2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS)

SDN for End-to-end Networked Science at the
Exascale (SENSE)

Inder Monga
Energy Sciences Network
Lawrence Berkeley National
Lab
Berkeley, CA, USA
imonga@es.net

Harvey Newman
Division of Physics,
Mathematics and Astronomy
California Institute of

Chin Guok
Energy Sciences Network
Lawrence Berkeley National
Lab
Berkeley, CA, USA
chin@es.net

Justas Balcas
Division of Physics,
Mathematics and Astronomy
California Institute of

John MacAuley
Energy Sciences Network
Lawrence Berkeley National
Lab
Berkeley, CA, USA
macauley@es.net

Phil DeMar
Computing Division
Fermi National Accelerator

Alex Sim
Energy Sciences Network
Lawrence Berkeley National
Lab
Berkeley, CA, USA
asim@lbl.gov

Linda Winkler
Computing, Environment and
Life Science Division

Technology Technology
Pasadena, CA, USA Pasadena, CA, USA
newman@hep.caltech.edu jbalcas@caltech.edu

Tom Lehman
Mid-Atlantic Crossroads
University of Maryland
College Park, MD USA
tlehman@umd.edu

Abstract— The Software-defined network for End-to-end
Networked Science at Exascale (SENSE) research project is
building smart network services to accelerate scientific
discovery in the era of ‘big data’ driven by Exascale, cloud
computing, machine learning and Al The project’s
architecture, models, and demonstrated prototype define the
mechanisms needed to dynamically build end-to-end virtual
guaranteed networks across administrative domains, with no
manual intervention. In addition, a highly intuitive ‘intent’
based interface, as defined by the project, allows applications to
express their high-level service requirements, and an intelligent,
scalable model-based software orchestrator converts that intent
into appropriate network services, configured across multiple
types of devices. The significance of these capabilities is the
ability for science applications to manage the network as a first-
class schedulable resource akin to instruments, compute, and
storage, to enable well defined and highly tuned complex
workflows that require close coupling of resources spread across
a vast geographic footprint such as those used in science
domains like high-energy physics and basic energy sciences.

multi-resource
distributed

Keywords—Intent  based  networking,
orchestration, intelligent  network  services,
infrastructure, resource modeling

I. INTRODUCTION

Network designs are evolving at a rapid pace toward
programmatic control, driven in large part by the application
of software to networking concepts and technologies, and

978-1-7281-0194-1/18/$31.00 ©2018 IEEE
DOI 10.1109/INDIS.2018.00007

Laboratory Argonne National Lab
Batavia, Illinois, USA Argonne, Illinois USA
demar@fnal.gov winkler@mcs.anl.gov
Xi Yang
Mid-Atlantic Crossroads
University of Maryland

College Park, MD USA
maxyang@umd.edu

evolution of the network as a key subsystem in global scale
systems, such as those serving major science collaborations
that incorporate large scale distributed computing and storage
subsystems. This software-network innovation cycle is
important as it includes a vision and promise for greatly
improved automated control, configuration and operation of
such systems, in comparison to the labor-intensive network
deployments of today. However, even the most optimistic
projections of software adoption and deployment do not put
networks on a path that would make them behave as a truly
smart or intelligent system from the application or user
perspective, nor one capable of interfacing effectively with
facilities supporting highly automated data analysis
workflows at sites located across the world.

Today, domain science applications and workflow
processes are forced to view the network as an opaque
infrastructure into which they inject data and hope that it
emerges at the destination with an acceptable Quality of
Experience. There is little ability for applications to interact
with network to exchange information, negotiate performance
parameters, discover expected performance metrics, or
receive status/troubleshooting information in real time. As a
result, domain science applications frequently suffer poor
performance, especially so in highly distributed
environments. Indeed, the ability for a science application to
interact and negotiate with network infrastructure within a
science ecosystem, should be a hallmark of truly smart
networks and smart applications. It seems clear that current



static, non-interactive network infrastructures currently do not
have a path forward to assist or accelerate domain science
application innovations.

We therefore envision a new smart network and smart
application ecosystem that will solve these issues and enable
future innovations across many Research and Education
domain science communities. The SDN for End-to-end
Networked Science at the Exascale (SENSE) [1] project has
developed an architecture and implementation to address this
vision. The high-level vision for this new application to
network interaction paradigm includes the following:

e Intent Based: Abstract questions, requests and
responses in the context of the application objectives

e Interactive: An ability to ask question and negotiate

e Real-time: Resource availability, provisioning
options, service status, troubleshooting on a real-time
scale of seconds to minutes.

e End-to-End: including multi-domain networks, end
sites, and the network stack inside the end systems

e Full Service Lifecycle Interactions: continuous
conversation between application and network for the
service duration of service

We believe that these types of network services will be
needed to support new workflows driven by Exascale
resources. It is expected that existing workflows involving
multiple network data transfers will be replaced by the
establishment of deterministic network paths to support
realtime data streaming directly to compute memory or burst
buffers. = This mode of operation will also support
computational steering where instruments utilize data
streaming and preliminary compute results to calibrate and
guide experiments in realtime.

In addition to this new paradigm for application network
interaction, the SENSE system also solves a variety of
practical problems which are commonplace in Research and
Education (R&E) cyberinfrastructure systems as well as
experienced in deployment of multi-domain virtual circuits
[2], as noted below.

