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Abstract—For general connections, the problem of finding
network codes and optimizing resources for those codes is
intrinsically difficult and a little is known about its complexity.
Most of the existing methods for identifying solutions rely on very
restricted classes of network codes in terms of the number of flows
allowed to be coded together, and are not entirely distributed.
In this paper, we consider a new method for constructing linear
network codes for general connections of continuous flows to
minimize the total cost of the edge use based on mixing. We first
formulate the minimum-cost network coding design problem.
To solve the optimization problem, we propose two equivalent
alternative formulations with discrete mixing and continuous
mixing, respectively, and develop distributed algorithms to solve
them. Our approach fairly allows general coding across flows
and guarantees no greater cost than existing solutions. Numerical
results illustrate the performance of our approach.

Index Terms—Network coding, network mixing, general
connection, resource optimization, distributed algorithm.

I. INTRODUCTION

N THE case of general connections (where each destination

can request information from any subset of sources), the
problem of finding network codes is intrinsically difficult.
Little is known about its complexity and its decidability
remains unknown. In certain special cases, such as multicast
connections (where destinations share all of their demands),
it is sufficient to satisfy a Ford-Fulkerson type of min-cut
max-flow constraint between all sources to every destination
individually. For multicast connections, linear codes are suffi-
cient [1], [2] and a distributed random construction exists [3].
In the literature, linear codes have been the most widely
considered. However, in general, linear codes over finite fields
may not be sufficient for general connections, as shown by [4]
using an example from matroid theory.
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Different aspects of the connection between a matroidal
structure and the network coding problem with general con-
nections have been investigated in the literature [S]-[13].
However, progress in understanding the matroidal structure
of the general connection problem has not yet provided
simple and useful approaches to generating explicit linear
codes. There has been considerable investigation of special
cases [15]-[20]. However, the studies of these special cases
do not offer satisfactory solutions for the general case.

Even when we consider simple scalar network codes (with
scalar coding coefficients), the problem of code construction
for general connections (i.e., neither multicast nor its varia-
tions) remains vexing [21]. The main difficulty lies in cancel-
ing the effect of flows that are coded together but not destined
for a common destination. The problem of code construction
becomes more involved when we seek to limit the use of
network links for reasons of network resource management.
In the case of multicast connections of continuous flows, it is
known that finding a minimum-cost solution for convex cost
functions of flows over edges of the network is a convex
optimization problem and can be solved distributively using
convex decomposition [22]. In the case of general connections
of continuous flows, however, network resource minimization,
even when considering only restricted code constructions,
appears to be difficult.

In general, there are two types of coding approaches for
optimizing network use for general connections. The first
type of coding is mixing, which consists of coding together
flows from sources using the random linear distributed code
construction of [3] (originally proposed for multicast connec-
tions), as though the flows were parts of a common multicast
connection. In this case, no explicit code coefficients are
provided and decodability is ensured with high probability by
the random coding, given that mixing is properly designed. For
example, in [23], a two-step mixing approach is proposed for
network resource minimization of general connections, where
flow partition and flow rate optimization are considered sep-
arately. In [14] and [24], we introduce linear network mixing
coefficients for general connections that generalize random
linear network coding (RLNC) for multicast connections, and
present a new method for constructing linear network codes
for general connections of integer flows to minimize the total
cost of edge use. The minimum-cost network coding design
problem in [14] and [24] is a discrete optimization problem
that jointly considers mixing and flow optimization. The sec-
ond type of coding is an explicit linear code construction,
where one provides specific linear coefficients, to be applied
to flows at different nodes, over some finite field. In this case,
the explicit linear code constructions are usually simplified
by restricting them to be binary, generally in the context of
coding flows together only pairwise. For example, in [25]
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and [26], simple two-flow combinations are proposed for
network resource minimization of general connections.

The flow rate optimization in [23], the joint mixing and
flow optimization in [14] and [24], and the joint two-flow
coding and flow optimization in [25] and [26] can be solved
distributively. However, the separation of flow partition and
flow rate optimization in [23] and the pairwise coding in [25]
and [26] lead in general to feasibility region reduction and
network cost increase. The joint mixing and flow rate opti-
mization for general connections of integer flows in [14] and
[24] allow fairly general coding across flows. However, in [14]
and [24], we consider integer flow rates and edge capacities,
and do not allow flow splitting and coding over time, leading
to coded symbols flowing through each edge at an integer rate.
The restriction of integer flow rates affects the network cost
reduction.

In this paper, we consider a new method for constructing
linear network codes to minimize the total cost of edge use
for satisfying general connections of continuous flows. We
generalize the linear network mixing coefficients introduced
in [14] and [24] to allow flow splitting and coding over
time, leading to coded symbols flowing through each edge
at a continuous rate, to further reduce network cost. Using
mixing with generalized mixing coefficients, we formulate
the minimum-cost network coding design problem, which is
an instance of mixed discrete-continuous programming. Our
mixing-based formulation allows for fairly general coding
across flows, offers a tradeoff between performance and com-
putational complexity via tuning a design parameter control-
ling the mixing effect, and guarantees no greater cost than
any solution without inter-flow network coding, the solution
of the two-step mixing in [23], and the integer solution of
the discrete joint mixing and flow rate optimization in [14]
and [24]. To solve the mixed discrete-continuous optimization
problem, we propose two equivalent alternative formulations
with discrete mixing and continuous mixing, respectively, and
develop distributed algorithms to solve them. Specifically,
the distributed algorithm for the discrete mixing formulation
is obtained by relating its discrete subproblem to a con-
straint satisfaction problem (CSP) in discrete optimization
and applying recent results in the domain [27], and solving
its continuous subproblem using a primal-dual method. The
distributed algorithm for the continuous mixing formulation
is based on penalty methods for nonlinear programming [28].
Note that the methods for solving the continuous problems are
new compared to [14] and [24]. In addition, note that this paper
extends the results in the conference version in [29] which
does not present a distributed algorithm for the continuous
mixing formulation.

II. NETWORK MODEL AND DEFINITIONS

In this section, we first define the network model for general
connections of continuous flows. The model is similar to the
one we considered in [14] and [24] for integer flows, except
that here we consider general flow rates and edge capacities,
and allow flow splitting and coding over time. Next, we
also briefly illustrate the formal relationship between linear
network coding and mixing established in [14] and [24].

A. Network Model

We consider a directed acyclic network with general con-
nections. Let G = (V, &) denote the directed acyclic graph,
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where V denotes the set of V' = |V| nodes and £ denotes the
set of F = |€] edges. To simplify notation, we assume there
is only one edge from node 7 € V to node j € V, denoted
as edge (i,7) € £.' For each node i € V, define the set
of incoming neighbors to be Z; = {j : (j,7) € £} and the
set of outgoing neighbors to be O; = {j : (i,5) € £}. Let
I; = |Z;| and O; = |O;]| denote the in-degree and out-degree
of node i € V), respectively. Assume I; < D and O; < D
for all © € V, where D is a constant. Consider a finite field
F with size F' = |F|. Let P = {1,---, P} denote the set
of P = |P| flows of symbols in finite field F to be carried
by the network. For each flow p € P, let 5, € V be its
source. We consider continuous flows. To be specific, each
continuous flow consists of symbols from finite field F, and
its source rate (i.e., the number of symbols generated at its
source per unit time) can be a real number. Let R, € R*
denote the source rate for source p, where R™ denotes the set
of non-negative real numbers. Let S = {s1,---,sp} denote
the set of P = |S| sources. We assume different flows do
not share a common source node and no source node has
any incoming edges. Let 7 = {¢1,--- , {7} denote the set of
T = |T| terminals. Each terminal ¢ € 7 demands a subset of
P, = |P,| flows P; C P. Assume each flow is requested by at
least one terminal, i.e., Use 7Pt = P. Let P £ (Pt)teT denote
the demands of all the terminals. We assume no terminal has
any outgoing edges.

Let B;; € RT denote the edge capacity for edge (i, 7). We
assume a cost is incurred on an edge when information is
transmitted through the edge and let U;;(z;;) denote the cost
function for edge (7,j) when the transmission rate through
edge (i, ) is z;; € [0, B;;]. Note that we allow flow splitting
and coding over time, leading to coded symbols flowing
through each edge of the network at a continuous rate.”
Assume Uij(zij) is convex, non-decreasing, and twice contin-
uously differentiable in z;;. We are interested in the problem
of finding linear network coding designs and minimizing the
network cost > ; . ¢ Uij(zi;) for general connections of
continuous flows under those designs.

B. Scalar Time-Invariant Linear Network Coding and Mixing

For ease of exposition, in this section, we illustrate linear
network coding and mixing by considering unit flow rate, unit
edge capacity and one (coded) symbol transmission for each
edge per unit time, and adopt scalar time-invariant notation.
Later, in Sections III, V, and IV, we shall consider general
flow rates and edge capacities and allow flow splitting and
coding over time, which enable multiple (coded) symbols to
flow through each edge at a continuous rate.

