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Abstract—We propose a cumulative feedback-based ARQ (CF
ARQ) protocol for a sliding window of size 2 over packet erasure
channels with unreliable feedback. We exploit a matrix signal-
flow graph approach to analyze probability-generating functions
of transmission and delay times. Contrasting its performance
with that of the uncoded baseline scheme for ARQ, developed
by Ausavapattanakun and Nosratinia, we demonstrate that CF
ARQ can provide significantly less average delay under bursty
feedback, and gains up to about 20% in terms of throughput.
We also outline the benefits of CF ARQ under burst errors and
asymmetric channel conditions. The protocol is more predictable
across statistics, hence is more stable. This can help design
robust systems when feedback is unreliable. This feature may be
preferable for meeting the strict end-to-end latency and reliability
requirements of future use cases of ultra-reliable low-latency
communications in 5G, such as mission-critical communications
and industrial control for critical control messaging.

I. INTRODUCTION

Ultra reliability and low latency in 5G are key factors for

many applications ranging from industrial automation, tactile

Internet, remote healthcare, public safety, to mission-critical

communications such as autonomous driving and wearable

computing devices [1]–[3]. 5G will need to support a round-

trip time (RTT) of about 1 millisecond, along with necessary

overheads for resource allocation and access in 5G networks.

Such severe latency constraints introduce a plethora of chal-

lenges in terms of the protocol stack design, control/user plane,

and the core network [4].

Repetition of a packet over non-deterministic channel con-

ditions, and the use of forward error correction (FEC) codes

help repair the loss of the packets. Feedback packets are used

to request FEC retransmission for increasing the reliability

in packet delivery. The role of feedback is to increase data

channel efficiency by limiting the repetitions. However, coding

and feedback have been difficult to blend.

Reliable communication over a packet erasure channel can

be achieved using Automatic Repeat reQuest (ARQ), when

there is full feedback [5]. This simple scheme achieves 100%

throughput, in-order delivery and the lowest possible packet

delay, and it is composable across links. However, when the

network is lossy, i.e., with no idealized feedback, link-by-link

ARQ cannot achieve the capacity of a general network.

In the literature, the achievable rate has been optimized

using acknowledgments and coding, under the condition that

each received packet is either useless or can be immediately

decoded by the destination [6]. Feedback and coding over

a broadcast erasure channel have been combined in [7] to

optimize decoding delay when perfect feedback is available

from the receivers. An extension of ARQ for coded networks

has been proposed in [5] to minimize the queue size at the

transmitter. This approach combines the benefits of network

coding and ARQ by acknowledging degrees of freedom (DoF)

instead of original packets. It enables the feedback-based

control of the tradeoff between throughput and decoding delay

[8]. The proposed scheme in [5] is robust to delayed or

imperfect feedback. None of these examples jointly investigate

the delay and throughput when the feedback is imperfect.

For schemes requiring feedback, it is generally assumed

that feedback is lossless (perfect) and instantaneous (delay-

free) [5], [8], [9]. Inevitable feedback channel impairments

may cause unreliability in packet delivery. Burst errors might

occur, which can impede the stability. The situation becomes

worse under round-trip time (RTT) fluctuations along with the

delayed feedback. To the best of our knowledge, the effect of

unreliable feedback has not been captured before.

In this paper, we investigate the effect of unreliable feedback

in packet erasure channels. Erasure errors can occur in both the

forward and reverse channels. However, an acknowledgment

(ACK) cannot be decoded as a negative acknowledgment

(NACK), and vice versa. Building on the uncoded baseline

scheme proposed in [10], we propose a SR ARQ scheme

under a cumulative feedback-based ARQ (CF ARQ) scheme

in order to investigate the role of feedback. We investigate

how much we can gain with cumulative feedback and how

to compensate the forward errors with cumulative feedback.

Contrasting the throughput and delay performance of CF ARQ

with the uncoded ARQ in [10], we demonstrate that with a

sliding window of size 2, CF ARQ can provide gains up to

18% in terms of throughput. Cumulative feedback also has

benefits under burst errors or high erasure rates.

II. CHANNEL MODEL

We have a point-to-point channel model consisting of a

sender and a receiver. In the forward link, the sender attempts

to transmit a packet to the receiver, and upon the successful

reception of the packet, in the reverse link, the receiver

acknowledges the sender by transmitting a feedback. We use

a Gilbert-Elliott (GE) model [11], which is a special case of
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hidden Markov models (HMMs), both for the forward and

reverse channels. The status of a transmission at time t is a

random variable taking values in X = {0, 1}, where 0 denotes

an error-free packet, and 1 means the packet is erroneous.