Distributed scientific workflows need end-to-end automation
so the focus can be on science, as opposed to infrastructure
operations:

e Manual provisioning and infrastructure debugging
require excessive time and is human capital intensive

e There is little to no service consistency across
domains

e Service visibility and multi-domain automated
troubleshooting is almost non-existent

e Lack of realtime information from domains impedes
development of intelligent services

Science application workflows have not integrated with
network service provisioning paradigms because:

34

e  Network programming APIs are usually not intuitive
and require detailed network knowledge, most not
easily obtained

e Efficient resource utilization and

management is very difficult

awareness

Multi-domain orchestration and automation requires service
visibility and troubleshooting:

e Data APIs across domains are needed for
applications, users, and network administrators

e Mechanisms for authorized agents to obtain
performance, service statistics, topology, capability,
and other data is needed.

e This will require systems for the exchange of
‘policy-scoped’ and authorization information

The remainder of this paper will describe the SENSE
Services (Section II), Architecture (Section III), Testbed
Deployment (Section V), Use Case Experimentation Results
(Section V), and Summary with Future Plans (Section VI).

II. SENSE SERVICES

The motivating focus for the SENSE project is the
interaction between the application and the network.
Therefore, network services are discussed here, prior to
discussion of system architecture or implementation. As will
be described in subsequent sections, new methods and
techniques for network resource management and control had
to be developed in order to realize the application facing
functions. Starting the design process from a user services
context provided the rationale for associated system designs.
The term Application Workflow Agent (AWA) is often used
to refer to the entity interacting with the SENSE system. It is
expected that the particulars of where this AWA fits into the
actual application architecture will vary by use case. Often it
will be a middleware component which is providing services
to the actual user and managing a diverse set of
cyberinfrastructure resources. From a SENSE system
perspective, the AWA is the entity requesting network
services. The remainder of this paper utilizes the term
application and AWA interchangeably.

The longer-term vision articulates a smart networked
ecosystem where the network is an interactive component
used by similarly featured smart applications, security
systems, and other domain specific workflow agents. This
intelligent network service plane forms the boundary layer
between the smart network and the smart application.
Application workflow agents can engage and obtain services
from the smart network system, through interactions with this
boundary layer. In this context, the following key features of
intelligent network service plane are identified:

e Intent: The ability for an application to submit a
service request in the form of a high-level statement
of desired results or outcomes, as opposed to a
specific set of network centric inputs [3].



e Interaction: The ability for an application workflow
agent to engage in a bi-directional exchange aka
"conversation" with the network as part of workflow
planning. This conversation can include discovery of
available services, asking "what is possible" or "what
do you recommend" types of questions, engaging in
iterative negotiations prior to actual service requests,
or full-service life-cycle status and troubleshooting
queries.

The expectation is that the intelligent network sservice
plane will enable multiple new operational paradigms,
including a fundamentally new concept of “consistent
network experience”. This is where stable load balanced high
throughput workflows cross optimally chosen network paths,
and only up to a preset high water marks to accommodate
other traffic. This will be provided through automated
interaction between the application workflow agents and the
intelligent network service plane, responding to demands
from the science programs’ principal data distribution and
management systems. The result will be a “consistent
outcome” and "deterministic" (or more deterministic) end-to-
end system performance.

The SENSE system has been developed to operate in
“Development Operations (DevOps)” mode, where custom
services can be rapidly developed in response to individual
application requirements. The general system philosophy is
that while not “every” service imaginable can be
implemented, almost “any” service can be. That is, the system
design is such that resource states and capabilities are
sufficiently available to allow the construction of many
different services. The user requirements will be utilized to
form the basis of the actual services.

To add some more specificity to these ideas of smart
network services, below is a description of some of the initial
services which have been implemented by the SENSE project.

e Time-Block-Maximum Bandwidth: Application asks
for a specific time block and would like to know (or
provision) the maximum bandwidth available for a
specific time period.

e Bandwidth-Sliding-Window: Application asks for a
specific bandwidth and duration and provides an
acceptable time window. For example, a request may
be for 40 Gbps for a 10-hour time window, sometime
in the next 3 days.

e Time-Bandwidth-Product (TBP): Application asks
for “8 hours of transfer at 10Gbps” representing a
TBP of 36 TBytes. The user also specifies an
acceptable time window, and other options such as
“prefer the highest bandwidth rate available”, or the
lowest.

For each of these services, the user can interact with
SENSE in the following modes:

e Immediate Provision: If SENSE finds a resource path
which satisfies the application request, provisioning

35

starts immediately (after routine confirmations from
both sides).

e What is Possible?: In this mode, SENSE simply
conducts a “Resource Computation” and provides the
results back to the requestor. No provisioning action
is taken without further explicit requests from the
user.

e Negotiation: One or more rounds of Resource
Computation requests with subsequent provisioning
request by the application user if desired.

In the context of SENSE services, the “network” includes
the switching and routing elements AND the network stacks
of the end systems, such as Data Transfer Nodes inside
Science DMZ facilities. The data plane capabilities associated
with these services are:

e Layer 2 point-to-point with QoS
e Layer 2 multi-point with QoS
e Layer 3 Flow QoS

Additional details regarding these (and other) services, the
supporting system architecture, use case integration, and
testing results are provided in the subsequent sections.

III. SENSE ARCHITECTURE

The SENSE approach to end-to-end at-scale networking is
based on software programmability and intelligent service
orchestration. The SENSE orchestration architecture provides
many intelligence, performance and assurance benefits
through application oriented services. These are enabled by
some novel technologies, including a) hierarchical service-
resource architecture, b) unified network and end-site resource
modeling and computation, ¢) model based realtime control,
d) application driven orchestration workflow, and e) end-to-
end network data collection and analytics integration.

A. Hierarchical Servcie-Resource Architecture

Within the SENSE orchestration architecture there are two
distinct functional roles, Orchestrators and Resource
Managers (RM). The interaction of Orchestrator(s) and RM(s)
follows a hierarchical workflow structure whereby of the
Orchestrator accepts requests from users or user applications,
and determines the appropriate resource managers to contact
and coordinate the end-to-end service request. The RMs are
(administrative or technology) domain specific and are
responsible for committing and managing local resources.

