
Algorithmica (2019) 81:2123–2157
https://doi.org/10.1007/s00453-018-0526-2

Mind the Gap!

Online Dictionary Matching with One Gap

Amihood Amir1,2 · Tsvi Kopelowitz1,3 · Avivit Levy4 · Seth Pettie3 ·
Ely Porat1 · B. Riva Shalom4

Received: 15 November 2016 / Accepted: 8 November 2018 / Published online: 13 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We examine the complexity of the online DictionaryMatching with One Gap Problem
(DMOG) which is the following. Preprocess a dictionary D of d patterns, where each
pattern contains a special gap symbol that canmatch any string, so that given a text that
arrives online, a character at a time,we can report all of the patterns from D that are suf-
fixes of the text that has arrived so far, before the next character arrives. Inmore general
versions the gap symbols are associated with bounds determining the possible lengths
ofmatching strings.OnlineDMOGcaptures the difficulty in a bottleneck procedure for
cyber-security, as many digital signatures of viruses manifest themselves as patterns
with a single gap. In this paper, we demonstrate that the difficulty in obtaining efficient
solutions for the DMOG problem, even in the offline setting, can be traced back to the
infamous 3SUM conjecture. We show a conditional lower bound of Ω(δ(GD) + op)
time per text character, where GD is a bipartite graph that captures the structure of D,
δ(GD) is the degeneracy of this graph, and op is the output size. Moreover, we show
a conditional lower bound in terms of the magnitude of gaps for the bounded case,
thereby showing that some known offline upper bounds are essentially optimal. We
also provide upper-bounds in terms of the degeneracy for the online DMOG problem.
In particular, we introduce algorithms whose time cost depends linearly on δ(GD).
Our algorithms make use of graph orientations, together with some additional tech-
niques. These algorithms are of interest for practical cases in which δ(GD) is a small
constant. Since δ(GD) can in general be as large as

√
d, and even larger if GD is a

multi-graph, we also obtain other solutions adequate for such dense cases.

Keywords Pattern matching · Dictionary matching · 3SUM · Triangle reporting

Partially supported by ISF Grant 571/14, BSF Grant 2014028, and NSF Grants CCF-1217338,
CNS-1318294, and CCF-1514383. This work is supported in part by ISF Grant 1278/16. This project has
received funding from the European Research Council (ERC) under the European Union Horizon 2020
research and innovation programme (Grant Agreement No. 683064). A partial version of this paper
appeared in ISAAC 2016.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0526-2&domain=pdf
http://orcid.org/0000-0002-1686-0094

2124 Algorithmica (2019) 81:2123–2157

1 Introduction

Understanding the computational limitations of algorithmic problems often leads to
algorithms that are efficient for inputs that are seen in practice. This paper, which
stemmed from an industrial-academic connection [32], is an example of such a case.
We focus on an aspect of Cyber-security which is a critical modern challenge. Network
intrusion detection systems (NIDS) perform protocol analysis, content searching and
content matching, in order to detect harmful software. Such malware may appear non-
contiguously, scattered across several packets, which necessitates matching gapped
patterns.

A gapped pattern P is one of the form P1 {α, β} P2, where each subpattern P1, P2

is a string over alphabetΣ , and {α, β}matches any substring of length at least α and at
most β, which are called the gap bounds. Gapped patterns may contain more than one
gap, however, those considered in NIDS systems typically have at most one gap, and
are a serious bottleneck in such applications [32]. Analyzing the set of gapped patterns
considered by the SNORT software rules shows that 77% of the patterns have at most
one gap, and more than 44% of the patterns containing gaps have only one gap (see
Table 1). Therefore, an efficient solution for this case is of special interest. Though the
gapped pattern matching problem arose over 20 years ago in computational biology
applications [20,29] and has been revisited many times in the intervening years (e.g.
[8,9,16,26,28,30,33]), in this paper we study what is apparently a mild generalization
of the problem that has nonetheless resisted attempts at finding a definitive efficient
solution.

The set of d patterns to be detected, called a dictionary, could be quite large.
While dictionary matching is well studied (see, e.g. [2,4,5,11,14]), NIDS applications
motivate the dictionary matching with one gap problem, defined formally as follows.

Definition 1 The Dictionary Matching with One Gap Problem (DMOG), is:

Input: A text T of length |T | over alphabet Σ , and a dictionary D of d gapped
patterns P1, . . . , Pd over alphabetΣ where each pattern has at most one gap.

Output: All locations in T where a pattern Pi ∈ D, 1 ≤ i ≤ d, ends.

In the offline DMOG problem T and D are presented all at once.We study the more
practical online DMOG problem. The dictionary D can be preprocessed in advance,
resulting in a data structure. Given this data structure the text T is presented one
character at a time, and when a character arrives the subset of patterns with a match
ending at this character should be reported before the next character arrives. Three
cost measures are of interest: a preprocessing time, a time per character, and a time
per match reported. Online DMOG is a serious bottleneck for NIDS, though it has
received attention from both the industry and the academic community.

1.1 PreviousWork

Finding efficient solutions for DMOG has proven to be a difficult algorithmic chal-
lenge as, unfortunately, little progress has been obtained on this problem even though
researchers both in the pattern matching community and the industry have tackled it.

123

Algorithmica (2019) 81:2123–2157 2125

Ta
bl
e
1

T
he

ta
bl
e
pr
es
en
ts
SN

O
R
T
ru
le
s
st
at
is
tic
s:
nu
m
be
r
of

ga
ps

in
ea
ch

pa
tte
rn
,n

um
be
r
of

su
ch

pa
tte
rn
s,
to
ta
l
nu
m
be
r
of

su
bp
at
te
rn
s
in

su
ch

pa
tte
rn
s,
m
ax
im

um
an
d

av
er
ag
e
su
bp
at
te
rn

le
ng
th
,n
um

be
r
of

su
bp
at
te
rn
s
th
at
ar
e
no
ts
uf
fix

or
pr
efi
x
of

an
y
ot
he
r
su
bp
at
te
rn
,n
um

be
r
of

un
bo
un
de
d
ga
ps
,g
ap

bo
un
ds

1–
10
,g
ap

bo
un

ds
11

–1
00

an
d

ga
ps

of
bo
un
d
m
or
e
th
an

10
0

G
ap
s
no

.
Pa
t.
no

.
Su

bp
.n

o.
M
ax

le
n.

A
ve
r.
le
n.

N
on

-s
uf
.S

ub
p.

U
n-
bo

un
de
d

B
ou

nd
1–

10
B
ou

nd
11

–1
00

B
ou

nd
>

10
0

0
79

27
79

27
34

7
20

.3
9

18
42

0
0

0
0

1
24

78
49

56
18

4
13

.1
3

12
51

17
96

62
1

54
7

2
17

67
53

01
13

8
9.
65

12
24

23
43

99
5

17
1

25

3
68

1
27

24
88

9.
11

57
7

13
31

57
5

10
7

30

4
39

6
19

80
13

8
9.
11

29
2

11
60

26
3

13
2

29

5
13

6
81

6
97

9
86

52
0

85
55

20

6
91

63
7

49
10

.0
5

53
41

8
49

69
10

7
38

30
4

45
8.
48

20
23

0
12

24
0

8
17

15
3

34
7.
16

11
13

0
5

1
0

9
12

12
0

39
8.
35

0
78

8
8

14

10
4

44
37

7.
41

0
40

0
0

0

11
6

72
31

7.
51

0
66

0
0

0

12
4

52
47

6.
37

13
38

9
1

0

13
0

0
0

0
0

0
0

0
0

14
1

15
7

1.
4

5
1

12
1

0

M
os
to

f
th
e
ga
ps

ar
e
un

bo
un

de
d
an
d
bo

un
de
d
ga
ps

us
ua
lly

ha
ve

ra
ng

e
le
ss

th
an

10
0

T
he
re

ar
e
on

ly
20

ga
ps

(l
es
s
th
an

0.
00

4%
)
w
ith

ra
ng

e
gr
ea
te
r
th
an

10
00

.
T
he

to
ta
l
nu

m
be
r
of

pa
tte

rn
s
re
fle

ct
in
g
th
e
SN

O
R
T
ru
le
s
is

13
,5
56

,
w
he
re

th
e
to
ta
l
nu

m
be
r
of

su
bp

at
te
rn
s
is
25

,1
01

,o
f
w
hi
ch

16
,2
46

ar
e
un

iq
ue

(i
.e
.,
ap
pe
ar

on
ly

on
ce
)
an
d
29

95
ap
pe
ar

in
m
or
e
th
an

on
e
pa
tte

rn

123

2126 Algorithmica (2019) 81:2123–2157

Table 2 describes a summary and comparison of previous work. It illustrates that pre-
vious formalizations of the problem, either do not enable detection of all intrusions or
are incapable of detecting them in an online setting, and therefore, are inadequate for
NIDS applications. Table 2 also shows a comparison of the upper and lower bounds and
demonstrates the situations in which our solutions are essentially optimal (assuming
some popular conjectures, as described in Sect. 2).

1.2 New Results

The DMOG problem has several natural parameters, e.g.,D, which is the total size of
the dictionary D,d,which is the number of patterns in the dictionary, and themagnitude
of the gap. We establish upper and lower bounds for the cases of unbounded gaps
(α = 0, β = ∞), uniformly bounded gaps where all patterns have the same bounds,
α and β, on their gap, and the most general non-uniform gaps version, where each
pattern Pi ∈ D has its own gap bounds, αi and βi . Note that, in NIDS applications the
total size of the query text maybe huge as it arrives continuously in online manner, but
other parameters have fixed values. A dictionary D for SNORT patterns with one gap
has:D = 65073 and d = 2478 (see Table 1). We show that the complexity of DMOG
depends also on a “hidden” parameter that is a function of the structure of the gapped
patterns. This structure is exposed by using a graph representation of the dictionary
D.

The Bipartite Graph GD The dictionary D can be represented as a graph GD , as
follows. The set of vertices V correspond to first or second subpatterns and the set of
edges E correspond to patterns, i.e., connects a vertex representing a first subpattern of
a dictionary pattern to the vertex representing its corresponding second subpattern. The
resulting graph G = (V , E) is converted to a bipartite graph by creating two copies
of V called L (the left vertices) and R (the right vertices). For every edge (u, v) ∈ E
there is an edge in the bipartite graph between uL ∈ L and vR ∈ R, where uL is a copy
of u and vR is a copy of v (see examples in Fig. 1). The occurrence of a subpattern,
then corresponds to an arrival of a vertex, where each vertex in V that arrives during
query time is replaced by its two copies, first the copy from R and then the copy
from L . This ordering guarantees that a self loop in G is not mistakenly reported the
first time its single vertex arrives. Note that GD is a multi-graph in the non-uniformly
bounded gaps case, since in this case there may be several edges between the same
pair of vertices due to different gap bounds representing different possibilities of time
limitations where occurrences of the vertices result in reporting dictionary patterns
occurrences (see Fig. 1b).

We use the notion of graph degeneracy δ(GD) which is defined as follow. The
degeneracy of a graph G = (V , E) is δ(G) = maxU⊆V minu∈U dGU (u), where dGU

is the degree of u in the subgraph of G induced by U . In words, the degeneracy of G
is the largest minimum degree of any subgraph of G. A non-multi graph G with m
edges has δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a

multi-graph can be much higher. Notice that the degeneracy of G is unchanged, up to
constant factors, due to the transformation to the bipartite graph GD .

