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a significant improvement in health care and increased

life expectancy. As a result, there has been a substantial
growth in the number of older adults around the globe, and
that number is rising. According to a United Nations report,
between 2015 and 2030, the number of adults over the age of
60 is projected to grow by 56%, with the total reaching nearly
2.1 billion by the year 2050 [1]. Because of this, the cost of
traditional health care continues to grow proportionally. Ad-
ditionally, a significant portion of the elderly have multiple,
simultaneous chronic conditions and require specialized ge-
riatric care. However, the required number of geriatricians to
provide essential care for the existing population is four times
lower than the actual number of practitioners, and the demand-
supply gap continues to grow [2]. All of these factors have cre-
ated new challenges in providing suitable and affordable care
for the elderly to live independently, more commonly known
as aging in place.

Advances in engineering and health science have brought

Prioritizing proactive care

The driving goal is to keep individuals, especially the elderly,
healthy at home through proactive care, while also facilitat-
ing remote reactive care when needed rather than requiring
frequent visits to the doctor. Proactive care can minimize the
physical and mental stress associated with regular hospital-
ization for the elderly and significantly reduce the financial
burden for both patients and the health-care system. Both pro-
active and remote reactive care can be enabled through con-
tinuous, holistic monitoring of the user’s health status, daily
activities, and behavioral patterns with multimodal sensors in
a naturalistic environment. The simultaneous application of
both proactive and reactive care, in turn, can promote the use
of diagnostic testing to avoid adverse medical outcomes and
alleviate the burden on the user as well as the health-care sys-
tem. In this regard, homes equipped with sensors and smart
systems, also known as smart homes, designed for the benefit
of the aging residents will enable both short-term monitoring
for remote reactive care (e.g., monitoring cardiac activity in
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response to newly prescribed medication) and long-term moni-
toring for proactive care (e.g., tracking adherence to prescribed
exercise routines or suggesting lifestyle modifications based
on observed behavioral trends of the user).

By using wearable and environmental sensors, wireless
sensor networks, and sensing devices that can monitor critical
health parameters, we will be able to gather physiological and
behavioral data continuously. The key lies in building intel-
ligent, efficient algorithms that can provide valuable insights
from daily patterns, e.g., from the changes in a user’s gait pat-
terns or eating habits. The new algorithms could also enable
predictions of future irregularities, allowing us to turn these
predictions into actionable information impacting the quality
of life and care delivery, while offering opportunities for adap-
tive interventions and personalized medicine.

In this article, we present several noteworthy investigations
in the field of smart homes and assisted living applications and
categorize the important research areas. In particular, we dis-
cuss the required technology support including 1) sensors and
connectivity solutions, 2) signal processing and data analytics
that operate on sensor data and extract actionable information,
and 3) information delivery and visualization paradigms that
provide the actionable information to the end-users and stake-
holders. We will provide in-depth analysis of the challenges
and discuss the benefits of smart home technology for aging
in place.

While there have been some previous surveys done on smart
homes, these surveys are either limited in their scope or fail to
provide research direction or opportunities. For example, one
recent survey focuses on smart home technologies for activity
recognition and its impact on health care in general [3], while
another focused on the technology readiness and the effective-
ness of existing smart home technologies to address some of
the complex health issues faced by older adults but does not
provide any guidelines for future researchers [4]. Unlike these
previous surveys, this work focuses on the key challenges asso-
ciated with aging in place for the elderly, considers diverse
application drivers, and presents a clear outline of the most im-
portant research areas and opportunities for future work.

Application case studies: Major smart home projects
for aging in place

In general, smart home projects for aging in place mainly fo-
cus on monitoring the health and well-being of elderly persons
through sensors tagged on the habitat (doors, walls, ceiling,
and so on), sensors in/on household objects (small appliances,
beds, couches, and others), or sensors worn by the users (i.e.,
wearable devices). Monitoring the daily activities and behav-
ioral patterns of a dweller in a smart home environment can be
a key factor for facilitating aging in place. Daily activities can
include basic efforts like walking, sleeping, personal groom-
ing, toilet usage, self feeding, and so on or instrumental tasks
such as food preparation, cleaning, the use of communication
tools (e.g., telephones), and watching TV, along with others.
Professionals in health care use the term activities of daily liv-
ing (ADL) to refer to the daily activities that a person normally

performs, and it can be used to define functional capacity, es-
pecially that of an elderly person.