As illustrated in Fig. 1, this hierarchical structure of
Orchestrator and RM components separates application facing
service control functions from infrastructure facing resource
control functions.

a) SENSE Orchestrator

The SENSE Orchestrator (SENSE-O) is expected to be
closely associated  with a  domain science



Application Workflow

Agent

SENSE-Orchestrator API

Intent Based APIs with Resource
Discovery, Negotiation, Option Queries

Network Data Collection and Analytics

=t S

ESnet From End-Site

Service
Specific
Data

SENSE-RM API
(Model Based)

From End-Site

SENSE
Orchestrator

Datafication of cyberinfrastructure
to enable intelligent services

SENSE End-to-End Model

Realtime system based on Resource
Manager (RM) developed
infrastructure and service models

Figure 1 SENSE Architecture

collaboration/application (e.g. LHC/CMS [4], ExaFEL
[5],etc) and processes “high-level” context sensitive intents
to determine what resources are needed and coordinate the
requests of “lower-level” (or sub) intents to the
corresponding RMs. As such, the Orchestrator performs the
following functions:

e Receives model-based resource descriptions from
multiple RMs

e Receives and responds to the user’s “high-level”
intent requests (which is defined within the context
of the user’s domain science
collaboration/application).

e Renders the user’s “high-level” descriptive intent
request into “low-level” prescriptive requests for
required resources

e Performs multi-constraint resource computation
(based on AuthN/AuthZ, resource availability, etc.)
to determine the appropriate and necessary resources
needed and corresponding RMs to contact.

e Coordinate requests and replies from RMs and
feedback the results to the user accordingly.

e Support queries by the user for status and state.

e Provide resource notifications to users as necessary.

36

The SENSE-O can take on different functionality custom
to the domain science needs and resources available to it (e.g.
experiment, compute, storage, network, etc.). In the SENSE
project, we are building a reference implementation that is
specific to the big science models, controlling primarily data
transfer and network resources.

b) SENSE Resource Manager

The SENSE Resource Manager (SENSE-RM) is tied to
a domain with physical resources, e.g. a WAN (with network
resources), a site (with Science DMZ resources), etc., and is
responsible to facilitate the management of domain-specific
resources. The SENSE-RM is responsible for the following
functions:

e Provides (appropriately scope and abstracted)
model-based resource descriptions

e Receives and responds to the “low-level” intent
requests from the Orchestrator.

e Performs multi-constraint resource computation
(based AuthN/AuthZ, resource availability, etc.) to
determine the local resources appropriate and
necessary to service the request.



e Coordinates resource allocations/commitments,
provisioning and de-provisioning with local
controllers (e.g. NMS, etc.) as necessary.

e Supports queries by the Orchestrator for status and
state.

e Provides resource notifications to the Orchestrator
as necessary.

The SENSE-RMs are specific to an administrative
domain. However, within a single administrative domain,
multiple instances of RMs may be deployed based on the
distinct technology regions (e.g. DTNs, optical PKT/OTN,

B. Orchestrator Northbound API and Services

From user services perspective the SENSE orchestrator
provides application services via a programmable northbound
interface, namely SENSE-O NBI. While the Orchestrator
Core can support modular intelligence computation and
almost arbitrary orchestrated services, exposed through the
SENSE-O NBI is a select intent based API with emphasis on
end-to-end network connection discovery and computation,
featured with intelligent bandwidth and schedule negotiation
and workflow assistance.
of

a) Examplary Connection Services for

Quality

L2 OpenFlow, etc.). Conversely, a SENSE-RM may modelExperience

multiple technology domains as a single resource description.
For example, a network may have distinct switches and
routers which provide layer 2 and layer 3 services
correspondingly. However, the domain may instantiate a
single RM which provides a unified resource description
characterizing both sets of resources.

¢) Many-to-Many Relationship between SENSE-O and
SENSE-RM

We should not confuse SENSE-O with a central
orchestration service for all applications. Instead, it is an
architectural component that can have many instances
independently serving different organizations, collaborations
and application groups. In the SENSE orchestration model, it
is expected that the many SENSE-O instances will
communicate with multiple SENSE-RMs. The primary
reason is that each scientific collaboration or workflow may
have unique security, resource computation and specific
resource allocations. For instance, one collaboration may use
Shibboleth as its access and identity framework, whereas
another may use Kerberos. Having distinct SENSE-O
instances allows each collaboration to implement fine-grain
AuthN and AuthZ functions in accordance with its security
or resource allocation policies. Each SENSE-O instance in-
turn has a unique trust relationship with the SENSE-RMs that
it communicates with. This facilitates scalability in that a
SENSE-RM does not need to manage all end-user
authentication, authorization, and access to resources within
its domain, but can enforce coarse-grain policies against the
identity of the requesting SENSE-O instance and the
negotiated Service Level Agreement (SLA).

In addition, different collaborations may have access to
different resources within a SENSE-RM’s domain. For
instance, one collaboration may be restricted to a certain set
of network links, whereas another collaboration may not have
the same constraint. By having distinct SENSE-O instances
per collaboration, a SENSE-RM may publish different
resource descriptions based on SLAs that it has with the
SENSE-O instance. The SENSE-O instance in turn may
perform resource computation and allocation with priorities
and constraints that are unique to the collaboration.

37

SENSE-O NBI service intent is defined in JSON format.
The below example with service alias “sc18-p2p-b1” is to
request a 10G connection with hard capped bandwidth QoS
between two DTN sites at NERSC and Caltech. An
alternative service_type “Multi-Point VLAN Bridge” could be
used to request for a VLAN connection of three and more
terminals.

