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Abstract—We propose a cumulative feedback-based ARQ (CF
ARQ) protocol for a sliding window of size 2 over packet erasure
channels with unreliable feedback. We exploit a matrix signal-
flow graph approach to analyze probability-generating functions
of transmission and delay times. Contrasting its performance
with that of the uncoded baseline scheme for ARQ, developed
by Ausavapattanakun and Nosratinia, we demonstrate that CF
ARQ can provide significantly less average delay under bursty
feedback, and gains up to about 20% in terms of throughput.
We also outline the benefits of CF ARQ under burst errors and
asymmetric channel conditions. The protocol is more predictable
across statistics, hence is more stable. This can help design
robust systems when feedback is unreliable. This feature may be
preferable for meeting the strict end-to-end latency and reliability
requirements of future use cases of ultra-reliable low-latency
communications in 5G, such as mission-critical communications
and industrial control for critical control messaging.

I. INTRODUCTION

Ultra reliability and low latency in 5G are key factors for
many applications ranging from industrial automation, tactile
Internet, remote healthcare, public safety, to mission-critical
communications such as autonomous driving and wearable
computing devices [1]-[3]. 5G will need to support a round-
trip time (RTT) of about 1 millisecond, along with necessary
overheads for resource allocation and access in 5G networks.
Such severe latency constraints introduce a plethora of chal-
lenges in terms of the protocol stack design, control/user plane,
and the core network [4].

Repetition of a packet over non-deterministic channel con-
ditions, and the use of forward error correction (FEC) codes
help repair the loss of the packets. Feedback packets are used
to request FEC retransmission for increasing the reliability
in packet delivery. The role of feedback is to increase data
channel efficiency by limiting the repetitions. However, coding
and feedback have been difficult to blend.

Reliable communication over a packet erasure channel can
be achieved using Automatic Repeat reQuest (ARQ), when
there is full feedback [5]. This simple scheme achieves 100%
throughput, in-order delivery and the lowest possible packet
delay, and it is composable across links. However, when the
network is lossy, i.e., with no idealized feedback, link-by-link
ARQ cannot achieve the capacity of a general network.

In the literature, the achievable rate has been optimized
using acknowledgments and coding, under the condition that
each received packet is either useless or can be immediately
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decoded by the destination [6]. Feedback and coding over
a broadcast erasure channel have been combined in [7] to
optimize decoding delay when perfect feedback is available
from the receivers. An extension of ARQ for coded networks
has been proposed in [5] to minimize the queue size at the
transmitter. This approach combines the benefits of network
coding and ARQ by acknowledging degrees of freedom (DoF)
instead of original packets. It enables the feedback-based
control of the tradeoff between throughput and decoding delay
[8]. The proposed scheme in [5] is robust to delayed or
imperfect feedback. None of these examples jointly investigate
the delay and throughput when the feedback is imperfect.

For schemes requiring feedback, it is generally assumed
that feedback is lossless (perfect) and instantaneous (delay-
free) [5], [8], [9]. Inevitable feedback channel impairments
may cause unreliability in packet delivery. Burst errors might
occur, which can impede the stability. The situation becomes
worse under round-trip time (RTT) fluctuations along with the
delayed feedback. To the best of our knowledge, the effect of
unreliable feedback has not been captured before.

In this paper, we investigate the effect of unreliable feedback
in packet erasure channels. Erasure errors can occur in both the
forward and reverse channels. However, an acknowledgment
(ACK) cannot be decoded as a negative acknowledgment
(NACK), and vice versa. Building on the uncoded baseline
scheme proposed in [10], we propose a SR ARQ scheme
under a cumulative feedback-based ARQ (CF ARQ) scheme
in order to investigate the role of feedback. We investigate
how much we can gain with cumulative feedback and how
to compensate the forward errors with cumulative feedback.
Contrasting the throughput and delay performance of CF ARQ
with the uncoded ARQ in [10], we demonstrate that with a
sliding window of size 2, CF ARQ can provide gains up to
18% in terms of throughput. Cumulative feedback also has
benefits under burst errors or high erasure rates.