In linear network coding, a linear combination over F of
the symbols in {ox; € F : k € Z;} from the incoming
edges {(k,i) : k € I;}, ie., 045 = EkeL_ QkijOki, Can be
transmitted through the shared edge (7, j) € £, where coeffi-
cient ay;; € F is referred to as the local coding coefficient
corresponding to edge (k,7) € £ and edge (i,7) € £. On the
other hand, the symbol of edge (i, j) € £ can be expressed as
a linear combination over F of the source symbols {o, € F :
p € P}, ie., 045 = > cp Cijpop, Where coefficient ¢;; , € F
is referred to as the global coding coefficient of flow p € P

"Multiple edges from node i to node j can be modeled by introducing
multiple extra nodes, one on each edge, to transform a multigraph intro a
graph.

2A detailed illustration can be found in Appendix A.
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and edge (i,7) € €. Let ¢;; £ (cijp)per € FF denote the
P coefficients corresponding to this linear combination for
edge (i,7) € &, referred to as the global coding vector of
edge (i,7) € £. Here, F' represents the set of global coding
vectors, the cardinality of which is FP. Note that, we consider
scalar time-invariant linear network coding. In other words,
ay;; € F and ¢, € F are both scalars, and do not change
over time. When using scalar linear network coding, for each
terminal, extraneous flows are allowed to be mixed with the
desired flows on the paths to the terminal, as the extrane-
ous flows can be cancelled at intermediate nodes or at the
terminal.

In many cases, we shall see that the specific values of the
local or global coding coefficients are not required in our
design. For this purpose, we introduce the mixing concept
based on local and global mixing coefficients established
in [14] and [24]. Later, we shall see that distributed linear
network mixing designs in terms of these mixing coefficients
are much easier. Specifically, we consider the local mixing
coefficient fy;; € {0,1} corresponding to edge (k,¢) € £ and
edge (i,7) € £, which relates to the local coding coefficient
ay;; € F as follows. By;; = 1 indicates that symbol oy
of edge (k,i) € & is allowed to contribute to the linear
combination over F forming symbol o;; and (i = 0
otherwise. Thus, if (i;; = 0, we have ay;; = 0; if Bii; = 1,
we can further determine how symbol oy; contributes to the
linear combination forming symbol o;; by choosing a;; € F
(note that oy,; can be zero when (Bi;; = 1). Similarly,
we consider the global mixing coefficient x;;, € {0,1} of
flow p € P and edge (i,j) € &, which relates to the global
coding coefficient ¢;;,, € F as follows. x;;, = 1 indicates that
flow p is allowed to be mixed (coded) with other flows, i.e.,
symbol o, is allowed to contribute to the linear combination
over F forming symbol o;;, and z;;, = O otherwise. Thus,
if x5, = 0, we have ¢;5, = 0; if x5, = 1, we can
further determine how symbol o, contributes to the linear
combination forming symbol o;; (note that c;;, can be zero
when z;;, = 1). Then, we introduce the global mixing vector
Xij = (wijp)pep € {0,1}F for edge (i,7) € &, which
relates to the global coding vector ¢;; = (cijp)per € FF.
Here, {0,1}% represents the set of global mixing vectors,
the cardinality of which is 2P, Similarly, we consider scalar
time-invariant linear network mixing. That is, B;; € {0,1}
and x;;, € {0,1} are both scalars, and do not change over
time.

Global mixing vectors provide a natural way of speaking
of flows as possibly coded or not coded without knowledge
of the specific values of global coding vectors. Intuitively,
global mixing vectors can be regarded as a limited repre-
sentation of global coding vectors. Network mixing vectors
may not be sufficient for telling whether a certain symbol
can be decoded or not. Therefore, using the network mix-
ing representation, extraneous flows which are mixed with
the desired flows on the paths to each terminal, are not
guaranteed to be cancelled at the terminal. Let e, denote
the vector with the p-th element being 1 and all the other
elements being 0. Let V denote the “or” operator (logical
disjunction).

Definition 1 (Feasibility of Scalar Linear Network Mixing):

[14], [24] For a network G = (V, &) and a set of flows
‘P with sources S and terminals 7, a linear network mixing
design x = (Zijp)@ij)ec.pep is called feasible if the
following three conditions are satisfied: 1) x5,; = e, for
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source edge (sp,j) € &, for all s, € S and p € P; 2)
Xij = Vikez, OrijXr: for edge (i,j) € € not outgoing from a
source, for all ¢ ¢ S and By € {0,1}; 3) Vier, irp = 1 for
allpe Prand t € T,and x4 p =0 foralli € 7, p € P,
and t € 7.

Note that z;;, = O forall i € Z;, p ¢ Py and t € 7 in
Condition 3) of Definition 1 ensures that for each terminal,
the extraneous flows are not mixed with the desired flows on
the paths to the terminal. In other words, using linear network
mixing, only mixing is allowed at intermediate nodes. This is
not as general as using linear network coding, which allows
both mixing and canceling (i.e., removing one or multiple
flows from a mixing of flows) at intermediate nodes.

Given a feasible linear network mixing design (specified by
B £ (Brij) (k). (i.j)ee)» one way to implement mixing when 7
is large is to use RLNC [3] (to obtain o £ (ki) (i), (i) €€ )
as discussed in the introduction. Specifcially, when (3;; = 1,
a5 can be randomly, uniformly, and independently chosen
in F using RLNC; when f;; = 0, au; has to be chosen to
be 0.

III. CONTINUOUS FLOWS WITH MIXING ONLY

In this section, we consider the minimum-cost scalar time-
invariant linear network coding design problem for general
connections of continuous flows with mixing only. Starting
from this section, we consider multiple global mixing vectors
for each edge and allow coded symbols to flow through each
edge at a continuous rate.

A. Design Parameter

Now, we generate the mixing design illustrated in
Section II-B [14], [24] by considering multiple global mixing
vectors for each edge, allowing flows mixed over each edge
in different ways. We refer to the number of global network
mixing vectors for each edge as the mixing parameter, denoted
as L € {1, -+, Liyax}, where Ly, is the maximum number
of global network mixing vectors necessary for decodabil-
ity using mixing (cf. Definition 1). First, we introduce the
global and local network mixing vectors, for a given mixing
parameter L. Denote £ = {1,---,L}. For each | € L, let
Xij1 = (wijp1)pepr € {0,1}F denote the I-th global network
mixing vector over edge (i,j) € &. Let By;;;,,, € {0,1}
denote the local mixing coefficient corresponding to the I-
th global network mixing vector of edge (k,i) € & (ie.,
Xji,1) and the m-th global network mixing vector of edge
(1,7) € € (e, Xijm), where [,m € L. Next, we illustrate
the maximum number of global network mixing vectors L ax.
Denote Y = {Miers : Vi = Pror Yy = P — P} — {0},
which gives a set partition of P that represents the flows that
can be mixed (cf. Definition 1) over an edge in the worst case
(i.e., all terminals obtaining flows through the same edge).
We choose Lyax = |Y|. Note that 1 < Ly, < P, where
Lax = 1 for the multicast case, ie., P, = P forallt € 7,
and L.« = P for the unicast case, i.e., Py N P; = 0 for
all t #t' and t,t' € 7. Fig. 1 illustrates an example of flow
partition Y and mixing parameter L for the general case.
Let f}; ., > 0 denote the transmission rate of flow p € P;
to terminal ¢ € 7 over edge (¢,j) € & using X;j,, and let
251 > 0 denote the transmission rate corresponding to X;;;
over edge (i,7) € £, where [ € L. As we allow flow splitting

and coding over time, f! and z;;; can be real numbers.

15,p,l
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Fig. 1.  Illustration of flow partition ) and mixing parameter L. P =
{1,2,3}, S = {81782783}, Ry = R2 = Rz = 1, B;; = 10 for all
(Z,]) [SEoR U45(Z45) = 10245, Uij(zij) = Zij for all (Z,]) S g\{(4, 5)},
T = {t1,t2}, P1 = {1,2} and P2 = {1,2,3}. Thus, ¥ = {{1,2},{3}}.
Limax = Y| =2and L € {1,2}.

B. Problem Formulation

We would like to find the minimum-cost scalar time-
invariant linear network coding design with design parameter
L € {1,---,Lyax} for general connections of continuous
flows with mixing only.?

Problem 1 (Mixing):

> v (%)

(i,5)€€ lel
st xijp1 €{0,1}, (i,j) €& peP, lel (1)
Bkwlm € {0,1}, (k,i),(i,4) €&, I,me L (2)
1 >0, (i,5) €&, peP, teT, leL(3)

’L]:p: —

S fhpi <z G EE teT, L (4)

min

U*(L) =
z,f,x,08

PEP:
>z < Bij, (L,j) €€ (5)
lel

Z ztk,p, Z sz,p, = ’Lp?
keO;,lel keZ;,leLl
1€V, peEPy, teT (6)

fipa < ijpiBig, (i,7) €€, pe Py,

teT, lel (7
X5, = €p, (5p,j) €E, peP, 1L (8)
Xij,l = vk’EL:,meﬁﬁk’ijmz,,lxkiﬂn,;

i¢€S, (i,j)ef lel )
Tigpr =0, 1€Ly, pg Py, t€T, L€ L, (10)
where
R,, i=s,
olp =9 Ry i=t i€V, peP, teT. (11)
0, otherwise

Here, z = (Zij,l)(i,j)eé',le[l» f£ (fitj7p7l)(i,j)€5;p€73t;tET:leL"’
A A
X = (Tijpi)(ijeepericc, and B =
(Brijtm) (k.i).(i,5) €€l meL-
Problem 1 is a mixed discrete-continuous optimization
problem, and does not appear to have a ready solution.
Remark 1 (Problem 1 With L. = 1 for Multicast): For the
multicast case (i.e., P, = P forall t € T) and L = 1, the
constraint in (10) is vacuous, and the constraint in (7) is always
satisfied by choosing Bjij1,1 = 1 for all (k,4),(i,j) € €
and choosing x according to (8) and (9). Therefore, in the

3Note that (1) with j = t, (6) with ¢« = ¢, and (7) with j = ¢ imply
VieT, leLTit,py = 1 for all p € Py and t € 7 in Condition 3) of
Definition 1.
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multicast case, Problem 1 with L = 1 for general connections
reduces to the conventional minimum-cost network coding
design problem for the multicast case [22]. The complexity
of the optimization for the multicast case is much lower than
that for the general case. This is because in the optimization
for the multicast case, the variables x and 3 do not appear,
and the constraints in (1), (2), (7), (8), (9) and (10) can be
removed.