123

Algorithmica (2019) 81:2123–2157 2127

Ta
bl
e
2

C
om

pa
ri
so
n
of

pr
ev
io
us

w
or
k
an
d
so
m
e
ne
w
re
su
lts

R
ef
er
en
ce
s

Pr
ep
ro
ce
ss

tim
e

To
ta
lq

ue
ry

tim
e

A
lg
or
ith

m
ty
pe

R
em

ar
k

[2
5]

N
on

e
Õ

(|T
|+

D
)

O
nl
in
e

R
ep
or
ts
on

ly
fir
st
oc
cu
rr
en
ce

[3
3]

O
(D

)
Õ

(|T
|+

d
)

O
nl
in
e

R
ep
or
ts
on

ly
fir
st
oc
cu
rr
en
ce

[1
8]

O
(D

)
O

(|T
|·
ls
c

+
so
cc

)
O
nl
in
e

R
ep
or
ts
on

e
oc
cu
rr
en
ce

pe
r
pa
tte

rn
an
d
lo
ca
tio

n

[6
]

Õ
(D

)
Õ

(|T
|(β

−
α
)
+

op
)

O
ffl
in
e

D
M
O
G

[2
1]

O
(D

)
Õ

(|T
|(β

∗ −
α

∗)
+

op
)

O
ffl
in
e

D
M
O
G

T
hi
s
pa
pe
r

O
(D

)
Õ

(|T
|·

δ
(G

D
)
·ls

c
+

op
)

O
nl
in
e

D
M
O
G

T
hi
s

O
(D

)
Ω

(|T
|·

δ
(G

D
)1

−o
(1

)
+

op
)

O
nl
in
e

D
M
O
G

pa
pe
r

O
(D

)
Ω

(|T
|·

(β
−

α
)1

−o
(1

)
+

op
)

O
r
of
fli
ne

T
he

pa
ra
m
et
er
s:
D

is
th
e
to
ta
l
si
ze

of
th
e
di
ct
io
na
ry

D
,l
sc

is
th
e
lo
ng
es
t
su
ffi
x
ch
ai
n
of

su
bp
at
te
rn
s
in

D
,
so
cc

is
th
e
nu

m
be
r
of

su
bp

at
te
rn
s
oc
cu
rr
en
ce
s
in

T
,o

p
is
th
e

nu
m
be
r
of

pa
tte
rn

oc
cu
rr
en
ce
s
in

T
,α

∗ a
nd

β
∗ a

re
th
e
m
in
im

um
le
ft
an
d
m
ax
im

um
ri
gh

tg
ap

bo
rd
er
s
in

th
e
no

n-
un

if
or
m
ly

bo
un

de
d
ca
se
,δ

(G
D

)
is
th
e
de
ge
ne
ra
cy

of
th
e

gr
ap
h
G

D
re
pr
es
en
tin

g
di
ct
io
na
ry

D

123

2128 Algorithmica (2019) 81:2123–2157

L R

ab

abb

bb

b

ac

ac

ca

aac

b

u1

u2

u3

u4

u5

v1

v2

v3

v4

L R

ab

abb

bb

b

ac

ac

ca

aac

b

u1

u2

u3

u4

u5

v1

v2

v3

v4

{2,4}

{5,9}

{1,4}

{3,7}{2,5}

{2,4}

{3,7}

(a) (b)

Fig. 1 a The bipartite graph GD for the uniformly bounded gaps dictionary D =
{ab{2, 4}ac, abb{2, 4}ca, bb{2, 4}ac, b{2, 4}aac, ac{2, 4}b}. In this dictionary α = 2, β = 4.
b The bipartite multi-graph GD for the non-uniformly bounded gaps dictionary D =
{ab{2, 4}ac, ab{5, 9}ac, abb{1, 4}ca, abb{3, 7}ca, bb{2, 5}ac, b{2, 4}aac, ac{3, 7}b}. In this dictio-
nary α∗ = 1, β∗ = 9

Vertex-TriangleQueriesAkey component in understanding both the upper and lower
bounds for DMOG is the vertex-triangles problem, where the goal is to preprocess a
graph so that given a query vertex u wemay list all triangles that contain u. The vertex-
triangles problem, besides being a natural graph problem, is of particular interest here
since, as will be demonstrated in Sect. 2, it is reducible to DMOG. Our reduction
demonstrates that the complexity of the DMOG problem already emerges when all
patterns are of the form of two characters separated by an unbounded gap. This sim-
plified online DMOG problem (denoted as DMOG∗) is equivalent to the Induced
Subgraph (ISG) problem, formally defined as follows.

Definition 2 The Induced Subgraph (ISG) problem is:

Input: A graph G = (V , E) and a sequence of vertices from V ,
Output: For each vertex v arriving at time t , report all edges (u, v) ∈ E such that u

arrived at time t ′, where t ′ < t .

We consider the online setting of ISG, where we preprocess the graph G = (V , E) in
advance, then the sequence of vertices from V arrive one by one, and all occurrences
of edges due to the arrival of a vertex are reported before the next vertex arrives.
Notice that answering consecutive queries is done independently. Thus, characters
and gapped patterns in DMOG∗ correspond to vertices and edges in ISG, respectively.
This equivalence is summarized in Observation 1.

Observation 1 The ISG and DMOG∗ problems are equivalent.

We show that vertex-triangles queries are reducible to ISG. Equation 1 summarizes
the path for proving the lower bound for the DMOG problem, where VT denotes

123

Algorithmica (2019) 81:2123–2157 2129

the vertex-triangle problem. The reductions (shown in Sect. 2: the first is shown in
Theorem4 and the second in Theorem1) are denoted as	 and the equivalence between
ISG and DMOG∗ (observed here) is denoted as ∼=.

3SUM 	 VT 	 I SG ∼= DMOG∗ (1)

Lower Bounds Leading to New Upper Bounds After trying to tackle the DMOG
problem from the upper bound perspective, we suspected that a lower bound could be
proven, and indeed were successful in showing a connection to the 3SUM conjecture.
The conditional lower bound (CLB) proof provides insight for the inherent difficulty
in solving DMOG, but is also unfortunate news for those attempting to find efficient
upper bounds. Fortunately, a careful examination of the reduction from 3SUM to
DMOG reveals that the CLB from the 3SUM conjecture can be phrased in terms of
δ(GD), which turns out to be a small constant in some input instances considered by
NIDS. In fact, δ(GD) is not greater than 5 in an analysis of the graph created using
SNORT software rules [32]. This lead to designing algorithms whose runtime can be
expressed in terms of δ(GD), and can therefore be helpful in such practical settings.

Thus, our reduction serves twopurposes. First, in Sect. 2weprove aCLB forDMOG
based on the 3SUM conjecture by combining a reduction from triangle enumeration to
the vertex-triangles problemwith our new reduction from the vertex-triangles problem
to DMOG. Our lower bound states that any online DMOG algorithm with low pre-
processing and reporting costs must spend Ω(δ(GD)1−o(1)) per character, assuming
the 3SUM conjecture. Interestingly, the path for proving this CLB deviates from the
common conceptual paradigms for proving lower bounds conditioned on the 3SUM
conjecture, and is of independent interest. In particular, the common paradigm con-
siders set-disjointness or set-intersection type problems, which correspond to edge
triangle queries, while here we consider vertex-triangle queries. Moreover, our CLB
holds for the offline case as well, and can be rephrased in terms of other parameters.
For example, in the DMOG problem with uniform gaps {α, β}, we prove that the cost
per character of scanning T must be Ω((β − α)1−o(1)). This gives some indication
that some recent algorithms for the offline version of DMOG problem are essentially
optimal ([6,21]).

Second, in Sect. 3 we provide optimal solutions (under the 3SUM conjecture), up to
subpolynomial factors, for ISG and, therefore, also for vertex-triangles queries, with
O(|E |) preprocessing time and O(δ(G) + op) time per each vertex, where op is the
size of the output due to the vertex arrival. The connection between ISG and DMOG
led us to extend the techniques used to solve ISG, combine them with additional ideas
and techniques, thereby introduce several new online DMOG algorithms in Sect. 4.
The statement of our DMOG algorithmic results is actually more complicated as it
depends on other parameters of the input, namely lsc, the length of the longest suffix
chain in the dictionary, i.e., the longest sequence of dictionary subpatterns such that
each is a proper suffix of the next.We emphasize thatwe are not the first to introduce the
lsc factor, which appeared even in solutions for simplified relaxations of the DMOG
problem [18].

While the parameter lsc could theoretically be as large as d, in many practical
situations it is very small. In an analysis of the graph created using SNORT software

123

2130 Algorithmica (2019) 81:2123–2157

rules lsc is not greater than 5 [32]. Note that, in natural languages dictionaries such
as the English dictionary lsc is also a small constant. While it is possible to find a
suffix chain of English words with length 7, it is difficult (if possible) to find such a
chain with greater length. Nevertheless, we also present algorithms that in the most
dense cases, where δ(DG) ≥ √

d or lsc is large, reduce the dependence on lsc and d,
by obtaining upper bounds that depend linearly on

√
lsc · d . Notice that while in the

uniformly bounded case we have δ(GD) = O(
√
d), in the non-uniform case δ(GD)

could be much higher and so these new algorithms become a vast improvement.
Table 3 summarizes our upper-bounds for DMOG.Note that, since subpatternsmay

be long, we must accommodate a delay in the time a vertex corresponding to a second
subpattern is treated as if it has arrived, thus inducing a minor additive space usage.
For simplicity of exposition, we assume that |Σ | is constant. We stress that it is easy
to formally reduce DMOG over any alphabet Σ to DMOG over alphabet {0, 1} by
encoding any symbol in binary in a way that makes the start and end of an encoding
clear, e.g. the b-th element of Σ , where b = b[0]b[1] . . . b[k] in binary, is mapped to
110b[0]0b[1] . . . 0b[k]10. Such standard binary encoding technique can be adapted
for theAho-Corasic automaton [2]we use as a subpattern detectionmechanism, so that
the only change in our upper-bounds for an unbounded size alphabet is an additional
cost of O(log |Σ |) worst-case time per character.

Paper Contributions The main contributions of this paper are:

– Obtaining algorithms for DMOG that are asymptotically fast for some practical
inputs.

– Proving conditional lower bounds from the 3SUM conjecture, which in particular
deviate from the common paradigm of such proofs.

– Formalizing the ISG problem. This problem serves in this paper for supplying a
deeper understanding of the DMOG problem, but is also of independent interest.

Paper Organization Sect. 2 describes our conditional lower bounds. In Sect. 3
we introduce a solution for ISG, which is then extended to simplified versions
of the unbounded, uniformly and non-uniformly bounded DMOG∗ problems in
Sects. 3.1, 3.2 and 3.3 . In Sect. 4.1, the ISG algorithms are extended to solutions
for the various DMOG versions. Finally, in Sect. 4.2 we obtain upper bounds ade-
quate for denser instances of DMOG.

2 3SUM: Conditional Lower Bounds

In this section we prove that conditioned on the 3SUM conjecture we can prove lower
bounds for the vertex-triangles problem, the ISG problem, and the (offline) unbounded
DMOG problem. Note that the different versions of DMOG, namely, unbounded, uni-
formly and non-uniformly bounded gaps, form a hierarchy of generalisations, where
the non-uniformly bounded is the most general as each dictionary pattern Pi has its
own gap boundaries αi and βi , the next step in the hierarchy is the bounded case,
where αi = α and βi = β for every i , and the most restricted version in the hierarchy
is the unbounded case, where αi = α = 0 and βi = β = ∞ for every i . Note, that
setting β or βi to ∞ actually means setting it to be of size |T | in the offline version

123

Algorithmica (2019) 81:2123–2157 2131

Ta
bl
e
3

A
su
m
m
ar
y
of

up
pe
r
bo

un
ds

fo
r
D
M
O
G
de
sc
ri
be
d
in

th
is
pa
pe
r

G
ap
s
ty
pe

Pr
ep
ro
ce
ss

tim
e

Q
ue
ry

tim
e
pe
r
te
xt

ch
ar
ac
te
r

Sp
ac
e

U
ni
fo
rm

(s
pa
rs
e
gr
ap
h)

O
(D

)
O

(δ
(G

D
)
·ls

c
+

op
)

O
(D

+
ls
c(

β
+

M
))

N
on

-u
ni
fo
rm

(s
pa
rs
e
gr
ap
h)

O
(D

)
Õ

(δ
(G

D
)
·ls

c
+

op
)

Õ
(D

+
ls
c

·δ
(G

D
)(

β
∗ −

α
∗ +

M
)
+
ls
c

·α
∗)

U
ni
fo
rm

(d
en
se

gr
ap
h)

O
(D

)
O

(l
sc

+
√ ls

c
·d

+
op

)
O

(D
+
ls
c(

β
+

M
))

N
on

-u
ni
fo
rm

(d
en
se

gr
ap
h)

O
(D

+
d
(β

∗ −
α

∗)
)

Õ
(√ ls

c
·d

(β
∗ −

α
∗ +

M
)
+

op
)

Õ
(D

+
d
(β

∗ −
α

∗)
+

√ ls
c

·d
(β

∗ +
M

))

U
ni
fo
rm

an
d
no

n-
un

if
or
m

re
fe
r
to

th
e
ty
pe

of
ga
p
bo

un
ds

un
de
r
co
ns
id
er
at
io
n.