II. CHANNEL MODEL

We have a point-to-point channel model consisting of a
sender and a receiver. In the forward link, the sender attempts
to transmit a packet to the receiver, and upon the successful
reception of the packet, in the reverse link, the receiver
acknowledges the sender by transmitting a feedback. We use
a Gilbert-Elliott (GE) model [11], which is a special case of
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hidden Markov models (HMMs), both for the forward and
reverse channels. The status of a transmission at time ¢ is a
random variable taking values in X = {0, 1}, where 0 denotes
an error-free packet, and 1 means the packet is erroneous.
Instead of a binary-state model, a general finite-state Markov
model can be used to represent a physical channel with fading,
in which the received signal-to-noise ratio can be partitioned
into a finite number of states, corresponding to different
channel qualities [12]. However, this is left as future work.
The binary-state Markov process .Sy, with probability transition
matrix P, has states G (good) and B (bad), i.e. S = {G, B},
with € = [eg, ep] where e and ep are the probabilities of
transmitting a packet in error in the respective states. The GE
channel X;, driven by S;, is characterized by {S, X, P, €}.

The channel state information is not available at the trans-
mitter and the receiver. Hence, the transmitter does not know
the status of a transmission (state of the forward link) at
time ¢, but it observes the status of the feedback at time
t — 1, which is a Bernoulli random variable taking values in
X = {0,1}. Similarly, the receiver does not know the status
of the reverse link, but it observes the status of a transmission
at time t, which is a Bernoulli random variable taking values
in X = {0, 1}. The transmitter and receiver do not observe the
process X'(¢). However, for the GE channel, given the channel
state at time ¢ — 1, the joint probabilities of channel state and
observation at time ¢ can be computed using the state-transition
probabilities. For a GE channel, the state-transition matrix is

l—-q ¢
P= { r 1- T] ’ M

where the first and second rows correspond to states G and
B. The erasure rate is ¢ = weT, where 7 = [rg, wp]| is the
stationary vector of P, which is found by solving 7P = 7
and 71 = 1. Note that 1/r represents the average error burst.
Hence, burst errors occur when r is low.

The joint probabilities of channel state and observation at
time ¢, given the channel state at time ¢ — 1, are given as

P(St =75, X = 1|St—1 = l) = Pij€j,

which can be collected into a matrix of transition probabilities
P, = P-diag{e€}. Similarly, define Py = P-diag{1—e€}. The
entries in matrices Py and P, are state-transition probabilities
when viewed jointly with the conditional channel observations
[10]. Hence, the HMM is characterized by {S, X', P, P1}.

In practice, data packets and acknowledgments typically
have different lengths and different coding levels. Therefore,
the erasure rates € and the parameters r and ¢ of the forward
and reverse channels are not necessarily the same, which is
accounted in our model. Denote by P(/) and P(") the state-
transition matrices for the forward and reverse channels, re-
spectively. The forward link {S(f xU, P(f) P(f)} and the
reverse link {S, X P{") P{"} are mutually independent.

For the GE channel, the probab1l1ty matrices for the forward
and reverse channels P(()f ) and PY) are given as
gNED q<f>g<Bf>1

() — p) . diagfl — e} =
P/ =P d1ag{1 € } [T(f)eg) f(f)gggf)

=(r) (r) () (r)
Pgr) — P(T‘) ) dlag{e(T‘)} — |f] EG q EB ]

T(T)eg) f(r)eg)

using the shorthand notation ¢ = 1—¢q, 7 =1—7, g = 1 —€g
and €g = 1 — ep. We can similarly compute P(lf) and P(()T).