Remark 2 (Comparison With Intra-Flow Coding): Prob-
lem 1 (with any L € {1, -+, Lpax}) with an extra con-
straint » - cp ijp1 € {0,1} for all (t,7) €e Eand | € L
is equivalent to a minimum-cost intra-flow coding problem.
Thus, the minimum network cost of Problem 1 (with any
L € {1,-++, Lynax}) is no greater than the minimum cost
for intra-flow coding.

Remark 3 (Comparison With Two-Step Mixing): Problem 1
with L = Lyyax and Byij,1,m = 1 instead of (2), is equivalent to
the minimum-cost flow rate control problem in the second step
of the two-step mixing approach in [23]. Thus, the minimum
network cost of Problem 1 with L = L, is no greater than
the minimum cost of the two-step mixing approach in [23].

Remark 4 (Comparison with Joint Design for Integer
Flows): Problem 1 with L = 1, z;;; € {0,1} and f”pl €
{0,1} instead of (3), is equivalent to the discrete minimum-
cost joint mixing and flow rate optimization problem for
general connections of integer flows in [14] and [24], which
does not allow flow splitting and coding over time. Thus, the
minimum network cost of Problem 1 is no greater than that
of the discrete optimization problem in [14] and [24]. If the
optimal solution of Problem 1 is a non-integer solution, it has
a lower network cost than that of the discrete optimization in
[14] and [24].4

Example 1 (Illustration of Linear Network Mixing): We
illustrate a feasible mixing design (corresponding to a feasible
solution) to Problem 1 with L = 2 for the example in Fig. 1.
For ease of illustration, in this example, we consider unit
source rate and do not consider flow splitting and coding
over time. For source edges (1,6), (1,4), (2,7), (2,4) and (3,4),
choose the global mixing vectors as follows: x16; = X14,; =
(1,0,0), x24; = xo7; = (0,1,0) and x34; = (0,0,1) for
all [ = 1, 2. In addition, choose the local coding coefficients
as follows: Bias1,1 = Boas1,1 = Paas,i2 = 1, Brasen =
B2as.21 = B3as,22 = 0, Bras,m,2 = B245,m,2 = B345,m,1 = 0
for all m = 1,2, Bus6,1,1 = 1, Pase2,1 = Pase,1,2 =
Base 22 = 0, Basri1 = Pasr22 = 1 and Busri2 =
Bas7,2,1 = 0. Therefore, for edges (4,5), (5,6) and (5,7) not
outgoing from a source, the global mixing vectors are given by
X451 = (17 150)» X452 = (0507 1)7 X56,1 = (17 150)» X56,2 —
(0,0,0), X57,1 = (1,1,0) and X572 = (070,1). On the
other hand, flow paths (sets of ordered edge-mixing index
pairs ((,7), Z) such that f]pl = 1) from the three sources,
ie., {((4,7),0) : ol ,(23)65 I € L} for all
p € Py and t E % are illustrated using green, blue and
pink curves in Fig. 1. Accordingly, choose the transmission
rates as follows: z;;1 = 1 and z;;0 = 0 for all (4,j) =
(15 6)7 (15 4)7 (25 7)7 (25 4)7 (3; 4)» 2451 = 2452 = Z56,1 —
z571 = 2572 = 1, and 2562 = 0

4Due to space limitations, we do not numerically verify the gains of the
proposed design in this paper over the ones in [14], [23], and [24]. Please
note that in [14], we have shown the gain of the proposed solution in [14],
[24] and over the solution in [23] using numerical experiments, and the gain
of the solution of Problem 1 over the solution in [14] and [24] is obvious.
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The following lemma shows the existence of a feasible
linear network code corresponding to Problem 1.

Lemma 1: Suppose Problem 1 is feasible. Then, for each
feasible solution, there exists a feasible linear network code
with a field size F' > T to deliver the desired flows to each
terminal.

Proof: Please refer to Appendix A. [ ]

Example 2 (Illustration of Linear Network Coding): We
illustrate how to obtain a feasible linear network code
using random linear network coding, based on the feasi-
ble linear network mixing design illustrated in Example 1.
In this example, one local mixing coefficient (global mixing
vector) corresponds to one local coding coefficient (global
coding vector).> For the source edges, choose the global
coding vectors as follows: c;;; = x;;; for all (i,5) =
(1,6),(1,4),(2,7),(2,4),(3,4) and I = 1,2. For all [,m € L
and (k,1),(¢,7) € &, if Brijim = 0, choose auijim = 0;
if Briji,m = 1, choose ayij,1,m uniformly at random from F.
Therefore, for the edges not outgoing from a source, the global
coding vectors are given by c;;; = Zk’eI,;.meL Okij,m,1Chi,m
for all (i,) = (4,5),(5,6),(5,7) and [ € L.

C. Network Cost and Complexity Tradeoff

The design parameter L in Problem 1 determines the
complexity and network cost tradeoff. First, we illustrate the
impact of L on the complexity of Problem 1. By (2), we know
that for given (k,1), (¢, 5) € &, the number of possible choices
for (Bkij1m)i,mec is L*. Since E(i,j)ef 0; =2 ,ev1;0; <
Zjev DO; = DFE, the number of possible choices for 3 =
(Brijt,m) (k,i),(i,j)e€ 1, mec is smaller than or equal to L?’DE.
Note that by (8) and (9), x can be fully determined by 3.
Therefore, the number of choices for x and 3 of Problem 1
is L2DE, which increases with L.

Next, we discuss the impact of L on the network cost.

Lemma 2: 1f Problem 1 is feasible for design parameter L,
then Problem 1 is feasible for design parameter L + 1 and
U(L+1)<U*(L), where L € {1, , Lypas — 1}.

Proof: Given a feasible solution to Problem 1 with design
parameter L, by setting variables w.r.t. index | = L+1 or m =
L +1 to be zero, we can easily construct a feasible solution to
Problem 1 with design parameter L + 1. This feasible solution
corresponds to the same network cost as the one with design
parameter L. But the network cost with design parameter L+ 1
can be further optimized by solving Problem 1 with design
parameter L + 1. Therefore, we complete the proof. [ ]

By Lemma 2, we know that the network cost U*(L) is
non-increasing w.r.t. L. This can also be understood from the
example in Fig. 1. Note that by Condition 3) in Definition 1,
flow 3 is not allowed to be mixed with flow 1 and flow 2 on
their paths to terminal ;. When L = 1 < Ly, flow 3 cannot
be delivered over edge (4,5) to terminal ¢o using feasible
mixing. In other words, Problem 1 with L = 1 is not feasible
(i.e., of infinite network cost). However, when L = 2 = Ly,
flow 3 can be delivered to terminal ¢5 without mixing with
flow 1 and flow 2 over edge (4,5), e.g., using global mixing
vectors X451 = (1,1, 0) and x45 2 = (0,0, 1) over edge (4, 5).
In other words, Problem 1 with L. = 2 is feasible (i.e., of finite
network cost).

SWhen flow splitting or coding over time happens, one local mixing
coefficient (global mixing vector) may correspond to multiple local coding
coefficients (global coding vectors), and a linear network code can be designed
in a similar way based on the sub-flows and sub-edges established in the proof
of Lemma 1.
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IV. ALTERNATIVE FORMULATION
WITH DISCRETE MIXING

Problem 1 is a mixed discrete-continuous optimization
problem with two main challenges. One is the choice of the
network mixing coefficients, i.e., x and 3 (discrete variables),
and the other is the choice of the flow rates, i.e., z and
f (continuous variables). In this section, we first propose
an equivalent alternative formulation of Problem 1 which
naturally subdivides Problem 1 according to these two aspects.
Then, we propose a distributed algorithm to solve it.

A. Alternative Formulation

Problem 1 is equivalent to the following problem.
Problem 2 (Equivalent Discrete Mixing for Problem 1):
U*(L) = i Us(x),
(L) = Zin = Us(x)
where U}(x) and M(L) are given by the following two
subproblems, respectively.

Subproblem 1 (Flow Optimization for Problem 2): For
given x, we have:

Uz (x) = min > Uy <Z Zij,l)

(i.5)€E lec

5.2 (3),(4), (5),(6), (D).

The optimal solution is written as (z*(x), f*(x)).