M
is
th
e
m
ax
im

al
le
ng

th
of

a
su
bp

at
te
rn

in
th
e
di
ct
io
na
ry

D

123

2132 Algorithmica (2019) 81:2123–2157

or to the (dynamically changing) current overall text size in the online version. This
may affect the efficiency but not the correctness of the algorithms. Thus, the more
general DMOG versions can solve (possibly less efficiently) the unbounded DMOG
version by setting the values of the gap bounds as above accordingly, therefore, the
lower bounds hold for the generalised problems as well.

Background Polynomial (unconditional) lower bounds for data structure problems
are considered beyond the reach of current techniques. Thus, it has recently become
popular to prove CLBs based on the conjectured hardness of some problem. One of
the most popular conjectures for CLBs is that the 3SUM problem (given n integers
determine if any three sum to zero) cannot be solved in truly subquadratic time, where
truly subquadratic time is O(n2−Ω(1)) time. This conjecture holds even if the algorithm
is allowed to use randomization (see e.g. [1,17,24,31]). In this section we show that
the infamous 3SUM problem can be reduced to DMOG, which sheds some light on
the difficulty of the DMOG problem. Interestingly, our reduction does not follow the
common paradigm for proving CLBs based on the 3SUM conjecture, providing a new
approach for reductions from 3SUM. This approach is of independent interest, and is
described next.

TrianglesPǎtraşcu [31] showed that 3SUM canbe reduced to enumerating triangles in a
tripartite graph. Kopelowitz, Pettie, and Porat [24] provided more efficient reductions,
thereby showing that many known triangle enumeration algorithms ([10,12,22,23])
are essentially and conditionally optimal, up to subpolynomial factors. Hence, the
offline version of triangle enumeration is well understood. The following two indexing
versions of the triangle enumeration problem are a natural extension of the offline
problem. In the edge-triangles problem the goal is to preprocess a graph so that given
a query edge e all triangles containing e are listed. The vertex-triangles problem is
defined above. Clearly, both these versions solve the triangle enumeration problem,
which immediately gives lower bounds conditioned on the 3SUM conjecture.

The edge-triangles problem on a tripartite graph corresponds to preprocessing a
family F of sets over a universeU in order to support set intersection queries in which
given two sets S, S′ ∈ F the goal is to enumerate the elements in S ∩ S′ (see [24]).
Indeed, the task of preprocessing F to support set-intersection enumeration queries,
and hence edge-triangles, is well studied [13,23]. Furthermore, the set intersection
problemhasbeenused extensively as a tool for proving thatmanyalgorithmicproblems
are as hard as solving 3SUM [1,24,31]. However, the vertex-triangles problem has yet
to be considered directly.1

The Lower BoundsWe use the vertex-triangles problem in order to show that the ISG
problem is hard, and thus the simplest DMOG version of (offline) unbounded setting
is 3SUM-hard. The most significant conditional lower bounds that we prove are stated
by the following theorems. To understand the statements of the following theorems,
when the total query time of an algorithm can be formulated as O(tq + op · tr) time,
we say that tq is the query time and tr is the reporting time.

1 The closely related problem of deciding whether a given vertex is contained by any triangle (a decision
version) has been addressed [7].

123

Algorithmica (2019) 81:2123–2157 2133

Theorem 1 Assume 3SUM requires Ω(n2−o(1)) expected time. For any constant
0 < x < 1/2, any algorithm that solves the ISG problem on a graph G with
m edges, n = Θ(m1−x) vertices, if the amortized expected preprocessing time is
O(m · δ(G)1−Ω(1)) and the amortized expected reporting time is sub-polynomial,
then the amortized expected query time must be Ω((δ(G))1−o(1)).

Theorem 2 Assume 3SUM requires Ω(n2−o(1)) expected time. For any constant 0 <

x < 1/2, any algorithm that solves the DMOG problem on a dictionary D with d
patterns and Θ(d1−x) subpatterns, if the amortized expected preprocessing time is
O(d · δ(GD)1−Ω(1)) and the amortized expected reporting time is sub-polynomial,
then the amortized expected query time must be Ω((δ(GD))1−o(1)).

Our proof begins from the conditional lower bounds for triangle enumeration intro-
duced in [24]. The actual statement in [24] refers to the arboricity of G instead of the
degeneracy of G. The arboricity of an undirected graph is the minimum number of
forests into which its edges can be partitioned. We note that, both the terms degen-
eracy and arboricity are quantitatively the same, up to a factor of 2. If a graph G is
oriented acyclically with outdegree k, then its edges may be partitioned into k forests
by choosing one forest for each outgoing edge of each node. Thus, the arboricity of
G is at most equal to its degeneracy. In the other direction, an n-vertex graph that can
be partitioned into k forests has at most k(n − 1) edges and therefore has a vertex of
degree at most 2k − 1. Thus, the degeneracy is less than twice the arboricity.

Theorem 3 [24] Assume 3SUM requires Ω(n2−o(1)) expected time. Then for any con-
stants 0 < x ≤ 1, 0 < y ≤ 1, such that x ≤ 2y, there exists a graph G with n vertices,
m edges, and arboricity γ (G) = Θ(nx) = Θ(my), with t = O(m1−Ω(1)) triangles,
such that listing all triangles requires Ω(m · γ (G)1−o(1)) expected time.

Corollary 1 Assume 3SUM requires Ω(n2−o(1)) expected time. Then for any constant
0 < x < 1/2, any algorithm for enumerating all triangles in a graph G with m edges,
n = Θ(m1−x) vertices, and d̂ = δ(G), where d̂ is the average degree of a vertex in
G, must spend Ω(m · δ(G)1−o(1)) expected time independent of the output size.

Proof Theorem3assures that assuming3SUM requiresΩ(n2−o(1)) expected time, then
for any constants 0 < x ′ ≤ 1, 0 < y′ ≤ 1, such that x ′ ≤ 2y′, there exists a family of
graphs G with n vertices, m edges, and arboricity γ (G) = Θ(nx

′
) = Θ(my′

), with
t = O(m1−Ω(1)) triangles, such that listing all triangles requires Ω(m · γ (G)1−o(1))

expected time. At the end of their proof to Theorem 3, [24] show that the parameters of
the graph G they constructed can be expressed in terms of a constant 0 < x < 1/2, as
follows:G hasm edges, n = Θ(m1−x) vertices, and γ (G) = Θ(mx). It is well-known
that the arboricity of any graph is at least the average degree of its vertices. During their
construction of G, [24] also show that the average degree of its vertices is also upper
bounded by γ (G). Therefore, d̂ = γ (G) = Θ(mx). To conclude the proof we need
only note that the degeneracy of G is asymptotically the same as the arboricity. Also
note that the number of triangles in the constructed graph G is actually polynomially
smaller than the m · δ(G), but this only strengthen the stated lower bound, as it means
that the lower bound in not due to the time required to report the output.
�

123

2134 Algorithmica (2019) 81:2123–2157

We also need the following theorem.

Theorem 4 Assume 3SUM requires Ω(n2−o(1)) expected time. For any constant 0 <

x < 1/2, any algorithm that solves the vertex-triangles problem on a graph G with
m edges and n = Θ(m1−x) vertices, if the amortized expected preprocessing time is
O(m ·δ(G)1−Ω(1)) and the amortized expected reporting time is sub-polynomial, then
the amortized expected query time must be at least Ω((d̂ · δ(G))1−o(1)), where d̂ is
the average degree of the queried vertices.

Proof We reduce the triangle enumeration problem considered in Corollary 1 to the
vertex-triangles problem. We preprocess G and then answer vertex-triangles queries
on each of the m1−x vertices thereby enumerating all of the triangles in G. If we
assume a sub-polynomial reporting time, then by Corollary 1 either the preprocessing

takes Ω(m · δ(G)1−o(1)) time or each query must cost at least Ω(
m·δ(G)1−o(1)

m1−x) =
Ω((mxδ(G))1−o(1)) = Ω((d̂ · δ(G))1−o(1)) amortized expected time.
�

We are now ready to prove Theorems 1 and 2.

Proof (Proof of Theorems 1 and 2)We reduce the vertex-triangles problem considered
in Theorem 4 to ISG as follows. We preprocess the graph G for ISG queries. Now,
to answer a vertex-triangle query on some vertex u, we input all of the neighbors of
u into the ISG algorithm. Thus, there is a one-to-one correspondence between the
edges reported by the ISG algorithm and the triangles in the output of the vertex-
triangles query. Since each vertex-triangle query costs Ω(d̂ · δ(G)1−o(1)) amortized
expected time then the amortized expected time spent for each of the neighbors of u
is Ω(δ(G)1−o(1)), since the average number of neighbors is d̂ and the measure is the
amortized expected time. Since ISG is equivalent to a special case of DMOG in which
every dictionary subpattern is a single character with unbounded gaps between them
(denoted as DMOG∗), and given Theorem 1, the proof of Theorem 2 follows.
�

Another lower bound that we get is the following.

Theorem 5 Assume 3SUM requires Ω(n2−o(1)) expected time. For any constant 0 <

x < 1/2, any algorithm that solves the uniformly bounded DMOG problem on a
dictionary D with d patterns and Θ(d1−x) subpatterns, if the amortized expected
preprocessing time is O(d · δ(GD)1−Ω(1)) and the amortized expected reporting time
is sub-polynomial, then the amortized expected time spent on each text character is
Ω((β − α)1−o(1)), where β − α = Ω(dx).

Proof The proof is similar to the proofs of Theorems 1 and 2. First, we convert the
input graph G of the vertex-triangles problem to a tripartite graph GT by creating
three copies of the vertices V1, V2, V3 and for each edge (u, v) in G we add 6 edges
to GT between all possible copies of u and v. We also add a dummy vertex to GT

with degree 0. Each triangle in G corresponds to a constant number of triangles in
GT . Let α be any positive integer and let β = α + 2d̂, where d̂ is the average degree
of vertices in G. We use ISG to solve vertex-triangles queries in Theorem 1, but we
only ask queries on the neighbors of vertices in V1 in a specially tailored way as
follows. We first list the neighbors of u from V2, followed by α copies of the dummy

123

Algorithmica (2019) 81:2123–2157 2135

vertex, and then list the neighbors from V3. From the construction of the tripartite
graph and the input to the ISG algorithm, two vertices of an edge (u, v) that is part
of the output of the ISG algorithm must be separated in the input list by at least
α vertices, and by at most α + d(u) + d(v), where d(u), d(v) are the degree of u
and v, respectively. Note, that the average over all possible vertices of the length of
this list is β. Thus, by Theorem 1 the amortized expected time spent on a vertex is
Ω(δ(G)1−o(1)). Since the proof of Corollary 1 ensures the existence of a graph for
which d̂ = δ(G) = Θ(mx), we have that the amortized expected time spent on a vertex
is Ω(δ(G)1−o(1)) = Ω((mx)1−o(1)) = Ω((β − α)1−o(1)). Since ISG is equivalent to
a special case of DMOG in which every dictionary subpattern is a single character
with unbounded gaps between them (denoted as DMOG∗), the theorem follows.
�
A Note on Triangle Reporting Problems and Other Popular Conjectures Many
CLBs based on other popular conjectures, such as the Boolean Matrix Multiplication
conjecture or the Online Matrix Vector Multiplication conjecture, use reductions from
set-disjointness and hence from edge-triangles queries (see [1,19]). However, it is not
clear how to obtain meaningful lower bounds for vertex-triangles queries based on
these conjectures. These difficulties are discussed below.

