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A B S T R A C T

Changes in the environment related to inclement weather can threaten survival and reproductive success both
through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during
activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate
for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus
response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation,
temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate
taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was
assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term
exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of
studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for
exposures longer than 24 h shows more variation, even though a majority of studies still report an increase
(64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a
predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect
of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3)
prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to
seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated
laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and
amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as
the physiological mechanism promoting fitness during inclement weather.

1. Introduction

Changes in an environment can have important repercussions for
organisms living in that environment. One important category of en-
vironmental change is related to climate, as animals are exposed to
changes in weather. Weather parameters that may affect animals in-
clude temperature, precipitation, and barometric pressure, each of
which can have direct and indirect effects on food availability. All four
of these parameters can change relatively predictably on a seasonal
basis, or very rapidly and unpredictably during inclement weather,
such as a storm. Changes in these parameters pose both direct and in-
direct challenges to organisms. For example, changes in weather can
pose a direct threat to survival (Bumpus, 1899; Childs, 1913; Frazar,
1881; Odum and Pitelka, 1939) and reproductive success (Astheimer
et al., 1995). On the other hand, many animals also use weather-related
changes in their environment as cues for timing life history stages, such
as breeding (Wingfield et al., 2011; Wingfield and Ramenofsky, 2011)
and migration (Ramenofsky and Wingfield, 2007). The effects of

weather-related changes on vertebrates have been the topic of scientific
research for centuries, yet much is still unknown about the mechanisms
that link animals to their environment and help them adapt to and cope
with these changes (Wingfield et al., 2017). Understanding the inter-
action between animals and their environment has become even more
important in recent decades as climate change is impacting both long-
term predictability and short-term volatility of weather-related para-
meters (Romero and Wingfield, 2016; Wingfield et al., 2011).

The stress response, a concept first introduced about 80 years ago
(Cannon, 1932; Selye, 1946), is a key physiological mechanism that
helps animals cope with a variety of stressors. One of the main med-
iators of a stress response is glucocorticoid secretion (Sapolsky et al.,
2000). Glucocorticoids, and thus the stress response, are important
candidates for linking vertebrate coping mechanisms to weather-related
changes in the environment and are the focus of this review. Our goal
was to determine whether evidence from the literature supports a role
for glucocorticoids in transducing inclement weather conditions to
physiological and behavioral coping responses.
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1.1. Acute stress

Animals respond to potentially noxious stimuli with a suite of be-
havioral and physiological changes, collectively called the stress re-
sponse (Sapolsky et al., 2000). A major component is the hypothalamic-
pituitary-adrenal (HPA-) axis, which is activated slowly over minutes to
hours (Sapolsky et al., 2000). Activation of the HPA-axis consists of a
hormonal cascade, culminating in the release of glucocorticoids from
adrenal or interrenal tissue, depending upon the species. The main
glucocorticoid in fish and most mammals is cortisol, whereas in ro-
dents, amphibians, reptiles and birds it is corticosterone (both abbre-
viated as CORT).

At basal concentrations CORT is thought to be important for reg-
ulating normal daily and seasonal metabolic, behavioral, and physio-
logical adjustments (Landys et al., 2006; Romero and Wingfield, 2016).
A minimum concentration of CORT is necessary for survival, as adre-
nalectomized rats cannot cope even with mild stressors (Darlington
et al., 1990). Additionally, many species seasonally modulate basal
CORT concentrations (Romero, 2002), which may help animals fine-
tune their physiology to differential demands during different life his-
tory stages.

Once an animal perceives a stressor, CORT concentrations start to
increase above basal. Increases in plasma CORT in response to a stressor
have been measured in all vertebrate taxa, although the speed of the
response appears to differ between the taxonomic groups (Cockrem,
2013). For example, while CORT had not increased in response to
capture in amphibians after 10min (Mosconi et al., 2006), in birds
CORT responses to capture have been found in less than three minutes
(Romero and Reed, 2005). At stress-induced levels, CORT is thought to
shift an animal’s behavior and physiology towards what is called an
emergency life-history stage (Wingfield et al., 1998). The stress re-
sponse thus temporarily interrupts normal life-history functions in
order to redirect and mobilize energy in order to allow the animal to
adequately respond to the stressor, after which the animal can return to
normal activities (Wingfield et al., 1998). Once the threat has passed,
the HPA-axis quickly shuts off via a negative feedback loop, where
CORT effectively shuts down its own production (Dallman and
Bhatnagar, 2001; Romero, 2004; Sapolsky et al., 2000) and the animal
returns to a normal life-history stage (Wingfield et al., 1998).

1.2. Chronic stress

Whereas the acute increase in CORT is considered to be an adaptive
response that helps animals cope with stressors, repeated or chronic
exposure to CORT is associated with negative consequences (Sapolsky
et al., 2000). Chronic stress occurs when the mediators of stress, such as
CORT, become disruptive themselves (Romero et al., 2009). For ex-
ample, prolonged exposure to CORT can disrupt reproduction (Berga,
2008), suppress the immune system (Dhabhar and McEwen, 1997) and
dysregulate the HPA-axis itself (Dickens and Romero, 2013). Eventually
the stress response will become maladaptive and thus hamper instead of
aid in survival (McEwen, 1998).

Unfortunately, there is no consensus CORT response for chronic
stress, as prolonged or repeated exposure to a variety of stressors can
result in increases, decreases or no changes in CORT (Dickens and
Romero, 2013). Consequently, there is no generic or diagnostic CORT
profile of a chronically stressed animal, although individual species
may show consistent profiles. Furthermore, there is no clear consensus
in the literature about when elevated CORT concentrations shift from
indicating a beneficial acute response to a detrimental chronic re-
sponse. This is especially a problem because CORT levels can vary
significantly between species and across seasons, which means that
direct comparisons between absolute values are difficult.

1.3. Examining the CORT response to weather-related stimuli

In this review, we aimed to examine what is known about CORT
responses of animals to different ecological stimuli associated with
changes in weather. Because we are interested in the relationship be-
tween CORT and weather-related stimuli, it is important to keep in
mind that the focus of this review is not just on basal levels of CORT.
Instead we will discuss CORT levels after exposure to one of the stimuli
of interest. This will include both acute and long-term changes in CORT
associated with acute and long-term exposure. Unfortunately, there is
no consensus in the stress literature about what constitutes acute versus
long-term responses. For example, it seems obvious that elevated levels
of CORT after 30min of restraint are indicative of acute stress and that
changes in CORT after exposure of over a month would constitute
chronic stress. However, very little is known about when this shift
happens. Furthermore, while long-term changes in CORT levels may
indicate chronic stress, this is not consistently true (Dickens and
Romero, 2013) and will ultimately depend on whether or not such a
change has negative effects on fitness. We have therefore decided to
focus on including only the first CORT measurement after exposure to a
stimulus and thus assume that any changes found reflect the impact of
that stimulus. Note, however, that the first measurement might be de-
fined as basal or baseline in the specific study, but except under very
acute conditions, that sample likely reflects the longer-term chronic
stress. We thus hoped to further clarify the role of CORT as an im-
portant physiological mechanism linking vertebrates and their en-
vironment. We were especially interested in comparing correlational
with experimental studies and in comparing the responses of free-
roaming animals to the response of captive wild animals. The overall
goal was to determine whether there is a consensus response across
different types of weather-related stimuli, stimulus exposure durations,
taxonomic groups, and study types (i.e., utilizing domesticated la-
boratory, wild captive, or free-ranging animals).

2. Methods

2.1. Paper selection

Included studies were identified using Scopus, Web of Science and
Google Scholar by using the following search terms: glucocorticoid/
cortisol/corticosterone, stress, temperature/cold/hot, precipitation/
rain/snow, barometric/air pressure and food availability/food restric-
tion/starvation, in any combination with Amphibian/Reptile/Fish/
Bird/Mammal. Furthermore, we backtracked references from papers
found in these database searches to cast as wide a net as possible. Our
focus was on primary literature, as we were mainly interested in articles
that reported both detailed methodology and CORT measurements.

2.2. Criteria for inclusion

In order to be able to judge the effect of the stimuli of interest on
changes in CORT, we excluded articles if a stimulus was combined with
any other stimulus, or if a stimulus was examined during physiological
life history stages that could possible confound the effects on CORT,
such as pregnancy and hibernation. We further restricted our search to
exclude papers where the effect of a stimulus of interest was combined
with injections of drugs or chemicals, for example exogenous CORT,
where stimuli were examined in combination with infectious diseases,
or forced exercise, and we excluded studies using selectively bred lines.
Finally, we focused our search on literature after 1970. A total of 385
data points from 316 studies met these criteria and form the basis for
this review.

2.3. Duration of exposure

In order to further analyze the role of CORT in response to weather-
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related stimuli, we separated studies based on the time period in which
the stimulus was experienced. As it is unclear when CORT concentra-
tions shift between baseline, stress induced, and chronic levels, as de-
scribed above, we decided to separate exposure times into four different
categories, namely less than 24 h (Hours), between one and seven days
(Days), from a week up to a month (Weeks) and longer than a month
(Months), which also includes seasonal patterns. Combined with the
fact that weather-related data are often reported on the same time
scales, we feel that these categories represent the most useful time
periods to study the CORT response to weather-related stimuli.

2.4. Nature of the study – free-living, wild captive, domestic laboratory

The nature of the study can have an important impact on the im-
plications of the results. Studying animals in their natural environment
is likely to give the best representation of how they will respond to and
be able to cope with weather-related events. However, by definition
such studies will be correlational and it may therefore be difficult to
separate the effects of the stimulus of interest from any confounding
factors. It is also often difficult to track individual animals, which may
further introduce confounding factors. Researchers have attempted to
minimize such limitations by introducing experimental manipulations
in field studies, by bringing animals into captivity, or a combination of
both. While field manipulation studies allow researchers to study the
responses of free-roaming animals to specific stimuli, such studies often
incur considerable cost and are subject to substantial technological
limitations, which may explain why we discovered relatively few such
studies. Laboratory-based experimental studies allow for much better
control of the stimulus of interest and, when designed properly, allow
researchers to significantly reduce or even eliminate any potentially
confounding factors. However, while captivity makes it easier to track
individual animals, captivity itself can have considerable effects on
HPA-axis functioning (Baker et al., 1998; Cockrem and Silverin, 2002;
Dickens and Romero, 2009; Lattin et al., 2012). Similarly, domesticated
animals show attenuated HPA-axis functioning (e.g., Kunzl and Sachser,
1999), which can already be apparent in the first captive bred gen-
eration (e.g., Cabezas et al., 2012). To summarize: while field correla-
tional studies may provide direct insights into how animals naturally
respond to changes in their environment, this comes at a cost to spe-
cificity; conversely, while laboratory-based experimental studies (using
either wild captive or domesticated species) allow for the most control
of the stimulus of interest, the effect of captivity or domestication raises
questions about the applicability of the findings of such studies to free-
roaming animals in their natural environment. We therefore separated
studies into four different categories: field manipulation, field correla-
tion, wild in captivity and domesticated laboratory studies.