Subproblem 2 (Feasible Discrete Mixing for Problem 2):
Find the set M(L) £ {x : (1),(2),(8),(9),(10),(12)} of
feasible x, where (12) is given by:

VieT,lecTitpl =1, pEP, t€T. (12)

For given x, Subproblem 1 is a convex optimization problem
(optimizing z and f for given x) and has polynomial-time
complexity [30]. On the other hand, Subproblem 2 is a discrete
feasibility problem (obtaining the set of feasible x) and is NP-
complete in general [31]. Thus, Problem 2 is still a mixed
discrete-continuous optimization problem and is NP-complete
in general.

B. Distributed Solution

In this part, we develop a distributed algorithm to solve
Problem 2 by solving Subproblem 1 and Subproblem 2,
respectively, in a distributed manner. First, we consider Sub-
problem 1. Given a feasible x € M(L), Subproblem 1 is
convex and can be solved distributively using the primal-
dual method. By relaxing the constraints in (4), (5), (6)
and (7) of Subproblem 1, we have the Lagrangian func-
tion L (z,f,A\,n,pn, &) given in (13), shown at the bot-
tom of the next page, where A £ (Agj_l)(i’j)eg’te']”leﬁ =

0.m £ (y)ijes = 0. m = (ub,)icvpep, ter and

& £ (&) G.geepepiteT iec = 0 denote the Lagrangian
multipliers w.r.t. the constraints in (4), (5), (6) and (7)
of Subproblem 1, respectively. The partial derivatives of
L(z,f,A,n,p, &) are given by:

oL
9., = Ui <Z Zam) =D Nyt
v,

meL teT

(14)
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oL
af't :)\Zjl—’—/’l/lp [O #@]_/J’jp [I 7é®]+§”’p7
j,p,1
(15)
oL
o = O fhipa — 2 (16)
7,1 pEP:
oL
= zijg — B (17)
i g !
oL
o Z Fikpt — Z fripr—0 (18)
Hip  reosiec keT;leL
oL "
= fijpg — TijpiBij, 19
agw i f?,],p,l Lij,p, 1 Dij ( )

where 1 [-] denotes the indicator function. The corresponding
dual function is given by:

g m p. &) = min L(z,£,A,m, 4, &) (20)
s.t. (3).
The corresponding dual problem is as follows:
max AN, W,
ymax, g(Am, 1, §)
5. A= 0,n>=0,§=0. 1)

For given x € M(L), the primal optimal (z*(x), f*(x))
and the dual optimal (A*(x),n*(x), u*(x),£"(x)) can be
obtained using the primal-dual algoritm summarized in Algo-
rithm 1. The update equations in Algorithm 1 are given below:

“ialn 1) = zn) =3 5= ) e2)
il 1) = ( () 6<n>%<n>>+ @3)
Nyuln +1) = (W )+ 60y >>+ @)
s+ 1) = () + 80 o)) ’ (5)
1) = iy o) 80 o ) 26)
€l piln+1) = ( i) - 6(n>%(n)> o

where (z)* £ max{0,z}, the partial derivatives of

L (z(n), f(n), A(n), ( ), 1(n),€(n)) in (22)-(27) are given
by (14)-(19), and {§(n)} denotes the diminishing stepsize
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Algorithm 1 Primal-dual Method for Subproblem 1 (Flow

Optimization)

INPUT: x € M(L)

OUTPUT: 7 (x), £*(x), A*(x), 7 (x), 14" (x), " (x)

1: initialize n = 0, z(0), £(0), A(0),n(0), (0), &(0)

2: loop

32 For all (i,j) € €&, edge (i,j) updates z;;;(n +
1), £ pa(n+ 1), M (n41),mi5(n 4 1), pf ,(n +1) and
Efj’p’l(n—f— 1) according to (22), (23), (24), (25), (26) and
(27), respectively, under given x € M(L).

4 Setn=n+1.

5: end loop

!,.A.‘

W
o

N
o

o
T

Lagrangian Func.

05 1 15 2 25 3 35 4 45 5
Iteration x10%

o

Fig. 2. Convergence of Algorithm 1 (Primal-dual Method for Subproblem 1)
for the network in Fig. 1, with x given in Example 1. The curve represents
the Lagrangian function L (z(n), f(n), A(n), n(n), u(n), €(n)) at the n-th
iteration, where L(-) is given by (13). Note that in the simulation for this
figure, we use 1.1XGgee Uij (Ziec #ij.1) as the objective function, where

Ui;(-) is given in Fig. 1.

satisfying:
d(n) — 0 as n — oo, Zé(n) = oo,Z(S(n)Q < oo
n=1 n=1

(28)
(22)-(27) can be computed at each edge based on

local information. Thus, Algorithm 1 can be imple-
mented locally. In addition, it has been shown that
as n — oo, (z(n),f(n)) — (z*(x),f*(x)) and

(An).m(n), w(n). &(n) — (A (x),m° (x), " (x), € (x).
In other words, for given x € M (L), Algorithm 1 converges
to the primal and dual optimal of Subproblem 1, as n —
oo. Fig. 2 illustrates the convergence of Algorithm 1 of
the network in Fig. 1, with x given in Example 1. From
Fig. 2, we can see that L (z(n),f(n), A(n),n(n), u(n), &(n))
converges to 28, which is the optimal network cost U*(x) to
Subproblem 1, for x given in Example 1.

Next, we consider Subproblem 2. Subproblem 2 can be
treated as a CSP and solved distributively using clause par-
tition and the Communication-Free Learning (CFL) algorithm

L(Z,f,A,’I],[,L,é): Z Z )‘zjl

Usij <Z Zij,l)
lec

(1,5)€€ (i,5)€E,
teT el
t t
+ § i p § Jikps —
i€V, keO;,leL kEZL; leL
pEP tET

t
D fhiwa

PEP:

t t
E Tripi —Cip | +

— 20 | + Z Mij (Z Zij1 — Bz’j)

(5,4)€E lec

t t
Z ij,p,l (fij,p,l -

(4,5)EE,pEP:,
teT,leL

xij,p,lBij) (13)
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from [27]. While CSPs are NP-complete in general, CFL pro-
vides a probabilistic distributed iterative algorithm with almost
sure convergence in finite time. Specifically, the elements of x
can be treated as the variables of the CSP. {0, 1} can be treated
as the finite set of the CSP. From (9), we have an equivalent
constraint purely on x, i.e.,

3 (ﬁk’ijmz,,l)kel},meﬁa Bkij,m,l S {0, 1}7
S.t. Xij1 = Ve, merBrijm, 1 Xkim,

lel, (i,j)eé&, i¢S. (29)

In the following, we shall only consider solving for the
variables x of the CSP in a distributed way using clause
partition and CFL. Note that we directly choose x5 ;; = e, for
alll € L, (sp,j) € € and p € P according to (8). In addition,
B can be obtained from feasible x by (8) and (9).

For notational simplicity, we write the clauses for x in a
more compact form as follows:

Gijpl (Xij,la {Xkim : m € L,k € Iy},
{(Xpjm :m € Lok €T, j € T})

1, if j €7, (29) holds

1, if j €7 and p € P;, (29) and (12) hold
1, if j €7 and p € P;, (29) and (10) hold
0, otherwise

(i,j) €&, i¢gS, peP,lelL.

Note that, when j & 7, {xgjm :k€Z;,j € T,me L} =0
and we ignore it in the clause ¢;;, (). For (12) and (10)
in clause ¢;;p(-), we use j as the terminal index instead
of t. It can be seen that the constraints in (9) (i.e., (29)),
(10) and (12) are considered in clause ¢;; (). In addition,
the constraint in (8) is considered when choosing x5, = e,
for all (sp,j) € & p € P and | € L. Therefore, all
the constraints in Subproblem 2 has been considered in the
CSP. We now construct the clause partition of Subproblem 2.
Specifically, the set of clauses variable z;;,; participates in
is as follows:

it = {bijpat U{djepm : k€ Oj,me L}
U{gf)k]"p’m ke Ij,j S ’T,m S L:}
1¢S5, (i,j)e& peP, leL. 31)

Note that, when j & 7, {¢rjpm :k €Z;,j €T,me L} =10
and we ignore it in @;;,; in (31).

We thus have the following proposition.

Proposition 1 (CSP for Subproblem 2): The CSP  with
variables x;;,; € {0,1}, (i,5) € &Ep € P,l € L
and clauses (31) has considered all the constraints in
Subproblem 2.

Therefore, a feasible x € M(L) to Subproblem 2 can be
found distributively using the probabilistic distributed itera-
tive CFL algorithm [27, Algorithm 1]. Specifically, for all
(t,7) € &, p € P and I € L, in each iteration, each
node ¢ realizes a Bernoulli random variable selecting x;; 51
messages on x are passed between adjacent nodes for each
node 7 to evaluate its related clauses in (31); based on
the evaluation, each node 7 updates the distribution of the
Bernoulli random variable selecting x;; ;. The details are
summarized in Algorithm 2, which obtains a feasible solution
to Subproblem 2 using CFL. Based on the convergence result

(1>

(30)
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Algorithm 2 CFL for Subproblem 2 (Feasible Discrete

Mixing)

Output: x € M(L)

1: For all (i,5) € £, p e P andl € L, edge (i,J) initializes

Gijpu(x) = 5, where z € {0,1}.

2: loop

3: Forall (i,j7) € &, p € P and | € L, edge (i, ) realizes
a random variable, selecting x;;,,; = x with probability
Qij.pi(x), where z € {0,1}.