Since edge-triangle queries can be used to solve set disjointness, another natural
candidate for a conjecture with which we can prove that edge-triangle queries are
hard is the Boolean Matrix Multiplication (BMM) conjecture, which states that no
O(n3−Ω(1)) combinatorial algorithm2 exists for BMM on two n × n matrices. This is
because the answer to a set disjointness query corresponds to the inner product of the
characteristic vectors of the two sets, and each entry in the output of BMM is the inner
product of one row and one vector from the input matrices. Notice that this approach
derives a conditional lower bound from the BMM conjecture for the decision version
of edge-triangle queries (does there exist a triangle containing the query edge), which
can be solved via the reporting version considered above if we stop the query process
after the first triangle is reported, thereby obtaining a conditional lower bound for the
reporting version itself.

Just like the decision version of edge-triangle queries corresponds to the inner
product of two boolean vectors, we can show that vertex-triangles queries correspond
to the outer product of two vectors. However, outer products are too weak of a tool for
proving conditional lower bounds from BMM, since the output of the outer product of
two vectors of length n is n2, and in order to solve BMM using outer products we need
to consider n pairs of vectors and their outer products, resulting in Ω(n3) information
which is already too much.

Another candidate for proving the hardness of edge-triangle queries is the recent
Online Matrix Vector (OMV) multiplication conjecture which states that there is no
O(n3−Ω(1)) algorithm for multiplying an n × n matrix with n vectors of length n
each, where the vectors arrive online and the output of the i th multiplication must
be given prior to the arrival of the (i + 1)th vector. Since multiplying a matrix with
a vector can be solved via inner products, the connection to edge-triangle queries is
clear. However, it is not clear how to use the OMV conjecture to prove some hardness

2 There is no clear definition of a combinatorial algorithm, and the notion that is accepted by the algorithmic
community is that the way to establish if an algorithm is combinatorial or not is done by just looking at it.

123

2136 Algorithmica (2019) 81:2123–2157

on outer products, and so it is not clear if this conjecture can be used to prove the
hardness of vertex-triangles queries, ISG, and DMOG.

3 The Induced Subgraph Problem

An Upper Bound via Graph Orientations In graph orientations the goal is to
orient the graph edges while providing some guarantee on the out-degrees of the
vertices. Formally, an orientation of an undirected graph G = (V , E) is called a
c-orientation if every vertex has out-degree at most c ≥ 1. The notion of graph
degeneracy is closely related to graph orientations [3]. Chiba and Nishizeki [12]
linear time greedy algorithm assigns a δ(G)-orientation of G. We preprocess GD

using this algorithm, thereby obtaining a c-orientation with c = δ(GD), and use
it for solving ISG problem as follows. First, we view an orientation as assigning
“responsibility” for all data transfers occurring on an edge to one of its endpoints,
depending on the direction of the edge in the orientation. If an edge e = (u, v) is
oriented from u to v, we say that u is responsible for e, and that e is assigned to
u. Furthermore, u is a responsible-neighbor of v and v is an assigned-neighbor of
u.

3.1 Unbounded Edge Occurrences

Each vertex v ∈ R maintains a reporting list Lv , which is a linked list containing links
to responsible-neighbors of v that have already appeared during the current query.
When a vertex v ∈ R arrives at query time t , the elements in the reporting list Lv

are scanned and their edges are reported. In addition, the edges for which v is their
responsible-neighbour are scanned, and those for which the assigned-neighbour u is
marked as arrived are reported. If the arrived vertex is u ∈ L , u is marked as arrived
and is added to the reporting lists of its assigned-neighbours, deleting a previous
appearance of u in those lists, if existed. If we want to report all the times an edge
appeared we also need to maintain and update the time stamps of u in the list τu as
in Sect. 3.2. However, as the length of these lists is unbounded in this case, it incurs
additional linear space. We, therefore, only report a single occurrence of each edge
per query vertex and do not maintain the τu lists at all. We denote this relaxation of
the ISG problem by ISG∗. Since the number of assigned-neighbors is bounded by
O(δ(G)), we have proven Theorem 6.

Theorem 6 The ISG∗ problem on a graph G with m edges and n vertices can be solved
online with O(m+n) preprocessing time, O(δ(G)+op) time per query vertex, where
op is the number of edges reported at vertex arrival, and O(m) space.

3.2 Uniformly Bounded Edge Occurrences

In this case, the ISG problem is restricted with two positive integer parameters α and
β so an edge (u, v) can only be reported if α < t ′ − t ≤ β + 1, where t and t ′ are

123

Algorithmica (2019) 81:2123–2157 2137

arrival times of u and v, respectively. The interval between β time units ago and α

time units ago is called the active window.
The data structures used in this case are:

1. For each vertex v ∈ R, a reporting list Lv maintaining all responsible-neighbours
of v, u ∈ L , that arrived at least α and at most β time units ago, without repetitions.

2. For each vertex u ∈ L , an ordered list τu of the time stamps u arrived within the
the current active window.

3. The list Lβ of the last β vertices u ∈ L . They are delayed for α time units before
they are considered.

When a vertex arrives at time t , the data structures of the vertices are updated
accordingly, as follows.

1. If the arrived vertex is v ∈ R,

(a) The elements of Lv are scanned and their edges (u, v) are reported according
to τu .

(b) The edges forwhich v is their responsible-neighbour are scanned, and for every
assigned-neighbour u that has a non empty τu , edge (u, v) is reported.

2. If the arrived vertex is u ∈ L , u is inserted into Lβ .

In addition, the active window is maintained by updating Lβ and acknowledging
arrived nodes u ∈ L that have become relevant.
For vertices u ∈ L , arriving exactly α + 1 time units before time t ,

1. For every v ∈ R that is an assigned neighbour of u, u is added to the beginning
Lv .

2. If τu is not empty, the previous appearance of u is removed from every Lv , where
v is an assigned neighbour of u.

3. t − α − 1 is added to τu .

For vertices u ∈ L , arriving exactly β + 1 time units before time t ,

1. u is removed from Lβ .
2. The time stamp t − β − 1 is removed from τu .
3. In case τu becomes empty, u is removed from every Lv where v is an assigned

neighbour of u.

Theorem 7 The Induced Subgraph problemwith uniformly bounded edge occurrences
on a graph G with m edges and n vertices can be solved with O(m+n) preprocessing
time, O(δ(G) + op) time per query vertex, where op is the number of edges reported
at vertex arrival, and O(m + β) space.

Proof Updating Lβ , as well as treating a vertex arrived either to R or to L , requires
time linear in the number of assigned-neighbours of a vertex. Thus the time cost per
vertex is O(δ(G) + op). Regarding space, since each responsible neighbor appears
only once, the space consumption of all the Lv lists is O(m). The additional space
usage is another O(β) words for Lβ and for the τu lists.
�

123

2138 Algorithmica (2019) 81:2123–2157

3.3 Non-uniformly Bounded Edge Occurrences

In non-uniformly bounded edge occurrences each edge e = (u, v) has its own bound-
aries [αe, βe] and can only be reported if αe < t ′ − t < βe + 1, where t and t ′ are
arrival times of u and v, respectively. Notice that in this case the input is a multi-graph
as (u, v)with boundaries [2, 4] is a distinct edge from (u, v)with boundaries [5, 9], as
can be seen in Fig. 1, therefore requires a distinct report if both appear in the input. The
active window for this ISG version is the time window between β∗ = maxe∈E {βe}
and α∗ = mine∈E {αe} time units ago.

The case of non-uniformly bounded edge occurrences combined with the approach
of a general activewindow, used in the previous subsection, introduces a newchallenge.
Suppose, we stored all responsible-neighbours of v, u ∈ L , that arrived during the
activewindow, inLv as in the uniformly bounded edge occurrences case. If τu includes
all the appearances of u within the active window, when a vertex v ∈ R arrives, the
information in Lv cannot be automatically reported, as some of the appearances of
nodes u ∈ Lv are not within the gaps of edge (u, v), thus only part of their τu list needs
to be reported. A naive filtering considers for each u ∈ Lv a scan of τu and reports
only time stamps t where αe < t − t ′ ≤ βe + 1, where t and t ′ are arrival times of u
and v, which sums up to β∗ −α∗ time per query vertex. To avoid an overhead in query
time, our filtering mechanism checks all appearances of all responsible-neighbours
of v in a batched query, where each responsible-neighbour appearance is filtered
according to the edge’s gaps. This is achieved by maintaining for each vertex v ∈ R
a fully dynamic data structure Sv for supporting 4-sided 2-dimensional orthogonal
range reporting queries instead of Lv .3 Given an [x0, y0] × [x1, y1]-range, it returns
the points of Sv that have (x, y) coordinates in the given range. For each responsible-
neighbor u ∈ L of v, that arrived in the active window in time t , where e = (u, v),
the point (t + αe + 1, t + βe + 1) is inserted into Sv , yielding the occurrences in Sv

are from the “point of view” of v.
The data structures used in this case are:

1. For each vertex v ∈ R, a data structure Sv maintaining points representing all
occurrences of responsible-neighbours of v, u ∈ L , that arrived at least α∗ and at
most β∗ time units ago. To implement Sv , we use Mortensen’s data structure [27]
that supports the set of |Sv| points from R

2 with O(|Sv| log7/8+ε |Sv|) words of
space, insertion and deletion time of O(log7/8+ε |Sv|) and O(

log |Sv |
log log |Sv | +op) time

for range reporting queries on Sv , where op is the size of the output.
2. For each vertex u ∈ L , an ordered list τu of time stamps of the times u arrived

within the the current active window.
3. The list Lβ∗ of the last β∗ vertices u ∈ L . They are delayed for at least α∗ time

units before they are considered.

When a vertex arrives at query time t , the data structures of the vertices are updated
accordingly, as follows.

1. If the arrived vertex is v ∈ R,

3 Since our final running time has a log-factor, the sub-logarithmic operations costs don’t transfer to the
final asymptotic bound. Thus, we can also use interval trees [15].

123

Algorithmica (2019) 81:2123–2157 2139

(a) A range query of [0, t] × [t,∞] is performed over Sv . The edges representing
the range output are reported.

(b) The edges for which v is their responsible-neighbour are scanned, and every
assigned-neighbour u that has a non empty τu , where τu contains a time stamp
t ′ such that αe < t − t ′ ≤ βe + 1, the edge (u, v) is reported.

2. If the arrived vertex is u ∈ L ,

(a) u is inserted into Lβ∗ .
(b) For each assigned-neighbour v, such that e = (u, v), the point (t +αe +1, t +

βe + 1) is inserted to Sv .

In addition, the active window is maintained by updating Lβ∗ and acknowledging
arrived nodes u ∈ L that have become relevant.
For vertices u ∈ L , arriving exactly α∗ + 1 time units before time t ,

1. t − α∗ − 1 is added to τu .

For vertices u ∈ L , arriving exactly β∗ + 1 time units before time t ,

1. u is removed from Lβ∗ .
2. The time stamp t − β∗ − 1 is removed from τu .
3. For each assigned-neighbour v, such that e = (u, v), the point (t − β∗ + αe, t −

β∗ + βe) is removed from Sv .

Theorem 8 The Induced Subgraph problem with non-uniformly bounded edge occur-
rences on a graph G with m edges and n vertices can be solved with O(m + n)

preprocessing time, Õ(δ(G) log(β∗ −α∗)+op) time per query vertex, where op is the
number of edges reported due to the vertex arriving, and Õ(m+δ(G)(β∗ −α∗)+α∗)
space.

Proof According to the algorithm, there are different procedures for vertices v ∈ R
and u ∈ L arriving at time t, t ′ respectively.

For vertices v ∈ R, Sv is queried, yielding all of the points whose first coordinate
is at most t and whose second coordinate is at least t . Each such reported point
(x, y) is due to some vertex u with edge e = (u, v), arriving at time t ′, for which
x = t ′ + αe < t ≤ t ′ + βe + 1 = y. This guarantees that the range reported
query provides a desired output. In addition, the assigned-neighbours of v are filtered
according to their arrival time in at most O(log(β∗ − α∗) + op) where op is the size
of the output. The cost of such a range query, in addition to the size of the current
output, is O(

log(β∗−α∗)
log log(β∗−α∗)) time. In addition, the O(δ(G)) assigned-neighbours of v

are filtered according to their arrival time in at most O(log(β∗ − α∗) + op) where op
is the size of the output.