Instead of a binary-state model, a general finite-state Markov

model can be used to represent a physical channel with fading,

in which the received signal-to-noise ratio can be partitioned

into a finite number of states, corresponding to different

channel qualities [12]. However, this is left as future work.

The binary-state Markov process St, with probability transition

matrix P, has states G (good) and B (bad), i.e. S = {G,B},

with ϵ = [ϵG, ϵB ] where ϵG and ϵB are the probabilities of

transmitting a packet in error in the respective states. The GE

channel Xt, driven by St, is characterized by {S,X ,P, ϵ}.

The channel state information is not available at the trans-

mitter and the receiver. Hence, the transmitter does not know

the status of a transmission (state of the forward link) at

time t, but it observes the status of the feedback at time

t − 1, which is a Bernoulli random variable taking values in

X = {0, 1}. Similarly, the receiver does not know the status

of the reverse link, but it observes the status of a transmission

at time t, which is a Bernoulli random variable taking values

in X = {0, 1}. The transmitter and receiver do not observe the

process X (c). However, for the GE channel, given the channel

state at time t− 1, the joint probabilities of channel state and

observation at time t can be computed using the state-transition

probabilities. For a GE channel, the state-transition matrix is

P =

[

1− q q
r 1− r

]

, (1)

where the first and second rows correspond to states G and

B. The erasure rate is ϵ = πϵ⊺, where π = [πG, πB ] is the

stationary vector of P, which is found by solving πP = π
and π1 = 1. Note that 1/r represents the average error burst.

Hence, burst errors occur when r is low.

The joint probabilities of channel state and observation at

time t, given the channel state at time t− 1, are given as

P(St = j,Xt = 1|St−1 = i) = pijϵj ,

which can be collected into a matrix of transition probabilities

P1 = P·diag{ϵ}. Similarly, define P0 = P·diag{1−ϵ}. The

entries in matrices P0 and P1 are state-transition probabilities

when viewed jointly with the conditional channel observations

[10]. Hence, the HMM is characterized by {S,X ,P0,P1}.

In practice, data packets and acknowledgments typically

have different lengths and different coding levels. Therefore,

the erasure rates ϵ and the parameters r and q of the forward

and reverse channels are not necessarily the same, which is

accounted in our model. Denote by P
(f) and P

(r) the state-

transition matrices for the forward and reverse channels, re-

spectively. The forward link {S(f),X (f),P
(f)
0 ,P

(f)
1 } and the

reverse link {S(r),X (r),P
(r)
0 ,P

(r)
1 } are mutually independent.

For the GE channel, the probability matrices for the forward

and reverse channels P
(f)
0 and P

(r)
1 are given as

P
(f)
0 = P

(f) · diag{1− ϵ
(f)} =

[

q̄(f)ϵ̄
(f)
G q(f)ϵ̄

(f)
B

r(f)ϵ̄
(f)
G r̄(f)ϵ̄

(f)
B

]

,

P
(r)
1 = P

(r) · diag{ϵ(r)} =

[

q̄(r)ϵ
(r)
G q(r)ϵ

(r)
B

r(r)ϵ
(r)
G r̄(r)ϵ

(r)
B

]

using the shorthand notation q̄ = 1−q, r̄ = 1−r, ϵ̄G = 1−ϵG
and ϵ̄B = 1− ϵB . We can similarly compute P

(f)
1 and P

(r)
0 .

The composite channel is characterized by

{S(c),X (c),P
(c)
00 ,P

(c)
01 ,P

(c)
10 ,P

(c)
11 }, where S(c) = S(f) ×S(r)

are the composite channel states, i.e. the Cartesian product

of forward and reverse states, and X (c) = X (f) × X (r) =
{00, 01, 10, 11} is the combined observation set. For example,