4. for (i,5) €&, pePandl € L do

5. Each edge (i, j) evaluates all the clauses in @ ,, ;.
6: if all clauses in ®;;,,; are satisfied then
1, ifx =,
7: set g;jpi(x) = o
4 (2) 0, otherwise
8: else
(1 =0)gijp1(x)
+L, if v = x;; 1
9: set gijpi(x) =4, T o
(1 = b)gijp, ()
+%a/b, otherwise

where a,b € (0,1] are design parameters.
10 end if
11: end for
12: end loop

of CFL [27, Corollary 2], we know that Algorithm 2 can find
a feasible solution to Subproblem 2 in almost surely finite
time. Fig. 3 illustrates the convergence of Algorithm 2 for the
network in Fig. 1. From Fig. 3, we can see that Algorithm 2
converges to a feasible solution (i.e., the feasible solution illus-
trated in Example 1) to Subproblem 2 quite quickly (within
40 iterations).

Now, we can develop a distributed algorithm to solve Prob-
lem 2, relying on the distributed algorithm for Subproblem 1
(i.e., Algorithm 1) and the distributed algorithm for Subprob-
lem 2 (i.e., Algorithm 2), as briefly illustrated in Algorithm 3.6
Based on the convergence results for Algorithm 1 and Algo-
rithm 2, we can easily see that U,, — U*(L) almost surely as
n — o0. Fig. 4 illustrates the convergence of Algorithm 3 at
one instance for the network in Fig. 1. From Fig. 4, we can
see that Algorithm 3 obtains the optimal network cost 28 to
Problem 2 (Problem 1) quite quickly (within 5 iterations for
the outer loop).

V. ALTERNATIVE FORMULATION WITH
CONTINUOUS MIXING

The complexity of solving Problem 2 mainly lies in solving
for the network mixing coefficients (discrete variables) in
Subproblem 2. In this section, we first propose an equivalent
alternative formulation of Problem 1 (Problem 2) with con-
tinuous mixing. Then, we propose a distributed algorithm to
solve it.

SIn Step 3, CFL is run for a sufficiently long time. Step 4 (Step 6)
can be implemented with a master node obtaining the network convergence
information of CFL (network cost) from all nodes or with all nodes computing
the average convergence indicator of CFL (average network cost) locally via
a gossip algorithm.
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Fig. 3.

variables x57,1,2, 57,2,2 and T57 3 2.

Algorithm 3 CFL-based Optimization for Problem 2 (Discrete

Mixing)

1: initialize n = 1 and U; = +o00.

2: loop

3:  Run the CFL in Algorithm 2.

4: if the CFL finds a feasible solution x to Subproblem 2

then

5: For the obtained x, run Algorithm 1 to obtain the
optimal solution (z*(x),f*(x)) to Subproblem 1. Let
U,, denote the corresponding network cost U} (x).

6: Set U,, = min{U,,U,}, Upy1 = U, and n = n + 1.

7:  end if

8: end loop

A. Alternative Formulation

Problem 1 is a mixed discrete-continuous optimization
problem. Applying continuous relaxation to (1) and (2) and
manipulating (9), we obtain the following continuous opti-
mization problem.

Problem 3 (Equivalent Continuous Mixing for Problem 1):

U*(L) = min_ Z Uij Zzij,l

2E%B e LeL
s.t. (3),(4),(5),(6),(8),(10)
Tijpl € [07 1]7 (Z7.7) c& peP,lecl (32)
Brijium €[0,1], (k.i),(i,5) €E, l,me L (33)
Fijpi (i,7) €E, p € Py,
teT,

< ZijpaBij,

lel (34)

Convergence of Algorithm 2 (CFL for Subproblem 2) for the network in Fig. 1.
realization of the random Algorithm 2. (a) Mixing variables x45,1,1, T45,2,1 and 45.3,1.
variables x56,1,1, £56,2,1 and x56,3,1- (d) Mixing variables x56,1,2, £56,2,2 and x56,3,2-
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Fig. 4. Convergence of Algorithm 3 (CFL-based Optimization for Problem 2)
for the network in Fig. 1. Each dot represents the network cost (obtained by
Algorithm 1) of a feasible solution (obtained Algorithm 2). While the curve
represents the minimum network cost obtained by Algorithm 3 within a certain
number of iterations. The dots and curve are for one realization of the random
Algorithm 3.

Tijpm = BrijimTripis k€L, Iy # 0,

(i,j) €&, peP,l,meL (35)
Tijpm < Z B t;mThi,p,l
keZ; lel
;#0, (i,j)e& peP, meL. (36)
Here, X £ (Zijpi)ijecpepicc and B =

(Brij,i,m) (i), (i,5) €€ l,meL-

Note that Constraints (32) and (33) in Problem 3 can be
treated as the continuous relaxation of Constraints (1) and
(2) in Problem 1. Constraint (34) in Problem 3 corresponds
to Constraint (7) in Problem 1. Constraints (35) and (32) in
Problem 3 can be treated as the continuous counterpart of
Constraint (9) in Problem 1. The following lemma shows the
relationship between Problem 1 (mixed discrete-continuous
optimization problem) and Problem 3 (continuous optimiza-
tion problem).

Lemma 3 (Relationship Between Problem 1 and Prob-
lem 3): (i) If (z,f,x,3) is a feasible solution to Problem 1,
then (z,f,x,3) is a feasible solution to Problem 3, where
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Zijpi = Tijpy and Brijim = Brijim: if (2,£,%,8) is a
feasible solution to Problem 3, then (z,f,x,3) is a feasible
solution to Problem 1, where 2;; 1 = [Zijp,| and Brijim =
szj 1,m|. (i) The feasibilities of Problem 1 and Problem 3
imply each other. (iii) The optimal values of Problem 1 and
Problem 3 are the same, i.e., U*(L) = U*(L).

By Lemma 3, solving Problem 1 is equivalent to solving
Problem 3. Problem 3 is a (pure) continuous optimization
problem. It is not convex due to the constraints in (35)
and (32). In general, we can obtain a stationary point to
a non-convex (continuous) problem with polynomial-time
complexity.

B. Distributed Solution

In this part, we develop a distributed algorithm to obtain a
stationary point of Problem 3 with polynomial-time complex-
ity, by using penalty methods [28], the basic idea of which
is to eliminate some or all of the constraints and add to the
objective function a penalty term that prescribes a high cost
to infeasible points.

First, by eliminating the non-convex constraints in (35)
and (32) and adding to the objective function of Prob-
lem 3 a penalty term reflecting a high cost of violating (35)
and (32), we introduce the augmented Lagrangian function
L. (z, X, 3,U, g) given in (37), as shown at the bottom of the

— A —

next page, where 7 = (Vk’ijvi"vlam)(k’,i),(i,j)eé',peP,m,lEL =0
S .
and v= (Eijvpvm)(i,j)e.f,pep,meﬁ =0 d.enot.e the Lagrangian
multipliers corresponding to the constraints in (35) and (32),
respectively, and

(38)
(39)

a = _ _
= Brijl,mThipl — Tijpm

E Brij,l,mThipt + Tij,p,m
keZ;,leL

?kij,p,l,m
g.. = -

Zij,p,m

>

Here, the second and third terms in the augmented Lagrangian
function in (37) are the penalty terms that prescribe high costs
to infeasible points violating the non-convex constraints in
(35) and (32), and c is a positive penalty parameter which
determines the severity of the penalty.

We now consider an approximated problem to Problem 3
which minimizes the augmented Lagrangian function in (37)
subject to the constraints of Problem 3 except (35) and (32).

Problem 4 (Penalty Approximation for Problem 3): For
given ¢ > 0, 7 > 0 and v > 0, we have:

min L. (z,X,8,7,v)
z,%,0

s.t. (Z,K,B) e X,

where X £ { (2,%,8) : (3),4),(5),(6),(8),(10),(32),(33),
(34)}.

The objective function of Problem 4 is differentiable
but non-convex. The constraint set X of Problem 4 is
convex. In general, for given (¢,7,v), we can only
obtain a stationary point of Problem 4, denoted as
(zf(c, U,v), X (c, 7, g),ET(c, U, Z)P, e.g., using gradient
projection methods, which will be illustrated later.

As c increases, the approximated problem in Problem 4
becomes increasingly accurate to Problem 3. The penalty
method for Problem 3 consists of a sequence of problems
obtaining a stationary point of the form in Problem 4 with
increasing c. The details of the penalty method for Problem 3

2041

Algorithm 4 Penalty Method for Problem 3 (Continuous

Mixing)

OUTPUT: z',x', 3’

1: initialize n = 0, ¢(0) = 1,

2: loop

3:  Compute a stationary point (z(n), ,
lem 4, e.g., using Algorithm 5, i.e., (z(n),X(n),

<ZT(C(n)7F(n),z(n))viT(C( ), o (n), p(n)),

7(0) and v(0).

%(n), B(n)) of Prob-
Bn)) =

B' (c(n),B(n),v(n))

4: Forall (i,5) € £ and I,m € L, each edge (i, j) updates
c(n+1), Trijpam(n+1) and vy, . (n+ 1) according
to (40), (41) and (42), respectively.

5: Setn=n+1.

