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An RNA sequence is a string composed of four types of nucleotides, A, C, G , and U . The goal 
of the RNA folding problem is to find a maximum cardinality set of crossing-free pairs of 
the form {A, U } or {C, G} in a given RNA sequence. The problem is central in bioinformatics 
and has received much attention over the years. Abboud, Backurs, and Williams (FOCS 
2015) demonstrated a conditional lower bound for a generalized version of the RNA folding 
problem based on a conjectured hardness of the k-clique problem. Their lower bound 
requires the RNA sequence to have at least 36 types of symbols, making the result not 
applicable to the RNA folding problem in real life (i.e., alphabet size 4). In this paper, we 
present an improved lower bound that works for the alphabet size 4 case.
We also investigate the Dyck edit distance problem, which is a string problem closely 
related to RNA folding. We demonstrate a reduction from RNA folding to Dyck edit distance 
with alphabet size 10. This leads to a much simpler proof of the conditional lower bound 
for Dyck edit distance problem given by Abboud, Backurs, and Williams (FOCS 2015), and 
lowers the alphabet size requirement.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An RNA sequence is a string composed of four types of nucleotides, namely A, C, G , and U . Given an RNA sequence, the 
goal of the RNA folding problem is to find a maximum cardinality set of crossing-free pairs of nucleotides, where all the 
pairs are either {A, U } or {C, G}. The problem is central in bioinformatics, and it has found application in predicting the 
secondary structure of RNA molecules, which is of importance in molecular biology; see e.g., [2] for more details.

It is well-known that the RNA folding problem can be solved in O (n3) time via dynamic programming [3]. Due to the 
importance of the problem in practice, there has been a long line of research aiming at improving the runtime, practically or 
theoretically [4,2,5–7]. Based on log-shaving techniques such as the four-Russian method, the time complexity of O  

(
n3

log2 n

)
can be obtained [6].

Whether the RNA folding problem can be solved in truly sub-cubic time (i.e., O (n3−ε ) time for some constant ε > 0) had 
been a major open problem until recently. In 2016, Bringmann, Grandoni, Saha, and Williams [8] showed that the problem 
can be solved in randomized O (n2.8244) time and deterministic O (n2.8603) time via fast bounded-difference min-plus matrix 
multiplication. The RNA folding problem can be reduced to min-plus matrix multiplication [8]. The current state-of-the-art 
algorithm for min-plus matrix multiplication [9] takes O (n3/c

√
log n) time, for some constant c > 1. Using this algorithm, one 
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immediately obtains an RNA folding algorithm with the same time complexity. Bringmann, Grandoni, Saha, and Williams 
observed that the min-plus matrix multiplication instance resulting from the reduction has the “bounded differences” prop-
erty, and they showed that bounded-difference min-plus matrix multiplication can be solved in truly sub-cubic time [8].

The algorithm of [8] uses fast matrix multiplication, which does not perform very efficiently in practice. It is still an open 
question whether there is a combinatorial, non-algebraic, truly sub-cubic time algorithm for RNA folding.

1.1. Conditional lower bounds

A popular way to show hardness of a problem is to demonstrate a lower bound conditioned on some widely accepted 
hypothesis.

Conjecture 1 (Strong exponential time hypothesis). There exist no ε > 0 and k0 > 0 such that k-SAT with n variables can be solved in 
time O (2(1−ε)n) for all k > k0 .

Conjecture 2 (k-clique conjecture). There exist no ε > 0 and k0 > 0 such that k-clique on graphs with n nodes can be solved in time 
O  

(
n(ω−ε)k/3

)
for all k > k0 , where ω < 2.373 is the matrix multiplication exponent.

For instance, assuming Strong Exponential Time Hypothesis (SETH), the following bounds are unattainable for any ε > 0: 
(i) an O (nk−ε) algorithm for k-dominating set problem [10]; (ii) an O (n2−ε) algorithm for dynamic time warping, longest 
common subsequence, and edit distance [11–13]; (iii) an O (m2−ε) algorithm for (3/2 − ε)-approximating the diameter of a 
graph with m edges [14].

As remarked in [15], it is straightforward to reduce the longest common subsequence (LCS) problem on binary strings 
to the RNA folding problem as follows. Given two binary strings X, Y , let X̂ ∈ {A, C}|X | be a string defined as X̂[i] = A if 
X[i] = 0, and X̂[i] = C if X[i] = 1; similarly, let Ŷ ∈ {G, U }|Y | be a string defined as Ŷ [i] = U if Y [i] = 0, and Ŷ [i] = G if 
Y [i] = 1. Then we have an 1-1 correspondence between RNA foldings of X̂ ◦ Ŷ R (i.e., concatenation of X̂ and the reversal 
of Ŷ ) and common subsequences of X and Y . It has been shown in [13] that there is no O (n2−ε)-time algorithm for LCS 
on binary strings, assuming SETH. Thus, we immediately obtain the same conditional lower bound for RNA folding.