2.5. Glucocorticoid sampling method

While most studies measure CORT in plasma samples, in recent
years several techniques have become available that have made it
possible to measure CORT in feces (Palme, 2005; Wasser et al., 2000),
urine (Germano et al., 2012; Narayan, 2013), hair (e.g., Davenport

et al., 2006) and feathers (Bortolotti et al., 2008; Romero and Fairhurst,
2016). Each of these techniques has advantages, such as non-invasive
sampling, and disadvantages, such as they often give a more integrated
measure of CORT over a longer period of time (Sheriff et al., 2011).
Furthermore, these measures of CORT can be influenced by a variety of
factors, such as food and water intake (Kalliokoski et al., 2015; Morrow
et al., 2002), bacterial degradation (e.g., Goymann, 2012) and sample
exposure to the environment (e.g., Wilkening et al., 2016). Regardless
of any difficulty in correlating CORT in these other biological matrices
to blood, each study is presumed to be internally consistent. By redu-
cing all results to a simple increase, decrease, or no change (see below),
we capture that internal consistency and minimize any potential con-
founds arising from unknown connections to CORT in the blood. While
the number of studies using such alternative methods is currently few,
we attempted to evaluate if sampling method is an important covariate
in any response patterns.

2.6. Synthesis of findings

In order to examine the effects of each stimulus on CORT responses,
we assigned each study a score of “1” if an increase in CORT was re-
ported, a “0” if no correlation was reported, and a “−1” if a decrease in
CORT was reported. We then averaged the responses for each stimulus
for each time period (i.e., Hours, Days, Weeks, Months) the stimulus
was applied, to evaluate whether the literature supports a consensus
CORT response. However, even if a consensus response exists, the
average can result from any combination of increases, decreases or no
changes and therefore does not provide any information about the
variation in reported responses. For example, 10 studies with no change
would give the same average response as 5 studies with an increase and
5 studies with a decrease in CORT. Consequently, we graphed each
individual study around the average response, thus giving a visual re-
presentation of the spread in responses. It is important to note that
some papers have contributed multiple data points. This can be due to a
single study testing multiple species or time points, or because the re-
sponse to more than one stimulus was examined. Since we were spe-
cifically interested in the response in every species and at every time
point, we decided to treat each reported result as an individual data
point. Finally, although variance can be calculated for ordinal data,
such as the scores in this review, with only 3 potential responses the
variance itself is not very informative. It will either span or not span all
3 responses. An overview of the total number of studies included in this
review for each weather-related stimulus and separated by taxonomic
group is given in Table 1.

2.7. Statistical analysis

This review is not a meta-analysis of the CORT responses to
weather-related stressors. In order to perform such a meta-analysis, we
would require effect sizes for the studies included. However, most
studies in the stress literature do not report effect sizes, which makes
this currently impossible. Instead, the review focused on whether or not
overall patterns exist in the CORT responses to weather-related stimuli.

Table 1
Stressor and taxonomic breakdown. Overview of the number of studies for each stimulus separated by taxonomic group. Dashes represent categories, which did not
turn up any results in the literature search, likely because these stimuli are not expected to directly affect those taxonomic groups. Total numbers are given for each
stimulus and taxonomic group.

Food Availability Temperature Cold Temperature Heat Precipitation Barometric Pressure Taxa Totals

Amphibians 8 1 6 – – 15
Reptiles 6 10 2 3 – 21
Fish 39 19 17 – – 75
Birds 70 34 15 24 3 146
Mammals 36 42 30 20 – 128
Stressor Totals 159 106 70 47 3 385
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Table 2
Food availability. List of the studies that have measured CORT responses after a decrease in food availability. Papers are grouped by exposure time, study type,
Taxon, and the biological matrix from which CORT was measured (“body” indicates CORT was measured from the entire body of the individual). See text for
descriptions of Study Type (manip.=manipulative, corr. = correlational). For response, −1=CORT decrease; 0=no change in CORT; 1=CORT increase.

Study Type Taxon CORT matrix Response Reference

Hours Field manip. Birds Blood 1 (Saino et al., 2003)
Field corr. Birds Blood 1 (Jenni-Eiermann et al., 2008)
Wild captive Birds Blood −1 (Kitaysky et al., 2005)
Wild captive Birds Blood 1 (Lynn et al., 2003)
Wild captive Birds Blood 1 (Strochlic and Romero, 2008)
Wild captive Birds Blood 1 (Krause et al., 2017)
Wild captive Fish Blood 0 (Hoseini et al., 2014)
Domestic lab Birds Blood 0 (Wall and Cockrem, 2009)
Domestic lab Birds Blood 1 (Freeman et al., 1980)
Domestic lab Birds Blood 1 (Lynn et al., 2010)
Domestic lab Birds Blood 1 (Scanes et al., 1980)
Domestic lab Birds Blood 1 (Nir et al., 1975)
Domestic lab Birds Blood 1 (Geris et al., 1999)
Domestic lab Mammals Blood 1 (Djordjevic et al., 2008a,b)
Domestic lab Mammals Blood 1 (Ogias et al., 2010)
Domestic lab Mammals Blood 1 (Ventura, 1982)
Domestic lab Mammals Blood 1 (Murphy and Wideman, 1992)
Domestic lab Fish Blood 0 (Barcellos et al., 2010)

Days Field manip. Birds Blood 0 (Angelier et al., 2015)
Field manip. Birds Blood 1 (de la Mora et al., 1996)
Field corr. Birds Blood 1 (Barrett et al., 2015)
Wild captive Birds Blood 0 (Schwabl, 1995)
Wild captive Birds Blood 0 (Will et al., 2014)
Wild captive Birds Feather 0 (Will et al., 2014)
Wild captive Birds Blood 1 (Astheimer et al., 1992)
Wild captive Birds Blood 1 (Yadav and Haldar, 2014)
Wild captive Birds Blood 1 (Lendvai et al., 2014)
Wild captive Birds Blood 1 (Sears and Hatch, 2008)
Wild captive Reptiles Blood −1 (French et al., 2007)
Wild captive Fish Blood 0 (Sinnett and Markham, 2015)
Wild captive Fish Blood 1 (Hoseini et al., 2014)
Wild captive Fish Body 1 (Piccinetti et al., 2015)
Wild captive Fish Blood 1 (Abdelghany, 1993)
Wild captive Amphibian Blood −1 (Crespi and Denver, 2005)
Wild captive Amphibian Body 1 (Crespi and Denver, 2005)
Domestic lab Birds Blood 1 (Rees et al., 1985)
Domestic lab Birds Blood 1 (Freeman et al., 1981)
Domestic lab Birds Blood 1 (Mench, 1991)
Domestic lab Mammals Blood 1 (Johansson et al., 2008)
Domestic lab Mammals Blood 1 (Djordjevic et al., 2003)
Domestic lab Mammals Blood 1 (Nishiyama et al., 2008)
Domestic lab Mammals Blood 1 (Lerner et al., 1986)
Domestic lab Mammals Blood 1 (Tang et al., 1984)
Domestic lab Mammals Blood 1 (Makino et al., 2001)
Domestic lab Mammals Blood 1 (Lonati-Galligani, 1988)
Domestic lab Mammals Blood 1 (Hao et al., 2000)
Domestic lab Mammals Blood 1 (Suemaru et al., 1986)
Domestic lab Fish Blood 0 (Elabd et al., 2016)
Domestic lab Fish Blood 0 (Ramsay et al., 2009)
Domestic lab Fish Blood 0 (Breves et al., 2016)
Domestic lab Fish Blood 0 (Kim et al., 2014)
Domestic lab Fish Blood 1 (Barcellos et al., 2010)
Domestic lab Amphibian Body 1 (Glennemeier and Denver, 2002)

Weeks Field manip. Birds Blood −1 (Madliger et al., 2015)
Field manip. Birds Blood 0 (Williams et al., 2008)
Field manip. Birds Blood 1 (Schoech et al., 2004)
Field corr. Birds Blood 0 (Krause et al., 2016)
Field corr. Birds Blood 1 (Krause et al., 2016)
Field corr. Birds Blood 1 (Kitaysky et al., 2007)
Field corr. Birds Feather 1 (Will et al., 2014)
Field corr. Mammals Feces 1 (Schoof et al., 2016)
Wild captive Birds Blood −1 (Kitaysky et al., 2005)
Wild captive Birds Blood −1 (Le Ninan et al., 1988a)
Wild captive Birds Blood −1 (Bauer et al., 2011)
Wild captive Birds Blood 0 (Bauer et al., 2011)
Wild captive Birds Blood 0 (Valle et al., 2015)
Wild captive Birds Blood 0 (Bridge et al., 2009)
Wild captive Birds Blood 1 (Will et al., 2014)
Wild captive Birds Blood 1 (Kempster et al., 2007)
Wild captive Birds Blood 1 (Pravosudov and Kitaysky, 2006)
Wild captive Birds Blood 1 (Fokidis et al., 2011)

(continued on next page)
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Table 2 (continued)