6: end loop

obtained by Algorithm 5.

is summarized in Algorithm 4. The update equations in
Algorithm 4 are given by:

Be(n) (40)
(ﬂkij}pJﬂn (n) + c(n)ykij,p,l,m, (n))+ (41)

Vim0 + 1) = (2 () + ey, ) @)

Here, Gpijpim(n) and g (n) denote the the values
of the functions in (3§) and (39) at a stationary
point (2 (c(n), 7(n), (n)), X' (c(n), B(n), p(n)), B' (c(n),
v(n),v(n))) of Problem 4 at the n-th iteration, which can be
obtained in a distributed manner using the gradient projection
algorithm in Algorithm 5. We shall illustrate the details of
Algorithm 5 later. In addition, the update equations in Step 4
can be computed at each edge based on local information.
Therefore, Algorithm 4 can be implemented in a distributed
manner. As the number of iterations n goes to infinity, we can
obtain a stationary point of Problem 3, as summarized in the
following theorem.

Theorem 1 (Convergence of Algorithm 4): As n — o0,

(z(n).%().B0)  —  (xB),

(z(n),X(n),B(n)) is given by the n-th iteration of

en+1) =

Ukijplym(n +1) =

17,p,Mm

where

Algorithm 4, and (ZT,KT,ET) is a stationary point of
Problem 3.7
Proof: Please refer to Appendix C. [ ]

Fig. 5 illustrates the convergence of Algorithm 4 for the
network in Fig. 1. From Fig. 5, we can see that as n increases,
the non-convex constraints in (35) and (32) tend to be satisfied,
and the network cost goes to 28, which is the optimal network
cost to Problem 2 (Problem 1). Algorithm 4 converges quite
quickly (within 5 iterations for the outer loop).

Now, we focus on obtaining a stationary point

(ZT(C,U,g),ET(c,U,g),BT(c,U,g) of Problem 4, using
gradient projection methods [28, p. 228]. We first compute

Problem 3 can_ be written as

"The constraint set of n.
i (z,i, B), where X is the

{(z,i,ﬁ) (35,32} N A, in terms of
constraint set of Problem 4.
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Convergence of Algorithm 4 (Penalty Method for Problem 3) for the network in Fig. 1.
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In (a), the curve represents the

augmented Lagrangian function L.y (z(n),i(n),ﬁ(n),ﬁ(n),g(n)) at the n-th iteration, where L.(-) is given by (37). In (b), the curve

+

_ + . .

TEPresents Y-y ;) (i i\, peP,l,meL (gkij,p,l,m(")) + 227,20, (i,)cE,peP,meL (gij’pym(n)) at the n-th iteration. In (c), the curve represents
> (i,))€e Us; (E er zijJ(n)) at the n-th iteration. (a) Augmented Lagrangian function. (b) Total constraint violation. (c) Network cost.

the partial derivatives of L. (z,i, 3,7, g) in (37) as follows:

OL. /
=Uj; Z Zij,m )
82@,1 meL
OL. - " +
T Z (Prijpom + cgkij,p,l,m)
17,P,m kEZ;leL
_ 3 _ +
+ Z Bijm (Trigpma + Cgkijm,mvl)
k€O, leL
. +
— Z Bijk,m,i (Ejk,p,l + ngk,p,l)
k€O, leL
+
+ (Zij,p,m + Cﬂzj,p,m) 9
OL. — - G "
—_— = Z xk:i,p,l Vkij,pJ,m + Cgk;ij,p,l,m
OBrijim peEP
+
— (zij,p,m —+ Cgij,p,m) . (45)

For given (¢, 7, v), the gradient projection method to com-
pute a stationary point (zf(c,7,v), X (c, 7, g),BT(c, U, g))
of Problem 4 is summarized in Algorithm 5. The update
equations in Algorithm 5 are given below:

Obj. Func. of Prob.4

I I I I I I
0 10 20 30 40 50 60 70
Iteration

Fig. 6. Convergence of Algorithm 5 (Gradient Projection Method
for Problem 4) for the network in Fig. 1. The curve represents

L. (z(n),i(n),ﬁ(n),ﬁ, g) at the n-th iteration for given ¢ > 0, 7 > 0
and v > 0, where L.(+) is given by (37).

diminishing stepsize satisfying:

€(n) — 0 as n — oo, Ze(n) = oo,Ze(n)Q < 00,
n=1 n=1
(49)

and [-]. denotes the projection on the convex constraint set
of Problem 4, i.e., the set of solutions satisfying (3)-(6), (8),
(10), (32)-(34), which can be obtained in a distributed manner
using the primal-dual algorithm in Algorithm 6. We shall
illustrate the details of Algorithm 6 later. It has been shown
that as n — oo, (z(n),X(n),B(n)) converges to a stationary
point (ZT (e,7,v),X (c,D, g),BT(c, U,v) | of Problem 4 [28,
p- 232]. Fig. 6 illustrates the convergence of Algorithm 5 for

the network in Fig. 1. We can see that Algorithm 5 converges
quite quickly (within 50 iterations for the outer loop).

[ . ., =
Zij,l(n +1) = Zij,l(n) — e(n) ;LC (n)] (46) Next, we study the projection of (z’, X, 3 ) on the convex
- “ ’l(‘)L * constraint set of Problem 4, i.e., [(z’ ,i',ﬁl)} . First, define
- b C _ _ *
xi]}p,m(n + 1) = xij};ﬂ,m(n) - E(TL) 8fij.p.m (n):| 47) the distance between (Z,f, /8) and (Z',f’, /6,) as follows:
3 7 OL. D — A . = A
Brijimm+1) = | Brijim(n) — e(n)agi(n) ; (zvxvﬁvz X, 0 )
L kij,l,m 9 - - 5
48) = (ziju = 2'i50)" + Y. (it — Tijpi)
(i.4)€€ leL (i,j)€€ leL
where the partial derivatives of L. (z, X,8,7, g) in (46), (47) + Z (Bkml’m — B]’Cij’l’m)% (50)
and (48) are given by (43), (44) and (45), {¢(n)} denotes the KET;#0,(i,j)EE,l,mEL
2
_ = _ _ + —
L (2,%,8,0,v) = Y Ui (Xier #ii1) + 32 Yo(kai). ()€, (((Vkmp,l,m + Gijpam) ) - ”iij,p,l,m)
(i,5)€€ peEP,l,meL
2
1 + 2
+2_c ZL’,#Q (4,9)€E, <zij7p,m + Cgijmm,,) — Vijpm (37)
pEP,MEL
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Algorithm 5 Gradient Projection Method for Problem 4
(Penalty Approximation)
INPUT: c,v, v

OUTPUT: z!(c,7,v),%! (¢, 7, v),B (c,T,v)

1: initialize n = 0, z(0), X(0), B(0).

2: loop

3: For all (i,j) € &, each edge (i,j) updates
ZijJ(TL + 1)’ Eij,p,m(n + 1) and ﬁkij,lﬂn(n + 1)
according to (46), (47) and (48), respectively,
where the projection | |, on the constraint set

of Problem 4 is computed using Algorithm 6.

In other words, (z(n+1), _(n—l—l) Bn+1) =

(= (2% B) = (.%.F) B (2.7 5))

obtained by Algorithm 6, where 2] gl = zija(n) —

6(”) (’)azL (n)» E{L],p, ﬁkzj,l,m( ) - e(n) aﬁfjr’ o (n)’
— —

and Byi;1.m = Brijim(n) — €(n) BBfLJCz (n).

4: Setn=n+1.

5: end loop

L = .
The projection of (z’ X, 3 ) on the convex constraint set of

Problem 4 can be obtained by solving the following problem.
Problem 5 (Projection on Constraint Set of Problem 4):
For given (z’ ,i’,B,), we have:
min D (2,%8.7..5)
z,X,0,f
s.t. (3),(4),(5),(6),(32),(33),(34).

The
written as (z* (Z/,KI,B,) ;X (Z/,EI,B/) B (Z/’KI’B,) '
£ (Z/,E/,Bl) ) In addition, we have [(Zl’il’a/)} -

(v (2% = (%) 5 (¢.x.5)

Problem 5 is convex and can be solved using the primal-
dual method. By relaxing the constraints 1n @), (5), (6)
and (34) of Problem 5, for given (z',X’ B ), we have the
following Lagrangian function L (z x,08,f,\,n, u,&) given
in (51), as shown at the bottom of the next page, where
A E (NS D geeterics = 0,m = (nig)ijyee = 0, p =
(1t )iev pep, ter and € £ (§j,p0) i) e pePyteT iec = 0
denote the Lagrangian multlphers w.r.t. the constraints in (4),
(5), (6) and (34) of Problem 35, respectively, with abuse of
notations. The partial derivatives of L (z,X,3,f,A,n, p, )
are given by:

optimal solution to Problem 5 is

OL
o =2 (20— 2i0) = D_ Mgt (52)
Zijil teT
oL _ _
O =2 (xij,p,m o x;j,pﬂn) - Z gfj,pﬂn,Bi](S?’)
P, te{t:peP;}
oL _ .
= = 2(Brijrm — Brijim (54)
aﬁk’ij,l,m ( ! ’ )
oL
o = A T i pL[O0 A 0] =l 1T # 0]+ €5
O ijp