Several studies have investigated systems based on habi-
tat sensor networks and household object sensor networks for
monitoring ADL. Suryadevara et al. propose an activity detec-
tion system consisting of a wireless sensor network, which has
the objective of wellness detection [5]. The sensor network
consists of current sensors placed at power outlets to detect the
use of electrical appliances, flexible pressure sensors to detect
activity around nonelectrical objects (e.g., beds and sofas),
and a Zigbee-based mesh network protocol for connectiv-
ity. Through the use of a conditional probabilistic model, this
method achieves an overall accuracy of 94% in detecting and
forecasting daily activities. Another study that leverages wire-
less sensor networks for recognizing ADL was conducted by
Ghayvat et al. [6]; it also uses a Zigbee mesh topology for the
network. Their system employs power outlet sensors for moni-
toring the use of electrical and electronic devices, pressure and
contact sensing, passive infrared (PIR)-based movement sens-
ing, and temperature-monitoring units, all connected through
Zigbee-based radio-frequency (RF) modules. This particular
investigation also reports on the interference and attenuation
issues of the wireless network when implemented in a smart
home. A common factor between these two investigations,
besides ADL recognition, is the use of parameters called well-
ness indices or wellness functions to quantify the well-being
of an elderly person. Both studies leverage the measurement of
active versus inactive time intervals of different appliances to
estimate wellness.

Fleury et al. propose a support vector machine (SVM)-
based ADL recognition mechanism leveraging a variety of
sensors including wide-angle webcams, microphones, and
contact sensors to detect the opening and closing of doors,
infrared (IR) sensors to detect the presence of a subject in a
room, and wearable motion sensors (i.e., three-axis accelerom-
eter and magnetometer) [7]. The authors suggest tagging the
habitat with sensors rather than objects to simplify the design
and implementation. This work considers seven basic ADL
(including eating, sleeping, toilet usage, and so on) and uses
multiclass SVMs to classify them, with accuracies ranging
from 97.8% to 64.3% depending on the activity.

While the prior studies reported impressive accuracy levels
for detecting ADL, these systems have been designed with static
requirements and do not consider the possible variations in the
application and usage of the system and variations in the envi-
ronment. The detection and system architecture requirements
may vary from one application to another, and it is important to
maintain the concept of adaptability and tuning of the accuracy,
sensitivity and the specificity requirements of the ADL detec-
tion. This typically translates to tuning of system architecture,
sensors, and the optimization process, accordingly. Additional-
ly, the output of the ADL recognition may need to be represent-
ed in various forms, including deterministic and probabilistic,
which is not present in the proposed case studies.

Moving away from detection of ADL, Kim et al. proposed
an alternative method of inferring the well-being of an elderly
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person using location information [8].
Their method incorporated an RF iden-
tification (RFID)-based indoor tracking
system that used location information
in association with the durations of
stay in different locations of the home
to infer information such as movement
patterns, and the frequency of certain
location-specific activities (e.g., using
the toilet or sleeping in the bedroom)
to estimate the well-being of an elder-
ly dweller.

While most investigations in smart
home technology consider only a single
user, this is not necessarily the case in a
real home environment. Moreover, rec-
ognizing multiple users could enable
detection of social interactions associ-
ated with wellness. The recognition of
ADL in a multiuser setting is challenging due to two addi-
tional requirements: 1) identifying each of the dwellers and
2) accommodating a more complex set of activities involving
multiple persons. Wang et al. presented a multiuser activity
recognition system in a smart home setting using wearable
audio sensors, actimetry sensors (e.g., accelerometer, tem-
perature, humidity, and light), and RFID tags [9]. This sys-
tem achieved a maximum accuracy of 98.59% in detecting
single-user activities and 95.91% in detecting multiuser activi-
ties. While these results are admirable, one shortcoming is that
the single- and multiuser activities are predefined and distinct;
this may not be the case in a real-world scenario where these
two different types of activities can overlap. Another system
by Mokhtari et al., which uses PIR-based occupancy sensors
and ultrasound arrays, performs human identification among
multiple users and reports 100% accuracy [10]. This system,
which uses Bluetooth Low Energy for connectivity and has
been designed with energy efficiency in mind, recognizes
different users based on their height and detects movement
direction and speed to monitor a user. One shortcoming of this
system is that the height difference between each of the users
has to be at least 4 cm for the algorithms to operate with an
acceptable level of accuracy.