Study Type Taxon CORT matrix Response Reference

Wild captive Birds Blood 1 (Fokidis et al., 2012)
Wild captive Birds Blood 1 (Kitaysky et al., 2001)
Wild captive Birds Blood 1 (Kitaysky, 1999)
Wild captive Birds Blood 1 (Kitaysky et al., 2006)
Wild captive Birds Blood 1 (Strochlic and Romero, 2008)
Wild captive Mammals Feces −1 (Taillon and Cote, 2008)
Wild captive Reptiles Blood 0 (Cote et al., 2010)
Wild captive Reptiles Blood 1 (Webb et al., 2017)
Wild captive Amphibian Body 1 (Warne and Crespi, 2015)
Domestic lab Birds Blood 0 (Spencer et al., 2003)
Domestic lab Birds Blood 1 (Carsia et al., 1988)
Domestic lab Birds Blood 1 (Carsia and McIlroy, 1998)
Domestic lab Birds Blood 1 (Carsia and Weber, 2000)
Domestic lab Birds Blood 1 (Savory and Mann, 1997)
Domestic lab Birds Blood 1 (Marasco et al., 2015)
Domestic lab Birds Blood 1 (de Jong et al., 2002)
Domestic lab Mammals Blood 1 (Stewart et al., 1988)
Domestic lab Mammals Blood 1 (Garcia-Belenguer et al., 1993)
Domestic lab Mammals Blood 1 (Chacon et al., 2005)
Domestic lab Mammals Blood 1 (Diaz-Munoz et al., 2000)
Domestic lab Mammals Blood 1 (Ventura, 1982)
Domestic lab Mammals Blood 1 (Conn et al., 1995)
Domestic lab Mammals Blood 1 (du Dot et al., 2009)
Domestic lab Mammals Blood 1 (Challet et al., 1995)
Domestic lab Mammals Blood 1 (Marinkovic et al., 2007)
Domestic lab Mammals Blood 1 (Johansson et al., 2008)
Domestic lab Mammals Blood 1 (Ling and Bistrian, 2009)
Domestic lab Mammals Blood 1 (Lonati-Galligani, 1988)
Domestic lab Mammals Blood 1 (Belda et al., 2005)
Domestic lab Fish Blood −1 (Small, 2005)
Domestic lab Fish Blood 0 (Caruso et al., 2011)
Domestic lab Fish Blood 0 (Breves et al., 2016)
Domestic lab Fish Blood 0 (Gavassa and Stoddard, 2012)
Domestic lab Fish Blood 0 (Caruso et al., 2011)
Domestic lab Fish Blood 0 (Caruso et al., 2011)
Domestic lab Fish Blood 0 (Sumpter et al., 1991)
Domestic lab Fish Blood 0 (Kim et al., 2014)
Domestic lab Fish Blood 0 (Holloway et al., 1994)
Domestic lab Fish Blood 1 (Peterson and Small, 2004)
Domestic lab Fish Blood 1 (Gimbo et al., 2015)
Domestic lab Fish Blood 1 (Barcellos et al., 2010)
Domestic lab Fish Blood 1 (Costas et al., 2011)
Domestic lab Fish Blood 1 (Kelley et al., 2001)
Domestic lab Fish Blood 1 (Vijayan et al., 1996)
Domestic lab Fish Blood 1 (Sangiao-Alvarellos et al., 2005)
Domestic lab Fish Blood 1 (Caruso et al., 2012)
Domestic lab Fish Body 1 (Chase et al., 2016)
Domestic lab Fish Body 1 (Wunderink et al., 2012)
Domestic lab Amphibian Body 0 (Crespi et al., 2004)
Domestic lab Amphibian Body 1 (Hu et al., 2008)

Months Field corr. Birds Blood 1 (Wingfield et al., 1999)
Field corr. Birds Blood 1 (Herring and Gawlik, 2013)
Field corr. Birds Blood 1 (Doody et al., 2008)
Field corr. Birds Blood 1 (Le Ninan et al., 1988b)
Field corr. Birds Blood 1 (Franci et al., 2015)
Field corr. Birds Blood 1 (Walker et al., 2005)
Field corr. Birds Blood 1 (Kitaysky et al., 2007)
Field corr. Mammals Blood 1 (Ortiz et al., 2001)
Field corr. Mammals Feces 1 (Berghanel et al., 2016)
Field corr. Reptiles Blood 1 (Romero and Wikelski, 2001)
Wild captive Birds Blood 0 (Heath and Dufty, 1998)
Wild captive Birds Blood 0 (Valle et al., 2015)
Wild captive Birds Blood 1 (Pravosudov et al., 2001)
Wild captive Birds Blood 1 (Cherel et al., 1988)
Wild captive Birds Blood 1 (Lyons and Roby, 2011)
Wild captive Reptiles Blood 0 (Neuman-Lee et al., 2015)
Wild captive Reptiles Blood 0 (Carsia et al., 2012)
Wild captive Amphibian Blood 1 (Reeve et al., 2013)
Wild captive Amphibian Body 1 (Crespi and Warne, 2013)
Domestic lab Birds Blood 1 (Hocking et al., 1999)
Domestic lab Birds Blood 1 (Rajman et al., 2006)
Domestic lab Birds Blood 1 (Marasco et al., 2015)
Domestic lab Birds Blood 1 (Kubikova et al., 2001)
Domestic lab Mammals Blood 1 (Stewart et al., 1988)
Domestic lab Mammals Blood 1 (Stewart et al., 1988)

(continued on next page)
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Furthermore, we wanted to include vertebrate taxa, different study
types, exposure duration and sampling methods as co-variates in order
to establish whether these variables affected any putative consensus
response to any of the stimuli. Because absolute CORT levels, as well as
HPA-axis responsiveness, vary dramatically between species, direct
comparisons of CORT response effect sizes are very difficult. We at-
tempted to analyze differences across and within time periods for each
stimulus using Chi-squared contingency tables, but sample size was
very low in many categories (see Table 1), which violates the as-
sumptions of the Chi-squared test and thus makes these tests invalid.
Potential solutions to increase sample sizes for the contingency tables,
such as collapsing time periods (e.g., combining Hours and Days, etc.)
or CORT responses (e.g., combining no change with a decrease, etc.) are
inappropriate, and in any event still leave many categories with in-
sufficient sample sizes. In addition, such collapsing of categories would
obscure details, such as studies showing responses opposite to the
majority, which may provide interesting insights into specific stressors,
time periods, sampling methods or taxonomic groups. We have there-
fore decided to focus on qualitative descriptions of the CORT responses
to weather-related stimuli.

3. Responses to changes in food availability

3.1. Brief review of relationship of CORT to weather impacts on food
availability

While changes in food availability are not a direct characteristic of
weather, weather often affects food availability. For example, pre-
cipitation (Denlinger, 1980) and temperature (Arun and Vijayan, 2004;
Chung et al., 2013) can influence food abundance or foraging oppor-
tunities both positively and negatively. There is a rich history of
studying the effects of CORT with changes of food abundance. Basal
levels of CORT are thought to be important for regulating normal me-
tabolic changes (Landys et al., 2006; Sapolsky et al., 2000) and a
minimum level of CORT is necessary for survival, as adrenalectomized
rats cannot cope with mild stressors (Darlington et al., 1990). Conse-
quently, we would expect basal CORT levels to change in response to
periods of reduced food availability, and at least in seabirds, this ap-
pears to be the case (Sorenson et al., 2017). However, short-term
(hours) and long-term (weeks, months) periods of reduced food avail-
ability are thought to be regulated differently. Prolonged food depri-
vation or starvation can be divided into three separate phases (Cherel
et al., 1988; Goodman et al., 1980, 1981). Briefly, phase I consists of
glucose metabolism, phase II shifts to fatty acid metabolism once glu-
cose has been exhausted, and phase III shifts metabolism to protein
breakdown after fatty acids are depleted (Romero and Wingfield,
2016). Mediators involved in the adaptive response to food restriction
in phase I and II, such as CORT, are thought to become maladaptive in

phase III when these mediators start breaking down essential proteins
(Romero, 2012; Romero et al., 2009).

Many vertebrate species undergo natural periods of fasting in re-
sponse to predictable periods of low food availability (Newton, 1998),
such as penguins (Groscolas and Robin, 2001) and fish (McCue, 2010).
Since increased CORT levels can have negative effects on health and
survival (Sapolsky et al., 2000), species undergoing such predictable
fasting periods may have evolved alternative coping mechanisms and as
such may actually prevent CORT levels from increasing to prevent the
negative effects associated with prolonged exposure to elevated CORT
levels (Romero et al., 2009). While we excluded studies that contained
potentially confounding factors such as hibernation (Ultsch, 1989), we
did not exclude studies of species that experience natural periods of
fasting without known confounding factors, as their responses may give
important insights in the role CORT plays in linking food availability to
survival mechanisms.

Finally, food availability may be an important supplementary cue
for timing of breeding (Young, 1994). Food availability can function as
a zeitgeber for the circadian rhythm in house sparrows (Passer domes-
ticus; Hau and Gwinner, 1996) and food supplementation can advance
egg-laying dates in birds (Schoech and Hahn, 2008). Food availability is
also often considered the limiting factor for individual breeding success,
survival, and population growth and may therefore play an important
role in population dynamics (Boutin, 1990). Since CORT can suppress
the reproductive system (Sapolsky et al., 2000), CORT may be an im-
portant mechanism linking food availability to timing of breeding
(Lattin et al., 2016). Considering the important role CORT plays in basic
metabolic regulation and the effects weather has on food availability
and foraging opportunities, we have therefore included food avail-
ability as one of the stimuli in this review, even though it is not a direct
characteristic of weather.

The studies that examined CORT responses to different durations of
exposure to reduced food availability are presented in Table 2, with
studies broken down by study type and taxonomic group in Table 3.
Most data points represent laboratory-based studies (56%), although
there are a substantial number of captivity-based studies as well (30%;
Table 3). Furthermore, most data points involve either birds (44%), fish
(25%) or mammals (23%; Table 3).

3.2. Results

Results are shown in Fig. 1. Overall, CORT is increased in response
to up to 24 h of reduced food availability (78%). The few studies that
show no change or a decrease are some interesting exceptions. For
example, in the two studies that examined fasting in a taxonomic group
other than mammals or birds, 6–24 h of fasting did not cause any
changes in CORT in captive fish (Barcellos et al., 2010; Hoseini et al.,
2014), although CORT did increase after longer periods of fasting in

Table 2 (continued)

Study Type Taxon CORT matrix Response Reference

Domestic lab Mammals Blood 1 (Wan et al., 2003)
Domestic lab Mammals Blood 1 (Lenglos et al., 2013)
Domestic lab Mammals Blood 1 (Jahng et al., 2007)
Domestic lab Mammals Blood 1 (Armario et al., 1987)
Domestic lab Fish Blood 0 (Kim et al., 2014)
Domestic lab Fish Blood 0 (Farbridge and Leatherland, 1992)
Domestic lab Fish Blood 0 (Sumpter et al., 1991)
Domestic lab Fish Blood 0 (Pottinger et al., 2003)
Domestic lab Fish Blood 0 (Milne et al., 1979)
Domestic lab Fish Blood 1 (Abdel-Tawwab, 2016)
Domestic lab Fish Blood 1 (Jorgensen et al., 2002)
Domestic lab Fish Blood 1 (Blom et al., 2000)
Domestic lab Fish Blood 1 (Caruso et al., 2010)
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both studies. In addition, the single study (Kitaysky et al., 2005) that
reported a decrease in CORT, examined captive juvenile tufted puffins
(Fratercula cirrhata), which may be connected to a 50% decrease in
metabolism in response to short-term food deprivation (Kitaysky et al.,
1999). While the mechanisms for this reduction in metabolism are
unclear, these chicks naturally experience periods of intermittent food
availability (Kitaysky et al., 2005). Other examples would be useful to
determine whether energy conserving coping mechanisms might serve
as a generalized buffer for species that naturally experience forced fasts.