(55)
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oL
o = 2 Jipa— 7 (56)
ij,l PEP:
oL
— = Zzij,l — Bj; (57)
O1ij lec
oL
g = 2 fhea— D fhp—ol, 69
Fip  reostec keT;lel
oL
2o = fiipa — TijpaBij. (59)
t 3:p 1]
8€ij,p,l e
Similar to  Subproblem 2 in  Section IV,
for given (z’ X, EI) , the primal

optimal ( * (z %/ 5) —x ( / f/aB/) ex (Z'j',B/),
£ (Z',fl,ﬁl) ) and the dual optimal

(3 (). (45 (105 € (45)

of Problem 5 can be obtained using the primal-dual algoritm
summarized in Algorithm 6. The update equations in Algo-
rithm 6 are given below:

oL
zigi(n +1) = zija(n) = 7(n) 5—_(n) (60)
Zig,l
oL
Tijpi(n+1) = [E‘j,p,l(n) = 7(n) 5— (n)} (61)
ij,pl [0,1]
oL
17,0,m + 1 = 7, m s
Breijtm (1 [5k i, v(n) Trim (n) o
(62)
oL +
fipaln+1) = (i) =2t z—m) 63
15,p,l
. oL +
Mjaln +1) = (M) 205500 (69
17,1
oL +
myln 1) = (mj (1) +2() 5 (65)
"71_7
oL
Hip
oL *
fipaln4 1) = (Ehpal) + 2 g7 —0)) 6D
J,p,l

where the partial derivatives of L (z (n),

f(n)ﬁ(n%f(n),A(n)m(n),u(n),é(n)> in 60, (61,

(62), (63), (64), (65), (66) and (67) are given by (52), (53),
(54), (55), (56), (57), (58) and (59), [z],y denotes the
projection of x on [0,1], and {y(n)} denotes the diminishing
stepsize satisfying

A(n) =0 asn — o0, S (n) =

n=1

(68)

can be implemented in
addition, it has been

() (0. o),

Note that Algorithm 6
a distributed manner. In

shown that as n — 00,
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Algorithm 6 Primal-dual Method for Problem 5 (Projection)

INPUT: 7, X and B

OUTPUT: =z* (z’,i',ﬁ/) , X (z’,i',B/ B z’,i',B/ ,

r(+.%.8), A*
* (z’,i',ﬁl) and £* (z’ %.8

/

— -
zlﬂi/7ﬁ 577* Z/7§lﬂﬂ )

~—

1 initialize n = 0, z(n),X(n), B(n), f(n), A\(n),n(n), u(n)
and &(n).

2: loop

32 Update zji(n + 1),Tijpi(n + 1),Bkij’l’m(n +
1) fz] P, l(n+ 1) )\Z‘Lj l(n+ 1)) 771’3‘(”"’ 1)7 sz(n‘f' 1) and
f]’p’l(n + 1) according to (60), (61), (62), (63), (64),
(65), (66) and (67), respectively.

4 Setn=mn+1.

5: end loop

N
o

S s
S o o
T

Obj. Func. of Prob.5

I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000
Iteration

o o

I
9000 10000

o

Fig. 7. Convergence of Algorithm 6 (Primal-dual Method for Problem 5) for
the network in Fig. 1. The curve represents D (z(n),i(n),ﬁ(n), 7z, X, E/)

at the n-th iteration for given (z’,i/,ﬁ,), where D(-) is given by (50).

f(n>) ~ (z (#.%.8).x («.%.B).B (+.%.5).
£ (z.%.B8)) and  Am).nm).pm).Em) -
(A* (#.%.B).n (#.%.8), w (+.%.B), €%,
B’)). In other words, for given (Z',i',B/), Algorithm 6

S — =
converges to the projection of (z’ ,X',3 ) on the convex

) ) =
constraint set of Problem 4, i.e., Kz’ <, 3

, , a8 n — 00.
Fig. 7 illustrates the convergence of Algorit}*lm 6 for the

network in Fig. 1.

VI. CONCLUSION

In this paper, we considered linear network code construc-
tions for general connections of continuous flows to minimize
the total cost of edge use based on mixing. To solve the
minimum-cost network coding design problem, we proposed

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

two equivalent alternative formulations with discrete mixing
and continuous mixing, respectively, and developed distributed
algorithms to solve them. Our approach allows fairly general
coding across flows and guarantees no greater cost than
existing solutions.

APPENDIX A
PROOF OF LEMMA 1

First, we consider L = 1. We omit the index terms (1)
and (1,1) behind the variables for notational simplicity. Let
{zij}> {zijp}s {Brij} and {f}; ,} denote a feasible solution
to Problem 1. We shall extend the proof of Lemma 1 in [14]
and [24] for the integer flows (f};, € {0,1}) and unit source
rates (R, = 1) with one global coding vector over each edge
(zi5 € {0,1}) to the general continuous flows (f{; , € [0, Bij])
and source rates (R, € R™) with multiple global coding
vectors (z;; € [0, Bm]) over each edge. In the general case,
we code over time n > 1. For all p € P, convert source p with
source rate R, over time n to |nR,]| unit rate sub-sources
D1, ,P|nR,|- For each edge (i,7) € &, allow the total
number of the sub-flows of ﬂow p € Py to terminal ¢t € T to
be fewer than or equal to [nf{; . Therefore, the flow path of
flow p can be decomposed 1nt0 nR, | unit rate sub-flow paths
D1, ,P|nR,) from source p € P; to terminal ¢t € 7. The
sum rate of unit rate sub- ﬂows of flow p over edge (i,j) € €
is less than or equal to [nf}; 1. The sum rate of unit rate sub-
flows of all the flows over edge (i,7) is less than or equal to
Zij = maxieT Y o p | nf}; ] Decompose edge (i, ) into Z;
sub-edges. Let sub- ﬂows to terminal ¢ pass different sub-edges,
i.e., each sub-edge transmit at most one sub-flow to terminal
t. We have now reduced the general case to the special case
considered in Lemma 1 in [14] and [24]. Therefore, we can
show that there exists a feasible linear network code over time
n. The associated average sum transmission rate over edge
(4,7) is Z;j/n. Note that Z;; /n— z;;/n < P/n. Therefore, this
code design can achieve the minimum cost U*(1) by taking
n arbitrarily large. When L > 1, we can convert each edge
(i,j) € € into L edges. Then, we can apply the above proof
for L = 1 to the equivalent constructed network.

APPENDIX B
PROOF OF LEMMA 3

It is obvious that (i) implies (ii). Next, we show that (i)
implies (iii). Suppose (i) holds, which indicates that each
{#ij1} associated with a feasible solution to Problem 1
is also associated with a feasible solution to Problem 3,
and vice versa By noting that {z;;;} fully determines
2 jyee Uij (X, #ijg), the two related feasible solutions for
the two problems have the same network cost. Thus, the set
of feasible network costs to Problem 1 is the same as that to

— 7 — 7 I =

L(z%B.EAnwE) =D (%82 B)+ > Ay

(i,J)€E,

teT,lel

t t
+ Z Mi,p,l Z ik,p,l Z
i€V, keO;,leL keZ; leL
pEP,teT

Z fitj7p7l — Ziju | + Z Nij <Z Zijl — Bij>

pEP: (i,j)€E leL

t t
+ ) R

(4,5)€EE,pEP:,
teT lel

t t —
Jripl = Tip — TijpuBij) (51
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Problem 3, implying the optimal values of the two problems
are the same. Therefore, we can show that (i) implies (iii).
Thus, to show Lemma 3, it is sufficient to show (i). Note that
in the proof, we only need to consider the different constrains
between Problem 1 and Problem 3.

To show (i), we first show that when x;;,; € {0,1} and
Brijim € {0,1}, Constraint (9) is equivalent to:

Tij,p,m > ﬁk’ij,l,mxki,p,l; kel, lel

meLl, T;#0, (i,j)€&EpeP  (69)
Tij,p,m < Z ﬂkij,l,mxki,p,lv

keZ;leL

meL, T;#0, (1,7) €& peP. (70

Note that Constraints (9), (69) and (70) are for all m €
L, I; # 0, (i,j) € € and p € P. Thus, we prove this
equivalence by considering the following two cases for any
me L, I; # 0, (i,7) € € and p € P. First, consider the
case where BiijimZrips = 0 for all k € Z; and | € L.
Constraint (9) implies that x;;, ,» = 0, and Constraints (69)
and (70) also imply that x;;, ,, = 0. Second, consider the
case where there exists at least one pair (k,l), where k € Z;
and [ € L, such that Buijim%rip; = 1. Constraint (9)
implies that ;;, ,» = 1, and Constraints (69) and (70) also
imply that 2,5, ,, = 1. Note that under the integer constraints
Zijpi € {0,1} and Brijim € {0,1}, the above two cases are
the only two possible cases. Therefore, we can show Constraint
(9) is equivalent to Constraints (69) and (70).

Next, we show that the first statement of (i) holds. Suppose
{ziga b Afl pa b Axijpa}s {Brijim} is a feasible solution to
Problem 1. Let Z;; 1 = ijp1 € {0,1} foralll € £, (i,j) €
£ and p € P, and ﬁk’ij,l,m = Bkij,l,m S {0, 1} for all
keI, I, # 0, (i,j) € € and I,m € L. Since Constraints
(32), (33) and (34) in Problem 3 can be treated as the contin-
uous relaxation of Constraints (1), (2) and (7) in Problem 1,
{13 A% pa Y ABrijam} satisfies Constraints (32), (33)
and (34). In addition, since Constraint (9) is equivalent to
Constraints (69) and (70), and Constraints (35) and (32) can
be treated as the continuous relaxation of Constraints (69) and
(70), {@ijp,i} {Briji,m} satisfies Constraints (35) and (32).
Therefore, we can show {zi;i}, {f}; 1} {Zijpi s {Brijim}
is a feasible solution to Problem 3.

