial benefits of such paradigms are accompanied by challenges in
distributed implementation and control. Another challenge is the
increased popularity of media-rich and data-driven applications
where computations are often designed to be performed on large
pieces of data stored in the network. Medical data analytics [4, 5],
data processing for wearable devices [11], intelligent driving and
transportation systems [28] and in-network image/video processing
[17] are examples of such applications.

A fundamental question in dispersed computing is how to op-
timally utilize the processing, storage and bandwidth resources
in the network to accomplish data-centric computation with high
throughput and low latency. Specifically, how should one forward
computation requests, perform computations, and move and store
data in the network? For instance, should one bring data to the
computation-requesting node for computation or take the com-
putation to the data server? How can one provide a solution in a
distributed and adaptive! manner within networks with general
topology and request patterns?

While previous work has addressed aspects of the fundamental
question raised above, the problem has never been solved as a
coherent whole. To the best of our knowledge, this paper is the
first to study joint computation, forwarding, data placement and
caching within an adaptive and distributed setting.

In this paper, we consider a data-centric dispersed computing
network with arbitrary topology and arbitrary processing, com-
munication and storage resources available at each node. Users
issue computation requests for performing a computation task on

!By adaptive, we mean that control algorithms do not require knowledge of computa-
tion request rates.
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a required piece of data. (e.g. processing a 3D map of the envi-
ronment in AR/VR applications). This computation request, along
with input arguments (e.g. the feature map of users’ point of view
in AR/VR applications), is forwarded through the network until
a node decides to perform the task locally. This node can process
the computation only when it has the required data object, either
from its own cache or fetched from the other nodes by issuing
a data request. After the data request arrives at a data server or
caching point, a copy of the data is sent back to the data requester
on the reverse path. Each node on the path can optionally cache
the data for future use. The data requester then processes the task
and sends the result back to the original computation requester
on the reverse path (of the computation request). The question is
how nodes should decide on computation request forwarding, data
request forwarding, computation and caching in an adaptive and
distributed manner.

To solve this challenging problem, we propose the DECO (Data-
cEntric COmputation) framework. DECO utilizes two metrics, called
virtual computation interest (VCI) and virtual data interest (VDI), to
capture the measured demand for computations and data objects,
respectively. Virtual interest as a metric for measured demand was
first introduced in [25] for caching networks where a virtual plane
was employed to handle the virtual interests. Similarly, here we
deploy a virtual plane that operates on the VCIs and VDIs, and
an actual plane which handles actual computation requests, data
requests, data objects and computation results in the physical net-
work. This separation between virtual and actual plane allows us
to design the elegant DECO joint computation/caching/forwarding
algorithm. The DECO algorithm is proved to be throughput optimal
in the virtual plane, and is used in the actual plane to decide on
forwarding, computation and caching actions in the network. The
superior performance of the DECO algorithm, relative to many
baseline algorithms, is shown through extensive simulation studies.

Our key contributions in this work can be summarized as follows:

e We present an adaptive and distributed framework called
DECO for joint computation, caching and request forwarding
in a data-centric dispersed computing network with arbitrary
topology, data catalog and task catalog consisting of single-
stage computations.

e The proposed DECO framework consists of a virtual con-
trol plane and an actual plane. This allows us to design an
elegant algorithm which is shown to be throughput optimal
in the virtual plane, and is used for decision making in the
actual plane. The throughput optimal algorithm takes into
account demand for both computation and data to optimize
computation, caching, and forwarding decisions.

e We present new proofs for the stability region and through-
put optimality of the DECO policy. This is necessitated in
part by new dynamics caused by internally generated data
demand from computation requests.

o We evaluate the performance of the DECO framework in
terms of computation request satisfaction latency through
extensive simulations. We show that the DECO solution
significantly outperforms a number o baseline schemes over
all network topologies tested.
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2 RELATED WORK

Task scheduling and resource allocation in a heterogeneous com-
puting platform have been studied in research and practice. Authors
in [21] studied the problem of static task scheduling and proposed a
centralized heuristic called HEFT for scheduling tasks represented
by a DAG (Directed Acyclic Graph). Pegasus [10] and CIRCE [15]
were proposed as frameworks for mapping of tasks to computers
in a dispersed computing system. Distributed assignment of tasks
to computers was studied in [18]. These works present frameworks
for task assignment problem but do not provide any optimality
guarantee on the performance of the computing network.

The problem of virtual function placement in a computing net-
work was studied in [8] where the objective is to minimize the
cost of setting up functions and requesting service. Authors in [12]
studied a similar problem in a distributed cloud network where com-
putation services are modeled as a chain of consecutive tasks, and
there is a linear cost associated with setting up and utilizing compu-
tation and communication resources. They propose a throughput
optimal method for task scheduling and request forwarding based
on minimization of Lyapunov drift plus penalty to minimize the
cost while keeping the computation queues stable. A throughput
optimal policy for uni-cast and multi-cast flows was proposed in
[27] based on a layered graph model. A throughput optimal policy
for more general DAG-based service models was proposed in [23].

Although these methods stabilize the computation queues, in
a data-centric computing network the solution should also take
stabilization of data queues into account. Authors in [3] proposed
a solution to joint caching and computation at the mobile edge
where caching is used to store the final result of computations.
Similarly, authors in [26] studied the problem of task scheduling
and image placement in order to minimize the request satisfaction
delay. In contrast to our work, these works study specific one-hop
and two-hop topologies in a centralized fashion where request rates
are known in prior.