The  com os1te channel is  characterized by
(8@, x@ PY) PY) P P where $©) = () x ST
are the comp051te channel states, i.e. the Cartesian product
of forward and reverse states, and X(©) = X)) x x(r) =
{00,01,10, 11} is the combined observation set. For example,
Xt(c) = 10 means the forward channel is erroneous and
the reverse channel is good. For Xt(c) = 11, the joint
probability of the combined observation and the composite
state at time ¢, given the composite state at time t — 1,
is (pgjf Jelf )) . (p,(;zle,(ﬁ)) In compact notation, we have
P = PE '@ P! for X = ij, where ® is the Kronecker
product of matrices and ¢, = 0, 1. For the GE channel, the
combined observation probabilities are given by the following
4 x 4 matrices: P{Y) = P{) @ P\, Pl = P/ o P{",
Pl =PV g P(’”9 and P “) ?f ) ® P(T The combined
state transition matrix for the GE channel , PO, is a
4 x 4 matrix that is given by the Kronecker product of P()
and P, i.e. P =P @ P,

In the rest of the paper, we will drop the superscript () and
denote the 4 x 4 observation probability matrices by Pg, Po1,
Py and Py;. We also let Py, = Poo+Pp1 and Py, = P1g+
P, be the probability matrices of success and error in the
forward channel, respectively, and let P,y = Pyo + P19 and
P.1 = Pg1 + P41 be the matrices of success and error in the
reverse channel, respectively. Furthermore, we let the matrices
P, Py, P, denote the 4 x 4 composite channel matrices.

III. ARQ WITH CUMULATIVE FEEDBACK

We propose a cumulative feedback-based ARQ (CF ARQ)
scheme with coding for data transmission. It is an extension
of the slotted SR ARQ, which allows the receiver to accept
packets out of order, which can be stored in a buffer and sorted
at the receiver to ensure in-order final delivery. Assume that
all packets are available at the sender prior to transmission,
the receiver does not have buffer overflows, and there is a
synchronous transmission from the sender to the receiver.

We consider minimum coding, i.e., with a sliding window
of size M = 2. The protocol can easily be generalized to
packet streams with M > 2, which is out of the scope
of the current paper. This scheme differs from the uncoded
ARQ in [10] in the sense that the transmitted packet stream
is MDS coded, and the feedback is cumulative for M = 2
coded packets. However, the transmission scheme is repetition-
based, i.e. the transmission rate is not adjusted based on the
cumulative feedback. The receiver needs both coded packets
to reconstruct the transmitted packet stream, i.e., the degrees
of freedom (DoF) required at the receiver is N = 2. We do not
assume in-order packet delivery. Hence, the transmitted stream
will be successfully decoded when both of the coded packets
are successfully received and acknowledged by the receiver.
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Fig. 1. CF ARQ protocol description.

The feedback, i.e. ACK and NACK messages sent by the
receiver indicating if it has correctly received a data packet,
acknowledges all correctly received packets, and is cumulative
for M = 2 coded packets. After the start of transmission (I), it
takes k — 1 time slots between the transmission of the second
packet and receipt of its feedback. Therefore, the round-trip
time (RTT) of CF ARQ is RTT = k+ M —1 = k+1 slots. If
the feedback was not cumulative, i.e., the first feedback was
received k — 1 slots after the transmission of the first packet,
then the RTT would have been k slots. A timeout mechanism
is used at the transmitter to achieve reliable data transmission.
When a packet stream is (re)transmitted, the timeout is set to
T that is greater than RTT. If the sender does not receive an
acknowledgment before the timeout, it retransmits the packets
until it receives an acknowledgment. Hence, we do not have
an upper bound on the maximum number of retransmissions.

The ACK/NACK sent in each slot. The packet whose ACK
is lost will be acknowledged by subsequent ACKs/NACKs. If
the succeeding ACKs/NACKs are successfully received before
timer expiration, the packet will not be retransmitted. If the
timeout expires and no ACK is received, the packet will be
retransmitted. When a packet is lost and its NACK is received,
the packet will be retransmitted immediately. If the NACK
is also lost, the packet will be retransmitted after the timer
expires. The transmission protocol is illustrated in Fig. 1.

The combined observation set for CF ARQ with M = 2
packets is all 3-tuples of Z; = {0,1}, ie., X(9 = Z3. For
example, Xt(c) = 001 means that the forward channel is good
for both packets and the reverse channel is erroneous, i.e., the
ACK for both packets is lost at time ¢. Since the feedback
is cumulative for M = 2 packets, it is possible that both
packets are successfully acknowledged, or they both need to be
transmitted or only one of the packets has to be retransmitted.