Regarding vertices u ∈ L , their arrival time can require adding or deleting of at
most δ(G) points from all of the orthogonal reporting data-structures at the assigned-
neighbors of u at the cost of O(log7/8+ε(β∗ − α∗) for each update of a relevant Sv

structure.
Regarding space: The space usage for the algorithm is O(β∗) due to the ver-

tices maintained in Lβ∗ and the lists of time stamps. Another O(δ(G)(β∗ −

123

2140 Algorithmica (2019) 81:2123–2157

α∗) log7/8+ε(δ(G)(β∗ −α∗))) space is required for all of the orthogonal range report-
ing data structures.
�

4 Solving DMOG

4.1 DMOG via Graph Orientations

When extending ISG to online DMOG, the longer subpatterns introduce new chal-
lenges that need to be addressed. It is helpful to still consider the bipartite graph
presentation of the DMOG instance, where vertices correspond to subpatterns and
edges correspond to patterns. The algorithms from Sect. 3 are used as basic building
blocks in our algorithms for DMOG by treating a subpattern arriving as the vertex
arriving in the appropriate graph, while addressing the difficulties that arise from
subpatterns being arbitrarily long strings.

Subpatterns Detection Mechanism First, a mechanism for determining when a sub-
pattern arrives is needed. One way of doing this is by using the the Aho–Corasick
(AC) Automaton [2], using a standard binary encoding technique so that each charac-
ter costs O(log |Σ |) worst-case time. For simplicity we assume that |Σ | is constant.
However, while in the ISG problem each character corresponds to the arrival of at
most one subpattern, in the DMOG each arriving character may correspond to several
subpatterns which all arrive at once, since a subpattern could be a proper suffix of
another subpattern. We, therefore, phrase the complexities of our algorithms in terms
of lsc, which is the maximum number of vertices in the bipartite graph that arrive
due to a character arrival. This induces a multiplicative overhead of at most lsc in the
query time per text character relative to the time used by the ISG algorithms.

Finally, there is an issue arising from subpatterns no longer being of length one,
which for simplicity we first discuss this in the unbounded case. When u ∈ L arrives
and it has an assigned vertex v ∈ R wheremv is the length of the subpattern associated
with v, then we do not want to report the edge (u, v) until at least mv − 1 time units
have passed from the arrival of u, since the appearance of the subpattern of v should
not overlap with the appearance of the subpattern of u. Similarly, in the bounded case,
we must delay the removal of u from Lv by at least mv − 1 time units. Notice that if
we remove u from Lv after a delay of mv − 1, then we may be forced to remove a
large number of such vertices at a given time. We, therefore, delay the removal of u by
M − 1 time units, where M is the length of the longest subpattern that corresponds to
a vertex in R. This solves the issue of synchronization, however, some of the reporting
lists now have elements that should not be reported. Nevertheless, the reporting time
remains asymptotical to the size of the output as the elements in Lv are ordered by
decreasing occurrence time, thus the first element u, found inLv with occurrence time
larger than β, implies the termination of the report.

Combining these ideaswith the algorithms in Sect. 3 gives the following algorithms.

Uniformly Bounded Gaps The data structures used in this case are:

123

Algorithmica (2019) 81:2123–2157 2141

1. For each vertex v ∈ R, an ordered reporting list Lv maintaining all responsible-
neighbours of v, u ∈ L , that arrived at least α and at most β + M time units ago,
without repetitions.

2. For each vertex u ∈ L , an ordered list τu of the time stamps u arrived within the
the current active window.

3. The list Lβ of the last β + M vertices u ∈ L . They are delayed for α time units
before they are considered.

When the AC-automaton reaches state s in time t , the data structures of the vertices
are updated accordingly, as follows.
For every vertex v associated with a subpattern that is a suffix of the subpattern
represented by state s,

1. If the arrived vertex is v ∈ R,

(a) Let u = Lv. f irst
(b) while τu . f irst ≥ t − mv − β − 1

i. Report edges (u, v).
ii. Proceed to the next u element in Lv .

(c) The edges for which v is their responsible-neighbour are scanned, and every
assigned-neighbour u that has a non empty τu , where the first element in τu is
the time stamp t ′ such that t − mv − β − 1 ≤ t ′, the edge (u, v) is reported.

2. If the arrived vertex is u ∈ L , u is inserted into Lβ .

In addition, the active window is maintained by updating Lβ and acknowledging
arrived nodes u ∈ L that have become relevant.
For vertices u ∈ L , arriving exactly α + 1 time units before time t ,

1. For every v ∈ R that is an assigned neighbour of u, u is added to the beginning
Lv .

2. If τu is not empty, the previous appearance of u is removed from every Lv , where
v is an assigned neighbour of u.

3. t − α − 1 is added to the beginning of τu .

For vertices u ∈ L , arriving exactly β + M + 1 time units before time t ,

1. u is removed from Lβ .
2. The time stamp t − β − M − 1 is removed from the end of τu .
3. In case τu becomes empty, u is removed from every Lv , where v is an assigned

neighbour of u.

Theorem 9 The DMOG problem with uniformly bounded gap borders can be solved
such that dictionary patterns are reported online in: O(D) preprocessing time,
O(δ(GD) · lsc + op) time per text character, where op is the number of patterns
that are reported due to the character arriving, and O(D + lsc · (β + M)) space.

Proof The algorithm consider a linear time traversal over the text using the AC-
automaton.At each location t , we considerO(lsc)vertices, representing the subpattern
recognized by the AC-automaton at the current query time, and all its possible O(lsc)

123

2142 Algorithmica (2019) 81:2123–2157

suffixes that are subpatterns in the dictionary. Every vertex requires O(δ(GD) oper-
ations besides the output report as a vertex v ∈ R considers its assigned-neighbors
and a vertex u ∈ L is inserted int all the reporting lists of its assigned neighbors. The
scanning of elements inLv is considered as the reported occurrences, until locating the
first element of a responsible vertex u, where the gap between the newest occurrence
time of u and t − mv + 1 is larger than β, where the scan is terminated, as the rest of
the elements of Lv are older. The time of deleting a vertex from Lβ or from Lv can be
accounted for by their insertion time. In the preprocessing, the AC automaton is built
in time linear in the size of the dictionary D.

Regarding space: Each responsible neighbor appears only once inLv , thus the space
consumption of all theLv lists is O(d), where d is the number of gapped patterns in the
dictionary. TheAC automaton requires linear space in the size of the dictionaryD. The
additional space usage is required for the O(lsc) verticesmaintained for O(β−α+M)

time units by the τu lists, and additional O(lsc · α) is required for the u ∈ L vertices
maintained by Lβ for α time units, until they can be considered a arrived.
�
Non-Uniformly Bounded Gaps The data structures used in this case are:

1. For each vertex v ∈ R, a data structure Sv maintaining points representing all
occurrences of responsible-neighbours of v, u ∈ L , that arrived at least α∗ and at
most β∗ time units ago. To implement Sv , we use Mortensen’s data structure [27].

2. For each vertex u ∈ L , an ordered list τu of time stamps of the times u arrived
within the the current active window.

3. The list Lβ∗ of the last β∗ + M vertices u ∈ L . They are delayed for at least α∗
time units before they are considered.

When the AC-automaton reaches state s in time t , the data structures of the vertices
are updated accordingly, as follows.
For every vertex v associated with a subpattern that is a suffix of the subpattern
represented by state s,

1. If the arrived vertex is v ∈ R,

(a) A range query of [0, t −mv + 1]× [t −mv + 1,∞] is performed over Sv . The
edges representing the range output are reported.

(b) The edges for which v is their responsible-neighbour are scanned, and every
assigned-neighbour u that has a non empty τu , where τu contains a time stamp
t ′ such that αe < t − mv − 1 − t ′ ≤ βe + 1, the edge (u, v) is reported.

2. If the arrived vertex is u ∈ L , u is inserted into Lβ∗ .

In addition, the active window is maintained by updating Lβ∗ and acknowledging
arrived nodes u ∈ L that become relevant.
For vertices u ∈ L , arriving exactly α∗ + 1 time units before time t ,

1. t − α∗ − 1 is added to the beginning of τu .
2. For each assigned-neighbour v, such that e = (u, v), the point (t − α∗ + αe, t −

α∗ + βe) is inserted to Sv .

For vertices u ∈ L , arriving exactly β∗ + M + 1 time units before time t ,

123

Algorithmica (2019) 81:2123–2157 2143

1. u is removed from Lβ∗ .
2. The time stamp t − β∗ − M − 1 is removed from the end of τu .
3. For each assigned-neighbour v, such that e = (u, v), the point (t − β∗ − M +

αe, t − β∗ − M + βe) is removed from Sv .

Theorem 10 The DMOG problem with non-uniformly bounded gap borders can be
solved such that dictionary patterns are reported online in: O(D) preprocessing time,
Õ(lsc·δ(GD)+op) time per text character, where op is the number of patterns that are
reported due to the character arriving, and Õ(D+lsc·δ(GD)(β∗−α∗+M)+lsc·α∗)
space.

Proof The algorithm considers a linear time traversal over the text using the AC-
automaton.At each location t , we considerO(lsc)vertices, representing the subpattern
recognized by the AC-automaton at the current query time, and all its possible O(lsc)
suffixes that are subpatterns in the dictionary. Each vertex v ∈ R requires a range
query applied to Sv that contains at most lsc(β∗ − α∗ + M) points, thus requires
O(

log(lsc(β∗−α∗+M))
log log(lsc(β∗−α∗+M))

) per range query. Additional O(δ(G) log(β∗ −α∗ +M)) time
is required for scanning all of the assigned-neighbors of v and reporting those arrived
within the gaps boundaries. Each vertex u ∈ L requires updating Lβ∗ , and insert-
ing or deleting a node from Sv , of every assigned neighbor of u, v thus requires
O(δ(GD) log7/8+ε(lsc(β∗ − α∗ + M))). Thus, the time required per query time is
O(lsc · δ(GD) log(lsc(β∗ − α∗ + M)) + op) when considering the maximal possible
number of subpatterns recognized by the AC automaton at each query time. In the
preprocessing, the AC automaton is built in time linear in the size of the dictionaryD.

Regarding space: Since each Sv contains points only from its responsible neighbor,
each lsc vertices that were located at each of the last β∗ −α∗ +M locations in the text
could have been inserted to δ(GD) structures Sv , yielding the space consumption of
all the Sv lists is lsc · δ(GD)(β∗ − α∗ + M). The AC automaton requires linear in the
size of the dictionaryD. The additional space usage is required for the O(lsc) vertices
maintained for O(α∗) time units by Lβ∗ until they can be considered as arrived.
�

4.2 DMOG via Threshold Orientations

Sections 3 and 4.1 focus on orientations whose out-degree is bounded by δ(GD).
Thus, when δ(GD) = √

d the DMOG algorithms take O(lsc · √
d) time. This is

exacerbated in the non-uniform case where the degeneracy can be much larger, since
the same subpatterns can represent different gapped patterns if they have different
gaps boundaries, thus two vertices can be connected by more than one edge. In this
section we show how in such dense inputs we can reduce the factor depending on lsc
from lsc ·δ(GD) to

√
lsc · d, by using a different method for orienting the graph edges

which we refer to as a threshold orientation.

Definition 3 A vertex in GD is heavy if it has more than
√
d/lsc neighbors, and light

otherwise.

Our algorithms use two key properties. The first is that light vertices have at most√
d/lsc neighbors, and the second is that the number of heavy vertices is less than√
lsc · d.

123

2144 Algorithmica (2019) 81:2123–2157

We orient all edges that touch a light vertex to leave that vertex, breaking ties
arbitrarily if both vertices are light. Thus, every edge e connecting a light vertex with
a light/heavy vertex, the light vertex is the responsible-neighbor, and the heavy vertex,
if exists in e, is the assigned-neighbor. We handle differently edges with at most one
heavy vertex as an endpoint and edges connecting two heavy vertices. The algorithms
for the former edges appears in Sect. 4.2.1 while the algorithms for the latter edges
are described in Sect. 4.2.2. The combination of all algorithms is the total solution for
DMOG via threshold orientation.