3 COMPUTATION NETWORK MODEL

Consider a network of computing nodes, each capable of processing
computation tasks, caching data objects and communicating with
other computing nodes in the network. We model the network as a
directed graph G(V, &) with V and & representing network nodes
and links respectively. Assume that (b, a) € & whenever (a,b) € E.
Each node v € V is equipped with a processor with capacity of
P, (in instructions per second) and a cache with capacity of Cy, (in
bits). We let the transmission capacity on link (a,b) € & be C,p
(in bits per second). There is a set ¥ of tasks which all nodes are
capable of processing. These computation tasks operate on a set
D of data objects, each stored somewhere in the network. A user
interested in computation services issue a computation request
from the set of available requests R € ¥ X D. Each requests
for performing the mth task on the kth data object is associated
with unique user-specified inputs with negligible size compared
to the required data object k. We assume computation load and
size of the results are determined by the computation task m and
the data object k, and not by the user specified inputs. Thus we
specify a computation request in the network by a pair (m, k) € R.
Assume the size of the kth data object to be L (in bits) and the
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size of the result of mth task on kth data object to be Z,, t) (in
bits). The computation load of performing mth task on kth data
object is denoted by g(p, ) (in number of instructions). We assume
for each data object k € D there is a designated node denoted by
sre(k) € V which serves as the permanent source of the data object
2| At the source nodes, the cache space is additional to the storage
space needed for permanently stored data objects. Since requests of
type (m, k) require data object k for processing, src(k) can always
process such computation requests and therefore can serve as a
computing node for these requests.

We assume routing information 3 to the source nodes is already
populated in every node. Requests of type (m, k) arrive at node
n € V according to a stationary and ergodic process A(nm’k)(t)
with average arrival rate )L(nm’k) 2 lim;—eo % §=1 A(nm’k>(f). A
node receiving a computation request generates a computation in-
terest packet with negligible size (compared to the data objects and
the computation results’ size) containing the task identification
(m), data identification (k), and input arguments to be forwarded
through the network. Each node receiving a computation interest
packet decides to whether or not perform the computation request
locally. In this paper we differentiate between performing computa-
tion request and processing computation request. The difference is
explained in the procedure below:

1: procedure PERFORMING COMPUTATION (m, k) AT NODE n

2: if data object k is stored at node n then send computation request
to the processor queue for processing.

3: else

4 put computation request in pending computation requests for
data object k (PCR(k)) queue.

5: issue a request for fetching data object k by creating a data
interest packet.

6: if data object k arrives at node n then put the computation re-

quests in the PCR(k) queue into the processor queue in First-Come-
First-Served order.

If the node does not decide to perform the computation locally, it
can forward the computation interest packets to its neighbors. The
receiving neighbor remembers the interface on which it receives
the interest packet. The node which processes the computation
puts the result into result packets and sends it back on the reverse
path (of the computation interest packet) to the original requester.

A node issues a data interest packet whenever it decides to per-
form a task but does not have the required data object stored locally.
As in the case for computation interest packets, nodes receiving
data interest packets remember the incoming interface. When a
node receives a data interest packet for an object which is in its
cache, it creates a copy of that data object, puts it into data packets
and sends it back on the reverse path (of the data interest packet)
to the requester. Nodes receiving data objects on the reverse path
have the option to cache them for future use. A graphical overview

This setting can be extended to a scenario where there are multiple designated sources
for each data object.

3We want to point out that routing and forwarding are two different procedures.
Routing is a network-wide process that provides possible forwarding interfaces toward
the destination at each node and forwarding is the action of transferring packets to
appropriate output interface.
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of the network can be seen in Figure 1. A graphical representation
of procedures discussed above at each node can be seen in Figure 2

Node 3

Step1 .

—

Poa—

Step6
—_— Computation Interest Packet
E—— Data Interest Packet
—_— Result Packets

Figure 1: A data-centric computing network. Step 1: A computa-
tion request (1, 2) € R arrives at the network. Step 2: Node 1 creates
a computation interest packet (green) and forwards it to the source
of data object 2 (Node 3). Step 3: Node 2 receives the computation in-
terest packet and decides to perform it locally. Since it does not have
data object 2 stored in the cache, it puts the computation request in
the PCR(2) queue and generates a data interest packet (red) for and
forwards it toward the source (Node 3). Step 4: Node 3 receives a data
interest packet for data object 2. It creates a copy of the data object
2 and forwards it on the reverse path toward the requester of data
(Node 2). Step 5: Node 2 receives data object 2 and sends the pend-
ing computation request (1, 2) to the processor. Once it is processed,
Node 2 sends the result on the reverse path to the original requester
(Node 1). Step 6: Node1 delivers the result to the user.