CORT also generally (69%) increased in response to one to seven
days of reduced food availability (Fig. 1). Many of the exceptions again
appear related to species adapted to short periods of fasting resulting
from large variation in food availability in the natural environment. For
example, CORT was found to increase in tadpoles but decrease in ju-
venile Western spadefoot toads (Spea hammondii) after 5 days of food
restriction (Crespi and Denver, 2005). Whereas tadpoles would be
predicted to have become adapted for rapid growth, juvenile toads
likely cope with prolonged periods of fasting, and thus may be evolved
towards conserving energy instead (Newman and Dunham, 1994).

The period examining the CORT response to reduced food avail-
ability for one to four weeks is the most extensively studied time frame
for this stimulus. Most studies report an increase in CORT (68%), but
there is more variation when compared to the shorter time periods, as
several studies report no change or a decrease (Fig. 1). Laboratory-
based studies generally report increased CORT, but many of the field-
based studies also show CORT increases. In contrast, a similar theme to
the shorter time frames (hours and days) is evident at this time frame.
Many of the studies that show decreases in CORT are in species natu-
rally exposed to fasting or intermittent food availability. These include
white-tailed deer that can withstand extreme deterioration of body
condition (Taillon et al., 2006) with no changes in CORT (Taillon and
Cote, 2008) and seabird chicks such as penguins (Le Ninan et al.,
1988a) and tufted puffins (Kitaysky et al., 2005).

Finally, the period examining the CORT response to reduced food
availability for more than four weeks is also generally associated with
increased CORT (76%), and while there are a few studies reporting no
change, no study to date has reported a decrease in CORT (Fig. 1). Of
the studies that did not show a CORT change, one is especially inter-
esting. CORT did not change in spiny lizards (Sceloporus jarrovii) after
10 weeks of food restriction (Carsia et al., 2012), which is in sharp
contrast with the increase found in marine iguanas (Amblyrhynchus
cristatus) that were starving during a severe El Niño (Romero and
Wikelski, 2001). The difference between these two studies suggests that
the CORT response may be dependent on the severity of the food re-
striction. This fits with the previously described physiological changes
associated with a shift from starvation phase II to starvation phase III
(Romero et al., 2009).

3.3. Food addition

There are only a few studies that report CORT responses to sup-
plemental feeding, both in birds (Clinchy et al., 2004; Lothery et al.,
2014; Schoech et al., 2007, 2004) and mammals (Forristal et al., 2012;
Saltz and White, 1991). Since there are so few studies of this kind, they
have not been included in the larger analysis. However, there is no
overall consistent response for supplemental feeding on CORT levels.
For example, supplemental feeding correlated with a decrease in CORT
in captive Mule deer (Odocoileus hemionus; Saltz and White, 1991), but
an increase in free-roaming Elk (Cervus elaphus; Forristal et al., 2012)).
Forristal et al. (2012) suggested that the increased density of Elk on the
feeding grounds may lead to more intense competition or persistence of
infectious diseases, leading to increases in CORT. Similarly, in both
song sparrows (Clinchy et al., 2004) and Florida Scrub-jays (Schoech
et al., 2004), food supplementation in the field was associated with
decreased CORT, although food supplementation may only have an
effect if natural food abundance is below optimum (Schoech et al.,
2007), but supplementing house wrens had no impact on CORT, al-
though supplementation also did not alter breeding success (Lothery
et al., 2014).

3.4. Conclusion for impacts of food availability

Reduction in food availability generally appears to be associated
with increased levels of CORT (71% of included data points), regardless
of the duration (Fig. 1). The literature, therefore, clearly suggests that
low food availability is perceived as a stressor by most animals. Fur-
thermore, this supports our hypothesis that CORT may be an important
physiological regulator linking changes in food availability to both
stress coping mechanisms and timing of life history stages, such as
breeding (Lattin et al., 2016).

The role of increased CORT during food restriction is highlighted by
the exceptions. A small minority of studies show either no change or a
decrease in CORT. Interestingly, many such studies examined species
that experience periods of low food availability in their natural en-
vironment. This suggests that coping mechanisms for food restriction
are different in these animals. The data are consistent with the hy-
pothesis that species that experience predictable periods of low food

Table 3
Food availability. Summary of the number of studies examining the effect of
food availability on glucocorticoid levels in all five vertebrate taxa. Studies
have further been divided into the four different study types described in the
methods section. Total numbers are given for each taxonomic group and study
type.

Mammals Birds Fish Reptiles Amphibians Study
Type
Totals

Field Manipulative – 6 – – – 6
Field Correlational 3 13 – 1 – 17
Wild in Captivity 1 31 5 5 5 47
Domesticated

Laboratory
32 20 34 – 3 89

Taxa Totals 36 70 39 6 8 159

Fig. 1. Glucocorticoid responses of vertebrates to reduced food availability at
four different time intervals, e.g., hours, days, weeks and months. The bars
represent the average response for each time interval, while the symbols re-
present the direction of change for each data point for this stimulus included in
this review. Glucocorticoid levels can be increased, not changed or decreased.
Total number of data points is reported for each category for each time period.
Some articles examined the response during multiple time periods, or for
multiple species and those studies are therefore represented more than once,
which means the number of data points is not a representation of the total
number of articles included in the analysis.
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availability as part of their normal life history have evolved to dampen
the HPA/HPI-axis during nutritional challenge. The function of this
dampening could be to prevent the negative effects of prolonged ex-
posure to increased CORT levels (Romero et al., 2009; Sapolsky et al.,
2000) or to promote an energy-saving reduction in metabolism (Cherel
et al., 2004) by reducing the role CORT has as an important basal
metabolic regulator (Landys et al., 2006; Sapolsky et al., 2000). Clearly
more work is needed in order to elucidate the role CORT plays in this
context.

Furthermore, CORT responses may depend on the severity (Spencer
et al., 2003; Williams et al., 2008) or the intermittent nature (Bridge
et al., 2009) of the food restriction. If the restriction is not too severe,
animals may be able to compensate by eating more and faster. Alter-
natively, prolonged reduced food availability may not require activa-
tion of the HPA-axis in order to cope with the reduced food intake in
some species. There are several pieces of evidence that support the
hypothesis that these species may adopt energy conserving strategies,
which would reduce the need for changes in CORT, which may be
important to prevent the negative effects normally associated with
prolonged exposure to elevated CORT (Romero et al., 2009; Sapolsky
et al., 2000). For example, after 31 days of food restriction in frogs,
neither blood glucose levels, or body weight had changed (Crespi et al.,
2004), suggesting these frogs successfully reduced energy metabolism.
Similarly, many fish do not lose body mass during starvation, which
suggests these animals have adapted to periods of fasting (Bar, 2014),
as food availability can be highly variable in some environments
(McCue, 2010). Short-lived fish may also down-regulate their HPI-axis
to prevent CORT from intervening with breeding efforts (Gavassa and
Stoddard, 2012; Wingfield and Sapolsky, 2003).

The response to reduced food availability also may be dependent on
life-history stage. For example, food restriction was associated with a
decrease in CORT in molting, but not in non-molting, captive European
starlings (Bauer et al., 2011). The HPA-axis appears down regulated in
molting starlings in general (Cyr et al., 2008), which may be important
for feather quality (DesRochers et al., 2009), as CORT may have ne-
gative effects on protein synthesis, the main component of feathers
(Romero et al., 2005). However, both non-molting and molting star-
lings increased in weight during the three weeks of intermittent food-
restriction, suggesting that the birds managed to compensate for the
reduced feeding time by either increasing food intake or reducing ac-
tivity (Bauer et al., 2011).

Unfortunately, few studies have examined the CORT response to
food restriction in amphibians and reptiles and there are no short-term
studies, so it remains unclear if food removal is perceived as an acute
stressor in these taxonomic groups. More work should be done before
we can determine if the CORT response to reduced food availability in
amphibians and reptiles are comparable to the responses found in fish,
birds and mammals.

4. Responses to changes in precipitation

4.1. Brief review of relationship of CORT to precipitation

Precipitation is an important aspect of inclement weather that can
affect animals both directly and indirectly. Examples of direct effects
include two-fold increases in flight metabolism in bats (Voigt et al.,
2011) and hummingbirds significantly changing their flight character-
istics during heavy rain (Ortega-Jimenez and Dudley, 2012). Ad-
ditionally, artificial rainfall induces increases in metabolism in Bald
Eagles (Haliaeetus leucocephalus; Stalmaster and Gessaman, 1984) and
American kestrels (Falco sparverius; Wilson et al., 2004). Finally wet-
ting-induced hypothermia increases peak oxygen consumption in birds
and may eventually lead to reduced survival (Lustick and Adams,
1977). Precipitation can also affect animals indirectly by altering
foraging opportunities and prey abundance, such as insects. Conse-
quently, unpredictable precipitation may have both direct and indirect

impacts on survival, especially in combination with low temperatures
(Bumpus, 1899; Odum and Pitelka, 1939).

In contrast, predictable precipitation is often associated with posi-
tive effects. Although rain may reduce food availability in some en-
vironments, it may signal increased food availability and thus create
more optimal conditions in others, such as dry or desert environments
(Denlinger, 1980). As a consequence, precipitation is thought to be an
important stimulus in timing of many life-history events. For example,
both migration (Studds and Marra, 2011) and breeding (Zann et al.,
1995) can be tied to predictable seasonal changes in precipitation.
Examples like these led to the hypothesis that precipitation can act as a
supplementary cue for synchronizing reproductive efforts with the most
optimal breeding conditions (e.g., Wingfield and Ramenofsky, 2011).
Because unpredictable and predictable precipitation have such different
impacts, it is likely that there is a difference in the relationship to CORT
as well.

No studies involving amphibians or fish are included in this section
of the review. While precipitation may affect aquatic animals indirectly,
for example by diluting pollutants or salinity, or creating a river in
spate (Romero and Wingfield, 2016), these effects do not fit under any
of the stimuli covered by this review and therefore are not covered
here.

The studies that examined CORT responses to different durations of
precipitation are presented in Table 4. While the number of studies
reporting on the effects of precipitation is rather limited, the majority of
data points included in the review represent field correlation studies
(89%), while the rest are captivity-based (Table 5). Furthermore, most
data points involve either mammals (43%) or birds (51%), with only 3
studies using reptiles (Table 5).

4.2. Results

Results are shown in Fig. 2. Short-term effects, up to 24 h, of pre-
cipitation on CORT have been studied only in birds and mammals to
date. A majority of data points report CORT concentrations increasing
with precipitation (64%), while five studies reported no change (Fig. 2).
Four of these five studies suggest that responses could depend upon life-
history stage. Three free-living arctic bird species increased CORT with
precipitation while undergoing their post-breeding molt, but CORT did
not increase while breeding (Romero et al., 2000). Artificial precipita-
tion also failed to induce an increase in CORT in molting captive Eur-
opean starlings (de Bruijn and Romero, 2013). Although it is unclear
why the CORT responses in these life-history stages were reversed in
captive starlings and free-living arctic species, a consistent effect of
molt suggests that animals might modulate their sensitivity to pre-
cipitation depending on life-history stage. Another factor that might
modulate sensitivity to precipitation is food availability. A snowstorm
was associated with increased CORT in siskins, but CORT rapidly re-
turned to baseline after these birds spent time at a feeder (Astheimer
et al., 1992).