An open question is a uniform, generalizable, and quan-
tifiable description of the well-being of an older adult. While
two of the studies mentioned in this section presented wellness
indices, they each had different definitions for the term; the
research community for this application space could benefit
from a more standardized definition of this wellness index to
appropriately assess the effectiveness of smart home systems
in estimating wellness. A standardized definition can also
help determine ADL of relevance, which in turn can dictate
the number and type of sensors used in the smart home. One
approach that has been previously explored to bridge this gap is
to establish relationships between recognized ADL and clini-
cally established mobility and cognitive tests such as Timed
Up and Go and Repeatable Battery for the Assessment of Neu-
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FIGURE 1. The common sensors that are used to support aging in place.

ropsychological Status [11]. Additionally, there are opportuni-
ties to create such generalizable or disorder-specific wellness
indices, potentially customized to individuals by compar-
ing the observed trends to each user’s baselines, thus offering
insights for improvement and progress.

Sensors and connectivity paradigms

Sensors are crucial for measuring data from individuals and
environments. These sensors can be discrete (e.g., contact
switches) or continuous (e.g., physiological sensors) observing
devices [3]. Figure 1 presents an overview of various sensor
types that have been used with the diverse range of complex
monitoring and automation tasks for aging in place.

It is rarely the case that a single sensor type is sufficient for
quantifying the health and well-being of a person; therefore,
multiple sensors are often combined to achieve specific goals.
For the same target phenomenon, different sensors have their
own observations with different levels of noise and reliability.
In a survey on fall detection and activity recognition in elder-
ly care by Abbate et al. [12], the authors highlight the use of
vision-based sensors and environmental and/or wearable sen-
sors such as inertial sensors for fall detection in a home setting.
Vision-based sensors are reliable and can depend on sophisti-
cated image-recognition algorithms; however, it is costly and
time consuming to install these cameras, and there are sig-
nificant privacy concerns associated with this modality. Envi-
ronmental sensors, such as IR or pressure sensors placed on
household objects, offer a cheaper alternative that preserves
privacy; yet they are limited to sensing only the specific
spaces/objects on which they are placed. Wearable sensors,
such as an inertial sensor on an ankle strap, are user centric
and allow ubiquitous, unrestricted monitoring at low cost,
unlike vision and environmental sensors. Nevertheless, data
from wearable sensors can be challenging to interpret due to
noise from motion artifacts, misleading data due to improp-
erly worn sensors, or missing data due to sensors occasion-
ally not being worn at all. There is an opportunity to develop
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generalizable sensor selection techniques that consider the
complementary nature of the sensors in the context of the end-
application requirement.

Functional monitoring is also particularly important in
smart homes to support aging in place for the elderly. Research
supports the notion that a variety of factors, including physical
and intellectual activity, social engagement, and nutrition, all
contribute to optimizing cognitive health in the aging popula-
tion [13]. To enable the monitoring of mental health, a com-
bination of different sensing modalities is imperative, such as
using PIR or inertial sensors for physical activity monitoring,
acoustic sensors for social monitoring, and vision-based sen-
sors for nutrition assessment. In addition to functional monitor-
ing, physiological monitoring is also of particular importance
toward achieving the goal of aging in place. This can include
the detection of emergency situations such as falls using wire-
less networks [12], continuous monitoring of existing chronic
conditions, e.g., dementia or cardiac health [14], and moni-
toring of sleep health using motion sensors [15]. Wood et al.
presented a wireless sensor network system called AlarmNet,
which integrates environmental, physiological, and activity
sensors in a single architecture [16]. The AlarmNet system is
unique because it enables improved power conservation by
anticipating which sensors should be active and which should
be disabled by analyzing the behavioral pattern of the user.
Additionally, the system is designed with flexibility, which
allows for the integration of new sensors and ad hoc deploy-
ment into existing structures.