X
(c)
t = 10 means the forward channel is erroneous and

the reverse channel is good. For X
(c)
t = 11, the joint

probability of the combined observation and the composite

state at time t, given the composite state at time t − 1,

is (p
(f)
ij ϵ

(f)
j ) · (p

(r)
kmϵ

(r)
m ). In compact notation, we have

P
(c)
ij = P

(f)
i ⊗P

(r)
j for X

(c)
t = ij, where ⊗ is the Kronecker

product of matrices and i, j = 0, 1. For the GE channel, the

combined observation probabilities are given by the following

4 × 4 matrices: P
(c)
00 = P

(f)
0 ⊗ P

(r)
0 , P

(c)
01 = P

(f)
0 ⊗ P

(r)
1 ,

P
(c)
10 = P

(f)
1 ⊗P

(r)
0 , and P

(c)
11 = P

(f)
1 ⊗P

(r)
1 . The combined

state-transition matrix for the GE channel, i.e., P
(c), is a

4 × 4 matrix that is given by the Kronecker product of P
(f)

and P
(r), i.e. P(c) = P

(f) ⊗P
(r).

In the rest of the paper, we will drop the superscript (c) and

denote the 4×4 observation probability matrices by P00, P01,

P10 and P11. We also let P0x = P00+P01 and P1x = P10+
P11 be the probability matrices of success and error in the

forward channel, respectively, and let Px0 = P00 + P10 and

Px1 = P01 +P11 be the matrices of success and error in the

reverse channel, respectively. Furthermore, we let the matrices

P, P0, P1 denote the 4× 4 composite channel matrices.

III. ARQ WITH CUMULATIVE FEEDBACK

We propose a cumulative feedback-based ARQ (CF ARQ)

scheme with coding for data transmission. It is an extension

of the slotted SR ARQ, which allows the receiver to accept

packets out of order, which can be stored in a buffer and sorted

at the receiver to ensure in-order final delivery. Assume that

all packets are available at the sender prior to transmission,

the receiver does not have buffer overflows, and there is a

synchronous transmission from the sender to the receiver.

We consider minimum coding, i.e., with a sliding window

of size M = 2. The protocol can easily be generalized to

packet streams with M > 2, which is out of the scope

of the current paper. This scheme differs from the uncoded

ARQ in [10] in the sense that the transmitted packet stream

is MDS coded, and the feedback is cumulative for M = 2
coded packets. However, the transmission scheme is repetition-

based, i.e. the transmission rate is not adjusted based on the

cumulative feedback. The receiver needs both coded packets

to reconstruct the transmitted packet stream, i.e., the degrees

of freedom (DoF) required at the receiver is N = 2. We do not

assume in-order packet delivery. Hence, the transmitted stream

will be successfully decoded when both of the coded packets

are successfully received and acknowledged by the receiver.



Fig. 1. CF ARQ protocol description.

The feedback, i.e. ACK and NACK messages sent by the

receiver indicating if it has correctly received a data packet,

acknowledges all correctly received packets, and is cumulative

for M = 2 coded packets. After the start of transmission (I), it

takes k− 1 time slots between the transmission of the second

packet and receipt of its feedback. Therefore, the round-trip

time (RTT) of CF ARQ is RTT = k+M−1 = k+1 slots. If

the feedback was not cumulative, i.e., the first feedback was

received k − 1 slots after the transmission of the first packet,

then the RTT would have been k slots. A timeout mechanism

is used at the transmitter to achieve reliable data transmission.

When a packet stream is (re)transmitted, the timeout is set to

T that is greater than RTT. If the sender does not receive an

acknowledgment before the timeout, it retransmits the packets

until it receives an acknowledgment. Hence, we do not have

an upper bound on the maximum number of retransmissions.

The ACK/NACK sent in each slot. The packet whose ACK

is lost will be acknowledged by subsequent ACKs/NACKs. If

the succeeding ACKs/NACKs are successfully received before

timer expiration, the packet will not be retransmitted. If the

timeout expires and no ACK is received, the packet will be

retransmitted. When a packet is lost and its NACK is received,

the packet will be retransmitted immediately. If the NACK

is also lost, the packet will be retransmitted after the timer

expires. The transmission protocol is illustrated in Fig. 1.

The combined observation set for CF ARQ with M = 2
packets is all 3-tuples of Z2 = {0, 1}, i.e., X (c) = Z

3
2. For

example, X
(c)
t = 001 means that the forward channel is good

for both packets and the reverse channel is erroneous, i.e., the

ACK for both packets is lost at time t. Since the feedback

is cumulative for M = 2 packets, it is possible that both

packets are successfully acknowledged, or they both need to be

transmitted or only one of the packets has to be retransmitted.

Hidden Markov model (HMM) is a statistical Markov pro-

cess with unobserved states. Although the state is not directly

observed, the output dependent on the state can be observed.