Abboud, Backurs, and Williams demonstrated a higher conditional lower bound for a generalized version of the RNA fold-
ing problem (which coincides with the RNA folding problem when the alphabet size is 4) from the k-clique Conjecture [15].

Theorem 1 ([15]). If the generalized RNA folding problem on sequences of length n with alphabet size 36 can be solved in T (n) time, 
then 3k-clique on graphs with |V | = n can be solved in T

(
O (nk+2 logn)

)
time.

Therefore, an O (nω−ε)-time algorithm for the generalized RNA folding with alphabet size at least 36 will disprove the 
k-clique Conjecture, yielding a breakthrough to the parameterized complexity of the k-clique problem. The current state-
of-the-art algorithm for k-clique takes O  

(
nωk/3

)
time (when k is a multiple of 3), and it requires the use of fast matrix 

multiplication [16]. For combinatorial, non-algebraic algorithms for k-clique, the current state-of-the-art upper bound is 
O  

(
nk

logk n

)
[17]. Therefore, an O (n3−ε)-time combinatorial algorithm for RNA folding would imply a breakthrough for com-

binatorial algorithms for k-clique.

1.2. Our contribution

Due to its alphabet size requirement, Theorem 1 is not applicable to the RNA folding problem in real life (i.e., alphabet 
size 4). It is unknown whether the generalized RNA folding for alphabet size 4 admits a faster algorithm than the case for 
alphabet size > 4. There are plenty of string algorithms whose runtime depends on the alphabet size (e.g., string matching 
with mismatches [18] and jumbled indexing [19,20]). Note that when the alphabet size is 2, the generalized RNA folding 
problem can be trivially solved in linear time. In this paper, we improve upon Theorem 1 by showing the same conditional 
lower bound still for the case of alphabet size 4. Note that we also get an O (n) factor improvement inside T (·), though it 
does not affect the conditional lower bound.

Theorem 2. If the RNA folding problem on sequences in {A, C, G, U }n can be solved in T (n) time, then 3k-clique on graphs with 
|V | = n can be solved in T

(
O (nk+1 logn)

)
time.

In what follows, we briefly overview the proof of Theorem 2. At a high level, our reduction (from 3k-clique to RNA 
folding) follows the approach in [15]. Given a graph G , enumerate all k-cliques, and each of them is encoded as some 
gadgets. All the gadgets are then put together to form an RNA sequence. The goal is to ensure that an optimal RNA folding 
corresponds to choosing three k-cliques that form a 3k-clique, given that the underlying graph admits a 3k-clique.

Intuitively, in order to force the gadgets to be matched in a desired manner in an optimal RNA folding, we have to build 
various “walls” that prevent undesired pairings. The main challenge is that we have to achieve this goal using merely 4 
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types of symbols. Our main tool is to use the technique “alignment gadget” developed in [13], whose original purpose is to 
prove that longest common subsequence and other edit distance problems are SETH-hard even on binary strings. We apply 
this tool as a black box during the construction of the RNA sequence.

Dyck edit distance. The RNA folding problem can be alternatively defined as follows. Given a string S , delete the min-
imum number of letters in S to transform it into another string S ′ in the language defined by the grammar S →
SS, ASU , U SA, CSG, GSC, ε (empty string). The Dyck edit distance problem [21,22], which asks for the minimum number of 
edits to transform a given string to well-balanced parentheses of s different types, admits a similar formulation. Due to the 
similarity, the Dyck edit distance problem was shown to admit the same conditional lower bound as Theorem 1 [15]. Their 
conditional lower bound requires the alphabet size to be at least 48. In this paper, we present a simple reduction from RNA 
folding to Dyck edit distance.

Theorem 3. If Dyck edit distance problem on sequences of length n with alphabet size 10 can be solved in T (n) time, then the RNA 
folding problem on sequences in {A, C, G, U }n can be solved in O (T (n)) time.

Combining Theorem 2 and Theorem 3, we obtain the following corollary.

Corollary 1. If the Dyck edit distance problem on sequences of length n with alphabet size 10 can be solved in T (n) time, then 3k-clique 
on graphs with |V | = n can be solved in T

(
O (nk+1 log n)

)
time.

This improves upon the conditional lower bound in [15] (reducing the alphabet size from 48 to 10), and it also simplifies 
the proof (the original proof in [15] takes about 9 pages).

2. Preliminaries

Given a set of letters �, the set �′ is defined as {x′ | x ∈ �}. It is required that � ∩ �′ = ∅, and ∀x, y ∈ �, (x 	= y) →
(x′ 	= y′). Therefore, |�′| = |�| and |� ∪ �′| = 2|�|.