/ T Table of Pending Computation
Requests For Data (PCR) Queues

Pending For Data k; (PCR-ky) [T 1)
Pending For Data k, (PCR- k) I:IL,

| Pending For Data k; (PCR- ks) [T 1/%,

e QL)
> 1 N g

(my, k) Ko
[ Gnuky) o ’ L Interest Packet for k;
k) Computation B2 f%
And Data Interest ‘DM, Tes ® 3
Packet Queues w \
/"’J
Figure 2: Performing computation, forwarding and
caching at nodes. Computation interest packets for

(my, k), (m1, ky), (my, k¢), (m1, k;) are forwarded to the node.
The node decides to perform (mj, kz2) and (mi, k4) and forwards
(m1, k7) and (my, k¢) to its neighbors. (my, ky) is sent directly to
the processor queue since ky is already stored in the cache. Since
ko is not available in the cache, request (my, kz) is put in the
PCR(k;) queue and a data interest packet for k; is generated and
forwarded. At this time, k3 arrives to the node and it sends all
pending computation requests for k3 (e.g. (my, k3)) to the processor.

There are several problems needed to be solved in this setting.
Specifically, how to forward the computation and data interest
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packets, how to decide on performing computations and caching,
and how to make these decisions in a distributed and scalable
fashion. In the next section we present DECO framework as a
solution to this multi-dimensional problem.

Table 1: Notation Summary

G(V, &) Network graph with nodes V and edges &
F Catalog of available tasks
D Catalog of available data objects

R Set of available computation requests (R € ¥ X D)

PCR(k) The queue of pending computation requests for data
object k at each node

Py, Processor capacity at node v € V

Co Cache capacity at node v € V

Cap Transmission capacity of link (a, b) € &

Ly Size of data object k € D
Z(m, k) Size of the result size for computation request (m, k) € R
qu. k; Computation load of computation request (m, k) € R
A k Average arrival rate of computation request (m, k) € R

n
Y,(,m’ k)(t) Virtual computation interest (VCI) count for (m, k) € R

in node n at the beginning of time slot ¢

V,]f (t) Virtual data interest (VDI) count for k € D in node n
at the beginning of time slot ¢
A(nm' k>(t) Number of exogenous arrivals at node n for computation
request (m, k) during time slot ¢
;JE;Z’ k)(t) Allocated transmission rate of VCIs for (m, k) on link (a, b)
during time slot ¢
V(HYZ’ k)(t) Allocated transmission rate of VDIs for k € D on link (a, b)
during time slot ¢
p(n’z;,:()w(t) Allocated processing rate of VCIs for (m, k) at node n
during time slot ¢
slnc(t) Caching state for object k at node n during slot ¢

in the virtual plane

4 DECO FRAMEWORK

In this section we introduce DECO framework for joint computa-
tion, forwarding and caching in the setting discussed in section 3.
DECO relies on two metrics called virtual computation interest (VCI)
and virtual data interest (VDI). VCIs and VDIs are counts tracked by
each node and capture the measured demand for computations and
data objects respectively. Specifically, the virtual interest counts
for a computation or a data object in a given part of the network
represent the local level of interest in that computation or data
object, as determined by network topology, users’ demand and
the capability of nodes in satisfying this demand through caches
and processors. As illustrated in Figure 3, the VCIs and VDIs are
handled by a virtual control plane which sits on top of the actual
plane handling actual computation requests, data requests, data
objects and results. This separation allows to formulate an elegant
algorithm to be discussed in section 4.1.

In what follows we discuss the dynamic through which virtual in-
terests are created and handled in the virtual plane. We characterize
the stability region in the virtual plane, and we present a through-
put optimal control policy within the virtual plane that adaptively
stabilizes all VCI and VDI queues for all computation request arrival
rates inside the stability region. Based on the throuhgput optimal
policy, we design a method for joint computation, request forward-
ing and caching in the actual plane that significantly outperforms
a number of baseline schemes as we show in section 5.

4.1 Virtual Plane Dynamics

Here we describe the dynamics of virtual interests within the virtual
plane. Consider time slots of length 1 (without loss of generality)
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« Handling VCI counts
Virtual C « Handling VDI counts

Interest (VCI)

Virtual Control Plane

Virtual counts
and decisions
Computation
Request
Computation

Interest

Packet Forwarding computation interest packets

Performing computation requests

Creating and forwarding data interest packets
Delivering data objects and results back to
the requesters

» Caching data objects

Figure 3: DECO framework. Virtual plane on top of the actual
plane.

indexedby t = 1,2, ..., where time slot ¢ refers to the interval [t, t +
1). Each node n € V keeps a separate queue for VCIs corresponding
to the request (m, k) € R. The count of this queue at the beginning

of time slot ¢ is denoted by Y,(lm’ k)(t)A Each node also keeps separate
queues for VDIs corresponding to data object k € D and its count
is denoted by VX(t). Initially all VCI and VDI queues are empty,
ie., Y,(lm’k)(l) = V,If(l) =0 for all n,m, k. For each computation
request (m, k) entering the network, the count Y,(,m’ k) is increased
accordingly at the entry nodes. In the virtual plane, we assume that
at each time slot ¢, each node n € V can access to any data object
k € D. Thus, nodes can process any VCI or cache any data object
in the virtual plane without waiting for the data to be fetched. This
assumption enables us to design an elegant algorithm in the virtual
plane. Based on this assumption, processors and caches act as sinks
for the VCIs and the VDIs respectively. Nodes decrease their VCI
counts by processing them in the virtual plane and decrease their
VDI counts by caching the corresponding data object in the virtual
plane. On the other hand, processing a computation task in a node
results in the increased local demand for the required data object
in that node. In order to capture this, processing VCIs in the virtual
plane leads to increase in the VDI counts for the corresponding data
objects. Nodes can also forward VCIs and VDIs to their neighbors.