Hidden Markov model (HMM) is a statistical Markov pro-
cess with unobserved states. Although the state is not directly
observed, the output dependent on the state can be observed.
Thus, under unreliable channel conditions, the analysis of
ARQ protocol is possible using HMMs. The analysis of finite-
state. HMMs can be streamlined using flow graphs. Scalar-
flow graphs have been used to find the probability-generating
functions (PGFs) of transmission and delay times [13]-[15].

HMMs can be analyzed by labeling the branches of scalar-
flow graphs with observation probability matrices. The nodes
of the flow graphs correspond to the states of the transmitter.
The input node (I) represents the start of transmission, and
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Fig. 2. Matrix-flow graph for delay of CF ARQ in imperfect feedback.

the output node (O) represents correct reception of acknowl-
edgment. Other nodes represent intermediate states. Upon the
start of transmission, the transmitter goes from one state to the
other. A state transition is accompanied with a certain value
for the random variable X, and a probability p, which together
appear in the branch gain pz~. Hence, the input-output gain
of the graph is a polynomial in z, whose coefficients are the
probabilities of corresponding values of X. This polynomial is
equivalent to E[z], the PGF for X. Flow graphs with matrix
branch transmissions and vector node values are called matrix
signal-flow graphs (MSFGs) [10]. The matrix gain of the graph
is calculated using the basic equivalences known as parallel,
series, and self-loop. The matrix-generating function (MGF)
®(z) gives the input-output relationship for the matrix-flow
graph. Then, the PGF is calculated by pre- and postmultipli-
cations of row and column vectors, respectively.

The HMM for delay analysis of CF ARQ is shown in Fig. 2.
The states I and O are the input and output nodes, and nodes
Ay, Ag, C, Cy represent the hidden states. The possibilities
upon the transmission of M = 2 coded packets are:

o Transition to state A,. Node A, denotes the reception of
the first feedback. The coded packets are retransmitted until
the forward link is successful and at least one packet is
successfully transmitted. The retransmission is modeled by
the self-loop at Ay, where

PP (1) = PR P, (1) + 2P (1)27PY),
where d = T'—RTT is the residual time for timer expiration
upon transmission. Upon the reception of the first feedback,
the transition probability matrix P$,(1) for the transmission
of M = 2 packets is given by

P{,(1) = P1oP1g + P1oPo1 + Po1Pyo,

which models the error-free NACK. It combines the differ-
ent cases such that the feedback is an error-free NACK, i.e.,
the forward link was bad for both packets and the reverse
link was good (first term), or the forward link was bad
for either one of the packets only and the reverse link was



good (second and third terms). We assume the cumulative
feedback is error-free as long as the reverse link is good
before the forward transmission is over.

The transition probability matrix P{, (1) is given by

Py (1) =Py 1Py + PPy + PPy,

which models the erroneous NACK feedback. It combines
the different cases such that the forward link was bad for
both packets and the reverse link (CF) was also bad.

In CF ARQ, unless both packets are successfully acknowl-
edged, we always need retransmissions. Hence, it is subop-
timal. Furthermore, the erasure rate of CF ARQ is not the
same as the erasure rate of uncoded ARQ. For example, for
the case of symmetric memoryless channels, the relationship
between the erasure rate ecp for CF ARQ with M = 2
packets, and the erasure rate € of the uncoded ARQ in [10] is
computed as ecr = /€* + 2€3(1 — €). Hence, ecr(1) > €.

« Transition to state A;. When the first feedback is received
at node A, if the number of DoFs acknowledged equals 1,
then the system transits to state A;. The matrix

P4(1) = PooP1o + P1oPoo
denotes the transition probability matrix from Ay to Aj.
Hence, if the system goes into state A;, the additional
number of DoFs required by the receiver is 1, i.e., only one
packet needs to be retransmitted. The packet retransmission
at A; is modeled by the self-loop, where
PP, (2) = (:P) T (2P (2) + 2P (2) /7P,

where the probability matrices P$,(2) and P, (2) model the
error-free and the erroneous NACK, respectively. At node
Ay, as only one packet is retransmitted, the matrices satisfy
PC (2) = P,y. where P,’s, for z,y € {0,1} are the
transition probability matrices for the uncoded ARQ in [10].