There are only ten data points for the CORT response of vertebrates
in correlation with precipitation patterns over the period of one to
seven days. Only four of these report an increase in CORT, while the
rest report no change (Fig. 2). The severity and duration of a storm may
be important. For example, two days of light snowfall did not result in
CORT changes, but a third day precipitated CORT increases and be-
havioral changes (Astheimer et al., 1995).

Interestingly, there is no clear pattern between changes in CORT
and precipitation over a period of one to four weeks, as both increases
and decreases have been reported, as well as no change (Fig. 2). This
lack of a consensus response may result from the shift from negative to
positive effects of precipitation occurring during this time period. Many
of the studies that reported reduced CORT levels were associated with
rainfall after a dry period, suggesting that for these species rainfall may
reflect recovery from the stress of a drought.

Long-term precipitation patterns, over a period longer than four
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weeks, are mostly negatively correlated with CORT concentrations
(56%), although there are relatively few data points in this category
(Fig. 2). As with the 1–4 week period, the negative correlations between
CORT and precipitation were associated with rainfall after a drier
period and the drier periods themselves were consistently associated
with higher CORT levels.

4.3. Conclusion for impacts of precipitation

Relatively short-term exposure (hours to days) to precipitation ap-
pears to mostly correlate with increased CORT levels. This supports our
hypothesis that CORT may be an important physiological regulator
linking precipitation to stress coping mechanisms. It appears, however,
that the correlation may depend on the severity and duration of the
precipitation, as well as the specific life-history stage when the pre-
cipitation occurs.

In contrast, there does not appear to be a consistent correlation
between CORT and relatively long-term precipitation patterns (days,
weeks, or months). In many ways, this is not surprising. Sustained
precipitation for days or weeks might result in different responses than
for a short rainstorm that lasts a few hours. The CORT response at time
spans of days and weeks might better resemble responses to chronic
stress. On the other hand, sustained precipitation, or lack thereof, for
months generally reflects predictable seasonal changes that are a part of
climate. The lack of clear correlations with precipitation at these time
spans is likely related to the ultimate interpretation of precipitation by
the animal; is precipitation acting as a stressor, for example by limiting
foraging opportunities, or is precipitation acting as a signal to initiate a
new life-history stage, such as improved food availability for breeding?

Table 4
Precipitation. List of the studies that have measured CORT responses after the
onset of precipitation. Papers are grouped by exposure time, study type, Taxon,
and the biological matrix from which CORT was measured. See text for de-
scriptions of Study Type (manip.=manipulative, corr.= correlational). For
response, −1=CORT decrease; 0= no change in CORT; 1=CORT increase.

Study
Type

Taxon CORT
matrix

Response Reference

Hours Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Astheimer et al.,

1992)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Smith et al., 1994)
Field corr. Birds Blood 1 (Bize et al., 2010)
Field corr. Birds Blood 1 (Rogers et al., 1993)
Field corr. Birds Blood 1 (Boyle et al., 2010)
Field corr. Birds Blood 1 (Astheimer et al.,

1992)
Field corr. Mammals Feces 1 (Huber et al., 2003)
Wild
captive

Birds Blood 0 (de Bruijn and
Romero, 2013)

Wild
captive

Birds Blood 1 (de Bruijn and
Romero, 2013)

Days Field corr. Birds Blood 0 (Muller et al., 2010)
Field corr. Birds Blood 0 Romero et al., 2000)
Field corr. Birds Blood 0 Romero et al., 2000)
Field corr. Birds Blood 0 Romero et al., 2000)
Field corr. Birds Blood 0 Romero et al., 2000)
Field corr. Birds Blood 0 Romero et al., 2000)
Field corr. Birds Blood 1 Romero et al., 2000)
Field corr. Birds Blood 1 (Astheimer et al.,

1995)
Field corr. Mammals Blood 1 (Bauer et al., 2013)
Wild
captive

Mammals Blood 1 (Meza-Herrera et al.,
2007)

Weeks Field corr. Birds Feces 0 (Pereira et al., 2010)
Field corr. Birds Feather −1 (Treen et al., 2015)
Field corr. Mammals Feces −1 (Lynch et al., 2002)
Field corr. Mammals Feces −1 (Foley et al., 2001)
Field corr. Mammals Feces −1 (Schoof et al., 2016)
Field corr. Mammals Feces −1 (Littlefield, 2010)
Field corr. Mammals Feces 0 (Beehner and

McCann, 2008)
Field corr. Mammals Feces 0 (Weingrill et al.,

2004)
Field corr. Mammals Feces 0 (Wilkening et al.,

2016)
Field corr. Mammals Feces 1 (Strier et al., 1999)
Field corr. Mammals Feces 1 (Naidenko et al.,

2011)
Field corr. Reptiles Blood −1 (Lance et al., 2010)
Field corr. Reptiles Blood 0 (MacDonald et al.,

2007)
Wild
captive

Mammals Blood 1 (Bono et al., 1989)

Months Field corr. Birds Blood −1 (Rubenstein, 2007)
Field corr. Mammals Blood 0 (Rodel and Starkloff,

2014)
Field corr. Mammals Feces −1 (Gesquiere et al.,

2011)
Field corr. Mammals Feces −1 (Gesquiere et al.,

2008)
Field corr. Mammals Feces −1 (Carnegie et al., 2011)
Field corr. Mammals Feces 0 (Girard-Buttoz et al.,

2009)
Field corr. Mammals Feces 1 (Sheriff et al., 2012)
Field corr. Reptiles Blood −1 (Knapp et al., 2003)
Wild
captive

Mammals Blood 1 (Cunha et al., 2007)

Table 5
Precipitation. Summary of the number of studies examining the effect of pre-
cipitation on glucocorticoid levels in all five vertebrate taxa. Studies have
further been divided into the four different study types described in the
methods section. Total numbers are given for each taxonomic group and study
type.

Mammals Birds Fish Reptiles Amphibians Study
Type
Totals

Field Manipulative – – – – – –
Field Correlational 17 22 – 3 – 42
Wild in Captivity 3 2 – – – 5
Domesticated

Laboratory
– – – – – –

Taxa Totals 20 24 – 3 – 47

Fig. 2. Glucocorticoid responses of vertebrates to precipitation at four different
time intervals, e.g., hours, days, weeks and months. See Fig. 1 for further de-
tails.
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As a consequence, it is possible that correlations between precipitation
and seasonal changes in CORT are not directly driven by precipitation
itself but may be a response to varying life-history conditions.

An example of precipitation acting as a stressor may be the in-
creased CORT during the rainy season in goats (Capra aegagrus hircus)
that correlates with decreases in body condition and blood glucose le-
vels (Meza-Herrera et al., 2007). Similarly, CORT levels are highest in
Siberian tigers (Panthera tigris altaica) during the winter, coinciding
with deep snow cover, which makes hunting more difficult (Naidenko
et al., 2011). In contrast, precipitation may drive altitudinal migration
in birds (Boyle et al., 2010; Breuner and Hahn, 2003) and increased
CORT during the rainy season may be a supplemental cue that allows
common marmosets to synchronize their reproductive efforts with the
most optimal period for breeding (Cunha et al., 2007).

While there is an increasing body of literature showing correlations
between precipitation and CORT levels, very few studies have actually
isolated the effects of precipitation from the effects of a multitude of
other stimuli that often accompany precipitation, such as temperature
changes, barometric pressure changes and strong winds. It remains
unclear, therefore, whether precipitation is actually the driving sti-
mulus in many of these studies. Laboratory studies have shown that
artificial rain induces increased metabolism (Stalmaster and Gessaman,
1984; Wilson et al., 2004) and CORT release (de Bruijn and Romero,
2013), suggesting that CORT may be an important mechanism through
which animals respond to precipitation, but to date this has not been
tested in the field.

In summary, precipitation is generally correlated with changes in
CORT, but the direction of this change appears to depend on both the
duration and the life-history context in which the precipitation is ex-
perienced. Perhaps under most circumstances rainfall may simply be an
indicator of changes in food availability, which may explain the more
complicated changes in CORT associated with longer-term or even
seasonal patterns in precipitation. The effects of food availability on
stress physiology were discussed in a previous section. Unfortunately,
no studies to date have manipulated precipitation in the field directly,
which makes it difficult to tease apart any direct and indirect effects.
While technologically challenging, such studies could provide valuable
insights into the mechanisms linking precipitation to the behavior and
physiology of free-roaming animals. Finally, very little has been done to
study the effects of repeated or prolonged exposure to precipitation in a
more controlled setting. Artificial rain was used as one of a set of ro-
tating weather-related stressors in captive European starlings. However,
this did not appear to induce symptoms of chronic stress (de Bruijn
et al., 2017), despite evidence that artificial precipitation induces an
acute response (de Bruijn and Romero, 2013). Overall, evidence from
the literature indicates that animals appear to detect and respond to
precipitation with increased CORT levels in the short-term, but the
response to long-term precipitation patterns appears to be dependent on
context.

Note that we did not attempt to explore the relationship between a
lack of precipitation (i.e., drought) and CORT. Even though drought can
clearly be a stressor to many animals, defining the onset of drought is
subjective. Whereas the onset of precipitation is easy to define, it is not
possible to define the onset of a lack of precipitation. Consequently,
drought is not amenable to the type of analysis performed here. Ideally,
there would need to be time-course studies that measured CORT as a
lack of precipitation continued, but we were unable to find any such
studies in the literature.

5. Responses to changes in temperature

5.1. Brief review of relationship of CORT to temperature changes

Maintaining optimal temperature is critical for many physiological
processes. Changes in environmental temperature, therefore, pose ser-
ious challenges to all vertebrates. Animals can cope with changes in

temperature by either behavioral (Crawshaw, 1980) or physiological
(Tattersall et al., 2012) adaptations. Behavioral thermoregulation al-
lows animals to adjust to environmental temperatures through specific
behaviors, such as huddling, or by finding areas with more optimal
temperatures, such as a shelter (Crawshaw, 1980). Alternatively, phy-
siological adjustments to temperature changes in endotherms often
involve adaptations aimed at either decreasing or increasing heat pro-
duction to protect body temperature. In ectotherms however, adapta-
tions often involve biochemical changes aimed at supporting metabo-
lism at different temperatures, such as expressing alternative enzymes
or even antifreezes, which allow ectotherms to operate despite the fact
that they may not be able to maintain a regular body temperature
(Tattersall et al., 2012). CORT may play an important role in both en-
dotherm and ectotherm coping strategies. CORT at baseline levels is an
important metabolic regulator (Landys et al., 2006; Sapolsky et al.,
2000) and as such may be important in either decreasing or increasing
heat production in response to changes in temperature. Furthermore,
CORT directly influences behavior (Haller et al., 1998) and thus may be
a driving factor in behavioral thermoregulation. Finally, behavioral
thermoregulation often comes with a cost. For example, finding shelter
from heat often decreases time available for foraging (Haller et al.,
1998), which may connect CORT to adaptations to temperature changes
through a need to adjust metabolism in response to reduced foraging.