Let Aslm’k)(t) be the number of exogenous computation request
arrivals at node n for computation (m, k) during time slot ¢. For ev-
ery computation request (m, k) arriving at node n, a corresponding
VCI for (m, k) is generated at n (Y,(lm’k)(t) incremented by 1). The
long term exogenous arrival rate at node n for computation (m, k)

is AE{”*’C) 2 limy 00 % L A(nm’k)(f).

Let ,LIE;Z’ k)(t) be the allocated transmission rate of VCIs for (m, k)

on link (a, b) during time slot ¢. Also, Let v’a‘b(t) be the allocated
transmission rate of VDIs for data object k on link (a, b) during time
slot t. Note that at each time slot, a single message between node a
and node b can summarize all virtual interest transmissions during
time slot . We denote allocated processing rate of VCIs for (m, k) at
node n during time slot ¢ by pglr’rzfgc(t)‘ As we mentioned before, in
order to capture the local demand for data objects, for each VCI that
is processed (i.e. its count is decreased by 1), a VDI is generated (i.e.
its count is increased by 1). Let s,’ﬁ(t) € {0, 1} represent the caching
state for object k at node n during slot ¢ in the virtual plane, where
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sﬁ(t) = 1if object k is cached at node n during slot ¢, and sﬁ(t) =0
otherwise. Now note that even if 55 (t) = 1, the cache at node n can
satisfy only a limited number of interests during one time slot. This
is because there is a maximum rate r,, (in objects per slot) at which
node n can produce copies of cached object k. These dynamics can
be written in details as follows:

+
m. k m. I( m, k
Y,(lm’k)(t +1) < (1/,(1 ? )(t) - E u( !’ >(t) - p(n, D’ro)c(t))

beV
k k
+ 30 B+ AT ) (1)
acV
+
k
VA4 1) < (v,fa)— D v,’:bm—rns’,i(t)) £ 3 A o
beV meF
+ ) vea(®) @)
aeV
where (x)t £ max{x,0}. Also, Vskrc(k)(t) =0 forallt > 1
and ,Ys(;nc’(,;)) =0 forallm € F,forallt > 1. A graphical

representation of dynamics in the virtual plane can be seen in
Figure 4.

Kk
Bopred (©)

"3
BOEL @)

Figure 4: Virtual plane dynamics at node a. VCI and VDI queues
evolving according to (1)-(2).

From (1) and (2), it can be seen that the VCIs for (m, k) are
processed and decreased with rate yg’r;;]:(),c(t) and VDIs for data
object k are decreased with rate r, if node n decides to cache the
data object k in the virtual plane (s,’§ (t) = 1). If there are any VCI or
VDI left in the node, they are transmitted to the neighbors with rate

)y (m’k)(t) and 3, vk (t) respectively. The exogenous arrivals
b Hyp bVnb P Y &

A(nm’k)(t) and endogenous arrivals ), ,ug:l,’k)(t) during time slot ¢
is added to the VCI queue at the end of time slot. The number of
VClIs processed corresponding to data object k and the endogenous
arrivals Y, vk, (t) during time slot ¢ is added to the VDI queue at
the end of time slot. Note that (1) is a inequality since the number
of VCIs for (m, k) arriving to node n during slot ¢t may be less

than ', ,u%’k)(t) if the neighboring nodes have little or no VCI
to transmit. Also (2) is inequality because the number of VDIs for
object k arriving to node n during slot ¢ may be less than };; V”; b(t)
and the number of VDIs created due to the processing of VCIs might

be less than },, y(m’k)

n’proc(t) if node n has little or no VCI to process.
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4.2 Throughput Optimal Policy in the Virtual
Plane

In this section we introduce a distributed policy based on Lyapunov
drift minimization for throughput optimal decision making in the
virtual plane. The drift minimization problem results in two differ-
ent LP problems for allocating processing and transmission rates.
It also involves solving a knapsack problem for caching decision
which is NP-hard in general, but can be solved efficiently using
approximation techniques or dynamic programming at each node.
As we will discuss shortly, in the settings where the size of data
objects are equal and/or the size of results are equal and/or the
computation loads are equal, this joint problem is simpler to solve.
We then introduce the stability region for the virtual interests and
prove that the proposed joint policy is throughput optimal within
the virtual plane. Finally, we design a distributed policy for com-
putation, forwarding and caching in the actual plane based on the
optimal policy obtained in the virtual plane.

In what follows we introduce the joint processing, transmission
and caching policy in the virtual plane:

Algorithm 1. At the beginning of each time slot t, observe the
counts for VCIs (Yr(lm’k)(t))nev,(m,k)evz and VDIs (VK () ney, ken
and decide on processing, transmission and caching in the virtual
plane as follows.