4.2.1 Edges Connecting at Most One Heavy Vertex

Uniformly Bounded Gaps The data structures used by the algorithm dealing with
edgeswhere atmost oneof its endpoints is heavy,when consideringuniformlybounded
gaps, are the same as detailed in Sect. 4.1 for the case of uniformly bounded gaps.
(ordered reporting lists Lv for each vertex v ∈ R, ordered lists τu of the time stamps
for each u ∈ L and the list Lβ of the last β + M vertices u ∈ L).

When the AC-automaton reaches state s in time t , the data structures of the vertices
are updated accordingly, as follows.
For every vertex v associated with a subpattern that is a suffix of the subpattern
represented by state s,

1. If the arrived vertex is v ∈ R,

(a) Let u = Lv. f irst
(b) while τu . f irst ≥ t − mv − β − 1

i. Report edges (u, v).
ii. Proceed to the next u element in Lv .

(c) If v is a light vertex, the edges for which v is their responsible-neighbour are
scanned, and every assigned-neighbour u that has a non empty τu , where the
first element in τu is the time stamp t ′ such that t −mv − β − 1 ≤ t ′, the edge
(u, v) is reported.

2. If the arrived vertex is u ∈ L , u is inserted into Lβ .

In addition, the active window is maintained by updating Lβ and acknowledging
arrived nodes u ∈ L that become relevant.
For vertices u ∈ L , arriving exactly α + 1 time units before time t ,

1. If u is a light vertex,

(a) For every v ∈ R that is an assigned neighbour of u, u is added to the beginning
Lv .

(b) If τu is not empty, the previous appearance of u is removed from every Lv ,
where v is an assigned neighbour of u.

2. t − α − 1 is added to the beginning of τu .

For vertices u ∈ L , arriving exactly β + M + 1 time units before time t ,

1. u is removed from Lβ .

123

Algorithmica (2019) 81:2123–2157 2145

2. The time stamp t − β − M − 1 is removed from the end of τu .
3. In case τu is empty and u is a light vertex, u is removed from every Lv , where v

is an assigned neighbour of u.

Lemma 1 The DMOG problem with uniform gap borders can be solved for edges with
atmost a single heavy endpoint, with O(D) preprocessing time, O(lsc+√

lsc · d+op)
time per text character, and O(D + lsc(β + M)) space.

Proof An arriving vertex can be either light or heavy and either from L or from R. In
case the vertex is heavy, it merely updates its time stamps and is inserted to Lβ , if it is
u ∈ L , or we report relevant information from its Lv list, in time proportional to the
output size, if it is v ∈ R. There is no necessity to go over the assigned-neighbour of
v as the threshold orientation set every heavy vertex to be assigned to a light vertex.

Additional operations required in case the vertex is light, are insertion of the vertex
to the data structures of all its assigned neighbors, if the vertex is u ∈ L and reporting
the assigned neighbors of v that arrived within the gap restrictions if the vertex is
v ∈ R.

Since there are at most lsc vertices arriving at a time, and each light vertex has at
most O(

√
d/lsc) assigned neighbors, solving the DMOG for edges with at most one

heavy endpoint costs at most Õ(lsc + √
lsc · d) time. The preprocessing and space

complexity are the same as those of the Sect. 4.1.
�
Non-Uniformly Bounded Gaps The data structures used by the algorithm dealing
with edges where at most one of their endpoints is heavy, when considering non-
uniformly bounded gaps, are the same as detailed in Sect. 4.1 for the case of non-
uniformly bounded gaps. (Range query data structures Sv for each vertex v ∈ R,
ordered lists τu of the time stamps for each u ∈ L and the list Lβ∗ of the last β + M
vertices u ∈ L).

When the AC-automaton reaches state s in time t , the data structures of the vertices
are updated accordingly, as follows.
For every vertex v associated with a subpattern that is a suffix of the subpattern
represented by state s,

1. If the arrived vertex is v ∈ R,

(a) A range query of [0, t −mv + 1]× [t −mv + 1,∞] is performed over Sv . The
edges representing the range output are reported.

(b) If v is a light vertex, the edges for which v is their responsible-neighbour are
scanned, and every assigned-neighbour u that has a non empty τu , where τu
contains a time stamp t ′ such that αe < t − mv − 1 − t ′ ≤ βe + 1, the edge
(u, v) is reported.

2. If the arrived vertex is u ∈ L , u is inserted into Lβ∗ .

In addition, the active window is maintained by updating Lβ∗ and acknowledging
arrived nodes u ∈ L that become relevant.
For vertices u ∈ L , arriving exactly α∗ + 1 time units before time t ,

1. t − α∗ − 1 is added to the beginning of τu .

123

2146 Algorithmica (2019) 81:2123–2157

2. If u is a light vertex, for each assigned-neighbour v, such that e = (u, v), the point
(t − α∗ + αe, t − α∗ + βe) is inserted to Sv .

For vertices u ∈ L , arriving exactly β∗ + M + 1 time units before time t ,

1. u is removed from Lβ∗ .
2. The time stamp t − β∗ − M − 1 is removed from the end of τu .
3. If u is a light vertex, for each assigned-neighbour v, such that e = (u, v), the point

(t − β∗ − M + αe, t − β∗ − M + βe) is removed from Sv .

Lemma 2 The DMOG problem with non-uniform gap borders can be solved for edges
with at most a single heavy endpoint, with O(D + d(β∗ − α∗)) preprocessing time,
Õ(lsc + √

lsc · d(β∗ − α∗ + M) + op) time per query text character, and Õ(D +√
lsc · d(β∗ − α∗ + M) + lsc · α∗) space.

Proof The proof is similar to that of Lemma 1 and Theorem 10.
�

4.2.2 Edges Connecting two Heavy Vertices

The remaining task is reporting edges connecting two heavy vertices. From a very
high level, we will leverage the fact that the number of heavy vertices is less than√
lsc · d, and so even if the number of vertices from L that arrive at the same time can

be as large as lsc and the number of neighbors of each such vertex can be very large,
the number of vertices in R is still less than

√
lsc · d . So using a batched scan on all

of R will keep the time cost low. We show that after some preprocessing such a scan
can produce the desired result. In addition, at each time unit, we handle only a single
vertex u ∈ L currently arriving, the one representing the longest subpattern found by
the Aho Corasick automaton at that time, which is the subpattern associated with the
current accepting state. Other subpatterns, which are suffixes of that subpattern are
handled implicitly, without increasing the time complexity unless they are reported.
The preprocessing that enables us this procedure uses a tree-like structure.

The Tree Structure We construct a tree T among the subpatterns associated with
heavy vertices from L , where a vertex u′ is an ancestor of a vertex u if and only if
the subpattern associated with u′ is a suffix of the subpattern associated with u. An
additional vertex corresponding to the empty string is added as the root of T , since it
is a suffix of every subpattern. The tree T can be constructed in linear time from the
AC automaton of D. An example of such a tree appears in Fig. 2. The graph vertices
arriving due to a text character arrival correspond to the vertices on some path from
the root of T to some vertex u, not including the root. We emphasize that the AC
automaton mechanics allow one to report only one vertex u such that u and all of its
ancestors exactly correspond to the subpatterns that have arrived (implicitly).

In the following paragraphs we provide algorithms for solving the DMOG problem
for edges connecting two heavy nodes for the cases of uniformly and non-uniformly
bounded gaps.

UniformlyBoundedGapsLet R = {v1, v2, . . . , v|R|}. Recall that |R| = O(
√
lsc · d)

since we only deal with heavy vertices. For the case of reporting edges between two

123

Algorithmica (2019) 81:2123–2157 2147

Fig. 2 The tree structure for
{u1, . . . u5} ∈ L

u1 = a
u2 = aa
u3 = aaa
u4 = ba
u5 = baa

a

baaa

baaaaa

heavy vertices, where the dictionary has uniformly bounded gaps, the data structures
used are:

1. For every edge e = (u, vi) ∈ ED , a pointer next(e) points to an edge e′ = (u′, vi)
where u′ is the lowest proper ancestor of u in T such that (u′, vi) ∈ ED . If no such
vertex u′ exists then next(e) = null.

2. For every vertex u ∈ L , an array Au[] of size |R| is built, where Au[i] contains
a pointer to a list of all edges (u′, vi) ∈ ED for all u′ ancestors of u in T (which
may be u). If e = (u, vi) ∈ ED , then Au[i] points to e = (u, vi). Otherwise, the
entry of Au[i] points to the edge (u′, vi) where u′ is the lowest proper ancestor of
u in T such that (u′, vi) ∈ ED and if no such edge exists then Au[i] = null. The
list of all u′s ancestors of u in T that have edges (u′, vi) ∈ ED is obtained through
the edge pointed to by Au[i] and its next(·) pointers.

3. For each vertex v ∈ R, an ordered reporting list Lv maintaining Au[v] entries,
implying pointers to edges (u, v), where u ∈ L , is a responsible-neighbour of v,
that arrived at least α and at most β + M time units ago, without repetition.

4. For each vertex u ∈ L , an ordered list τu of the time stamps u arrived, when u
was associated with the longest subpattern recognized at the time. The time stamps
are within the current active window.

5. The list Lβ of the last β + M vertices u ∈ L that were associated with the longest
subpattern recognized at their recognition time. They are delayed for α time units
before they are considered.

6. The New array of size |L|, where New[u] is the newest occurrence of the sub-
pattern associated with vertex u, that was delayed α time units.

For example, consider the subpatterns from Fig. 2, u1 = a, u2 = aa, u3 =
aaa, u4 = ba, u5 = baa. Figure 3 depicts their Au[] arrays, based on edges between
the nodes represented by these subpatterns. According to these arrays, when baa
arrives, we add the implicit linked list of baa, aa, a to the beginning of Lba as these
subpatterns have an edge connected to ba.

Constructing Au Arrays. The Aus arrays can be constructed in BFS order over
T . Each Au array can be constructed by filling the entries corresponding to edges
e = (u, vi) with a pointer to e and filling the rest of the entries by Au[i] = Au′ [i],
where u′ is the closest ancestor of u in T . Yet, such a construction consumes O(lsc ·d)

preprocessing time and space. In order to decrease the space requirement we maintain

arrays only for specially chosen O(

√
d
lsc) vertices in T , such that during the query

123

2148 Algorithmica (2019) 81:2123–2157

Fig. 3 An example of Au [] arrays. (1) Some edges emanating from {u1 = a, u2 = aa, u3 = aaa, u4 =
ba, u5 = baa} ∈ L . (2) The next(e) pointers of the edges in (1). (3) The arrays of u1, . . . u5, where e

∗
i

refers to a link to edge ei

phase whenever we need array Au[] for some vertex u, where u is not special, we
construct it during the query in O(

√
lsc · d) time. The construction of the Au array,

given only the arrays of the special vertices uses the following procedure.

1. Initialize all Au[i] entries to null.
2. Let u′ = u
3. While u′ is not a spacial vertex do

(a) For every edge e′ = (u′, vi) ∈ ED , if Au[i] = null, then set Au[i] = (e′)∗,
where (e′)∗ is a pointer to e′.

(b) u′ ← the closest ancestor of u′ in T .

4. If u′ is a special vertex, for every entry where Au[i] = null, set Au[i] = Au′ [i].
Choosing Special Vertices Let the weight of a node u ∈ L , denoted by weight(u),

be the degree of u in GD . Notice that the weight of any vertex is at least
√

d
lsc since

all of the vertices are assumed to be heavy. In the preprocessing, we partition T into

O(

√
d
lsc) small subtrees such that each subtree has totalweightΘ(

√
lsc · d), except for

possibly the subtree containing the root of T . The special vertices are the roots of these
small subtrees. The partitioning is obtained by (greedily) peeling small subtrees in the
bottom of T . Specifically, let Tu be the subtree of T rooted at u, and let weight(Tu)
be the total weight of vertices in Tu . Then, we iteratively peel a subtree Tu such that
weight(Tu) is at least

√
lsc · d but the total weight of each subtree of a child of u in T

123

Algorithmica (2019) 81:2123–2157 2149

is (separately) less than
√
lsc · d. This peeling continues until no such subtree exists,

so the remaining subtree must have total weight less than
√
lsc · d and is the last small

subtree (also containing the root). The partitioning can be implemented in linear time
using a post-order traversal. Notice that by the construction method, for any vertex u
that is not the root of T , the total weight of vertices on the path from u to its closest
proper ancestor that is a special vertex is O(

√
lsc · d), since this path requires passing

two subsequent special vertices if u itself is also a special vertex, otherwise, we need
only find the special vertex which is the ancestor of the subtree u belongs to. This
ancestor, by construction, has total weight O(

√
lsc · d).