For any string X = (x1, . . . , xk) ∈ �k , we write p(X) to denote (x′
1, . . . , x

′
k). The letter p stands for the prime symbol. We 

denote the reversal of the sequence X as X R . The concatenation of two sequences X, Y is denoted as X ◦ Y , or simply XY . 
We write substring to denote a contiguous subsequence. We say that two pairs of indices (i1, j1), (i2, j2), with i1 < j1 and 
i2 < j2, form a crossing pair if

({i1, j1} ∩ {i2, j2} 	= ∅) ∨ (i1 < i2 < j1 < j2) ∨ (i2 < i1 < j2 < j1) .

Generalized RNA folding. Given a string S ∈ (� ∪ �′)n , an RNA folding of S is a set A ⊆ {(i, j) | 1 ≤ i < j ≤ n} meeting the 
following two conditions.

• A does not contain any crossing pair.
• For each (i, j) ∈ A, either S[i] ∈ � and S[ j] = S[i]′ , or S[ j] ∈ � and S[i] = S[ j]′ is true.

The goal of the generalized RNA folding problem is to find a maximum cardinality RNA folding A∗ . We write RNA(S) = |A∗|, 
where A∗ is any maximum cardinality RNA folding of S . Any RNA folding A satisfying |A| = RNA(S) is said to be optimal.

In the paper we only focus on the generalized RNA folding problem with four types of letters, i.e. � = {0, 1}, �′ = {0′, 1′}, 
which coincides with the RNA folding problem for alphabet {A, C, G, U }. With a slight abuse of notation, sometimes we 
write (S[i], S[ j]) to denote a pair (i, j) ∈ A. The notation {·, ·} is used to indicate an unordered pair.

Longest common subsequence. Given X ∈ �n and Y ∈ �m , we define δLCS(X, Y ) as the minimum number of letters from X
and Y needed to be deleted to make them identical. That is, δLCS(X, Y ) = n + m − 2k, where k is the length of the longest 
common subsequence (LCS) of X and Y . Observe that RNA(X ◦ p(Y R)) = (n + m − δLCS(X, Y ))/2 equals the length of LCS of 
X and Y . Hence the LCS problem can be viewed as the RNA folding problem with some structural constraint on the RNA 
sequence.

Alignment gadgets. In [13], a SETH-based conditional lower bound for LCS with |�| = 2 was shown. A key technique in their 
approach is a function that transforms an instance of an alignment problem between two sets of sequences to an instance 
of the LCS problem, which is briefly described as follows.

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two linearly ordered sets of sequences of alphabet �. We assume that 
n ≥ m. An alignment is a set A = {(i1, j1), (i2, j2), . . ., (i|A|, j|A|)} with 1 ≤ i1 < i2 < · · · < i|A| ≤ n and 1 ≤ j1 < j2 < · · · <

j|A| ≤ m. An alignment A is called structural iff |A| = m and im = i1 +m − 1. That is, all sequences in Y are matched, and the 
matched positions in X are contiguous. The set of all alignments is denoted by An,m , and the set of all structural alignments 
is denoted by Sn,m . The cost of an alignment A (with respect to X and Y) is defined as

δ(A) =
∑

δLCS(Xi, Y j) + (m − |A|)max
i, j

δLCS(Xi, Y j).
(i, j)∈A
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That is, unaligned parts of Y are penalized by maxi, j δLCS(Xi, Y j). Given a sequence X , the type of X is defined as 
(|X |, ∑i X[i]), where each letter is assumed to be a number. Note that if the alphabet is � = {0, 1} (which is the case 
in this paper), then 

∑
i X[i] is the number of occurrences of 1 in X . The following lemma was proved in [13].1

Lemma 1 ([13]). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two linearly ordered sets of binary strings such that n ≥ m. All 
Xi are of type TX = (�X , sX ), and all Yi are of type TY = (�Y , sY ). There are two binary strings S X = GAm,TY

X (X1, . . . , Xn), SY =
GAn,TX

Y (Y1, . . . , Ym) and an integer C meeting the following requirements.

• minA∈An,m δ(A) ≤ δLCS(S X , SY ) − C ≤ minA∈Sn,m δ(A).
• the integer C and the types of S X and SY only depend on n, m, TX , TY .
• S X , SY , and C can be calculated in time O ((n + m)(�X + �Y )); hence |S X | and |SY | are both O ((n + m)(�X + �Y )).

In Lemma 1, GAm,TY
X (X1, . . . , Xn) is a function of X1, . . . , Xn parameterized by m and TY ; and GAn,TX

Y (Y1, . . . , Ym) is a 
function of Y1, . . . , Ym parameterized by n and TX .

Intuitively, computing an optimal alignment (or an optimal structural alignment) of two sets of sequences is at least 
as hard as computing a longest common subsequence. Lemma 1 gives a reduction from the computation of a number s
with minA∈An,m δ(A) ≤ s ≤ minA∈Sn,m δ(A) (which can be regarded as an approximately optimal alignment) to a single LCS 
instance.