o Transition to state O. If N = 2 DoF’s are received, the
stream can be successfully decoded. If N = 2 DoF’s are
acknowledged (with probability P§,(1) = PgoPqo), the
system transits to state O.

o Transition to state Ci. If N = 2 DoF’s are received,
but the feedback is an erroneous ACK (with probability
Pocl(l) = Pyp1Po1 + Po1Poo + PooPo1), then the system
transits to C;, where the sender waits till it receives an
error-free ACK/NACK, modeled by the self-loop at (.

o Transition to state Cy. If N = 2 DoF’s are received,
but only one packet is successfully acknowledged and the
feedback for the other packet is an erroneous ACK (with
probability P (2)), then the system transits to Ca, where
the sender waits till it receives an error-free ACK/NACK.

Given the transition probabilities, the success and error
probability matrices in the reverse channel for CF ARQ are:

P (n) = Pgy(n) + P (n),
P (n) = PG (n) + P{(n), n € {1,2},

respectively, where n—1 is the number of DoFs acknowledged
by the receiver, i.e., 2—(n—1) DoFs are needed at the receiver.

The transmission time (7) is the number of frames being
transmitted per a successful frame, and the delay time (D) is

the time from when a frame is first transmitted to when its
ACK is received. Under the given model, both 7 and D are
random variables with positive integer outcomes. The matrix
gain of the graph in Fig. 2 can be calculated. Using the PGF,
the average values for 7 and D can be calculated and the
throughput is the reciprocal of 7. We next compute the MGF
of the transmission time for M = 2 packets.

Proposition 1. For CF ARQ, the MGF of T is given by

®(2) = 2PF| (1= PL,(1)) A (2)
+ PA(l)l_Li1

PT,(1) = 2(Pf(1) + Pf (1) (P?))PHH
P1,(2) = 2(P§,(2) + PR (2)P )P,
and the matrix A, (z) for n = {1,2} that gives the gain of
the transition from the state A_(,,_1y can be computed as

An(2) = P§y(n) + PG, (n) [ij PC, (n)~'PS)(n)

I-PL>1) " Ax(z)], (@

where

+PS (n)® (I - 2PS

where d,, =d — (n — 1).

The PGF of 7 of CF ARQ for M = 2 packets is computed
as ®,(z) = 7y ®,(2)1/(nr1) using the MGF ®,(z) in (2),
where 1 is a column vector of ones, and m; = wPg is the
probability vector of state I. The throughput 7 is the reciprocal
of the derivative of ®,(z) at z =1, i.e., n = 1/P/(1).

We next compute the MGF of the delay for M = 2 packets.

PGPS

Proposition 2. For CF ARQ, the MGF of the delay is
p(z) = 2P (1= PD, (1)) 'Bi(2)

2
+Pa[[_ A-PRG)B:(2)], @)
where B,,(z) for n € {1,2} can be computed using relation

B,,(2) = 2PGy(n) + 2P (n) (I — 2Pgy (n)) ™ 2Py (n).

The PGF of delay of CF ARQ for M = 2 coded packets can
be computed as ®p(z) = 7 ®Pp(2)1/(nr1) using the MGF
® p(2) in (3). Finally, the average delay will be the derivative
of ®p(z) at z =1, ie., D = ®(1).

In Sect. IV, we numerically evaluate the throughput and
average delay for the GE channel model detailed in Sect. II
and using the generating functions derived in Sect. III.

IV. NUMERICAL RESULTS

We numerically investigate the throughput 1 and average
delay D of the point-to-point GE channel. Our objective is to
understand the impacts of feedback and cumulative feedback
(CF) under less reliable and bursty channel conditions.