Processing: at each node n, choose processing rates of VCIs by
solving the following LP:

.. k k
maximize Y ui’,';;rzcu)(y,?"' >(t>—v,f(t)) G
(m,k)eR
. Lk
subject 10 Y kyproc(t) < Pn @)

(m,k)erR

Transmission: at each node n, choose transmission rate of VCIs
and VDIs by solving the following LP:

maximize Z yf{Z’k)(t)(Y,(,m’k)(t)—Y,Em’k)(t))
(mK)eR

+ > v,fb(t)(V,f(t)—vg‘(t)) 5)
keD
subject to Z Lkvsb(t) + Z Z(m,k)#E,rZ’k)(t) <Cp, (6)

keD (m,k)eR

Caching: at each node n, choose caching variables by solving the
following knapsack problem:

maximize Z V,]f(t)srli(t) )
keD

subject to Z Lisk(t) < Cn ®)
keD

An important aspect of Algorithm 1 is it being distributed. It can
be seen that processing and caching decisions are solved at each
node separately and each node needs to exchange the VCI and VDI
counts only with its own neighbors in the transmission decision
problem.

It is worth noting that in a network with equal-sized data, the
knapsack caching problem (7)-(8) reduces to a max-weight prob-
lem which is solvable in linear time at each node. In a scenario
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where computation result sizes are also equal, the LP for transmis-
sion rates (5)-(6) turns into a backpressure algorithm on each link.
Finally in a scenario where computation loads are equal, the LP
problem for processing rates (3)-(4) turns into a backpressure-like
algorithm between VCI and VDI queues at each node. Consider a
network where all data sizes are equal (L = L Vk € D), all result
sizes are equal (Z(, k) = Z V(m,k) € R) and all computation
loads are equal (q(m k) = ¢ VY(m,k) € R). We can show that in
this situation algorithm 1 is reduced to a simple backpressure and
sorting algorithm.

Algorithm 2. In a network with Ly = L, Z; k) = Z, Qm,k) =
q, at the beginning of each time slot t, observe the counts for VCIs
VOO pey.(mkyer and VDIs (VE©)pe. ke and decide on
processing, forwarding and caching in the virtual plane as follows.
Processing: at each node n, for each (m,k) € R choose:

(m k) ()= _" n proc(t) >0 and (mk)=(mk)"
Hnproc otherwise.
)
WA e0) = Y™ 0) = viE(e) (10)
(m, k)" = a;(’grr;(ax ' proc(t)
Wy proc(t) = (W R ()"

Transmission: at each node n, for each (m,k) € R and each
k € D choose:
w, (t) (f)

<m k)(t) BE = 2l W (1) > 0, (m, k) = (m, k)™
0 otherwise.

(11)

Chn G, WL %
V;;b@:{% S > TG0 > 0k =k

0 otherwise.

W@ = e - v 0w, 6,0 = viEm - vEe

(12)

(m, k)™ 0}

= argmax w
(m,k

W, (1) = <W,§;,"’k> ()",

k* = argmax Gﬁb(t)
k

Gry(t) =GR, ()
Caching: at each node n, let (d1,dy, . . ., dg) be a permutation of
D such thatV,;i1 > V,‘:I2 > 2 V,‘lik letip = L%J then choose

koo )1

In Algorithm 2, each node n at each time ¢ allocates the entire

ke {ki,ka,... ki, }

otherwise.

normalized processor capacity ( %”) to process the VCIs of (m, k)*
which has the maximum difference between its VCI count and
VDI count for the required data object k as shown in (9)-(10). The
intuition behind this is important. The optimal policy allocates the
processing capacity to the computation request for which there is
relatively high local demand (i.e. large VCI count) and low local
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demand for the required data object (i.e. low VDI count, often due
to the data object being cached in close vicinity).

Each node n at each time ¢ for transmission on any outgoing
link (n,b) € & chooses the VCI or VDI that has the maximum
backlog difference on the link normalized by size (Z for VCIs and L
for VDIs) and allocates the entire normalized reverse link capacity
(normalized by Z if the chosen count is a VCI and by L if the chosen
count is a VDI) to it as shown in (11)-(12). As for caching, each
node n with capacity to cache i, = L%J data objects, chooses i,
data objects with highest VDI counts to be cached in the virtual
plane. We note that in Algorithm 2, at each node the computational
complexity is O(|F | x | D|) for processing policy, O(|V|x|F | x|D|)
for transmission policy and O(|D|) for caching policy.

In the following section we show that algorithm 1 maximizes the
throughput in the virtual plane discussed in section 4 with proper
constraints on processing rates, transmission rates and caches.

4.2.1  Virtual Plane Stability Region. Here we show that algorithm 1
maximizes the throughput of virtual plane in the network G(V, &)
with appropriate constraints. We assume

e Exogenous computation request arrival processes (which are
also VCl arrival processes as mentioned before) {A(nm’k)(t); t=
1,2,...} are mutually independent with respect to n, (m, k).

o {Aﬁlm’k)(t);t =1
neV,(imk)eR

e Foralln € V,(mk) € R, A(nm’k)(t) <

where A(nr?,’nka)x € Ry.