Sensor selection and ease of deployment are a critical
challenges in the design of smart homes for aging in place.
The types and number of sensors to be deployed should not
become a burden for the user. Human factors, such as ease of
use even with declining levels of function and cognition, must
be taken into consideration when designing and deploying the
sensors [17]. Some key factors that contribute to technology
acceptance, particularly among older adults, include perceived
usefulness and ease of use, as well as personal characteristics,
e.g., functional ability [18]. In noncritical cases, it is unlikely
that older adults will be inclined to keep up with constantly
changing technology developments in the form of new wear-
ables and environmental technology to be deployed in the
home. Therefore, there is an opportunity to leverage existing
sensors that were designed for a different purpose for a new
sensing paradigm that can, for example, evaluate mobility,
social engagement, and loneliness [19]. Additionally, minimiz-
ing the number of sensors required would ease communica-
tion bandwidth, energy efficiency, costs, and user acceptance
concerns. For example, wireless sensor networks can be used
not only for daily activity monitoring but also for monitoring
sociability and detecting emergencies. To facilitate this, sen-
sors provide the recorded data as well as a quality measure
for the data, e.g., a wrist-worn heart-rate monitor can not only
detect the heart rate but also the confidence in the heart rate
observations and the quality associated with the data, which
could be impacted by motion artifacts and can be measured
by motion sensors.

The connectivity among different sensors can be realized
using wireless sensor networks comprising Bluetooth, RF,
Zigbee, RFID, ONE-NET, Wi-Fi and so on and even wired
connections like serial communication, Multimedia over Coax
Alliance, and Ethernet to create a smart environment. How-
ever, challenges exist with numerous communication proto-
cols that are often incompatible at various networking layers,
and the existence of varying throughput requirements on sen-
sor outputs and data increases communication complexity
[20]. Communication among several high- and low-end sensor
nodes has to be established while taking into consideration
constraints of the sensor nodes in question. There is currently
no unified software interface to collect data from sensors,
and this makes it challenging to interface existing sensor data
streams with new software since the requirements and speci-
fications are often incompatible. This presents an opportunity
for the development of a unified and standard software inter-
face for sensors.

With the growing number of sensors and interconnected
systems for aging in place, the requirements for privacy of
personal data and secured end-to-end connections become
critical. Security can be enforced on two levels: device-level
security includes hardware encryption and access control in
stand-alone devices, while network- and system-level secu-
rity include encryption of network traffic, source blocking,
and authentication.

Smart home technologies use a diverse range of communi-
cation techniques, and the use of Internet protocol connectiv-
ity provides the bridge among these devices [21]. However, the
use of Internet communication brings the challenge of dealing
with cybertheft, data manipulation, unauthorized access, and
other such undesirable events. Organizations like the Internet
Engineering Task Force continue to work toward the standard-
ization of security in data exchange protocols and enhancing
Datagram Transport Layer Security [21]. One investigation of
network security by Sivaraman et al. proposes augmentation
of network-level security measurements with device-level pro-
tection and implements a prototype consisting of a third-party
architecture and associated application programming inter-
faces [22]. The authors also report the security vulnerability
of some commercial Internet of Things products and evaluate
their implemented software-defined network platforms’ pro-
tection efficacy.

A number of cryptography methods are used in a variety of
security scenarios. RFID-based authorization schemes are see-
ing increased use, and elliptic curve cryptography is a popular
technique used in health-care environments. In their review
of several recent works on elliptic-curve-cryptography-based
RFID schemes, He et al. considered computation and commu-
nication costs as well as several security requirements to com-
pare performances [23]. The authors report that very few works
satisfy all security requirements while keeping the cost in an
acceptable range. Thus, the establishment of secure protocols
for communication among devices subject to the application
requirements remains an important research opportunity to
realize smart homes for aging in place.
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Signal processing and data analytics

Signal processing and data analytics in the context of a smart
home signify the effective fusion of data from multiple het-
erogeneous sensors, knowledge extraction, and production of
actionable information (see Figure 2). Signal processing is re-
quired to process noisy signals to observe fine-grained infor-
mation over short time periods, such as the response to blood
pressure medication over several minutes/hours. In contrast,
data analytics can provide more coarse-grained information
over several weeks/months after recognizing long-term trends
and potentially making predictions and providing feedback to
stimulate behavioral changes. Moreover, in a smart home en-
vironment with a multitude of sensors tracking the user’s loca-
tion and activity, these approaches can exploit the knowledge
of context to improve estimates.