Thus, under unreliable channel conditions, the analysis of

ARQ protocol is possible using HMMs. The analysis of finite-

state HMMs can be streamlined using flow graphs. Scalar-

flow graphs have been used to find the probability-generating

functions (PGFs) of transmission and delay times [13]–[15].

HMMs can be analyzed by labeling the branches of scalar-

flow graphs with observation probability matrices. The nodes

of the flow graphs correspond to the states of the transmitter.

The input node (I) represents the start of transmission, and

Fig. 2. Matrix-flow graph for delay of CF ARQ in imperfect feedback.

the output node (O) represents correct reception of acknowl-

edgment. Other nodes represent intermediate states. Upon the

start of transmission, the transmitter goes from one state to the

other. A state transition is accompanied with a certain value

for the random variable X , and a probability p, which together

appear in the branch gain pzX . Hence, the input-output gain

of the graph is a polynomial in z, whose coefficients are the

probabilities of corresponding values of X . This polynomial is

equivalent to E[zX ], the PGF for X . Flow graphs with matrix

branch transmissions and vector node values are called matrix

signal-flow graphs (MSFGs) [10]. The matrix gain of the graph

is calculated using the basic equivalences known as parallel,

series, and self-loop. The matrix-generating function (MGF)

Φ(z) gives the input-output relationship for the matrix-flow

graph. Then, the PGF is calculated by pre- and postmultipli-

cations of row and column vectors, respectively.

The HMM for delay analysis of CF ARQ is shown in Fig. 2.

The states I and O are the input and output nodes, and nodes

A1, A2, C1, C2 represent the hidden states. The possibilities

upon the transmission of M = 2 coded packets are:

• Transition to state A2. Node A2 denotes the reception of

the first feedback. The coded packets are retransmitted until

the forward link is successful and at least one packet is

successfully transmitted. The retransmission is modeled by

the self-loop at A2, where

P
D
1x(1) = zRTT

P
RTT(zPC

10(1) + zPC
11(1)z

d
P

d),

where d = T−RTT is the residual time for timer expiration

upon transmission. Upon the reception of the first feedback,

the transition probability matrix P
C
10(1) for the transmission

of M = 2 packets is given by

P
C
10(1) = P10P10 +P10P01 +P01P10,

which models the error-free NACK. It combines the differ-

ent cases such that the feedback is an error-free NACK, i.e.,

the forward link was bad for both packets and the reverse

link was good (first term), or the forward link was bad

for either one of the packets only and the reverse link was



good (second and third terms). We assume the cumulative

feedback is error-free as long as the reverse link is good

before the forward transmission is over.

The transition probability matrix P
C
11(1) is given by

P
C
11(1) = P11P11 +P11P10 +P10P11,

which models the erroneous NACK feedback. It combines

the different cases such that the forward link was bad for

both packets and the reverse link (CF) was also bad.

In CF ARQ, unless both packets are successfully acknowl-

edged, we always need retransmissions. Hence, it is subop-

timal. Furthermore, the erasure rate of CF ARQ is not the

same as the erasure rate of uncoded ARQ. For example, for

the case of symmetric memoryless channels, the relationship

between the erasure rate ϵCF for CF ARQ with M = 2
packets, and the erasure rate ϵ of the uncoded ARQ in [10] is

computed as ϵCF =
√

ϵ4 + 2ϵ3(1− ϵ). Hence, ϵCF(1) ≥ ϵ2.

• Transition to state A1. When the first feedback is received

at node A2, if the number of DoFs acknowledged equals 1,

then the system transits to state A1. The matrix

PA(1) = P00P10 +P10P00

denotes the transition probability matrix from A2 to A1.

Hence, if the system goes into state A1, the additional

number of DoFs required by the receiver is 1, i.e., only one

packet needs to be retransmitted. The packet retransmission

at A1 is modeled by the self-loop, where

P
D
1x(2) = (zP)RTT−1(zPC

10(2) + zPC
11(2)z

d+1
P

d+1),

where the probability matrices PC
10(2) and P

C
11(2) model the

error-free and the erroneous NACK, respectively. At node

A1, as only one packet is retransmitted, the matrices satisfy

P
C
xy(2) = Pxy , where Pxy’s, for x, y ∈ {0, 1} are the

transition probability matrices for the uncoded ARQ in [10].