{"service_type": "Multi-Path P2P VLAN",
"service_alias": "sc18-p2p-b1",
"connections": [

{"name": "connection 1",
"terminals": [
{"uri":"urn:ogf:network:nersc.gov:2013:server+dtnil.nersc.gov",
"label": "any"
b
{"uri":
"urn:ogf:network:caltech.edu:2013:server+xfer-
2.ultralight.org",
"label": "any"
HL
"bandwidth": {
"qos_class": "guaranteedCapped",
"capacity": "10",
"unit": "gbps"

1Y

Our supported QoS classes include guaranteedCapped (no
burst over capped limit), softCapped (allowing for burst over
the cap when extra bandwidth is available) and bestEffort. For
users who are not sure how much bandwidth to ask but want
to firstly query for the maximum available, the intent can
include a query statement as in the example “sc18-p2p-b2”.

{"service_type": "Multi-Path P2P VLAN",
"service_alias": "sc18-p2p-b2",
"connections": [

{"name": "connection 1",
--- skipped content ---
"bandwidth": {
"qos_class": "
H,
"queries": [
{"ask": "maximum-bandwidth",

guaranteedCapped"



"options": [

{ "name":

H1

connection 1"

Bandwidth QoS only represents one aspect of quality of
experience for data transfer application users. Many users
also want deterministic or predictable time schedule for data
transfer. In the example with service _alias “sc18-p2p-bs”, we
introduce the schedule intent, which asks for the same 10G
connection lasting for 4 hours that can be scheduled flexibly
within next 2 days. This particular intent is called a
“bandwidth-sliding-window”. SENSE-O NBI also support the
intent of “bandwidth-fixed-window” and “maximum-
bandwidth-query-with-fixed-window” in its variation forms.

{"service_type": "Multi-Path P2P VLAN",
"service_alias": "sc18-p2p-bs",
"connections": [

{"name": "connection 1",
--- skipped content ---
"bandwidth": {
"qos_class": "guaranteedCapped",
"capacity": "10",
"unit": "gbps"
2
"schedule": {
"start": "now",
"end": "+2d",
"duration": "+4h"

1}

Another interesting service intent is based on concept of
Time-Bandwidth Product (TBP). For 8 hours of transfer at
bandwidth of 10Gbps, the TBP represents 36000 Gbits or 36
TBtyes of data volume. Allowing users to query and negotiate
with bandwidth and schedule based on a given TBP will
provide better quality of experience as TBP is a good estimate
of'total amount of data to transfer. In the example intent “sc18-
p2p-tbp1”, user tries to find a schedule to transfer an estimated
10000 Mbytes (or 10 GB) data within a 2 day time window
after October 1st 2018 8:00ET. The user wants to check for
the fastest possible transfer speed using a “ use-highest-
bandwidth = true” option.

{"service_type": "Multi-Path P2P VLAN",
"service_alias": "sc18-p2p-tbpl",
"connections": [

{"name": "connection 1",
--- skipped content ---
"bandwidth": {
"qos_class": "
}
1,
"queries": [
{"ask": "time-bandwidth-product",
"options": [ {
"name": "connection 1",
"tbp-mbytes": "10000",
"start-after": "2018-10-01T08:00:00.000-0400",

guaranteedCapped",

38

"end-before": "+2d",
"use-highest-bandwidth": "true"}

111}

Alternatively, user can ask for least bandwidth (or widest
schedule) using a “use-lowest-bandwidth = true” option, or a
bandwidth-bounded schedule using both “bandwidth-mbps >="
and “bandwidth-mbps <=" options. The latter will return a
feasible schedule that satisfies both the time-bandwidth-
product and the bandwidth upper and lower bounds.

b) Service Negotiation Workflow via Intent Based API

SENSE-O NBI offers a set of other intent API calls for
service and resource discovery. But central to the end-to-end
connection service orchestration are calls for intent based
service negotiation and instantiation workflow. Herewith we
only go through the service creation calls by their order in the
workflow and skip those for service cancellation,
modification and monitoring.

1. Create Service Instance
POST $service intent vl to /sense/service

This creates a service instance to persist session context.
SENSE-O will compile and compute the initial service intent.
When questions are asked in “queries” statement, it will
provide the first answers to asked questions.

Use the above service intent “sc18-p2p-b2” as example.
The request for “connection 1” has
"bandwidth": {

"qos_class":

}

and

guaranteedCapped"

"queries": [
{"ask": "maximum-bandwidth",
"options": [

{ "name":

H1

connection 1"

In the reply upon successful computation, we shall see
something like

"bandwidth": {
"qos_class": "guaranteedCapped",
"capacity": "10000",
"unit": "mbps"
}
and
"queries": [
{"asked": "maximum-bandwidth",
"options": [
{ "name": "connection 1",

"bandwidth": "10000",
"unit": "mbps"

H1



Also included in the reply is the full text of computed
service model in MRML language, which we will discuss in
later sections.

2. Service Negotiation Rounds

POST $service_intent v2-N
/sense/service/$sve_uuid

to

When a user has more questions to negotiate with
SENSE-O, it will revise the intent and post a newer version
to the same service session identified by the service instance
ID ($svc uuid) found in the reply from the initial service
creation call. Following the above example, user knows the
maximum bandwidth is 10Gbps for the requested end-to-end
connection, however, this only applies to current time and
gives the user rough idea of possible network capacity. Then
it could negotiate for a feasible schedule in a sliding window
for a time-bandwidth product that is bounded by maximum
and minimum allowed bandwidth as follows.

"queries": [
{"ask": "time-bandwidth-product",
"options": [ {
"name": "connection 1",
"tbp-mbytes": "1000000",
"start-after": "now",
"end-before": "+2d",
" bandwidth-mbps <=": "10000",
" bandwidth-mbps >=": "2000"}

111}
The reply could be

"queries": [
{"ask": "time-bandwidth-product",
"options": [ {
"name": "connection 1",
"bandwidth": "5000",
"unit": "mbps",
"start ": "2018-9-01T710:00:00.000-0400",
"end ": "2018-9-01T10:26:40.000-0400" }

111}

This means when asked for a TBP of 1 Terabytes to be
transferred within next 2 days with acceptable bandwidth
between 2 and 10Gpbs, SENSE-O provided a feasible
solution for a transfer between 10:00:00 and 10:26:40 ET on
September 1% 2018 at a speed of 5 Gbps. Step 2 can be
performed for many rounds until user is satisfied with the
reply or gives up.