The relationship between temperature and CORT release, however,
can be complex. In ectotherms, and to some extent endotherms as well,
body temperature can have a profound impact on baseline CORT con-
centrations and the ability of an animal to mount a CORT response to
other stressors (Jessop et al., 2016). In addition, stressor exposure can
also induce hypothermia in some species (Bittencourt et al., 2015;
Jerem et al., 2015). How to integrate these two responses into our
understanding of the impact of temperature changes on CORT release is
not presently clear.

As with precipitation, temperature may also impact animals in-
directly, for example by affecting food availability (Arun and Vijayan,
2004; Chung et al., 2013). Temperature also may be an important
supplementary cue for timing of migration (Hurlbert and Liang, 2012;
Tottrup et al., 2010) and breeding (e.g., Visser et al., 2009). Ad-
ditionally, temperature changes may indirectly affect survival. For ex-
ample, temperature affects escape performance in ectothermic verte-
brates. They respond slower at lower body temperatures (Cooper,
2000), potentially making them more at risk for predation.

Because heat and cold elicit different physiological responses, we
chose to analyze them separately. The studies that examined CORT
responses to different durations of cold are presented in Table 6. Many
of the data points for decreased temperature are laboratory-based
(46%), although there are a substantial number of field correlational
and captivity-based studies as well (Table 7). Furthermore, mammals
(40%) are the most studied, followed by birds (32%; Table 7). The
studies that examined CORT responses to different durations of heat
exposure are presented in Table 8. Most data points for increased
temperature are laboratory-based (60%) and involve a wider distribu-
tion of taxa than the other weather-related stimuli (Table 9).

5.2. Results for decreased temperature

Fig. 3 indicates that CORT is generally increased in response to up to
24 h of reduced temperature (80%), while 10 data points show no
change. The exceptions to the general trend suggest that life-history
stage may again influence the response. In several bird species,
breeding and molting birds differ in their responses to decreases in
temperature (Romero et al., 2000). In addition, Amazon river fish don’t
alter CORT when put in colder water, but since these species rarely
experience decreases in temperature in the Amazon, they may not have
evolved a sensitivity to decreases in temperature (Inoue et al., 2008).
Only one fish study to date has reported a decrease (Jaxion-Harm and
Ladich, 2014), but CORT was measured from hormone excreted into the
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Table 6
Decrease in temperature. List of the studies that have measured CORT responses after a decrease in temperature. Papers are grouped by exposure time, study type,
Taxon, and the biological matrix from which CORT was measured (“water” indicates CORT was measured from the water bathing the fish). See text for descriptions of
Study Type (manip.=manipulative, corr. = correlational). For response, −1=CORT decrease; 0=no change in CORT; 1=CORT increase.

Study Type Taxon CORT matrix Response Reference

Hours Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Astheimer et al., 1992)
Field corr. Birds Blood 1 (Schwabl et al., 1985)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Rogers et al., 1993)
Field corr. Birds Blood 1 (Astheimer et al., 1992)
Field corr. Birds Blood 1 (Jenni-Eiermann et al., 2008)
Field corr. Birds Blood 1 (Knutie and Pereyra, 2012)
Field corr. Birds Feces 1 (Frigerio et al., 2004)
Field corr. Mammals Feces 1 (Huber et al., 2003)
Wild captive Birds Blood 0 (Angelier et al., 2016)
Wild captive Birds Blood 0 (de Bruijn and Romero, 2013)
Wild captive Birds Blood 1 (Pilo et al., 1985)
Wild captive Birds Blood 1 (de Bruijn and Romero, 2013)
Wild captive Birds Blood 1 (de Bruijn and Romero, 2011)
Wild captive Mammals Blood 1 (Werner and Venscappell, 1985)
Wild captive Mammals Urine 1 (Saltz and White, 1991)
Wild captive Reptiles Blood 0 (Li et al., 2011)
Wild captive Reptiles Blood 1 (Dauphin-Villemant et al., 1990)
Wild captive Reptiles Blood 1 (Grassman and Crews, 1990)
Wild captive Fish Water −1 (Jaxion-Harm and Ladich, 2014)
Wild captive Fish Blood 0 (Bermejo-Nogales et al., 2014)
Wild captive Fish Blood 0 (Szekeres et al., 2014)
Domestic lab Birds Blood 1 (Etches, 1976)
Domestic lab Birds Blood 1 (Jeronen et al., 1976)
Domestic lab Birds Blood 1 (el-Halawani et al., 1973)
Domestic lab Mammals Blood 1 (Vernikos et al., 1982)
Domestic lab Mammals Blood 1 (Dantzer and Mormede, 1983)
Domestic lab Mammals Blood 1 (Noh et al., 2012)
Domestic lab Mammals Blood 1 (Slađana and Ljubica, 2005)
Domestic lab Mammals Blood 1 (Adels et al., 1986)
Domestic lab Mammals Blood 1 (Djordjevic et al., 2003)
Domestic lab Mammals Blood 1 (Kizaki et al., 1997)
Domestic lab Mammals Blood 1 (Lenox et al., 1980)
Domestic lab Mammals Blood 1 (Yahata et al., 1987)
Domestic lab Mammals Blood 1 (Yahata and Kuroshima, 1989)
Domestic lab Mammals Blood 1 (Jobin et al., 1976)
Domestic lab Mammals Blood 1 (Palma et al., 2000)
Domestic lab Mammals Blood 1 (Hauger and Aguilera, 1992)
Domestic lab Mammals Blood 1 (Bocheva et al., 2008)
Domestic lab Mammals Blood 1 (Bramham et al., 1998)
Domestic lab Mammals Blood 1 (Becker et al., 1997)
Domestic lab Mammals Blood 1 (Sesti-Costa et al., 2010)
Domestic lab Mammals Blood 1 (Tang et al., 1984)
Domestic lab Reptiles Blood 1 (Lance and Elsey, 1999)
Domestic lab Fish Blood 0 (Inoue et al., 2008)
Domestic lab Fish Blood 1 (Rombenso et al., 2015)
Domestic lab Fish Blood 1 (He et al., 2015)
Domestic lab Fish Blood 1 (Barton and Peter, 1982)
Domestic lab Fish Blood 1 (Tanck et al., 2000)
Domestic lab Fish Blood 1 (Chebaani et al., 2014)
Domestic lab Fish Blood 1 (Chen et al., 2002)

Days Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Romero et al., 2000)
Field corr. Birds Blood 0 (Astheimer et al., 1995)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Romero et al., 2000)
Field corr. Birds Blood 1 (Romero et al., 2000)
Wild captive Fish Blood 1 (Shahjahan et al., 2017)
Wild captive Fish Blood 1 (Pribyl et al., 2016)
Domestic lab Birds Blood 1 (el-Halawani et al., 1973)
Domestic lab Mammals Blood 1 (Daniels-severs et al., 1973)
Domestic lab Mammals Blood 1 (Hayashi et al., 1993)
Domestic lab Mammals Blood 1 (Vernikos et al., 1982)
Domestic lab Mammals Blood 1 (Bligh-Tynan et al., 1993)
Domestic lab Reptiles Blood 0 (Avila-Mendoza et al., 2016)

(continued on next page)
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water and thus may represent a temperature-induced decrease in ex-
cretion rather than a decrease in plasma levels. Finally, we were unable
to find any studies examining the acute CORT response of amphibians
to decreased temperatures.

Although there are relatively few studies on cold exposures from
one to seven days, most studies (79%) to date report that CORT is in-
creased (Fig. 3). As with the “hours” category, the exceptions suggest
that life-history stage plays a role. Once again, we were unable to find
any studies examining the CORT response of amphibians to decreased
temperatures.

While we found a relatively clear pattern for both shorter time
periods, there is more variation with cold exposure lasting weeks. While
a number of studies report an increase in CORT (56%), there are a
substantial number of studies that report no change (39%) and a single
study that reports a decrease (Fig. 3). There were no clear trends that
might explain the differences between these responses.

There are relatively few data points for cold exposure lasting a
month or longer, and no long-term cold exposure studies have been
done in amphibians, reptiles or birds. A bare majority of the studies
report an increase in CORT in this category (54%), with 4 studies
showing no correlation and 2 studies reporting a decrease in CORT
(Fig. 3). There was a suggestion that seasonal differences, perhaps re-
flecting differences in life-history stages, could explain the variability.
In several captive studies, responses differed depending upon whether
animals were held on short-day or long-day photoperiods (Xu and Hu,
2017), suggesting that winter adapted animals might not perceive cold
as a stressor (Demas and Nelson, 1996).

5.3. Results for increased temperature

Exposure of up to 24 h of increased temperature is generally asso-
ciated with an increase in CORT (87%), while 4 studies report no
change, and another a decrease in CORT (Fig. 4). One study on three
Australian desert birds suggest species differences in sensitivity to heat
stressors. Laboratory-raised budgerigars (Melopsittacus undulatus) and
zebra finches (Taeniopygia guttata) exposed to 1 h of heat failed to alter
CORT release even though diamond doves did increase CORT (Xie

et al., 2017). Interestingly, these three species differ in the physiological
mechanisms of how they cope with heat, even though they occupy the
same habitat.