Many different signal processing techniques have been
implemented for the purpose of monitoring the health and
well-being of occupants in smart homes. Zheng et al. used a
self-adaptive neural network called Growing Self-Organizing
Maps (GSOM) for human activity detection in a smart home
environment [24]. Starting with an initial network composed
of four neurons on a two-dimensional (2-D) grid, the GSOM
network adapted during training to determine the winning
neuron for each input data and updated the associated weight
vectors. One drawback of this approach is that several param-
eters of the network need to be determined in advance through
heuristic trial and error; hence, there is scope here to augment
this approach with other machine-learning techniques. Apart
from traditional learning methods such as the SVM, some
recent machine-learning methods such as temporal neural
networks, the hierarchical hidden semi-Markov model, and
intertransaction association rule have been used for activ-
ity recognition in smart homes and assisted living spaces.
Another machine-learning approach is to strategically com-
bine knowledge from various sensors to validate the extracted
knowledge and minimize false alarms in emergency detec-
tion. Tabar et al. combined wearable accelerometers based on
a threshold-based method to detect sudden movements of the
user [25]. These sudden events triggered an environmental
camera within the space to perform position estimation using
simultaneous visual observations and vision-based reasoning.
These multisensor learning approaches dovetail well with the
requirement for multiple heterogeneous sensors, as described
in the previous section.

One challenge is to design algorithms in such a way that
the required number of sensors for a given application is opti-
mized [16]. Relying on too few sensors increases the likelihood
of the algorithm producing false alarms, which is undesirable,
especially in the case of emergency-aware applications. Con-
versely, an algorithm that relies on too many sensors increases
complexity, causing energy and resource consumption for the
target smart home system to rise.

Adaptive learning models like GSOM allow the learned
algorithms to change and improve with the constantly changing
physical environment [24]. For example, a two-occupant home
can temporarily become a one-occupant home due to illness,
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FIGURE 2. The objective of signal processing for aging in place.

travel, or a change in schedule, and sensors may be added or
removed from the network arbitrarily. Therefore, fixed-learn-
ing models pose a challenge and can quickly become obsolete.
Additionally, the framework should accommodate customiz-
able models for different users; training for specific users will
likely focus the accuracy of the learned model on the informa-
tion that each individual provides, as opposed to expecting a
generalized single model to fit a diverse, heterogeneous popu-
lation. Therefore, an opportunity exists to automatically estab-
lish customizable learning models. Given the dynamic nature
of the sensor network, transfer learning becomes an important
opportunity, i.e., effectively transferring the user behavior and
parameters learned through one set of sensors in one environ-
ment to another set of sensors in a new environment.

Furthermore, large amounts of unlabeled data sets from
in-home settings already exist; therefore, a research oppor-
tunity lies in improving automatic or semiautomatic labeling
techniques of unknown or new data streams. Manual labeling
of large volumes of data is not feasible or realistic, so algo-
rithms that can label new data sets from the extracted knowl-
edge gained from a small training set are highly attractive
and desired.

A smart home collecting data about a user continuously and
persistently via multiple sensors represents a valuable base for
longitudinal studies. Evaluations of the performance of certain
physical activities can be used to predict health conditions in
the older population, while meaningful change detection over
time is crucial for proactive health care. Active intervention to
help users mold their habits and activities can be the key to pro-
active health care, as opposed to reactively attending to adverse
events after they happen.

However, it is often difficult for users themselves to observe
the subtle changes over time because chronic syndromes often
progress very slowly and short-term observations may be quite
noisy. Thus, an intelligent home-based system is required for
continuous, longitudinal, and unobtrusive assessment of the life
pattern changes of dwelling older adults. Moreover, by observ-
ing the changes over time, an algorithm can predict future
trends and possibly avoid undesirable outcomes. In smart home
environments, sensor data have been widely used for longitu-
dinal and continuous study concerning daily activities, sleep
patterns, gait velocity, and loneliness, among others.