3. Service Reservation
PUT to /sense/service/$svc_uuid/reserve

or

POST $final_intent
/sense/service/$sve_uuid/reserve

to

Once user is settled with the final intent, it could use PUT
method to reserve the service, which refers to the reply of last
round of negotiation as final intent. Or it could use a POST

39

method to provide a last version of service intent with some
final edits. The reserve call will propagate the service request
through the SENSE-O core and to all involved SENSE-RMs.
This is a transactional operation, meaning the SENSE-O and
all involved SENSE-RMs must agree on the service and lock
up the required resources. Otherwise, a complete rollback
will be performed with none resource being held after. Such
a transaction will be mostly data verification and database
operation and can be done very quickly.

4.  Service Commit
PUT to /sense/service/$svc_uuid/commit

In the commit step, the resources held by reserve call will
be actually allocated. Compared to a “soft” reserve that is
mostly a database operation, the commit call is “hard”
operation, which can take quite long time for some resources.
SENSE-O NBI offers both synchronous and asynchronous
methods to execute the commit call.

5. Service Status Query
GET /sense/service/$sve_uuid

This call can tell user the current status of a service
instance in progress. This is particularly useful for checking
status of an asynchronous commit call.

The complete intent API document for SENSE-O NBI is
published at [6].

C. Orchestrator To Resource Manager API

From resource providers perspective the SENSE RM API
provides a means to integrate separated and diverse resource
domains into the SENSE orchestration. It helps form the
many-to-many relationships between SENSE-Os and
SENSE-RMs.

The REST-based Orchestrator to RM API defined works
on the fundamental principle of topology model manipulation.
The Orchestrator queries the RM for a current view of
topology available for use. The Orchestrator manipulates the
provided topology to achieve its target goal, computes a delta
between the original topology and the desired topology, and
then proposes this resulting delta to the RM. The RM may
accept or reject the proposed delta depending on a number of
criteria including validity, local usage policies, resource
availability, etc. If the RM accepts the delta the Orchestrator
must then commit the change before the RM will apply the
change to targeted resources.

a) MRML Resource Modeling

The SENSE-RM API is based on a resource model
exchange and manipulation paradigm. The SENSE-O queries
multiple RMs for a resource model which describes the
infrastructure and services available for use. The resource
model provided by each RM includes a description of its local
resources and includes a definition for their interconnects to
external resources. This external connection information
allows the SENSE-O to build a model based connected graph
which includes all of the RMs in its query space. This end-



to-end model based graph provides the basis for the SENSE-
O to respond to user requests and construct workflows for
service provisioning interactions with the proper RMs. In the
orchestrator, Modular Computation Elements (MCEs)
provide the mechanisms to translate high level intent based
user requests into specific workflow orchestration steps and
resource requests to individual SENSE-RMs.

The SENSE-O receives resource descriptions from
SENSE-RMs and constructs a model based graph of the end-
to-end SDN topology. The modeling framework is based on
extensions to the Network Markup Language (NML) [7]
standard developed by the Open Grid Forum (OGF) [8]. As
part of a DOE ASCR research project, RAINS [9], extensions
to NML were defined to allow other resource types in addition
to network elements/topologies to be described and modeled.
The base NML standard and these extensions define the
Multi-Resource Markup Language (MRML) [10] which is
utilized as the basis for resource modeling in the SENSE
project. In this context, other resource types may include
systems that are connected to the network such as Data
Transfer Nodes (DTNs) [11], storage systems, instruments,
and compute nodes.

b) Model Driven Realtime Resource Management

The topology of resources by each RM is an MRML
document. As the topology and resource states change along
time, SENSE-RM needs to manage a serial version of the
MRML document. This versioned model document defines
all the semantics for the SENSE-O API. Therefore, the API
operations will be extremely reduced into two: model pull
and delta push. The latter is divided into two methods,
propagate and commit, to support a transactional two-phase
push process. The model driven approach and simplicity of
API methods helps SENSE to achieve better scalability. In
the project, we also emphasize on another important
performance metric: real-time. We will discuss what it means
for end-to-end resource integration and service orchestration.

e  Pull Model

The SENSE-O receives a model-based resource
description from all of the RMs in the end-to-end
SENSE ecosystem. The SENSE-O will integrate
models from multiple SENSE-RMs to generate a
multi-domain resource description model.

The individual SENSE-RMs will utilize local policy
to determine what information is provided with
regard to resources, abstraction degree, and any
other factors based on use cases associated with an
individual SENSE-O.

On the current SENSE Testbed, SENSE-O is
customized to pull RM models every 30 seconds.
The HTTP “If-Modified-Since” mechanism is used
to reduce redundant data pull. SENSE-RMs will be
responsible for tuning up abstraction degree and
resource update frequency to satisfy the “real-time”

O

40

requirement by SENSE-O, and also suppress
excessive control traffic across the RM API.

e Propagate Delta

o The SENSE-O will process intent based service
requests from the SENSE-O API and generate a
“model delta” which will be used to communicate a
potential action/provision request to the SENSE-
RM(s). The SENSE-RM is not expected to take any
provisioning action based on the Propagate Delta

method.

In response to the Propagate Delta method, the
SENSE-RM should inspect, verify, and confirm the
request of suggest revisions. For example, a specific
VLAN may be requested in the Propagate Delta
method, however, the SENSE-RM would prefer
another VLAN. In this case the SENSE-RM should
indicate the modified VLAN requests in the
response via modifying the provided “model delta”.