We use Lemma 1 as a black box to devise two encodings, the clique node gadget CNG(t) and the clique list gadget 
CLG(t), for any k-clique t in a graph, in such a way that whether two k-cliques t1 and t2 form a 2k-clique can be inferred 
from the value of δLCS(CNG(t1), CLG(t2)).

3. From cliques to RNA folding

The goal of this section is to prove Theorem 2. Let G = (V , E) be a graph, and let n = |V |. We write Ck to denote the set 
of k-cliques in G . We fix � = {0, 1}. As in [15], we construct a sequence SG ∈ (� ∪ �′)∗ such that we can decide whether G
has a 3k-clique according to the value of RNA(SG). The building blocks in the construction of SG carry the same names as 
their analogues in [15], though they have different lower-level implementations.

The organization of this section is as follows. In Section 3.1 we describe the two gadgets CNG(t) and CLG(t) for a k-clique 
t based on the black box tool of Lemma 1. In Section 3.2, adapting the gadgets developed in Section 3.1, we present the 
definition of the binary sequence SG . In Section 3.3, we show that there exists an optimal RNA foldings of SG satisfying 
some good properties, and then we calculate the value of RNA(SG) in Section 3.4.

3.1. Testing 2k-cliques via LCS

We associate with each vertex v ∈ V a unique ID in {0, 1, . . . n − 1}. Let sv be the binary encoding of the ID of v . Note 
that |sv | = �log(n)� for each vertex v . We define v̄ as the binary string resulting from replacing each 0 in sv by 01 and 
replacing each 1 in sv by 10. Observe that (i) v̄ is of type T0 = (2�log(n)�, �log(n)�) for each v ∈ V , and (ii) δLCS(ū, ̄v) = 0 if 
and only if u = v .

Let v ∈ V be any vertex, and let N(v) = {u1, u2, . . . , u|N(v)|} be the set of neighbors of v . The list gadget LG(v) and the 
node gadget NG(v) for the vertex v are defined as follows.

LG(v) = GA1,T0
X

(
ū1, ū2, . . . , ū|N(v)|,1�log(n)�0�log(n)�, . . . ,1�log(n)�0�log(n)�) ,

where the number of occurrences of 1�log(n)�0�log(n)� is n − |N(v)|.
NG(v) = GAn,T0

Y (v̄).

Lemma 2. There is a number c0 , depending only on n, such that for any two vertices v1, v2 ∈ V , we have δLCS(LG(v1), NG(v2)) ≥ c0 , 
with equality if and only if {v1, v2} ∈ E.

Proof. Let v1, v2 ∈ V . Let N(v1) = {u1, u2, . . . , u|N(v1)|}. Define the two sequences of binary strings X and Y as follows.

X =
(

ū1, ū2, . . . , ū|N(v1)|,1�log(n)�0�log(n)�, . . . ,1�log(n)�0�log(n)�) ,

where the number of occurrences of 1�log(n)�0�log(n)� is n − |N(v1)|.
Y = (v̄2).

Note that |X| = n and |Y| = 1; we have LG(v) = GA1,T0
X (X) and NG(v) = GAn,T0

Y (Y).

1 See Lemma 4.3 in the arXiv version (1504.01431v2) of [13].
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In view of Lemma 1, we have minA∈An,1 δ(A) ≤ δLCS(LG(v1), NG(v2)) − C ≤ minA∈Sn,1 δ(A), for some number C whose 
value depends on |X|, |Y|, and T0. As these parameters depend solely on n, the number C also depends only on n (i.e., the 
choice of the two vertices v1 and v2 does not affect C ). We claim that setting c0 = C suffices to prove the lemma.

Since |Y| = 1, any non-empty alignment between X and Y is structural. This implies that δLCS(LG(v1), NG(v2)) − C =
minA∈An,1 δ(A) = minA∈Sn,1 δ(A).

For the case {v1, v2} ∈ E , since v̄2 is contained in X, clearly minA∈Sn,m δ(A) = 0. For the case {v1, v2} /∈ E , v̄2 does 
not appear in X, so minA∈Sn,m δ(A) > 0. Note that 1�log(n)�0�log(n)� 	= v̄ , for each v ∈ V . As a result, for any two vertices 
v1, v2 ∈ V , we have δLCS(LG(v1), NG(v2)) ≥ c0, with equality if and only if {v1, v2} ∈ E . �

In view of Lemma 1, the type of list gadgets and the type of node gadgets depends only on n; that is, they are indepen-
dent of the underlying vertex v . Let TX be the type of the list gadgets, and let TY be the type of the node gadgets. For each 
k-clique t = {u1, u2, . . . , uk}, define the clique node gadget CNG(t) and the clique list gadget CLG(t) as follows.