Unusual routines of residents are identified by tracking their
mobility and recognizing their daily activities (e.g., sleeping,
grooming, and eating) based on the collected sensor data, result-
ing in an interesting observation on the statistically significant
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correlation between the changes of daily activities (e.g., mobil-
ity scores) and the changes in a clinical measure of global cog-
nitive health [26].

Sleep patterns, a special case of daily activities, convey
information critical for assessing human wellness. Mihaili-
dis et al. focused on studying sleep patterns and proposed an
approach to measure sleep hygiene of elders over a six-month
period [15] in which both acute and slow changes in the sleep
patterns are successfully identified. Considering the potential
for gait velocity to predict morbidity and mortality, Hagler
et al. estimated walking speed from noisy time and location
data collected by a sensor line of restricted-view PIR motion
detectors [27]. For the approaches presented in both of these
works, there is still an open research opportunity to validate
the measured trends with known clinical measures to ensure
the recorded long-term data are beneficial. Besides the afore-
mentioned unusual physical behavior, mental aspects such
as loneliness are also closely related to increased morbidity
and mortality, which may lead to decreased sleep quality and
increased risk of cognitive decline [19]. Nevertheless, assess-
ing loneliness in older adults is challenging due to the negative
desirability bias associated with being lonely. To circumvent
this problem, Austin et al. propose a system to measure loneli-
ness by assessing in-home behavior using wireless motion sen-
sors, contact sensors, and phone monitors [19].

One important challenge that these kinds of long-term stud-
ies face is the lack of a gold-standard ground truth for the tar-
get parameters. It is extremely difficult to track the true health
condition of an older adult for long periods continuously with-
out unduly inconveniencing the user. It is also a challenge to
remain impervious to occasional external factors that can com-
promise the integrity of the data, such as motion artifacts or
improperly worn sensors. This makes it even harder to validate
the results from any new proposed analytical techniques and
push the boundaries of longitudinal studies.

For information retrieval and mining of large-scale data,
state-of-the-art database techniques should be employed to
optimize the structure of data storage and accelerate the process
of information retrieval. Cloud storage must also be taken into
consideration for storing very-large-scale data, as long as the
privacy and security issues of cloud storage can be addressed
successfully. There are research opportunities here to develop
feasible and scalable data organization and mining techniques.
This also ties into data delivery, wherein the health-care pro-
vider must be able to quickly and easily access the required
subset of user information from a large data set.

Information delivery paradigms and visualization

Given the human-centered nature of smart homes, informa-
tion delivery to the user must remain seamless and effective. In
smart home environments, the raw data collected via different
sensors are overwhelming and may require domain-specific
knowledge, which will introduce challenges in terms of data
interpretability. Older adults with potentially diminished cog-
nitive ability and scarce domain knowledge will be challenged
to understand the overwhelming quantity of data. Moreover,

the information delivery system may need to provide informa-
tion not only to the care recipients but also to their caregiv-
ers, clinicians, and family members. This necessitates novel
summarization techniques that leverage advanced algorithms
to convert raw data into relevant, customizable, and compre-
hensible summaries for the different viewers. This provides
the care recipients with insight into their health conditions
and the caregivers the information to make knowledgeable
clinical decisions.

An information delivery system typically consists of two
components: algorithms for summarizing the information and
an interface for information delivery. Data summarization is
an important component, as the vast amounts of raw data from
sensors need to be synthesized and formatted in such a way
that the user can quickly and intuitively grasp actionable infor-
mation. Summarization tools should provide sufficiently rele-
vant information to the caregivers while considering the health
conditions of the care recipients. These tools should not only
work with large amounts of heterogeneous data and leverage
machine-learning techniques but also remain cognizant of the
clinical utility of the information delivered.

Furthermore, considering each care recipient’s unique behav-
ior can maximize the usefulness of the output; it is an essential
task to design visualization tools that can deliver interpretable
information in an accessible manner, especially for older adults
with potentially diminished cognitive and sensory capacity.
Thus, the paradigms must be thoughtfully designed with mul-
tiple pathways of delivery to robustly handle potential sensory
impairments. Examples of different information delivery para-
digms are shown in Figure 3.