As the propagate call is purely data transactions, it
could be executed very fast. A negotiation
procedure has been built into this phase such that
multiple rounds of fast propagate and feedback
transactions can be performed to achieve an updated
real-time result that may be different than the
original “delta”. This real-time negotiation and
update is necessary as the SENSE-O and SENSE-
RM are in many-to-many loosely coupled
relationship and may not always have completely
“real-time” synchronization on resource states.

e Commit Delta

o The SENSE-O uses this method to ask the SENSE-
RM to commit the changes negotiated as part of the
Propagate Delta exchange(s).

o This is where the SENSE-RM is expected to

actually provision resources. As this procedure is
normally time-consuming, it is separated from the
transactional propagate method. The SENSE-RM
API commit is always asynchronous so that none
SENSE-O call to the SENSE-RM would be blocked
for long. Real-time status query is supported to
check result of the asynchronous commit.

D. Intelligent Orchestrator Core and Model Driven
Computation

The core of SENSE-O is StackV[12], a general-purpose
open-source orchestrator for networked multi-services.
StackV is implemented based on the full-stack model driven
intelligent orchestration approach. From very top of the stack,
applications communicate to the orchestrator with abstract
service intent. Intents including those specifically for SENSE
take different forms for convenience of users. The SENSE-O
NBI translates service intent into so called “Service Model
Description and Abstraction”, which is a formal MRML
model that consists of abstract resources annotated with



service policy statements. The abstract model data are then
fed to a dynamic compile procedure and compiled into a
model-based computation workflow. A computation
workflow consists of a variety of Model Computation
Elements (MCE) as intelligence functions assembled into an
execution tree. Each MCE uses system model data, service
model data and policy data as input and accomplishes a
specific function such as resource placement and connection
computation. The output will be more detailed service model
data, which could be used as input for another MCE. When
the computation workflow finishes successfully, a System
Model Delta will be created that provides detailed model
statements about what need to change in the underlying
infrastructures governed by RMs to satisfy the intent.

The benefits of model-based computation include
eliminating conversion between interface, internal and
persistence data structures, leveraging standard tools for data
query, navigation, transformation and reasoning, and
maintaining consistent data semantics through all the
computation modules. MCE is the basic computation
module. The input and output of an MCE are both model data
based on RDF/OWL, MRML and policy ontologies. In the
compiled computation execution workflow, each MCE
instance computes for a specific purpose. For an example
SENSE service, a Layer-2 VLAN Connection MCE takes in
the initial service abstraction model that specifies connection
terminals, bandwidth and schedule parameters. It creates
model statements for end-to-end layer-2 connection across
end sites and wide area networks, in an updated service
abstraction model and exports it together with some
intermediate policy data. Then a Layer-3 Address
Assignment MCE uses this new service abstraction model
and policy data (more detailed than the original one) as input
to perform its own computation and add layer-3 modeling
statements to the further updated service abstraction model.
StackV has implemented sophisticated logic to concatenate
MCESs and merge computation results. The basic idea of this
technique is to use SPARQL [13] queries to “shape” the
output of a upper stream MCE into custom JSON format and
use JSONPath [14] queries to extract information and “fit” to
the input of downstream MCEs. Success in finishing the
computation workflow means StackV has resolved all model
abstractions and policy annotations in the final product and
has turned an application intent into a System Model Delta.
This “delta” can be pushed down to the SENSE-RM API for
instantiation.

E. Network Data Collection and Analytics Integration

Topological model and resource states are the basis for
the SENSE-O intelligent computation for orchestration
services. Further integration of real time and historical
network data through analytics engine provides improved
quality of experience for users through better understanding
of end-to-end network states and more precise prediction of
traffic trends. The analytics-based feedback also helps users

41

better describe their service intents to the Orchestrator. An
extended SENSE architecture includes a Data Analytics
Engine that collects network data from end sites and transport
networks, and provides analytics pre-processing and
feedback to the orchestrator core. It collects extensive
telemetry data from various monitoring and active
measurement sources that reflect network resource utilization
and real-time states. This data collection and analytics
capability is not yet in place and is anticipated as part of
future work. A description is included in order to fully
explain the architectural vision.

The Data Analytics Engine is a component external to the
SENSE-O. In the current SENSE Testbed, ESnet and many
DTN end sites have deployed some sort of monitoring and
data collection and archiving mechanisms. The planned
SENSE analytics solution will consolidate these existing
resources into a functional utility engine that has distributed
data collection, archiving and access endpoints but common
API and data schema definitions.

Following the suit of model driven API design, the
interaction between the Data Analytics Engine and SENSE-
O will be formally modeled Service Specific Data exchanged
through a well-defined API. With per-user and per-service
ownerships being annotated upon the collected data, data
contents and formats will be customized on demand based on
service orchestration needs. In addition, the analytics data
will be integrated with the existing MRML model through
abstraction, reference and annotation processing. Finally,
modified and new MCEs will be able to leverage the custom,
pre-processed, MRML friendly data from the analytics
engine to compute improved results for existing service
intents and provide answers to many new intent questions that
we could not easily answer today.

The Service Specific Data bridge across the Analytics
Engine and SENSE-O forms a closed control-feedback loop.
The orchestration results will be monitored and measured and
provided as feedback for fine tuning of future orchestration
computation. On the other hand, the SENSE-O also provides
information to the Analytics Engine to help verify and
instrument the data collection and analysis more efficiently.

IV. TESTBED DEPLOYMENT

A SENSE testbed has been deployed which includes a
mix development and production resources. A shown in
Figure 2, this testbed is deployed at DOE Laboratories and
Universities facilities. For the network resources the SENSE
system interacts with production provisioning system ESnet
and other networks. For the end-system resources, a mix of
production and prototype DTNs are deployed. For the
production DTNs limited access is provided resulting in
tailoring the set of SENSE based dynamic configurations to
match local site polices. This approach to use a mix of
production and research resources enables experience with
various real-world site deployments and considerations.