CLG(t) = GAk2,TY
X (LG(u1), . . . ,LG(u1),LG(u2), . . . ,LG(u2), . . . ,LG(uk), . . . ,LG(uk)) ,

where the number of occurrences of each LG(ui) is k.

CNG(t) = GAk2,TX
Y

(
NG(u1),NG(u2), . . . ,NG(uk),

NG(u1),NG(u2), . . . ,NG(uk),

. . . ,

NG(u1),NG(u2), . . . ,NG(uk)
)
,

where the number of occurrences of each NG(u1),NG(u2), . . . ,NG(uk) is k.

Lemma 3. There is a number c1 , depending only on n and k, such that for any two k-cliques t1, t2 ∈ Ck, we have δLCS(CLG(t1),

CNG(t2)) ≥ c1 , with equality if and only if the set of vertices t1 ∪ t2 form a 2k-clique.

Proof. Let t1 = {u1, u2, . . . , uk}, and let t2 = {v1, v2, . . . , vk} be two k-cliques. Define the two sequences of binary strings X
and Y as follows.

X = (LG(u1), . . . ,LG(u1),LG(u2), . . . ,LG(u2), . . . ,LG(uk), . . . ,LG(uk)) ,

where the number of occurrences of each LG(ui) is k.

Y = (
NG(v1),NG(v2), . . . ,NG(vk),

NG(v1),NG(v2), . . . ,NG(vk),

. . . ,

NG(v1),NG(v2), . . . ,NG(vk)
)
,

where the number of occurrences of each NG(v1),NG(v2), . . . ,NG(vk) is k.

Note that |X| = |Y| = k2; we have CLG(t) = GAk2,TY
X (X) and CNG(t) = GAk2,TX

Y (Y). In view of Lemma 2,
minw1,w2∈V δLCS(LG(w1), NG(w2)) = c0, and so minA∈Ak2,k2 δ(A) ≥ k2c0.

In view of Lemma 1, minA∈Ak2,k2 δ(A) ≤ δLCS(CLG(t1), CNG(t2)) − C ≤ minA∈Sk2,k2 δ(A), for some number C whose value 
depends on |X|, |Y|, TX , and TY . As these parameters depend solely on n, k, the number C only depends on n, k (i.e., the 
choice of the two k-cliques t1 and t2 does not affect C ). We claim that setting c1 = C + k2c0 suffices to prove the lemma.

Consider the case t1 ∪ t2 form a 2k-clique. That is, each ui ∈ t1 is adjacent to each v j ∈ t2. Thus, by Lemma 2, we have 
δLCS(Xi, Y j) = c0, for all i, j. Recall that Xi denotes the ith string in X, and Y j denotes the jth string in Y. The structural 
alignment A∗ = {(i, i) | i ∈ {1, 2, . . . , k2}} ∈ Sk2,k2 achieves the minimum possible cost k2c0. Thus, for the case t1 ∪ t2 form a 
2k-clique, we have

δLCS(CLG(t1),CNG(t2)) − C = min
A∈Ak2,k2

δ(A) = min
A∈Sk2,k2

δ(A) = k2c0,

and so δLCS(CLG(t1), CNG(t2)) = C + k2c0 = c1, as desired.
Next, consider the case t1 ∪ t2 does not form a 2k-clique. That is, there exist two vertices ui′ ∈ t1 and v j′ ∈ t2 that are 

not adjacent. By Lemma 2, we have δLCS(LG(ui′ ), NG(u j′ )) > c0. We claim that minA∈Ak2,k2 δ(A) > k2c0. Suppose that there 
exists an alignment A′ ∈ Ak2,k2 such that δ(A′) = k2c0. Then all k2 strings in Y must be aligned, as each unaligned string in 
Y contributes a cost that is higher than c0. Thus, we must have A′ = {(i, i) | i ∈ {1, 2, . . . , k2}}. In order to have δ(A′) = k2c0, 
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we must have δLCS(Xi, Yi) = c0, for all i ∈ {1, 2, . . . , k2}. However, X j′+k(i′−1) = LG(ui′ ) and Y j′+k(i′−1) = NG(v j′ ), and so 
δLCS(X j′+k(i′−1), Y j′+k(i′−1)) > c0, a contradiction.

Since minA∈Ak2,k2 δ(A) > k2c0 for the case t1 ∪ t2 is not a 2k-clique, we have

δLCS(CLG(t1),CNG(t2)) − C ≥ min
A∈Ak2,k2

δ(A) > k2c0,

and so δLCS(CLG(t1), CNG(t2)) > C + k2c0 = c1, as desired. �
The following lemma is a simple consequence of Lemma 1.

Lemma 4. There exist four integers �CNG,0 , �CNG,1 , �CLG,0 , and �CLG,1 ∈ O (k2n log n) such that for any t ∈ Ck, and for any b ∈ {0, 1}, 
we have (i) �CNG,b is the number of occurrences of b in CNG(t), and (ii) �CLG,b is the number of occurrences of b in CLG(t).