• Transition to state O. If N = 2 DoF’s are received, the

stream can be successfully decoded. If N = 2 DoF’s are

acknowledged (with probability P
C
00(1) = P00P00), the

system transits to state O.

• Transition to state C1. If N = 2 DoF’s are received,

but the feedback is an erroneous ACK (with probability

P
C
01(1) = P01P01 + P01P00 + P00P01), then the system

transits to C1, where the sender waits till it receives an

error-free ACK/NACK, modeled by the self-loop at C1.

• Transition to state C2. If N = 2 DoF’s are received,

but only one packet is successfully acknowledged and the

feedback for the other packet is an erroneous ACK (with

probability P
C
01(2)), then the system transits to C2, where

the sender waits till it receives an error-free ACK/NACK.

Given the transition probabilities, the success and error

probability matrices in the reverse channel for CF ARQ are:

P
C
x0(n) = P

C
00(n) +P

C
10(n),

P
C
x1(n) = P

C
01(n) +P

C
11(n), n ∈ {1, 2},

respectively, where n−1 is the number of DoFs acknowledged

by the receiver, i.e., 2−(n−1) DoFs are needed at the receiver.

The transmission time (τ ) is the number of frames being

transmitted per a successful frame, and the delay time (D) is

the time from when a frame is first transmitted to when its

ACK is received. Under the given model, both τ and D are

random variables with positive integer outcomes. The matrix

gain of the graph in Fig. 2 can be calculated. Using the PGF,

the average values for τ and D can be calculated and the

throughput is the reciprocal of τ . We next compute the MGF

of the transmission time for M = 2 packets.

Proposition 1. For CF ARQ, the MGF of τ is given by

Φτ (z) = zPk
[

(I−P
T
1x(1))

−1
A1(z)

+PA(1)
∏2

i=1
(I−P

T
1x(i))

−1
A2(z)

]

, (2)

where

P
T
1x(1) = z(PC

10(1) +P
C
11(1)(P

2)d)Pk+1

P
T
1x(2) = z(PC

10(2) +P
C
11(2)P

d−1)Pk.

and the matrix An(z) for n = {1, 2} that gives the gain of

the transition from the state A2−(n−1) can be computed as

An(z) = P
C
00(n) +P

C
01(n)

[

∑dn

i=1
P

C
x1(n)

i−1
P

C
x0(n)

+P
C
x1(n)

dn(I− zPC
x1(n)

T )−1z
∑T−1

i=0
P

C
x1(n)

i
P

C
x0(n)

]

,

where dn = d− (n− 1).

The PGF of τ of CF ARQ for M = 2 packets is computed

as Φτ (z) = πIΦτ (z)1/(πI1) using the MGF Φτ (z) in (2),

where 1 is a column vector of ones, and πI = πP0 is the

probability vector of state I . The throughput η is the reciprocal

of the derivative of Φτ (z) at z = 1, i.e., η = 1/Φ′
τ (1).

We next compute the MGF of the delay for M = 2 packets.

Proposition 2. For CF ARQ, the MGF of the delay is

ΦD(z) = zkPk
[

(I−P
D
1x(1))

−1
B1(z)

+ zPA(1)
∏2

i=1
(I−P

D
1x(i))

−1
B2(z)

]

, (3)

where Bn(z) for n ∈ {1, 2} can be computed using relation

Bn(z) = zPC
00(n) + zPC

01(n)(I− zPC
x1(n))

−1zPC
x0(n).

The PGF of delay of CF ARQ for M = 2 coded packets can

be computed as ΦD(z) = πIΦD(z)1/(πI1) using the MGF

ΦD(z) in (3). Finally, the average delay will be the derivative

of ΦD(z) at z = 1, i.e., D̄ = Φ′
D(1).

In Sect. IV, we numerically evaluate the throughput and

average delay for the GE channel model detailed in Sect. II

and using the generating functions derived in Sect. III.

IV. NUMERICAL RESULTS

We numerically investigate the throughput η and average

delay D̄ of the point-to-point GE channel. Our objective is to

understand the impacts of feedback and cumulative feedback

(CF) under less reliable and bursty channel conditions.