ScienceDMZ Facility
DTHs e

B

e

AR

Eny 0 E &

GPU Cluster DTNs

ScienceDMZ

HPC
Tier2 Center

DTNs with Storage

Testbed

Caltech.

SENSE Control

Static Control

Figure 2 SENSE Testbed

This testbed is being utilized to develop and test the SENSE
software, as well as test with domain science use cases.

V. EXPERIMENTATION AND USE CASES

The SENSE project is now in a phase where use case
integration is a key focus area. The main use cases currently
under test are as described below.

Data Transfer Node Priority Flow: Science DMZ located
Data Transfer Nodes (DTNs) are a common method for
moving data to/from compute facilities in the R&E
community. For this use case, SENSE services are utilized
enable a “DTN Priority Flow Service”. Since SENSE
services are provisioned across the switching and routing
elements AND the network stacks of the end systems, this
allows the creation of QoS enabled path that can be utilized
for specific flows such that deterministic performance can be
achieved regardless of the background traffic. The concept
of operation is that these “SENSE enabled DTNs” can be
place next to current production DTNs, or the SENSE
software can be installed directly on the production DTNs. In
either case, standard DTN operations and flows across the
best effort routed IP paths continue as normal. When a
SENSE flow is established between DTNs, this flow will
receive priority access to network and host level resources.
The best effort flows will continue, but maybe at a reduced
rate. This SENSE capability is currently implemented as a
Layer 2 point-to-point service. Work is underway to add
Layer 2 multipoint and Layer 3 priority flow services. The
workflow agent for this use case utilizes the “Time-Block-
Maximum Bandwidth”, the “Bandwidth-Sliding-Window”,
and the “Time-Bandwidth-Product (TBP)” SENSE services
to instantiate Layer 2 paths with QoS. This workflow also
utilizes the “What is Possible?” and “Negotiation” features to
demonstrate those feature sets. The SENSE services and

additional information regarding testing for this use case is
available here [15].

Exascale for Free Electron Lasers (ExaFEL)[5]: The
objective of this use case is to stream nano crystallography
diffraction data from SLAC to NERSC in order to perform
analysis on CORI PII and provide feedback to the beamlines
in the form a 3D electron structure visualization. The
workflow steps are as follows:

e Stream the data from the LCLS online cache
(NVRAM) to the SLAC data transfer nodes

e Stream the data over an SDN path from the
SLAC DTNs to the NERSC DTNs (the term
DTN is used loosely here, could be a subset of
the supercomputer nodes)

e Write the data to the burst buffers layer
(NVRAM)

e Distribute the data from the burst buffers to the
local memory on the HPC nodes

e  Orchestrate the reduction, merging, phasing and
visualization parts of the SFX analysis

The main components of the workflow are:

e Database (file catalog) to keep track of the
status/location of the data

e state machine (set of Python scripts) to control
and monitor the various steps

e Provision SENSE path via API
e  Web interface to manage the components above

For this use case the ExaFEL application workflow agent
utilizes the “Time-Block-Maximum Bandwidth” SENSE



Service to provision the network path. This includes
establishment of Layer 2 paths with QoS with time domain
scheduling. Additional information regarding testing for this
use case is available here [16].

Big Data Express: BigData Express provides
schedulable, predictable, and high-performance data transfer
service for DOE’s large-scale science computing facilities
(LCF, NERSC, and US-LHC computing facilities, among
others) and their collaborators. This project is focused on
controlling resources at end-site locations. For wide area
service the Big Data Express system utilize SENSE services
to provision paths across ESnet. Big Data Express workflow
agent utilizes the “Time-Block-Maximum Bandwidth” and
the “Bandwidth-Sliding-Window” SENSE services to
instantiate Layer 2 paths with QoS. This application also
utilizes the “What is Possible?” and ‘“Negotiation” features
sets to co-schedule across multiple end-sites and network
resources. Additional information regarding testing for this
use case is available here [17].

The SENSE project is also working on use cases that
integrate with Large Hadron Collider/ Compact Muon
Solenoid (LHC/CMS) data movement and analysis
workflows. A current theme is the use of a new compact
event form called the "nanoAOD" [18] that enables the rapid
widespread distribution, ingest and real-time processing
through a set of "PhysicsTools" of entire datasets of one to a
few terabytes, that can be subsequently further analyzed on
users' desktops and laptops. The associated CMS analysis
workflows, currently under development, are planned to be
accelerated and scaled up in terms of the number of
simultaneous workflows supported, through the use of
SENSE's interactive bandwidth allocation and management
services, together with the DTN-RM services at a number of
CMS sites, and high throughput data transfer applications
such as Caltech's open source Fast Data Transfer (FDT) [19].

Further related developments, underway through the
NSF-funded SDN Assisted NDN for Data Intensive
Experiments (SANDIE) project [20], include the use of
Named Data Networking (NDN) and its caching and routing
methods, to be supported in future by SENSE services to
expand NDN's ability to deal with larger scale data intensive
workflows.

VI. SUMMARY AND FUTURE PLANS

The SENSE system architecture and implementation
presented  utilizes  model-driven  datafication  of
cyberinfrastructure to enable intelligent network services.
Science applications utilizing Intent-based APIs with
automated resources discovery and negotiation enable a
significantly different mode of operation as compared to
current network usage modes. With dropping costs of 100GE
capable devices, powerful end systems are increasingly being
placed at edge locations where high-bandwidth connections
directly to regional and national networks will be the norm.