When the AC-automaton reaches state s in time t , the data structures of the vertices
are updated accordingly, as follows.
For every vertex v associated with a subpattern that is a suffix of the subpattern
represented by state s,

1. If the arrived vertex is vi ∈ R,

(a) Let e∗ = Au[i] = Lvi . f irst , where e
∗ is a pointer to edge e = (u, vi).

(b) While Au[i] �= null and τu . f irst ≥ t−mv−β−1 for the currently considered
(u, vi),
i. Let U = u, the vertex referred to by the current Au[i].
ii. While e �= null do

A. Report edge (u, v) according to the time stamps in τU .
B. e = next(e).

iii. Proceed to the next e∗ = Au[i] in Lv and return to step (b).
(c) The edges for which v is their responsible-neighbour are scanned, and every

assigned-neighbour u that has New[u] equals the time stamp t ′ such that
t −mv − β − 1 ≤ t ′, the edge (u, v) is reported according to the time stamps
in every τu′′ , where u′′ is a successor of u in T , including u itself.

2. If the arrived vertex is u ∈ L , and u is the vertex associated with the longest
subpattern represented by state s at time t , then u is inserted into Lβ .

In addition, the active window is maintained by updating Lβ and acknowledging
arrived nodes u ∈ L that become relevant.
For vertices u ∈ L , arriving exactly α + 1 time units before time t , if u is the vertex
associated with the longest subpattern represented by state s at time t − α − 1,

1. If u is not a special vertex, array Au is constructed.
2. For each vi , where Au[i] �= null

(a) Au[i] is added to the beginning of Lvi .
(b) If τu is not empty, then the previous appearance of Au[i] is removed from Lvi .

3. t − α − 1 is added to the beginning of τu .
4. If u is not a special vertex, array Au is deleted.
5. For every u′ that is an ancestor of u in the tree, New[u′] = t − α − 1.

For vertices u ∈ L , arriving exactly β + M + 1 time units before time t , where u
is the vertex associated with the longest subpattern represented by state s, at time
t − β − M − 1,

123

2150 Algorithmica (2019) 81:2123–2157

1. u is removed from Lβ .
2. The time stamp t − β − M − 1 is removed from the end of τu .
3. In case τu becomes empty,

(a) If u is not a special vertex, array Au is constructed.
(b) For each vi , where Au[i] �= null, Au[i] is deleted from Lvi .
(c) If u is not a special vertex, array Au is deleted.

Lemma 3 The DMOG problem with uniform gap borders for edges where both end-
points are heavy, can be solved with O(D) preprocessing time, O(lsc+√

lsc · d+op)
time per text character, and O(D + (β + M)) space.

Proof In the preprocessing, the AC automaton is built in time linear in the size of
the dictionary D. The next(e) pointers are calculated by going over the tree T from
the root down and assigning next(e) = e′ where e = (u, vi), e′ = (u′, vi) ∈ Ed

and u′ is the closest proper ancestor of u, in total O(d) time. The computation of
the Au arrays for all the special vertices in the preprocessing, is done in a top-down
approach by first constructing the array for the root of T and then constructing each
Au[] for a special vertex u only after the array for the closest proper special ancestor
u′ of u was constructed, using the construction procedure of constructing an array
during a query. Due to the property that the total weights of vertices on the path
from u to u′ is O(

√
lsc · d) the time to construct the array for each special vertex is

O(
√
lsc · d). Since the number of special vertices is O(

√
d
lsc) the total preprocessing

arrays construction costs O(d) time.
At query time t , in case the arrived vertex is u ∈ L , and it is associated with the

longest subpattern recognised at time t by the AC automaton, constant time operations
of updating τu , the insertion of u intoLβ are performed. In addition all the lsc vertices,
that are ancestors of u in T are updating their New value. For the insertion into
Lvi , again, we consider merely the longest subpattern that was recognized at time t ,
represented by vertex u and Au[i] �= null is inserted into the beginning of Lvi (or
deleted from it after the appearances of u become not relevant). In case u is not a special
vertex, the Au[] array is constructed. The time cost of this process is the total number
of edges of vertices on the path from u to its closest ancestor that is a special vertex, and
another O(

√
lsc · d) time for initializing Au and scanning Au′ . Since the total degree

of vertices on the path from u to its closest special ancestor to be O(
√
lsc · d), due to

the selection of special vertices, the total time cost for constructing Au is O(
√
lsc · d).

The rest of the subpatterns recognized at time t are suffixes of the subpattern rep-
resented by u, thus their edges with vi are included in the implicit next list starting at
Au[i]. Since the number of heavy nodes is bounded by

√
lsc · d , we get that handling

a node of the form u ∈ L at query time t requires O(lsc + √
lsc · d) time.

For every arrived vertex vi ∈ R we scan Lvi and report the edges represented by
each of the Au[i] ∈ Lvi by following their next links, until we reach Au[i] where its
τu . f irst is not within the appropriate time frame. Recall, that Au[i] is inserted into
the beginning of Lvi and previous appearances of Au[i] is removed from it, yielding
Lvi contains appearances of u and its ancestors in decreasing order of occurrence
time. Thus, when going over Lvi , the first appearance of Au[i] that is not within the
appropriate time frame, implies the rest of the list contains older appearances that

123

Algorithmica (2019) 81:2123–2157 2151

are not in the appropriate time frame as well, therefore the scan is terminated and
the reporting time remains asymptotic to the output size. We report edges according
to the time stamps appearing in τU , where U is the longest successor of the current
responsible vertex u, that u is contained in the implicit list of AU [i], as the time stamps
are updated only for the longest subpattern recognized at every location. In case u has
additional appearances, there is an additional AU ′ [i] inLvi , containing u in its implicit
list, and including different time stamps in its τU ′ .

In addition, we go over all the
√
lsc · d , u ∈ L assigned neighbors of v and report

them, if their New[u] is within the required gap.We report the appearance of the edges
according to the τu list of the successors of u, as the time stamps are updated only for
the longest subpattern recognized at every location, here again, the time stamps lists
are maintained in decreasing ordered, thus reporting takes linear time in the size of the
output. The union of the times required for the different cases of vertices concludes
the proof of the query complexity.

Regarding space: The AC automaton requires linear space in the size of the dic-
tionary O(D). Since for each vertex u ∈ L , Au[i] appears only once in Lvi , the

space consumption of all the Lv lists is O(d). Each of the O(

√
d
lsc) special vertices

maintains an Au array of size
√
lsc · d, thus the space consumption of the arrays is

O(d). The New array has
√
lsc · d entries, yet they are included in the size of the

dictionary O(D). The additional space usage is required for the vertices maintained
for O(β − α + M) time units by the τu lists, and additional O(α) is required for the
u ∈ L vertices maintained by Lβ for α time units, until they can be considered a
arrived.
�
Lemmas 1 and 3 yield Theorem 11.

Theorem 11 The DMOG problem with uniform gap borders can be solved with O(D)

preprocessing time, O(lsc+√
lsc · d+op) time per text character, and O(D+lsc(β+

M)) space.

Non-uniformly Bounded Gaps As in the uniform case, let R = {v1, v2, . . . , v|R|}
where |R| = O(

√
lsc · d). We leverage again the tree structure of T , where a vertex

that arrives implies that all its ancestors arrived as well. Nevertheless, due to the
implications of the non-uniform gaps, where the gap boundaries of an edge e are
denoted by αe and βe, the suggested algorithm differs from from that of the DMOG
with uniformly bounded gaps, by focusing on updating a data structure related to
vertex vi ∈ R by the occurrences of u ∈ L where e = (u, vi) ∈ ED , according to the
gap boundaries. Hence, different data structures are used in this case.

1. For each e = (u, vi) ∈ ED , an array nexte of size βe − αe + 1 is maintained,
where for αe ≤ j ≤ βe, nexte[j] points to e′ such that u′ is the lowest ancestor of
u in T (possibly u itself) where e′ = (u′, vi) ∈ ED and αe′ ≤ j ≤ βe′ . Additional
requirement is that the pointers nexte[j] do not form a loop. If no such edge exists
then nexte[j] is assigned null. (For simplicity, the indices of the array are treated
as starting from αe and ending at βe).
In order to guarantee that there is no loop, edges connecting the same vertices
but having different bounds are lexicographically ordered by their bounds, having
nexte[j] point to the next appropriate edge in this ordering, if such an edge exists.

123

2152 Algorithmica (2019) 81:2123–2157

Fig. 4 An example of Au [] arrays. (1) Some edges of the dictionary, with non uniformly bounded gaps. (2)
The nextei arrays of the edges in (1). (3) Wu,v arrays of some edges, where e∗i refers to a link to edge ei

2. For each pair of vertices u ∈ L and vi ∈ R, an array Wu,i of size β∗ − α∗ + 1
is maintained. Wu,i [j] contains a pointer to e′ = (u′, vi) such that u′ is the lowest
ancestor of u in T (possibly u itself), where e′ = (u′, vi) ∈ Ed and αe′ ≤ j ≤ βe′ .
(thus,Wu,i [j] contains a pointer to e = (u, vi) ∈ ED if αe ≤ j ≤ βe. If αe > j or
j > βe thenWu,i [j] contains a pointer to e′ for e′ = nexte[j].) If no such an edge
exists, thenWu,i [j] is assigned null. Hence,Wu,i [j] gives access to a list of edges
in ED that: (a)touch vi ,(b) touch an ancestor of u in T , and (c) their boundaries
contain j .

3. For each vertex vi ∈ R, a cyclic active window array Activei of size β∗ − α∗ +
M + 1 is maintained, where Activei [j] is a pointer to a list of lists of edges that
need to be reported if vi appears in j − 1 time units from now.

An example of the nexte arrays can be seen in Fig. 4, using the tree structure of
Fig. 2. Note that nexte4 [3] contains a link to e5 while nexte4 [2] contains a link to e2,
since the gap of two locations is legal to both e4 and e2 but not to e5, while the gap of
three locations is legal to e5 as well, and the first subpattern of e5, aaa, is the lowest
common ancestor of the first subpattern of e4, aaa, that has an edge to node ba.
The construction of theWu,i arrays is similar to the construction of Au arrays described
in the previous paragraph. In order to reduce spacewemaintain arrays only for specially

chosen O(

√
d
lsc) vertices in T , such that whenever we need to construct an arrayWu,i

123

Algorithmica (2019) 81:2123–2157 2153

for some vertices u, vi during the query phase, where u is not special, we can construct
Wu,i in O(

√
lsc · d(β∗ − α∗)) time.

The construction of the Wu,i array, given only the Wu,i arrays of the special vertices
uses the following procedure.

1. Initialize all Wu,i entries to null.
2. Let u′ = u
3. While u′ is not a spacial vertex

(a) For every edge e = (u′, vi) ∈ ED , and every αe ≤ j ≤ βe if Wu,i [j] = null,
then set Wu,i [j] = e∗, where e∗ is a pointer to e.

(b) u′ ← the closest ancestor of u′ in T .

4. If u′ is a special vertex, for every entry such that Wu,i [j] = null, set Wu,i [j] =
Wu′,i [j].

Choosing Special Vertices Let the weight of a node u ∈ L , denoted byweight(u), be
the number of entriesWu,i [j] �= null. Notice that the total weight of all of the vertices
in T is O(d(β∗ − α∗)) (as opposed to O(d) in the Au arrays of the uniform case). In

the preprocessing, we partition T into O(

√
d
lsc) small subtrees such that each subtree

has total weight Θ(
√
lsc · d(β∗ −α∗)), except for possibly the subtree containing the

root of T . The special vertices are the roots of these small subtrees. The partitioning
is obtained by (greedily) peeling small subtrees in the bottom of T , as was explained
regarding the Au arrays construction. The partitioning of the tree costs linear time
using a post-order traversal. Also, the total weight of vertices on the path from u to
its closest proper ancestor that is a special vertex is O(

√
lsc · d(β∗ − α∗)), since this

path requires passing two subsequent special vertices if u itself is also a special vertex,
otherwise, we need only find the special vertex which is the ancestor of the subtree u
belongs to. This ancestor, by construction, has total weight of O(

√
lsc · d(β∗ − α∗)).