Finally, we show that the second statement of (i) holds. Sup-
pose {21}, {ff; puts A%ijpa}s {Brijim} is a feasible solution
to Problem 3. Let @, = [Zijp] forall L € £, (i,5) € €
and p € P, and Biijim = [Orijim] for all k € Z;, Z; #
0, (i,5) € € and I,m € L. In other words, if Z;;,; = 0
(Briji,m = 0), then x5 5,1 = 0 (Briji,m = 0);if Tij, € (0,1]
(Brijim € (0,1]), then zy5,, = 1 (Brijim = 1. It is
obvious that { f{; },{%ijp,i},{Brijim} satisfies Constraints
(1), (2) and (7). It remains to show {x;pi}, {Bkijim}
satisfies Constraint (9). Note that Constraint (9) is for all
me L, I; #0, (i,j) € £ and p € P. Thus, similarly,
we prove this result by considering the following two cases
for any m € £, Z; # 0, (i,j) € € and p € P. First,
consider the case where Byiji,mTrip, = 0 for all k € I;
and [ € L. Constraints (35) and (32) imply that Z;; , »,», = 0,
and hence, we have j,m = [Zijpm| = 0. In addition,
Briji,mTripy = 0 for all k € Z; and [ € L also implies
BrijlmTripl = |Brijim][ZTripy] = 0 for all k € Z; and
[ € L. Thus, in this case, we can show {21}, {Bkiji,m}
satisfies Constraint (9). Second, consider the case where there
exists at least one pair (k,[), where k € Z; and [ € L, such
that Brij.1,mZrip, € (0,1]. Constraints (35) and (32) together
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with Constraints (32) and (33) imply that Z;; ., € (0,1],
and hence, we have %;j,m = [Zripi| = 1. In addition,
Briji,mTripy € (0,1] together with Constraints (32) and
(33) also imply SBrijimTript = [Brijim|[Thips] = 1.
Thus, in this case, we can show {x;; 1}, {Bkijim} satisfies
Constraint (9). Note that under the continuous constraints
Zijpr € [0,1] and Brijim € [0,1], the above two cases
are the only two possible cases. Therefore, we can show
{ziga b Aff pa b A% }s {Brijm} is a feasible solution to
Problem 1.
Therefore, we complete the proof of Lemma 3.

APPENDIX C
PROOF OF THEOREM 1
In the following, we prove a theorem, i.e., Theorem 2,
which is more general than Theorem 1. For ease of illustration,
we first introduce some notations. Denote x = (zy, - - - ,xn72,

A A %) %)
z = (21,--,2) and Vxf = a—gfl,m,arfl .
where » < n. Consider the following optimization
problem.

Problem 6 (Equality and Inequality Constrained Problem):

m)in f(x)
s.t. hl(x) =0, ahm(x) =0,
gj(x) <0,--- 7gr(x) <0.

Its augmented Lagrangian function is given by [28, p. 406]:
c
Le (6, A ) = [(x) + ATh(x) + 7 |[h(x)|?

1 T
52 2 ((max (0,1 + eg;(x))* = 12), (D)
j=1
where h £ (hy,--- ,h,,) and X 2 (A1, , \,,). Convert
Problem 6 to the following problem [28, p. 406]:
Problem 7 (Equality Constrained Problem):

min f(x)
st hi(x) =0, , hm(x) =0,
g](x)—i—zf:O, . ,gr(x)—f—zf:O

Its augmented Lagrangian function is given by [28, 398]:

Le(x.2,A ) = £(x) + ATh(x) + 5 |[h()|”

3 (1 (9500 + 22) + Slas (x) + 22, (72)

—

J
where h 2 (hy,--- ,hp), A =
(Mlv e 7MT)'

Assume f, h;, @ = 1,---,m and g;, j = 1,---,r are
continously differentiable. Assume the constraint set X £
{X € Rn|hl(x) = Oagj(x) < O,Z = ]-a"'maj = 1,"'T}
of Problem 6 is nonempty. The following theorem shows that
a stationary point of Problem 6 can be obtained using the
penalty method considered in this paper. Note that Theorem 2
extends Proposition 4.2.1 in [28]. In addition, Theorem 2
implies Theorem 1.

Theorem 2: For n =
be a stationary point

(>‘17"' a)‘m) and 4 £

Oa]-v"'s let X(TL) S X
of  Legmy(%, A(n), u(n)), e,
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p(n)?(x — x(n)) > 0 for all x € X,

and {p(n)} are bounded and {c(n)} satisfies

where {)\( )}

0 < ¢(n) < e(n+1) for all n and ¢(n) — oo as n — 0.

Assume x(n) — x* € X, \i(n) — A7 and uj( n) — i,

where \;(n + 1) = A\i(n) + ¢(n)h (())z—l ,m and

pj(n+1) = uj(n) +e(n)(g;(x(n) + 2(n)*), .7—1,---77“

Then, x* 1s a stationary point of Problem 6,
Vaf (x*)T(x —x*) > 0 for all x € X.

Proof: By the proof in [28, 405], we know that for given
¢(n), A(n) and p(n), we have:

Lc(n) (Xa )‘(n)a ;I,(TL)) = mzin f/c(n) (Xa z, A(n)v H(n))

= L) (x,2(x,¢(n), A(n), p(n)) , A(n), p(n)), Vxe X,
(73)

where
z (X7 C(n)a )\(’I’L), [J,(’I’L)) 2 arg mzin l_/c(n) (X7 z, )‘(n)a “(n)) :

_ First, we show that (x(n),z(n)) is a stationary point of
Leny (x,2,X(n), u(n)). By (73), we have:
(

sz/c(n) (X Z(X,C TL) ( )al"(n ) ( ) (n))T
(z — z(x,c(n), A(n), u(n))) =0, Vx € X

= ViLegn (x(n),2(n), A( %u(n)) (z —z(n)) =0,
vz €R", (74)

3

where z(n) £ z(x(n),c(n),A(n), u(n)). Since x(n) is a
stationary point of L, (x, A(n), u(n)), we have:
Vs Le(ny (x(n), A(n), p(n))" (x — x(n)) >0, vx € X.
(75)

By (73) and (75), we can get:

VLo (x(n),2(n), A(n), p(n)" (x — x(n)) > 0,

Vx € X. (76)

By (74) and (76), we can get:

VL) (x(n),2(n), A(n), p(n))" (x = x(n))
+ VzIf/c(n) (X(n)v Z(n)’ )‘(n)v H(n))T (Z - Z(n)) > 0’
VxEX, VZzeR". (1)

Thus, we can show that (x(n),z(n)) is a stationary point of

I’c(n) (X z )‘< ) H(n))
Next, we show that (x*

A" h(x )+Zuj(gg( x) +

j=1

,z*) is a stationary point of f(x)+
ZJQ) By (72), we know:

VxLe. (x z, A\, p) = Vf(x)+ Vh(x)\ + ¢Vh(x)h(x)
+ Z Vg5 (x)p; + e(g;(x) + 27)Vg;(x)) (78)

VZjLC (x,2, A\, ) =22 + 2 cz; (gj(x) + 232) ,
=1, r (79

Substituting (78) and (79) into (77), we have:

<Vf(x(n)) + Vh(x(n)) (A(n) + ¢(n)h(x(n)))
+ ng(x(

Jj=

T

m)) (13(m) + () (g5 x(m)) + 25(n)*) ) )

—
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(x —x(n +Z(2z] ( n) + c(n)

() + 25007) ) ) 35 = 2500 2 0,
Vx e X, Vz; € R, (80)

Since x(n) — x*, \;(n) — A\ foralli=1,---
w; and zj(n) — z7 forall j=1,---,r, we have:

+Z Vs )T<x—x*>

z;‘)zo, Vx e X, zj €R.

M, [ (n) -

(Vf(x )+ Vh(x

.
- Z 2215 (2
=1

Since the L.H.S of (81) is the gradient of f(x)+ )\*Th(x) +
> 15 (95(%) + 27), we can show that (x*,z*) is a stationary
s=1

(81)

. Ty
point of f(x) + A" h(x) + Zuj(gg( ) + 7).
‘7_

Finally, we show that x* is the stationary point of f(x),
for all x € X. We denote Y £ {(x,2z)|hi(x) = 0,i =
1.+ ,m,gj(x) +z]2- =0,z eRj=1,--- ,r}. Note that
(x,z) € Y implies x € X. For all (x,z) € ), we have

A h(x) + ]é:l 115(gj(x) + 23) = 0. Note that, we have
shown that (x*,z*) is a stationary point of f(x)+A*" h(x)+
ZT: 115 (gj(x) + 22). Thus, (x*,2*) is the stationary point of
jf:(ic) So, we have:

Vif ()T (x = x*) + Vo f(x)T(z —2%) > 0, V(x,2) € ).

Since V,f(x) = 0, we have Vi f(x)T (x — x*) > 0, for all
x € X. Thus, we can show that x* is the stationary point of
f(x), for all x € X. |
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