Table 6 (continued)

Study Type Taxon CORT matrix Response Reference

Domestic lab Reptiles Blood 1 (Dupoue et al., 2013)
Domestic lab Fish Blood 1 (Chen et al., 2002)
Domestic lab Fish Blood 1 (Chen et al., 1996)
Domestic lab Fish Blood 1 (He et al., 2015)

Weeks Field corr. Birds Blood 0 (Bears et al., 2003)
Field corr. Birds Feces 0 (Pereira et al., 2010)
Field corr. Birds Feces 1 (Lopez-Jimenez et al., 2016)
Field corr. Mammals Blood 1 (Lee et al., 1976)
Field corr. Mammals Feces 1 (Naidenko et al., 2011)
Field corr. Mammals Feces 1 (Weingrill et al., 2004)
Field corr. Mammals Feces 1 (Corlatti et al., 2011)
Field corr. Mammals Feces 1 (Beehner and McCann, 2008)
Wild captive Reptiles Blood 1 (Bonnet et al., 2013)
Wild captive Amphibian Blood 0 (Xia and Li, 2010)
Domestic lab Birds Blood 0 (Goymann et al., 2006)
Domestic lab Birds Feces −1 (Goymann et al., 2006)
Domestic lab Mammals Blood 0 (Bhatnagar et al., 1995)
Domestic lab Reptiles Blood 0 (Callard et al., 1975)
Domestic lab Reptiles Blood 1 (Brischoux et al., 2016)
Domestic lab Reptiles Blood 1 (Avila-Mendoza et al., 2016)
Domestic lab Fish Blood 0 (Chen et al., 1996)
Domestic lab Fish Blood 1 (Chen et al., 2002)

Months Field corr. Mammals Feces 0 (Khonmee et al., 2016)
Field corr. Mammals Feces 1 (Sheriff et al., 2012)
Wild captive Mammals Blood −1 (Xu and Hu, 2017)
Wild captive Fish Blood −1 (Alzaid et al., 2015)
Wild captive Mammals Blood 0 (Xu and Hu, 2017)
Wild captive Mammals Blood 0 (Monfort et al., 1993)
Wild captive Mammals Blood 0 (Bubenik and Brown, 1989)
Wild captive Mammals Blood 1 (Cunha et al., 2007)
Wild captive Mammals Blood 1 (Bubenik et al., 1983)
Wild captive Mammals Blood 1 (Reyes et al., 1997)
Wild captive Mammals Blood 1 (Yousef et al., 1971)
Domestic lab Mammals Blood 1 (Demas and Nelson, 1996)
Domestic lab Fish Blood 1 (Tanck et al., 2000)

Table 7
Temperature – cold. Summary of the number of studies examining the effect of
decreased temperature on glucocorticoid levels in all five vertebrate taxa.
Studies have further been divided into the four different study types described
in the methods section. Total numbers are given for each taxonomic group and
study type.

Mammals Birds Fish Reptiles Amphibians Study
Type
Totals

Field Manipulative – – – – – –
Field Correlational 8 23 – – – 31
Wild in Captivity 10 5 6 5 – 26
Domesticated

Laboratory
24 6 13 5 1 49

Taxa Totals 42 34 19 10 1 106
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Table 8
Increases in temperature. List of the studies that have measured CORT responses after an increase in temperature. Papers are grouped by exposure time, study type,
Taxon, and the biological matrix from which CORT was measured (“body” indicates CORT was measured from the entire body of the individual). See text for
descriptions of Study Type (manip.=manipulative, corr. = correlational). For response, −1=CORT decrease; 0=no change in CORT; 1=CORT increase.

Study Type Taxon CORT matrix Response Reference

Hours Field manip. Fish Body 1 (Quigley and Hinch, 2006)
Field corr. Birds Blood 0 (Viblanc et al., 2014)
Field corr. Mammals Feces 1 (Millspaugh et al., 2001)
Field corr. Amphibian Blood 1 (Jessop et al., 2013)
Wild captive Birds Blood 1 (Pilo et al., 1985)
Wild captive Birds Feces 1 (Ozella et al., 2017)
Wild captive Mammals Blood 1 (Miller and Alliston, 1974)
Wild captive Mammals Blood 1 (Christison and Johnson, 1972)
Wild captive Reptiles Blood 1 (Gangloff et al., 2016)
Wild captive Fish Blood 1 (Mesa et al., 2002)
Wild captive Amphibian Urine 1 (Narayan and Hero, 2014a)
Domestic lab Birds Blood 0 (Xie et al., 2017)
Domestic lab Birds Blood 0 (Xie et al., 2017)
Domestic lab Birds Blood 1 (Jeronen et al., 1976)
Domestic lab Birds Blood 1 (Iqbal et al., 1990)
Domestic lab Birds Blood 1 (Edens and Siegel, 1975)
Domestic lab Birds Blood 1 (Xie et al., 2017)
Domestic lab Birds Blood 1 (el-Halawani et al., 1973)
Domestic lab Birds Blood 1 (Beuving and Vonder, 1978)
Domestic lab Mammals Blood −1 (Rhynes and Ewing, 1973)
Domestic lab Mammals Blood 0 (Olsson et al., 1995)
Domestic lab Mammals Blood 1 (Nabeshima et al., 1982)
Domestic lab Mammals Blood 1 (Jasnic et al., 2010)
Domestic lab Mammals Blood 1 (Jasnic et al., 2013)
Domestic lab Mammals Blood 1 (Djordjevic et al., 2003)
Domestic lab Mammals Blood 1 (Harikai et al., 2003)
Domestic lab Mammals Blood 1 (Abilay et al., 1975)
Domestic lab Mammals Blood 1 (Abilay et al., 1975)
Domestic lab Mammals Blood 1 (Bocheva et al., 2008)
Domestic lab Mammals Blood 1 (Koko et al., 2004)
Domestic lab Mammals Blood 1 (Alvarez and Johnson, 1973)
Domestic lab Mammals Blood 1 (Besch and Brigmon, 1991)
Domestic lab Mammals Blood 1 (Dantzer and Mormede, 1983)
Domestic lab Mammals Blood 1 (Becker et al., 1997)
Domestic lab Mammals Blood 1 (Cure, 1989)
Domestic lab Fish Blood 1 (Roche and Boge, 1996)
Domestic lab Fish Blood 1 (Li et al., 2016)
Domestic lab Fish Blood 1 (Habte-Tsion et al., 2017)

Days Wild captive Reptiles Blood 1 (Cash and Holberton, 2005)
Wild captive Reptiles Blood 0 (Shahjahan et al., 2017)
Wild captive Fish Blood 0 (Pribyl et al., 2016)
Wild captive Amphibian Urine 1 (Narayan et al., 2012)
Domestic lab Birds Blood 1 (el-Halawani et al., 1973)
Domestic lab Mammals Blood 0 (Ei-Nouty et al., 1978)
Domestic lab Mammals Blood 1 (Gwosdow et al., 1985)
Domestic lab Mammals Blood 1 (Hayashi et al., 1993)
Domestic lab Fish Blood 1 (Frost et al., 2013)
Domestic lab Fish Blood 1 (Habte-Tsion et al., 2017)
Domestic lab Fish Blood 1 (Choi et al., 2007)

Weeks Field manip. Birds Feather 1 (Fairhurst et al., 2012)
Field corr. Mammals Blood −1 (Lee et al., 1976)
Field corr. Mammals Feces 0 (Schoof et al., 2016)
Field corr. Fish Blood 1 (Chadwick et al., 2015)
Wild captive Amphibian Blood 0 (Xia and Li, 2010)
Wild captive Amphibian Urine 1 (Narayan et al., 2012)
Wild captive Amphibian Urine 1 (Narayan and Hero, 2014b)
Domestic lab Birds Blood 1 (Geraert et al., 1996)
Domestic lab Mammals Blood −1 (Alvarez and Johnson, 1973)
Domestic lab Mammals Blood 1 (Magal et al., 1981)
Domestic lab Fish Blood 1 (Perez-Casanova et al., 2008)
Domestic lab Fish Blood 1 (Cataldi et al., 1998)
Domestic lab Fish Blood 1 (Eissa and Wang, 2013)

Months Field corr. Mammals Blood 1 (Nilssen et al., 1985)
Field corr. Mammals Feces 0 (Gesquiere et al., 2011)
Field corr. Mammals Feces 1 (Gesquiere et al., 2008)
Field corr. Mammals Feces 1 (Wilkening et al., 2015)
Field corr. Fish Blood 1 (Mills et al., 2015)
Wild captive Fish Blood 1 (Planas et al., 1990)
Domestic lab Birds Blood 1 (El-Tarabany, 2016)
Domestic lab Fish Blood 1 (Lyytikainen et al., 2002)

R. de Bruijn, L.M. Romero General and Comparative Endocrinology 269 (2018) 11–32

23



While relatively few studies exposed animals to heat for one to
seven days, out of 11 studies, 8 reported an increase in CORT (73%),
while 3 studies report no change (Fig. 4). There were no identifiable
differences in these studies.

The majority of studies examining the CORT response to weeks of
heat exposure report an increase (69%), although there are relatively
few studies. In contrast, there are two studies reporting no change, and
another two studies report a decrease (Fig. 4). One feature that stands
out is the responses in large mammals. A decrease in CORT found in
cattle (Alvarez and Johnson, 1973; Lee et al., 1976) may reflect accli-
mation to heat by decreasing metabolism and thereby heat production.
Since cattle are rather large animals and there may be few opportunities
to behaviorally adjust to heat exposure, e.g., by finding shelter, down
regulating metabolism may help prevent overheating (Alvarez and
Johnson, 1973).

Exposure to increased temperatures for more than a month has been
studied mostly in mammals and fish, with one bird study. While seven
studies report an increase in CORT (88%), one study reports no change
(Fig. 4). The reason for the one study in baboons showing no change is
unclear, but Gesquiere et al. (2011) suggest that males are either better
adapted physiologically to heat (lower surface area to body mass ratio)
or that competitive exclusion of females may allow them to spend
comparatively more time in the shade.

5.4. Conclusion to temperature changes

In general, exposure to both decreased and increased temperatures
is associated with increased CORT levels (76% of studies for both
combined). Only 4% of studies report decreased CORT levels associated

with temperature changes, and those that do are concentrated primarily
at the longer exposure times. This suggests that certain animals adjust
their metabolism in response to prolonged exposure, which may pre-
vent overheating (Alvarez and Johnson, 1973).

A substantial minority of studies report no changes in CORT asso-
ciated with either decreased (25 out of 106 studies) or increased tem-
peratures (10 out of 70). It is not always clear why no CORT response
was found. However, several of these studies report that the tempera-
ture change fell within the normal range of temperatures that these
animals experience in their natural environments. This suggests that the
lack of a response may indicate that the animals had acclimatized to the
temperature change and consequently did not perceive the change as
stressful. In other words, the animals were capable of adjusting to the
temperature change in ways that did not require CORT-regulated
pathways. For example, while no change in CORT was found in re-
sponse to both decreased and increased temperatures in salamanders,
temperature change was associated with a decrease in blood glucose
levels which suggests activation of non-CORT mechanisms for adjusting
to the temperature changes (Xia and Li, 2010). Additionally, the re-
sponse to changes in temperatures over different time periods in the
common carp shows that while short-term exposure is associated with
increased CORT levels, hormone levels return to baseline after pro-
longed exposure (Chen et al., 1996). This supports the hypothesis that
some species may be able to acclimatize to such temperature changes,
at least if the temperatures fall within the normal range. Furthermore,
preventing CORT increases in response to prolonged periods of ex-
posure to temperature changes may be an important adaptation to
prevent the negative effects associated with elevated CORT (Sapolsky
et al., 2000). Unfortunately, there are no field manipulation studies
examining changes in CORT in response to decreases in temperature.
However, cooling of nest boxes can impact parental behavior and re-
sulted in reduced growth and innate immunity in nestlings (Ardia et al.,
2010). Whether or not these cooling-induced responses are regulated by
CORT is currently unknown, but the results presented here suggest that
it is likely.