2,...} are ii.d with respect to ¢ for all

A(n'fl,’nka)x for all ¢

As for the constraints, during each time slot a node cannot store
more than its cache capacity and cannot process computation re-
quests more than processor capacity. For each computation interest
packet sent on a link, a result comes back on the reverse link even-
tually and for each data interest packet sent on a link, a data object
traverses back on the reverse link. Since we assume the size of
interest packets are negligible compared to results and data ob-
jects, when sending interest packets on a link (a, b) we need to take
into account the reverse link capacity. These constraints should be
reflected in the virtual plane and can be summarized as follows:

Z Lisk(t)<Cn Vnewv (13)
keD

k
> it prac(t) < Pa VneV (14)
(m,k)eR

DLk, 0+ D Zn o) < o Viab)e & (15)
keD (m,k)
In order to show the throughput optimality, we present the virtual
plane stability region in this section. Stability for VCI and VDI
queues at node n is defined as:

lim sup — Z 1 VE(e)>&] = O0as & — o

t—o0

where 1y} is the indicator function. The stability region A is the
is the closure of the set of all computation arrival rates defined
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as A%m’k) 2 lim; e 1

F ;:1 A(nm’k)(r) for which there exists some
feasible processing, forwarding, and caching policy which can stabi-
lize all VCI and VDI queues. By feasible, we mean that at any time ¢,

the caching vectors (s,’i(t)) ke . ne Satisfy (13), the processing rate

vector (yglr,r;ff)w)(m,k)eﬂ,ne‘v satisfy (14) and the forwarding rate

vector (pfer’k))(m, K)eR, (a,b)eE satisfy transmission constraints in
(15). The following theorem characterizes the stability region in the
virtual plane:

Theorem 1. The stability region for virtual computation and data
interests of the network G(V, &) with caching, computation and
transmission capacity constraints given by (13)-(14)-(15) and queue
dynamics (1)-(2), is the set A consisting of all computation request

arrival rates AE{"’ k)

.k .
(f,g'; ))(m,k)GR,(a,b)EL:dataﬂow"a”ables(d];b)kEZ),(a,b)EL’Pm‘
cessing flow variables (f,(l’rz’rli,)c Ym,k)eR,ne N and caching variables

(Bn, i)neN;iE‘I’,, satisfying
(m,k) _

such that there exists computation flow variables

(m, k)

k
SO 2 0, fin) = 0, (im0 = oVa,bon e N, (m.k) € R (16)
FmR =0 Vabe N.(mk) e R.(ab) ¢ L (17)
dyy, 2 0.dyy =0,d5 ) VabneNkeD (18)
d¥, =0 VabeN,keD, (ab)¢L (19)
0<Pni<l i€¥, (20)
R0 Yne N,(mk)eR (21)
Lk NS , k ,k
AR < 3R N e s R Yne N (k) € R
beV agV
(22)
k
Dldk, > < N dk v Y Baidlk € Bl
acV m beV ie¥,
VneN,(mk)eR (23)

Z Z(m,k)fszn’k) + Z Lkd’;b < Cpq VY(a,b)e L (24)

(m,k)eR keD
Zﬁn,iﬂ VneN (25)
ie¥,
(m, k)
Z 9(m. k) n,proc < Pn VneN (26)
(m,k)eR

Where ¥, is the set of feasible cache combination for node n.
ProoF. See Appendix A of the technical report in [13]. ]

To our knowledge, Theorem 1 is the first description of the sta-
bility region of a data-centric computing network that incorporates
the effect of computation, transmission and caching all together.

4.2.2  Throughput Optimality. We now show that Algorithm 1 sta-
bilizes all VCI and VDI queues in the network for any A € int(A),
without any knowledge of A. As a result Algorithm 1 is throughput
optimal in the sense of adaptively maximizing the throughput of
virtual computation interests.

Theorem 2. (Throughput Optimality) If there exists € =

(eglm’k))ne(v,(m,k)eﬂ > 0 such that A + € € A, then there exists

117

Mobihoc ’19, July 2-5, 2019, Catania, Italy

(eflm’k) )ne"V,(m,k)eR’ (e,lg,)neq;’kgz) > 0 such that the network of
virtual interest queues under algorithm 1 satisfies:

t
SO B PE Y AV <
nk

=1 n,(m,k)
max

A1 max max\2 max max
where B = IN Znefv(ﬂn,out+lln,proc+rn ) +('un,in *Hn,proc™

2 A . m, k) 4
Amax)2 ¢ & pin (el IneV.(m.k)eR: € Ine ken}

NB
lim sup - (27)

t—o0

max A P, max A _ 2pCon
Hn,proc‘ _mm{q(m,k)}’yn,out min{Zm r), L}’
max A& > aCna max A

Lk
= rn|D|sAme £ Z(m,k) A(nr,nmch

n,in min{Z(m’k),Lk}’r"

(6£;m’k)’)neq/,(m,k)e7e, (eX) e kep are defined in Appendix A of
the technical report in [13].

ProoF. See Appendix B of the technical report in [13]. O

We wish to point out that the proof is different in nature from
the previous proofs for stability, in the sense that ¢’ used in the
stability bound in Theorem (2) is a value first introduced in this
paper in order to show the stability of VCI and VDI queues. This is
due to the internal generation of demand for data in the network
(as described in section 4.1), and the existence of ¢’ is proved in
Appendix A of [13].

4.3 Computation, Caching, and Request
Forwarding in the Actual Plane

Our goal in this section is to design a distributed joint policy for
performing computation, request forwarding and caching in the ac-
tual plane based on the throughput optimal algorithm we obtained
in section 4.2 for the virtual plane.

We keep a separate queue for each (m, k) € R and k € D at each
node in the actual plane of DECO. In contrast to the virtual plane,
as described in the section 3 and in Figure. 2, when nodes decide to
perform a computation request (m, k), they send the computation
to the processor if they are the source of data object k or have k
stored in their cache. Otherwise they put the computation request
in the PCR(k) queue and issue a data interest packet for k. When k
returns to the node, it sends all computation requests in the PCR(k)
queue to the processor. As for caching, nodes can only cache data
objects when they are traversing back on the reverse path to the
data requester.