First assume that the forward and reverse channels have the
same erasure rates, i.e., ¢f) = ¢(") = ¢, In Fig. 3, we fix the
burst rate of the forward channel, i.e., ), and vary the burst
rate of the reverse channel, i.e., 7("), and vice versa. As timeout
T increases, both the throughput 7 and the average delay D
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Fig. 3. Throughput and average delay under different burst models given fixed erasure rates: e =M =¢

increase. As e increases, it is clear that  gets lower and D
increases both for uncoded ARQ and CF ARQ. Sensitivity of
7 to timeout 7" also increases under burst errors (low r). If the
feedback erasures are bursty, 1 decreases with feedback delay.
We also observe that 77 of CF ARQ is higher than 7 of uncoded
ARQ. The difference becomes significant when the feedback
is bursty and € is high. When e is small, since the RTTs of CF
ARQ and uncoded ARQ are k + 1 and k, respectively, D of
CF ARQ is higher. However, D of CF ARQ is smaller when
the feedback is bursty and € is high. Hence, CF ARQ is more
robust to burst errors in the feedback. When there is perfect
feedback with €(™) = 0, uncoded ARQ has lower D and higher
n than CF ARQ. Throughput and delay performance of both
schemes degrade as the feedback loss €(") increases. However,
CF ARQ outperforms uncoded ARQ under feedback loss.

In Fig. 4, we investigate the role of asymmetry such that
either the forward channel is more robust to erasures, i.e.,
€l/) = 0.1 and €") = 0.5, or vice versa. We keep r(/) fixed
and increase 7("). When the forward channel is more robust
to erasures, 7 is higher both for uncoded ARQ and CF ARQ,
and D is significantly less compared to the case when the
reverse channel is more robust. In this case, CF ARQ provides
significantly better throughput than uncoded ARQ. Thus, even
if the forward and reverse channels are asymmetric, CF ARQ
performs better than uncoded ARQ under bursty feedback.

From Figs. 3 and 4, we see that erasures of forward channel

(/) scale the throughput, and feedback erasures (™) change
the shape of the throughput. Hence, forward erasures e(/)
significantly degrade the throughput of both uncoded ARQ
and CF ARQ, and dominate the performance of throughput.
Still, CF ARQ throughput gap from uncoded ARQ is higher
when €(") is high. In terms of delay, CF ARQ is more stable
than uncoded ARQ when e() increases, and less stable when
¢ increases. Still, CF ARQ is more stable when e is high.

We next investigate the robustness of CF ARQ to forward
erasures. Letting elr) = 0.1, we illustrate n and D of uncoded
ARQ and CF ARQ in Fig. 5 for different sets of burst rates.
From the plots, we see that CF ARQ provides a higher 7,
and even more forward erasures can be compensated (up to
Aelf) = 0.12) with CF for M = 2 packets if the feedback
channel is more bursty without sacrificing D. CF ARQ can
provide a gain of 18% in terms of throughput.

Uncoded ARQ is very sensitive to error bursts. The higher
the burst rate, the lower its throughput is and the higher its
delay is. To compensate for the forward erasures, CF can be
used, which can provide significantly less delay, and better
throughput. Similarly, when the feedback erasures dominate,
performance of CF is much better in terms of throughput, and
CF can provide reductions in delay under bursty feedback.

V. CONCLUSIONS

We proposed a cumulative feedback-based ARQ with a slid-
ing window of size 2, and computed the MGFs of transmission
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and delay times. Contrasting its performance with uncoded
ARQ, we demonstrated its robustness under burst errors. The
following insights should enable more robust design for packet
erasure channels with imperfect and bursty feedback:

o At high erasures, CF ARQ provides considerably low aver-
age delay and high throughput than uncoded ARQ.

o CF ARQ has benefits under burst errors or higher erasure
rates in the reverse channel. It is more predictable across
statistics, hence is more stable. This can help design robust
systems when feedback is unreliable.

Incorporating FEC, the transmission rate can be adaptively
adjusted with the cumulative feedback for multiple coded
packets. Extensions hence include the study of different coded
schemes, and the throughput achievable with coding. While the
analysis is prohibitively complex for larger window sizes with
excessive number of hidden states, the technique can easily be
evaluated for general window sizes using a network simulator.
This can help understand the scalings between the window size
and system parameters. This will pave the way for protocol
design for SG with desirable throughput-delay tradeoffs.
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