First assume that the forward and reverse channels have the

same erasure rates, i.e., ϵ(f) = ϵ(r) = ϵ. In Fig. 3, we fix the

burst rate of the forward channel, i.e., r(f), and vary the burst

rate of the reverse channel, i.e., r(r), and vice versa. As timeout

T increases, both the throughput η and the average delay D̄
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Fig. 3. Throughput and average delay under different burst models given fixed erasure rates: ϵ(f) = ϵ
(r)

= ϵ.

increase. As ϵ increases, it is clear that η gets lower and D̄
increases both for uncoded ARQ and CF ARQ. Sensitivity of

η to timeout T also increases under burst errors (low r). If the

feedback erasures are bursty, η decreases with feedback delay.

We also observe that η of CF ARQ is higher than η of uncoded

ARQ. The difference becomes significant when the feedback

is bursty and ϵ is high. When ϵ is small, since the RTTs of CF

ARQ and uncoded ARQ are k + 1 and k, respectively, D̄ of

CF ARQ is higher. However, D̄ of CF ARQ is smaller when

the feedback is bursty and ϵ is high. Hence, CF ARQ is more

robust to burst errors in the feedback. When there is perfect

feedback with ϵ(r) = 0, uncoded ARQ has lower D̄ and higher

η than CF ARQ. Throughput and delay performance of both

schemes degrade as the feedback loss ϵ(r) increases. However,

CF ARQ outperforms uncoded ARQ under feedback loss.

In Fig. 4, we investigate the role of asymmetry such that

either the forward channel is more robust to erasures, i.e.,

ϵ(f) = 0.1 and ϵ(r) = 0.5, or vice versa. We keep r(f) fixed

and increase r(r). When the forward channel is more robust

to erasures, η is higher both for uncoded ARQ and CF ARQ,

and D̄ is significantly less compared to the case when the

reverse channel is more robust. In this case, CF ARQ provides

significantly better throughput than uncoded ARQ. Thus, even

if the forward and reverse channels are asymmetric, CF ARQ

performs better than uncoded ARQ under bursty feedback.

From Figs. 3 and 4, we see that erasures of forward channel

ϵ(f) scale the throughput, and feedback erasures ϵ(r) change

the shape of the throughput. Hence, forward erasures ϵ(f)

significantly degrade the throughput of both uncoded ARQ

and CF ARQ, and dominate the performance of throughput.

Still, CF ARQ throughput gap from uncoded ARQ is higher

when ϵ(r) is high. In terms of delay, CF ARQ is more stable

than uncoded ARQ when ϵ(f) increases, and less stable when

ϵ(r) increases. Still, CF ARQ is more stable when ϵ(r) is high.

We next investigate the robustness of CF ARQ to forward

erasures. Letting ϵ(r) = 0.1, we illustrate η and D̄ of uncoded

ARQ and CF ARQ in Fig. 5 for different sets of burst rates.

From the plots, we see that CF ARQ provides a higher η,

and even more forward erasures can be compensated (up to

∆ϵ(f) = 0.12) with CF for M = 2 packets if the feedback

channel is more bursty without sacrificing D̄. CF ARQ can

provide a gain of 18% in terms of throughput.

Uncoded ARQ is very sensitive to error bursts. The higher

the burst rate, the lower its throughput is and the higher its

delay is. To compensate for the forward erasures, CF can be

used, which can provide significantly less delay, and better

throughput. Similarly, when the feedback erasures dominate,

performance of CF is much better in terms of throughput, and

CF can provide reductions in delay under bursty feedback.

V. CONCLUSIONS

We proposed a cumulative feedback-based ARQ with a slid-

ing window of size 2, and computed the MGFs of transmission
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Fig. 5. Average delay and throughput as function of ϵ(f), under different burst rates.

and delay times. Contrasting its performance with uncoded

ARQ, we demonstrated its robustness under burst errors. The

following insights should enable more robust design for packet

erasure channels with imperfect and bursty feedback:

• At high erasures, CF ARQ provides considerably low aver-

age delay and high throughput than uncoded ARQ.

• CF ARQ has benefits under burst errors or higher erasure

rates in the reverse channel. It is more predictable across

statistics, hence is more stable. This can help design robust

systems when feedback is unreliable.

Incorporating FEC, the transmission rate can be adaptively

adjusted with the cumulative feedback for multiple coded

packets. Extensions hence include the study of different coded

schemes, and the throughput achievable with coding. While the

analysis is prohibitively complex for larger window sizes with

excessive number of hidden states, the technique can easily be

evaluated for general window sizes using a network simulator.

This can help understand the scalings between the window size

and system parameters. This will pave the way for protocol

design for 5G with desirable throughput-delay tradeoffs.
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