Proof. As a consequence of Lemma 1, all CNG(t) have the same type, and all CLG(t) have the same type. Therefore, the 
existence of these four integers is guaranteed. We show that these numbers are O (k2n log n). In view of Lemma 1, for each 
v ∈ V , both LG(v) and NG(v) have length at most (n + 1) · (2�log n� + 2�log n�) = O (n log n). Applying Lemma 1 again, the 
length of both CNG(t) and CLG(t) for each t ∈ Ck is (k2 + k2)(O (n log n) + O (n log n)) = O (k2n log n). �
3.2. The RNA sequence SG

Based on the parameters in Lemma 4, we define �0 = �CNG,0 + �CNG,1 + �CLG,0 + �CLG,1 = O (k2n log n); for each i ∈
{1, 2, 3}, we set �i = 100�i−1; and �4 = 100|Ck|�3 = (n

k

)
O (k2n log n) = O (nk+1 log n/(k − 2)!). The RNA sequence SG is then 

defined as follows.

SG = 0�4

[
0′�3 ©

t∈Ck

(
CGα(t)0′�3

)]
0�4

[
0′�3 ©

t∈Ck

(
CGβ(t)0′�3

)]
0�4

[
0′�3 ©

t∈Ck

(
CGγ (t)0′�3

)]
,

where

CGα(t) = 1′2�2 p(CLG(t)R)0′�1 1�2 0�1 CNG(t)1�2 ,

CGβ(t) = 1′�2 p(CLG(t)R)0′�1 1′2�2 0′�1 p(CNG(t))1′�2 ,

CGγ (t) = 1�2 CLG(t)R 0�1 1�2 0�1 CNG(t)12�2 .

For each t ∈ Ck , and for each x ∈ {α, β, γ }, the string CGx(t) is called a clique gadget. Note that CGα(t) ∈ (� ∪ �′)∗ , 
CGβ(t) ∈ �′∗ , and CGγ (t) ∈ �∗ . The length of this RNA sequence is |SG | = O (|Ck|�0) = O (nk+1 log n/(k − 2)!). Before pro-
ceeding further, we present a simple lower bound on RNA(SG) by constructing an RNA folding of SG as follows.

Step 1: Matching the Letters in 0′�3 . Given some pairings between the letters in 0′�3 and the letters in 0�4 , a clique gadget 
C is said to be blocked if all letters within C can only be paired up with the letters within the same clique gadget 
or the letters in 0�4 . In particular, a clique gadget that is blocked is unable to participate in the RNA folding with 
other clique gadgets.

We link all 0′ in all 0′�3 to some 0 in some 0�4 in such a way that for each x ∈ {α, β, γ }, there is exactly one 
clique gadget CGα(tx) that is not blocked, among all clique gadgets {CGx(t) | t ∈ Ck}. The three clique gadgets 
CGα(tα), CGβ(tβ), and CGγ (tγ ) that are not blocked are called the selected clique gadgets. See Fig. 1. This step 
makes 3(|Ck| + 1)�3 pairs.

Step 2: Matching the Letters in a Blocked Clique Gadget. Pair up the letters in each blocked clique gadget as follows. For 
each blocked CGα(t), we pair up as many {1′, 1} pairs as possible within the clique gadget; this gives us 2�2 +
min(�CLG,1, �CNG,1) pairs. For each blocked CGβ(t), we pair up all 0′ to some 0 in 0�4 ; this gives us 2�1 + �CLG,0 +
�CNG,0 pairs. For each blocked CGγ (t), no pairing can be made. See Fig. 2. In this step, (|Ck| − 1)(2�1 + 2�2 +
min(�CLG,1, �CNG,1) + �CLG,0 + �CNG,0) pairs are produced.

Step 3: Matching the Letters in the Three Selected Clique Gadget. For the three clique gadgets CGα(tα), CGβ(tβ), and 
CGγ (tγ ) that are not blocked, We pair up the letters in these clique gadgets in such a way that

• all letters in 1′2�2 , 12�2 , 1′�2 , 1�2 , 0′�1 , and 0�1 are matched, and
• for each (x, y) ∈ {(α, β), (α, γ ), (β, γ )}, 1

2 (�0 − δLCS(CLG(tx), CNG(t y))) number of pairs are made between the 
two gadgets CLG(tx) and CNG(t y).

See Fig. 3. Recall that 1
2 (�0 − δLCS(CLG(tx), CNG(t y))) is the length of the LCS between CLG(tx) and CNG(t y). The 

total number of pairs made in this step is
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Fig. 1. The three selected clique gadgets and the matchings between 0′�3 and 0�4 .

Fig. 2. The matchings between a blocked clique gadget and 0�4 .

Fig. 3. The matchings within the three selected clique gadgets.