43

The Science DMZ based, National Research Platform
Initiative [21] is an example of a high-performance end-
system edge deployment. As a result, the expectation is that
we are entering a cycle where network capacity will be easily
overwhelmed by these advanced end-site and edge facilities.
This indicates a need for methods to manage network
resources and access in a more intelligent manner, which
includes providing the application agents with sufficient
information so that they can plan and optimize their
operations. The SENSE project vision and implementation
is focused on these issues to be prepared for the day where
unmanaged network utilization and extreme over
provisioning is no longer the preferred operational approach.

The SENSE architecture and service plan creates many
avenues for investigation and provides a platform to address
interesting research questions. These issues revolve around
the focus on interaction, negotiation, the degree of realtime
state management and consideration at many levels of the
decision and control operation process. Future plans include
exploring some of these issues as noted below as part of
ongoing development and testing of the SENSE system:

e What are the tradeoffs between scaling and real-time
state collection and performance?

e How to make the realtime vs scalability features dynamic
and configurable so adjustments can be based on
conditions and application needs?

e  Which information/states should be routinely exchanged
between Resource Manager(s) and Orchestrator? Which
information should be accessible on demand? What are
the best methods to make this dynamic/configurable to
adjust based on different Resource Manager capabilities
and policies?

e What is the right level of abstraction for Application
Agent to SENSE system interactions? s it necessary to
provide variable levels from highly abstract to very
detailed and resource specific?

e What is the best method for realizing multi-domain,
multi-resource authentication and authorization? What is
the proper granularity for this? User? Project? Domain?
Individual network and end system resource elements?
Flows?

As the SENSE architecture and implementation evolves
through multi-institution testbed deployment, the focus of the
project is to continue integration with domain science use
cases and transition the SENSE services to production status
for both the network and application operations.

ACKNOWLEDGMENT

We appreciate the contributions to Intent APIs and
superfacility use case by Mariam Kiran and NERSC testbed
deployment through Damian Hazen and Jason Lee. Work



discussed in this paper was supported through multiple
projects from Department of Energy and National Science

Foundation projects including the following:

Caltech
e OLiMPS, DOE/ASCR, DOE award #DE-
SC0007346
e  SDN-Next Generation Integrated Architecture
(SDN-NGenlA), DOE/ASCR, DE-SC0015527
¢ SDN for End-to-end Networked Science at the
Exascale (SENSE), DOE/ASCR, DE-SC0015528
e ANSE, NSF award # 1246133
e CHOPIN, NSF award # 1341024
e US CMS Tier2, NSF award # 1120138
University of Maryland
e SDN for End-to-end Networked Science at the
Exascale (SENSE), DOE/ASCR, DE-SC0016585
e Resource Aware Intelligent Network Services
(RAINS), DOE/ASCR, DE-SC0010716
Fermi National Accelerator
e SDN for End-to-end Networked Science at the
Exascale (SENSE), DOE/ASCR
Argonne National Lab
e SDN for End-to-end Networked Science at the
Exascale (SENSE), DOE/ASCR
Lawrence Berkeley National Lab/ESnet

e SDN for End-to-end Networked Science at the

Exascale (SENSE), DOE/ASCR, FP00002494

REFERENCES

SDN for End-to-end Networked Science at
(SENSE),http://sense.es.net

(1] the

(2]

IEEE Communications Magazine, May 1, 2011
[3]

demands", Future Generation Computer Systems, August 2, 2017
(4]
https://home.cern/about/experiments/cms
Exascale for Free Electron Lasers
https://www.exascaleproject.org/project/exafel-data-analytics-
exascale-free-electron-lasers/
SENSE

(3]

Orchestrator North Bound

(6]

(7]
Language Base Schema version 17, OGF GFD-R-P.206, May 2013.

Open Grid Forum (OGF), http://www.gridforum.org
Resource  Aware Intelligent Network Services
https://wiki.maxgigapop.net/twiki/bin/view/RAINS/WebHome
Multi-Resource Markup Language
https://github.com/MAX-UMD/nml-mrml

(8]
(9]

[10]

[11] Data Transfer Node (DTN), https:/fasterdata.es.net/science-
dmz/DTN/
[12] StackV Open Source Orchestration Software Suite,

http://github.com/MAX-UMD/StackV.community
[13]
sparql-query/
[14] JSONPath - XPath for JSON, http://goessner.net/articles/JsonPath/

Exascale

I. Monga, C. Guok, W.E. Johnston, B.Tierney, "Hybrid Networks:
Lessons Learned and Future Challenges Based on ESnet4 Experience",

M Kiran, E Pouyoul, A Mercian, B Tierney, C Guok, I Monga,
"Enabling intent to configure scientific networks for high performance

Large Hadron Collider/ Compact Muon Solenoid (LHC/CMS),

(ExaFEL),

API,
https://app.swaggerhub.com/apis/xi-yang/SENSE-O-Intent-AP1/0.9.0

J. van der Ham, F. Dijkstra, R. Lapacz, J. Zurawski, “Network Markup

(RAINS),

(MRML),

SPARQL Query Language for RDF, https://www.w3.org/TR/rdf-

44

[21]

Data Transfer Node Priority Flow testing, https:/tinyurl.com/sense-
demo

ExaFEL use case

http://www .slac.stanford.edu/~wilko/psdm/netdemo/rates.html

testing,

Big Data Express, http://bigdataexpress.fnal.gov
nanoAOD, https://github.com/cms-nanoAOD
Fast Data Transfer (FDT), https://github.com/fast-data-transfer/fdt

SDN Assisted NDN for Data Intensive Experiments (SANDIE),
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1659403;
https://datatracker.ietf.org/meeting/interim-2017-icnrg-
02/materials/slides-interim-2017-icnrg-02-sessa-sandie-named-data-
networking-for-data-intensive-science-edmund-yeh

National Research Platform, http://prp.ucsd.edu