When it comes to communicating the summarized infor-
mation, the visualization formats can be quite diverse, rang-
ing from a simple health score statistical visualization (e.g.,
plots and charts) to complicated 2-D or three-dimensional
renderings of the complete smart home space. Thomas et al.
present a suite of visualization tools called PyViz that uses
algorithms to track the position of residents and provide an
interactive graphical interface through which users can view
the smart home system in real time and gain access to histori-
cal trends [28]. Chen et al. present a web-based visualization
system (CASASviz) that takes this visualization technique one
step further with a consumer-centric design [29]. Specifically,
CASASviz applies data mining and machine-learning tech-
niques to recognize user behavior patterns and detect unex-
pected changes that may be indicative of a decline in health
status. Moreover, the visualization format of CASASviz can be
customized to highlight the events of particular interest via a set
of user-defined rules. Although CASASviz is among the earli-
est efforts to develop human- and consumer-centric visualization
tools, research investigations on health visualizations from a
consumer perspective remain scarce, especially for older adults.
Age-dependent visualization has attracted research interest, tak-
ing normal, age-associated changes into consideration, such as
deteriorated visual functions and reduced information process-
ing efficiency [30]. For instance, graphical interfaces should
remain as succinct as possible since older adults often have
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difficulties locating target items in a cluttered background. There
is a research opportunity to explore intuitive delivery mecha-
nisms beyond traditional displays. Visual information can
be depicted in various forms, such as wall projections, smart
lights, or even a single light-emitting diode customizable for
various applications. Besides visual representation, informa-
tion can also be delivered in other forms, including audio feed-
back and vibrotactile feedback.

Consumer-centric and disorder-specific visualization tools
remain largely unexplored. Older adults with diverse health
conditions and disorders may require more degrees of free-
dom to customize the information delivery according to their
needs and capabilities. They may also want to prioritize view-
ing information that is relevant to their specific condition.
However, the information delivery via current visualization
techniques is generally fixed and ad hoc, and thus cannot be
tailored to the specific requirements of different groups of
older adults.

Finally, one important challenge is to cater to specific needs
and display only the information of particular interest exclud-
ing redundant information at the right time. The information
delivery methods must remain context-aware, which can help
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circumvent challenges associated with information overload
that can ultimately lead to insensitivity to the information pre-
sented and negatively impact outcomes.

As previously mentioned, the privacy of personal informa-
tion is a major concern in the context of smart homes for aging
in place. Therefore, in any discussion of user interface and
information delivery mechanisms we must also consider the
privacy of the user. While there are many sophisticated algo-
rithms and encryption mechanisms, care should be taken to
ensure the right balance between protection of data and ease
of use for senior citizens as well as any potential caregivers.
User interfaces, like the one designed by Sivaraman et al. in
which the user can choose between different security and pri-
vacy settings for different household devices, might be one of
the solutions [22]. However, it can be argued that overzealous
protection of information might hamper the overall goal of a
health-monitoring smart system if users are not careful about
the choices they make. So the challenge is not only to design
user-friendly interfaces to protect privacy but also to provide
proper privacy awareness among users.

An important research effort is the development of data
obfuscation techniques to protect the fundamental privacy
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rights of the user while still providing health-care providers
with sufficient actionable data.The use of lightweight authori-
zation and encryption techniques for battery-operated devices
is another research opportunity in this regard. Researchers
should also consider designing contextual privacy-protection
interfaces and devices to improve user discretion while keep-
ing the balance between protection of personal information
and the performance of the system in terms of achieving its
goals. For example, the privacy-protection mechanism for an
online purchase that could be viewed as typical should be dif-
ferent from that used for a transaction that would reveal impor-
tant information about the user.

Condlusions

In this article, we identified some of the research challenges
and opportunities associated with the key aspects of a smart
home system with the objective of enabling aging in place.
Many of the known problems in the fields of smart home sens-
ing, signal processing, analytics, and visualization require so-
lutions that are cognizant of the specific needs of the elderly.
‘We highlighted several relevant recent works in the area to give
the readers a perspective on the current status, while also pre-
senting the necessary future directions of research to realize
the vision of aging in place.
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