6�2 + 3�1 + 1

2

(
�0 − δLCS(CLG(tα),CNG(tβ))

)
+ 1

2

(
�0 − δLCS(CLG(tα),CNG(tγ ))

) + 1

2

(
�0 − δLCS(CLG(tβ),CNG(tγ ))

)
.

In view of the above discussion, we define the following two numbers.

m1 = 3(|Ck| + 1)�3 + (|Ck| − 1)(2�1 + 2�2 + min(�CLG,1, �CNG,1) + �CLG,0 + �CNG,0),

m2 = 6�2 + 3�1 + 3

2
�0 − min

tα,tβ ,tγ ∈Ck

Q (tα, tβ, tγ ), where Q (tα, tβ, tγ ) is defined as

1

2

(
δLCS(CLG(tα),CNG(tβ)) + δLCS(CLG(tα),CNG(tγ )) + δLCS(CLG(tβ),CNG(tγ ))

)
.

The RNA folding given in the above construction has cardinality m1 + 6�2 + 3�1 + 3
2 �0 − Q (tα, tβ, tγ ), and so m1 + m2 is 

a lower bound of RNA(SG).

Lemma 5. RNA(SG) ≥ m1 + m2 .

We will ultimately show that RNA(SG) = m1 +m2. Due to Lemma 3, if tα ∪ tβ ∪ tγ form a 3k-clique, then Q (tα, tβ, tγ ) =
3c1/2; otherwise Q (tα, tβ, tγ ) > 3c1/2. Therefore, the number RNA(SG) = m1 + m2 offers sufficient information to decide 
whether G has a 3k-clique. The following auxiliary lemma will be useful in subsequent discussion.
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Lemma 6. The following statements are true for any two cliques t, t′ ∈ Ck.

1. RNA(0�4 CGα(t)) = 2�2 + min(�CLG,1, �CNG,1)

2. RNA(0�4 CGβ(t)) = 2�1 + �CLG,0 + �CNG,0
3. RNA(0�4 CGγ (t)) = 0
4. RNA(0�4 CGα(t)0�4 CGβ(t′)) ≤ 3.1�1 + 2�2
5. RNA(0�4 CGα(t)0�4 CGγ (t′)) ≤ 1.1�1 + 2�2

6. RNA(0�4 CGβ(t)0�4 CGγ (t′)) ≤ 1.1�1 + 4�2

Proof. The value of RNA(·) for each of the six strings are calculated as follows.

(1) RNA(0�4 CGα(t)) = 2�2 + min(�CLG,1, �CNG,1): Pairing up as many 1 to 1′ yields a matching of size m = 2�2 +
min(�CLG,1, �CNG,1). To see that it is optimal, it suffices to show that both (0′, 0) and (0, 0′) cannot appear in 
an optimal RNA folding.
• If the RNA folding contains (0, 0′), then none of 1′ can participate in the RNA folding. As the total number of 0′

is �1 + �CLG,0, the size of RNA folding is at most �1 + �CLG,0 < m.
• If the RNA folding contains (0′, 0), then at most �CLG,1 number of letters within the middle 1�2 (the one between 

0′�1 and 0�1 ) can participate in the RNA folding. It implies that the number of (1′, 1) pairs in the RNA folding is 
at most �CLG,1 +�2. Hence the size of the RNA folding can be upper bounded by (�1 +�CLG,0) +(�CLG,1 +�2) < m.

(2) RNA(0�4 CGβ(t)) = 2�1 + �CLG,0 + �CNG,0: Since there is no 1, the equation follows from the fact that there are 2�1 +
�CLG,0 + �CNG,0 occurrences of 0′ , all of which can be matched to some 0 without crossing.

(3) RNA(0�4 CGγ (t)) = 0: It is impossible to produce any pair since there are no 0′ and 1′ in the string.
(4) RNA(0�4 CGα(t)0�4 CGβ(t′)) ≤ 3.1�1 + 2�2: The value of RNA(·) can be upper bounded by the number of 1 and 0′ , which 

is (2�2 + �CNG,1) + (3�1 + 2�CLG,0 + �CNG,0) ≤ 3.1�1 + 2�2.
(5) RNA(0�4 CGα(t)0�4 CGγ (t′)) ≤ 1.1�1 + 2�2: The value of RNA(·) can be upper bounded by the number of 1′ and 0′ , 

which is (2�2 + �CLG,1) + (�1 + �CLG,0) ≤ 1.1�1 + 2�2.

(6) RNA(0�4 CGβ(t)0�4 CGγ (t′)) ≤ 1.1�1 + 4�2: Define the string S = 0�4 ◦
(

1′�2 0′�1 1′2�2 0′�1 1′�2
)

◦ 0�4 ◦ (
1�2 0�1 1�2 0�1 12�2

)
as 

the result of removing the clique node gadgets and the clique list gadgets in 0�4 CGβ(t)0�4 CGγ (t′). It is clear that 
RNA(0�4 CGβ(t)0�4 CGγ (t′)) ≤ 0.1�1 +RNA(S), as the total length of the removed substrings can be upper bounded 
by 0.1�1. Therefore, it suffices to show that RNA(S) ≤ �1 + 4�2. Let A be any RNA folding of S .