To summarize, changes in temperature are generally associated with
increased CORT levels, especially during short exposure. We therefore
conclude that changes in temperature are perceived as a stressor by
most animals. While the pattern mostly holds for longer exposure, there
is more variability in the response, which suggests that many animals
may be able to adjust to such prolonged exposure, provided the changes
fall within the range of temperatures experienced in their natural en-
vironment.

Table 9
Temperature – heat. Summary of the number of studies examining the effect of
increased temperature on glucocorticoid levels in all five vertebrate taxa.
Studies have further been divided into the four different study types described
in the methods section. Total numbers are given for each taxonomic group and
study type.

Mammals Birds Fish Reptiles Amphibians Study
Type
Totals

Field Manipulative – 1 1 – – 2
Field Correlational 7 1 2 – 1 11
Wild in Captivity 2 2 4 2 5 15
Domesticated

Laboratory
21 11 10 – – 42

Taxa Totals 30 15 17 2 6 70

Fig. 3. Glucocorticoid responses of vertebrates to decreased temperature at four
different time intervals, e.g., hours, days, weeks and months. See Fig. 1 for
further details.

Fig. 4. Glucocorticoid responses of vertebrates to increased temperature at four
different time intervals, e.g., hours, days, weeks and months. See Fig. 1 for
further details.
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6. Responses to change in barometric pressure

6.1. Brief review of relationship of CORT to barometric pressure changes

Barometric pressure has been suggested as a potentially reliable cue
by which animals can detect and respond to inclement weather
(Breuner et al., 2013). Changes in weather are generally preceded by
relatively minor changes in barometric pressure, where a decrease in
pressure is thought to predict inclement weather, while an increase in
pressure is thought to predict clear weather. Depending upon the se-
verity of an oncoming storm, pressure can decrease by up to 12 kPa
(Saucier, 2003), but often the changes are much smaller. Additionally,
the weather-driven changes in barometric pressure are much smaller
than pressure changes related to altitude or depth. Such dramatic
changes in pressure as experienced when under water are a very dif-
ferent type of stimulus and in itself not related to weather-related
events. Therefore, these types of pressure effects are not part of this
review, and this section instead focuses solely on effects of barometric
pressure. Little is known about whether animals can detect such minor
changes in barometric pressure, but it has been hypothesized that the
amniote paratymic organ found in birds, which may be a homologue
with the anamniote spiracular organ in fish, is able to detect changes in
pressure (O'Neill, 2013) and may thus function as a barometer. It re-
mains unclear if such organs exist in other groups of vertebrates, but
there is some evidence that some species of bat have a similar organ
(Paige, 1995).

Despite unknown mechanisms, a growing body of literature de-
scribes a variety of behavioral changes correlated with pressure changes
in all groups of vertebrates. For example, barometric pressure appears
correlated with the calling frequency of some species of anurans (Oseen
and Wassersug, 2002). In breeding loggerhead turtles (Caretta caretta),
variability in breeding area home range and frequency of forays outside
of core breeding areas appear correlated to barometric pressure across a
decade of study (Schofield et al., 2010). Somewhat similarly, baro-
metric pressure has long been suggested as an important factor in bird
migration patterns (Bagg et al., 1950). Barometric pressure has also
been suggested as a reliable cue for cave-dwelling bats in determining
insect availability, as insect abundance is negatively correlated with
barometric pressure, while simultaneously the number of bats exiting
the cave is positively correlated with pressure (Paige, 1995). Finally,
blacktip sharks (Carcharhinus limbatus) move to deeper water prior to
tropical storms, and this migration coincides with a period of de-
creasing barometric pressure in the hours before the storm makes
landfall (Heupel et al., 2003). The behavioral data thus clearly suggest
that barometric pressure can potentially be an important and reliable
stimulus through which vertebrates might predict incipient weather
changes, and the correlation between barometric pressure and poten-
tially stressful events suggests that CORT would be a logical candidate
for study.

6.2. Results for changes in barometric pressure

Very little work to date has examined the role of stress physiology in
the behavioral responses to barometric pressure changes. The few stu-
dies that do exist paint an inconsistent picture. In Greylag geese (Anser
anser), fecal CORT levels decrease with lower barometric pressure of
the previous day, which would be a predictor of an oncoming storm.
One possible explanation suggested by the authors is that Greylag geese
down-regulate their activity levels by “hunkering down” in order to
prepare for the change in weather (Frigerio et al., 2004). In contrast, no
correlation was found between barometric pressure and CORT in white-
crown sparrows, either in the field or in a laboratory study where
barometric pressure was directly manipulated (Breuner et al., 2013).
Interestingly, when confronted with decreasing barometric pressure
and despite a lack of changes in either metabolic rate or stress phy-
siology, captive birds showed increased food intake, suggesting that

CORT is not the main mediator of these behavioral responses (Breuner
et al., 2013).

6.3. Conclusion to barometric pressure changes

Overall, barometric pressure should be a reliable stimulus that al-
lows animals to predict the onset of changes in weather, which may be
important in breeding, migration and survival (Wingfield, 2013).
However, while a wide variety of vertebrates show behavioral re-
sponses to changes in barometric pressure (see above), very little is
known about the physiological mechanisms that underlie those beha-
vioral responses. Based on the limited data available, these behavioral
adaptations do not appear to be mediated through CORT. It is possible
that the fight-or-flight response, acting through catecholamines, drives
this correlation, however no studies have examined this to date.

7. Overall conclusions

Regardless of the type of weather-related stimulus or taxa in-
vestigated, short-term exposure of 24 h or less is strongly associated
with increased CORT levels (79% of studies – see Figs. 1–4). This sug-
gests that stimuli such as precipitation, reductions in food availability
and temperature changes are perceived as stressors by most animals
studied to date. Furthermore, this response is consistent across study
type, sampling method and taxonomic group. Therefore, we conclude
that there is a general consensus stress response to acute changes in
these weather-related stimuli.

However, a bit of caution is warranted in making this conclusion.
Tables 2–9 clearly indicate a bias in both taxonomic coverage and study
design. The studies included here have a heavy weight towards la-
boratory mammalian studies. Especially lacking are field studies of
reptiles and amphibians. Although the consistent results reported here
suggest that acute CORT increases to weather-related stimuli are robust
responses, future work on other taxa, and especially field-based studies,
would be especially valuable.

In contrast to acute exposure, there is considerably more variation
in CORT levels after prolonged exposure (over 24 h) to weather-related
stressors. A smaller majority of studies report increased CORT levels
(64%) compared to acute exposure. Several factors may have con-
tributed to this increased variation. First, if the prolonged exposure to
change in a weather-related parameter is a predictable occurrence in
the life history of an animal, such as fasting in several species of fish and
birds, it seems likely that these animals have evolved adaptations to
cope with such events and as such may no longer perceive them as
stressors.

Second, the effects of a particular weather-related parameter will
also depend on the environment in which the animal experiences it. For
example, precipitation may signal an increase in food availability in a
desert environment, while it may limit foraging opportunities in other
circumstances. This strongly suggests that the life history and en-
vironmental context in which any changes in weather-related para-
meters are experienced is critical for whether or not such a change is
perceived as stressful or not. Consequently, we suggest that it is im-
portant for future studies investigating weather-related stress to report
details on life history and environment, so that behavioral and phy-
siological responses can be considered carefully within the parameters
of the natural context of that animal.

Third, prolonged exposure to a stimulus can push an animal into
allostatic overload (McEwen and Wingfield, 2003). Recently, a new
model was introduced that helps explain the complex roles CORT plays
at baseline and stress induced levels, the reactive scope model (Romero
et al., 2009). In short, normal circadian and seasonal changes in CORT
fall under a predictive homeostasis range. Fluctuations in CORT within
this range are thought to fall within the normal basal concentrations, at
which levels CORT is thought to drive day-to-day homeostatic regula-
tion. The adaptive increase in CORT in response to a stressor falls under

R. de Bruijn, L.M. Romero General and Comparative Endocrinology 269 (2018) 11–32

25



the reactive homeostasis range, where CORT pushes the animal into the
emergency life history stage (Wingfield et al., 1998). While this will
shift physiological processes towards survival, once the stressor is dealt
with, the animal will return to the predictive homeostasis range and
will resume normal activities. Finally, after prolonged or repeated ex-
posure to increased CORT levels, the hormone itself becomes mala-
daptive, and the animal enters homeostatic overload. At this point,
CORT will start causing problems, which may include pathology and
disease and can eventually lead to death. Even if the animal survives
such an episode of homeostatic overload (i.e., chronic stress), the model
predicts that the prolonged exposure to CORT induces wear and tear,
which may negatively affect an animal’s ability to respond to additional
stressors (Romero et al., 2009). It is likely that the acute (hours) re-
sponses to weather-related stimuli are pushing CORT into the reactive
homeostasis range. This would explain the consistent responses re-
ported in the literature. When the stimulus extends to days and weeks,
however, homeostatic overload, or chronic stress, will occur. This
would explain the increased variability in the CORT responses reported
in the literature. The timing of the transition from acute to chronic
responses is currently unknown and contributed to our division of the
studies into groups of reported exposure durations of hours, days,
weeks, and months. However, Figs. 1–4 provide suggestive evidence
that the transition may occur on the order of weeks because for many of
the stimuli, that is the period when reports from the literature become
much more variable.

Fourth, the responses reported in the literature at the duration of
months may reflect a completely different class of responses. They may
reflect predictable adaptations to seasonal climate shifts rather than to
weather per se. CORT concentrations, even at baseline, show seasonal
variation (Romero, 2002). This makes interpretation of changes during
prolonged periods more difficult. It is unclear whether a change in
CORT results from prolonged exposure to the stimulus or is simply due
to altered life-history demands. Depending on the species, such seasonal
fluctuations may be especially noticeable in specific life-history stages,
such as molt in birds, for which attenuation of the HPA-axis has been
shown in several different studies (Cyr et al., 2008; Dawson and Howe,
1983; de Bruijn and Romero, 2013; Romero et al., 2000).

Finally, it is important to remember that models of climate change
predict that the weather-related parameters discussed in this paper will
likely become less predictable and more volatile (Romero and
Wingfield, 2016; Wingfield et al., 2011, 2017). This raises interesting
questions about whether animals will be able to acclimatize to such
increased volatility to prevent negative effects of prolonged exposure to
elevated CORT. Furthermore, and just as important, weather-related
parameters are often used as cues for the timing of life history stages.
Whether or not animals will be able to adjust to the increased un-
predictability may depend upon the flexibility of CORT regulation.
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