4.3.1 Performing Computation Requests. At each time slot ¢, each
node n performs computation requests of (m,k) € R with rate
y(n':;;fgi(t) where y(n";f();(t) is the optimal processing rates in the
virtual plane at node n in time slot ¢ obtained by solving (3),(4).
In other words, at each time slot ¢ each node n takes yglr’r;,]:g;(t)
computation interest packet of type (m, k) out of its corresponding
queue and sends them to the processor if n = src(k) or has the
data object k in its cache. Otherwise it puts them in the PCR(k)
queue and generates yglnjof();(t) data interest packets for data object
k. When data object k reaches to the node n on the reverse path (of
the data interest packet), node sends all the pending computation
requests in the PCR(k) queue to the processor.

4.3.2  Transmission of Computation and Data Interest Packets. At
(m. k)"

each time slot ¢, each node n transmits i,

(t) computation
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interest packets of request (m, k) and transmits Vs;(t) data interest
packets of data object k on each outgoing link (n,b) € & where
y(an’k)*(t) and vs;(t) are optimal transmission rates for VCIs and
VDIs in the virtual plane at node n in time slot ¢ obtained by solving

(5):(6)-

4.3.3 Caching Data Objects. As we mentioned, in the actual plane
nodes can only cache data objects when they are traversing back
on the reverse path to the requester. We noticed that using virtual
caching decisions at each time slot directly in the actual plane leads
to oscillatory caching behaviour since data objects can get cached
or removed from the cache instantly in the virtual plane. Here we
propose a method that results in more stable caching behaviour.
For a given window size T, let the cache score for object k at node n

at time t be
t

cskw=g5 Y K @vE@
r=t-T+1

Where sk (t) is the optimal caching decision for data object k in
the virtual plane at node n in time slot ¢ obtained by solving (7)-(8).
This cache score averages over the VDI counts for data object k
in the time slots at which node n decided to cache k in the virtual
plane, over a sliding window of size T prior to time slot t. When
a data objects kpey travels back to the requester node, each node
on the reverse path cache the data object as long as it has space
left in its cache. If the cache is full, the node compares the cache
score for kpeyw and the set of currently cached data objects Kp, o14-
If all data objects are of equal size, let kinin € K, 514 be a current
cached object with the smallest cache score. If k¢4, has a higher
cache score than ki, then kpp, i, is evicted and replaced with kyeqy-
Otherwise, the cache is unchanged. If data objects have different
sizes, the optimal set of objects is chosen to maximize the total
cache score under the cache space constraint. This is a knapsack
problem that can be solved using approximation techniques at each
node.

(28)

5 NUMERICAL EVALUATION

This section demonstrates our experimental evaluation of DECO
framework. The simulations are performed on four different net-
work topologies: the Abilene topology shown in Figure. 5(a), a fog
computing topology shown in Figure. 5(b), the GEANT topology
shown in Figure. 5(c) and LHC (Large Hadron Collider) topology
which is a prominent data-intensive computing network for high
energy physics applications shown in Figure. 5(d).

Experiment Setup. In the Abilene topology, the cache capac-
ity is 30GB and the processor capacity is 5 x 10° instructions/sec
for all nodes. The link capacity (in both directions) is 240 Gbps
for all links. In the Fog topology, the cache capacity is 5GB for
U1, U2, ...,U12 and 25GB for B1, B2, B3, B4 and 50GB for S1,
52, 53. The processor capacity is 10° instructions/sec for U1, U2,
..., U12 and 5 x 10° instructions/sec for B1, B2, B3, B4 and 10’
instructions/sec for S1, S2, 3. The link capacity (in both directions)
is 40 Gbps for the links between the bottom layer to the second
layer (U1, B1), (U2, B1), ..., (U11, B4), (U12, B4) and 200 Gbps for
(B1, B2), (B2, B3), (B3, B4), (B1, S1), (B2, S1), (B3, S2), (B4, S2) and
400 Gbps for (S1, S2), (51,53), (52,53). In the GEANT topology,
the cache capacity is 30GB and the processor capacity is 25 x 10°
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Table 2: Experimental Parameters and Setup

Abilene Fog GEANT LHC
|71 100 200 100 100
D] 100 200 100 500
Ly 3GB 500MB 3GB 60GB
Z(m, k) 300MB 50MB 1.5GB 6GB
q(m, k) 5x 10* 5x 10% 5% 10% 10°
Interest
Packets’ 60KB 10KB 60KB 60KB
Size
Source Seattle I\;II{TD \;]I\S]f
Nodes Sunnyvale S3 10,11, ..., 21 VND’ UFL
Los Angles ’
NBR, UCSD
MIT, WSC
Requesting Atlanta U1, U2, PRD. FNL
Nodes Washington ..., U12 0.1,...9 VND’, UFL
New York NBR, UCSD

instructions/sec for all the nodes. The link capacity (in both direc-
tions) is 240 Gbps for all the links. In the LHC topology, for "MIT",
"WSC", "PRD", "FNL", "VND", "UFL", "NBR" and "UCSD", the cache
capacity is 3TB and processing capacity is 3000, 5000, 5000, 2000,
1000, 1000, 3000, and 2000 instructions/sec respectively. The Cache
and processor capacity is zero for all other nodes. The link capacity
(in both directions) is 480 Mbps for all links. Other simulation pa-
rameters can be seen in Table 2 for each topology. The designated
source for each data object is chosen uniformly at random among
the source nodes mentioned in Table 2. At each requesting node,
computation requests arrive according to a Poisson process with an
overall rate A (in request/node/sec). Each arriving request selects
from the set of available tasks (independently) uniformly at random.
In the Abilene, Fog and GEANT, we pair the ith computation task
with ith data object to form a computation request. In the LHC, we
select from the available data objects (independently) according to
a Zipf distribution with parameter 1 and pair the selected task and
data to form a computation request.