When the AC-automaton reaches state s in time t , the data structures of the vertices
are updated accordingly, as follows. For each vi ∈ R,

1. The active window array Activei is shifted by one position, by incrementing its
starting position in a cyclic manner.

2. Activei [β∗ − α∗ + M + 1] is cleared (It could have been reported in the previous
query when it was Activei [1]).

For every vertex v associated with a subpattern that is a suffix of the subpattern
represented by state s,

1. For every arrived vertex of the form vi ∈ R,

(a) Let (Wu,i [j], j) = Activei [1]. f irst
(b) While Wu,i [j] �= null do

i. Let Wu,i [j] be a pointer to edge e = (u′, vi) and j the current gap.
ii. while e �= null,

A. Report e ending at t (where its u′ ends at t − mvi − j − 1).
B. e = nexte[j]

iii. Proceed to the next (Wu,i [j], j) in Activei [1] and return to step (b).

123

2154 Algorithmica (2019) 81:2123–2157

2. If the longest recognized subpattern at time t is represented by the arrived vertex
u ∈ L ,

(a) If u is not a special vertex, array Wu,i is constructed.
(b) For each vi ∈ R and for each j , where Wu,i [j] �= null,

i. The pair (Wu,i [j], j) is inserted to Activei [j + mvi + 1], where mvi is
the length of the subpattern corresponding to vi , (since in j + mvi time
units from now, if vi ∈ R arrives we need to report the edges pointed to
by Wu,i [j]).

(c) If u is not a special vertex, array Wu,i is deleted.

Lemma 4 The DMOG problem with non-uniform gap borders, for edges where both
endpoints are heavy, can be solved with O(D + d(β∗ − α∗)) preprocessing time,
O(lsc + √

lsc · d(β∗ − α∗) + op) time per query text character, and O(D+ d(β∗ −
α∗) + √

lsc · d(β∗ + M)) space.

Proof In the preprocessing, the AC automaton is built in time linear in the size of
the dictionary D. The nexte arrays are calculated by going over the tree T from
the root to the bottom and assigning nexte[j] = e′ or nexte[j] = nexte′ [j] where
e = (u, vi), e′ = (u′, vi) ∈ ED and u′ is the closest proper special ancestor of u. This
procedure require O(d(β∗ − α∗)) time. Computing Wu′,i for all special vertices u′
and all i is executed using a top-down approach, similar to the procedure detailed for
the construction of such an array during a query. The time to construct theWu,i arrays
for a special vertex and every vi is O(

√
lsc · d(β∗ −α∗)). Since the number of special

vertices is O(

√
d
lsc) the total preprocessing phase costs O(d(β∗ − α∗)) time.

At query time t each of the lsc vertices recognized by theAC automaton are handled
in case the vertex is vi ∈ R. We scan Activei [1] and report all the edges represented
by each of the Wu,i [j] in it, by following their nexte[j] links. Note that by the nexte
pointer arrays construction, for a given vertex u ∈ L all the multi-edges e = (u, vi)

and all edges (u′, vi), where u′ is an ancestor of u in T , whose boundaries contain j ,
form an implicit list, by considering the pointers nexte[j] for each such edge e. The
elements in Activei [1] require no filtering, as they were inserted to a specific entry
(Activei [j + mvi + 1]), where the occurrence of u will form a legal edge with vi in
accordance with the gap boundaries of e = (u, vi). Hence, reporting the content of
Activei [1] requires time linear in the size of the output.

In case the vertex is u ∈ L , we consider merely the longest subpattern that was
recognized at time t , represented by vertex u. In case u is not a special vertex, the
Wu,i arrays are constructed. The time cost of this process is the total weight of vertices
on the path, from u to its closest special ancestor, and another O(

√
lsc · d(β∗ − α∗))

time for initializing Wu,i for every vi . As the total weight of vertices on the path
from u to its closest special ancestor is O(

√
lsc · d(β∗ − α∗)), the total time cost for

constructingWu,i during a query is O(
√
lsc · d(β∗−α∗)). Given arrayWu,i , for every

vi ∈ R and every α∗ ≤ j ≤ β∗, Wu,i [j] �= null is inserted into the suitable entry of
Activei . Since the number of heavy vertices is bounded by

√
lsc · d , such insertions

require O(
√
lsc · d(β∗ − α∗)) time. The rest of the subpatterns recognized at time t

are suffixes of the subpattern represented by u, thus their edges with vi are included
in the implicit nexte[j] pointers list starting at Wu,i [j]. Hence, handling a vertex of

123

Algorithmica (2019) 81:2123–2157 2155

the form u ∈ L at query time t requires Õ(
√
lsc · d(β∗ − α∗)) time. The union of

the times required for the different cases of vertices concludes the proof of the query
complexity.

Regarding space: The AC automaton requires linear space in the size of the dictio-
naryD. The space requirement for the nexte pointer arrays is

∑
e∈ED

(βe −αe + 1) ≤
d(β∗ − α∗). Every Activei array is of size β∗ − α∗ + M and we have O(

√
d
lsc)

such arrays. In addition, there are O(

√
d
lsc) special vertices, for which we save their

O(
√
lsc · d) Wu,i [j] arrays of size O(β∗ − α∗) each, hence the space consumption

of all the saved Wu,i [j] arrays is O(
√
lsc · d(β∗ − α∗)). The total space required is,

therefore, as stated.
�
Lemmas 2 and 4 yield Theorem 12.

Theorem 12 The DMOG problem with non-uniform gap borders can be solved with
O(D+ d(β∗ −α∗)) preprocessing time, Õ(lsc+√

lsc · d(β∗ −α∗ + M)+ op) time
per query text character, and Õ(D + d(β∗ − α∗) + √

lsc · d(β∗ + M)) space.

References

1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for dynamic problems.
In: Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS)
(2014)

2. Alfred, V.A., Corasick, J.C.: Efficient string matching: an aid to bibliographic search. Commun. ACM
18(6), 333–340 (1975)

3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. (JACM) 42(4), 844–856
(1995)

4. Amir, A., Farach, M., Idury, R.M., La Poutré, J.A., Schäffer, A.A.: Improved dynamic dictionary
matching. Inf. Comput. 119(2), 258–282 (1995)

5. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh, M.: Text indexing
and dictionary matching with one error. J. Algorithms 37(2), 309–325 (2000)

6. Amir, A., Levy, A., Porat, E., Shalom, B.R.: Dictionary matching with one gap. In: Proceedings of the
25th Annual Symposium on Combinatorial Pattern Matching (CPM), pp. 11–20 (2014)

7. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory Comput. 8(1),
69–94 (2012)

8. Bille, P., Gørtz, I.L., Vildhøj, H.W., Wind, D.K.: String matching with variable length gaps. Theor.
Comput. Sci. 443, 25–34 (2012)

9. Bille, P., Thorup, M.: Regular expression matching with multi-strings and intervals. In: Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1297–1308 (2010)

10. Bjørklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Proceedings of of 41st
InternationalColloquiumonAutomata, Languages, andProgramming (ICALP (I)), pp. 223–234 (2014)

11. Brodal, G.S., Gasieniec, L.: Approximate dictionary queries. In: Proceedings of the 7th Annual Sym-
posium on Combinatorial Pattern Matching (CPM), pp. 65–74 (1996)

12. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. (SICOMP)
14(1), 210–223 (1985)

13. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor. Comput. Sci. 411(40–42),
3795–3800 (2010)

14. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t
cares. In: Proceedings of the 36 Annual Symposium on Theory of Computing (STOC), pp. 91–100
(2004)

15. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, 2 reised
edn, ch. Section 10.1: Interval Trees (ed.), p. 212217. Springer, Berlin (2000)

123

2156 Algorithmica (2019) 81:2123–2157

16. Fredriksson, K., Grabowski, S.: Efficient algorithms for pattern matching with general gaps, character
classes, and transposition invariance. Inf. Retr. 11(4), 335–357 (2008)

17. Grønlund, A., Pettie, S.: Threesomes, degenerates, and love triangles. In: Proceedings of 55th IEEE
Anuual Symposium on Foundation of Computer Science (FOCS), pp. 621–630 (2014)

18. Haapasalo, T., Silvasti, P., Sippu, S., Soisalon-Soininen, E.: Online dictionary matching with variable-
length gaps. In: Proceedings of International Symposium on Experimental Algorithms (SEA), pp. 76–
87 (2011)

19. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for
dynamic problems via the online matrix-vector multiplication conjecture. In: Proceedings of the 47th
Annual ACM Symposium on Theory of Computing (STOC), pp. 21–30 (2015)

20. Hofmann, K., Bucher, P., Falquet, L., Bairoch, A.: The PROSITE database, its status in 1999. Nucl.
Acids Res. 27(1), 215–219 (1999)

21. Hon, W.-K., Lam, T.-W., Shah, R., Thankachan, S.V., Ting, H.-F., Yang, Y.: Dictionary matching with
uneven gaps. In: Proceedings of the 26th Annual Symposium on Combinatorial Pattern Matching
(CPM), pp. 247–260 (2015)

22. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. (SICOMP) 7(4), 413–423
(1978)

23. Kopelowitz, T., Pettie, S., Porat, E.: Dynamic set intersection. In: Proceedings of the 14th International
Symposium on Algorithms and Data Structures (WADS) (2015)

24. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3-sum conjecture. In: Proceedings
of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2016)

25. Kucherov, G., Rusinowitch, M.: Matching a set of strings with variable length don’t cares. Theor.
Comput. Sci. 178(1–2), 129–154 (1997)

26. Morgante, M., Policriti, A., Vitacolonna, N., Zuccolo, A.: Structured motifs search. J. Comput. Biol.
12(8), 1065–1082 (2005)

27. Mortensen, C.W.: Fully dynamic orthogonal range reporting on RAM. SIAM J. Comput. 35(6), 1494–
1525 (2006)

28. Eugene, W., Myers, G.: A four russians algorithm for regular expression pattern matching. J. ACM
39(2), 430–448 (1992)

29. Myers, G., Mehldau, G.: A system for pattern matching applications on biosequences. CABIOS 9(3),
299–314 (1993)

30. Navarro, G., Raffinot, M.: Fast and simple character classes and bounded gaps pattern matching, with
applications to protein searching. J. Comput. Biol. 10(6), 903–923 (2003)

31. Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of 42nd ACM
Symposium on Theory of Computing (STOC), pp. 603–610 (2010)

32. VerInt.: Personal communication (2013)
33. Zhang, M., Zhang, Y., Liang, H.: A faster algorithm for matching a set of patterns with variable length

don’t cares. Inf. Process. Lett. 110(6), 216–220 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Amihood Amir1,2 · Tsvi Kopelowitz1,3 · Avivit Levy4 · Seth Pettie3 ·
Ely Porat1 · B. Riva Shalom4

B Avivit Levy
avivitlevy@shenkar.ac.il

Amihood Amir
amir@cs.biu.ac.il

Tsvi Kopelowitz
kopelot@gmail.com

123

http://orcid.org/0000-0002-1686-0094

Algorithmica (2019) 81:2123–2157 2157

Seth Pettie
ettie@umich.edu

Ely Porat
porately@cs.biu.ac.il

B. Riva Shalom
rivash@shenkar.ac.il

1 Bar-Ilan University, Ramat Gan, Israel

2 Johns Hopkins University, Baltimore, USA

3 University of Michigan, Ann Arbor, USA

4 Shenkar College, Ramat Gan, Israel

123

	Mind the Gap!
	Online Dictionary Matching with One Gap
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 New Results

	2 3SUM: Conditional Lower Bounds
	3 The Induced Subgraph Problem
	3.1 Unbounded Edge Occurrences
	3.2 Uniformly Bounded Edge Occurrences
	3.3 Non-uniformly Bounded Edge Occurrences

	4 Solving DMOG
	4.1 DMOG via Graph Orientations
	4.2 DMOG via Threshold Orientations
	4.2.1 Edges Connecting at Most One Heavy Vertex
	4.2.2 Edges Connecting two Heavy Vertices

	References