We calculate shortest paths from each node to the source for each
data object and populate the forwarding tables of the nodes with
this information, beforehand. In all topologies, the buffers holding
the computation interest packets, data interest packets, data packets
and result packets are assumed to have infinite size. Data packets
and result packets share the same queue on the reverse paths and
are served on a First-Come-First-Served basis.

Policies and Measurements. We compare DECO with five
baseline policies in terms of computation request satisfaction de-
lay. In the RD-LRU policy, RD stands for "Retrieve Data": Each
computation request is performed at the entry node of the request
and if necessary, a data interest packets is generated according
to the procedure we discussed. All data interest packets in each
node share one queue and are forwarded to the source on a First-
Come-First-Serve basis. Each node caches the data objects when
they travel back on the reverse path to the requesting node and
if the cache is full, nodes use LRU as cache eviction policy. The
RD-LFU is similar to the RD-LRU policy but uses LFU as its cache
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(a) Abilene Topology (b) Fog Topology (c) GEANT Topology (d) LHC Topology
Figure 5: Network topologies
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Figure 6: Computation request satisfaction delay

eviction policy. In the STS policy, STS stands for "Send To Source”
and each computation request (m, k) is forwarded to the source of
the data object k. All computation requests share the same queue
at each node and are forwarded on a First-Come-First-Serve basis.
When the computation requests reach to the source they are sent to
the processor queue directly. There is no caching in this policy. In
the CBP-LRU policy, CBP stands for "Computation Backpressure".
There is a separate queue for the computation interest packets of
type (m, k) at each node. We use backpressure-based algorithms
on the computation interest packets for performing computations
and forwarding, similar to the approach introduced in [12]. Since
all the result sizes and computation loads are equal, the policy per-
forms the most backlogged computation request at each node. Also,
the forwarding is done by simple backpressure on each outgoing
link subject to the reverse link capacity normalized by the result
size. The data interest packets all share the same queue and are
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forwarded on a First-Come-First-Served basis toward the sources
of the data objects. Each node uses LRU as its cache eviction policy.
The CBP-LFU is similar to CBP-LRU policy but uses LFU as its
cache eviction policy.

The simulator finest granularity time step is 2usec for the Abilene,
Fog and GEANT topology, and is 1msec for the LHC topology. In the
DECO policy, virtual plane and actual plane decisions are carried out
in the slots of length 10* time steps and the averaging window size is
10° time steps. In the CBP-LRU and CBP-LFU policies, backpressure
algorithms for performing computations and forwarding are carried
out in the slots of length 10* time steps. The average window size
in all policies that utilize LFU is 10° time steps. The simulator
generates computation requests for 100 seconds in the Abilene, Fog
and GEANT topology, and 50000 seconds in the LHC topology. After
generating requests, simulator waits for all computation requests
to be satisfied. The Delay of each computation request is calculated
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as the difference between the fulfillment time (i.e., time of arrival
of the last result packet) and the creation time of the computation
interest packet. We sum over all the delays and divide it by the
total number of generated requests and the number of requesting
nodes. The computation request satisfaction delay (in second per
request per node) is plotted for different arrival rates (in number of
requests per node per second) for each topology in Figure 6.

We can see that the DECO policy outperforms all other schemes
by a large margin. For instance, at arrival rate of A = 45, the DECO
has around 80% delay improvement in the Abiline topology and 90%
delay improvement in the GEANT topology compared to the closest
policy. Another observation is that the second best policy may vary
from STS, RD-LFU, or CBP-LFU depending on the size of data
objects, computation load, caching, processing and link capacities
in each topology. None of the baseline methods is competitive with
the DECO, which takes local demand for both computation and
data into account for decision making.

6 CONCLUSION

We address the problem of joint computation, caching, and request
forwarding in a distributed data-centric computing network where
users issue requests for performing a computation task on a piece
of data. Our framework utilizes a virtual plane that characterizes
the dynamic of demands for computation and data in the networks
using virtual computation interest and virtual data interest metrics.
We characterize the stability region for the virtual interests and
propose a throughput optimal control policy within the virtual
plane based on the Lyapunov drift minimization. We show that the
optimal policy takes into account virtual data interests as well as
virtual computation interests when deciding on computation and
forwarding within the virtual plane. By utilizing optimal decisions
and counts in the virtual plane, we design a distributed joint request
forwarding, computation scheduling and caching policy in the
actual plane without any prior knowledge of request arrival rates.
Extensive numerical simulations show the superior performance
of our method compared to popular baseline policies in terms of
computation request satisfaction delay.
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