Case 1: There is a pair (0, 0′) ∈ A where the letter 0′ comes from the first 0′�1 in S . Clearly, the first substring 
1′�2 cannot participate in any pairing. Therefore, |A| ≤ |0′�1 1′2�2 0′�1 1′�2 | = 2�1 + 3�2 < �1 + 4�2.

Case 2: There is a pair (0′, 0) ∈ A where the letter 0′ comes from the first 0′�1 in S . Consider any pair (1′, 1) such 
that the letter 1 is in the substring 12�2 in S . In order to have this pair not crossing any pair (0′, 0) ∈ A, 
the letter 1′ must be in the first substring 1′�2 in S . Therefore, at most half of the letters in the substring 
12�2 can participate in the RNA folding A, and so |A| is at most the total number of 0′ and 1 in S minus 
�2, i.e., |A| ≤ 2�1 + 3�2 < �1 + 4�2.

Case 3: The first 0′�1 in S does not participate in the RNA folding. In this case, we have |A| ≤ |1′�2 1′2�2 0′�1 1′�2 | =
�1 + 4�2. �

Note that Lemma 6(1, 2, 3) implies that the RNA folding for blocked clique gadgets described in Fig. 2 is optimal, and 
the optimal number of pairings is irrelevant to the underlying k-clique.

3.3. Optimal RNA foldings of SG

In this section, we show that there exists an optimal RNA folding of SG satisfying some good properties. Let A be an 
RNA folding of a string S , and let S1 and S2 be two disjoint substrings of S . Recall that a substring is a subsequence of 
consecutive elements. We write S1

A←→ S2 if there exists a pair {x1, x2} ∈ A with x1 ∈ S1, x2 ∈ S2. Given an RNA folding A
of the string SG , the two properties (P1) and (P2) are defined as follows.

(P1) All 0′ in all 0′�3 are paired up with some 0 in some 0�4 in A.

(P2) There exist tα, tβ, tγ ∈ Ck such that the following holds. If CGu1 (t1) 
A←→ CGu2 (t2), then {(u1, t1), (u2, t2)} ⊆

{(α, tα), (β, tβ), (γ , tγ )}.

Intuitively, (P2) says that all clique gadgets are blocked by the pairings between 0′�3 and 0�4 , except the three selected 
clique gadgets CGα(tα), CGβ(tβ), and CGγ (tγ ), for some choices of three k-cliques tα , tβ , and tγ .
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Lemma 7. Let A be any RNA folding of SG . Let S1 be a substring 0′�3 of SG , and let S2 be a substring 0�4 of SG . If there is a pair in A
linking a letter 0′ in S1 to a letter 0 in S2 , then there is another RNA folding A′ of SG with |A′| ≥ |A| where all letters in S1 are paired 
up with letters in S2.

Proof. The lemma immediately follows from the fact that �4 is greater than the total number of 0′ in SG , which makes it 
possible to rematch all the letters in S1 to letters in S2. �

Lemma 8 shows that there is an optimal RNA folding A of SG satisfying (P1).

Lemma 8. There is an optimal RNA folding of SG satisfying (P1).

Proof. Choose any RNA folding A of SG with |A| = RNA(SG). In view of Lemma 7, we assume that for each substring 0′�3

in SG , either (i) all its letters are matched to letters in the same 0�4 , or (ii) none of its letters is matched to any letters in 
any 0�4 . Let z be the number of 0′�3 such that none of its letters is matched to any letters in any 0�4 .

Let t ∈ Ck , and let x ∈ {α, β, γ }. We say that CGx(t) is trapped in A if each letter in CGx(t) is either (i) unmatched, (ii) 
matched to letters within CGx(t), or (iii) matched to a letter in some 0�4 . Note that a sufficient condition for a clique gadget 
CGx(t) to be trapped is that all letters in its two neighboring 0′�3 are matched to letters in the same substring 0�4 .

Suppose that the clique gadget CGx(t) is not trapped in A, then CGx(t) falls into one of the following two cases.

Case 1: The letters in the two neighboring substrings 0′�3 of CGx(t) are matched to letters in two distinct substrings 0�4 .
Case 2: A neighboring 0′�3 of CGx(t) is not matched to any 0�4 .

Observe that at most 3 clique gadgets belong to the first case, and at most 2z clique gadgets belong to the second case. 
Thus, the number of clique gadgets that are not trapped in A is at most 3 + 2z. We derive an upper bound of |A| as follows.

|A| ≤ (3(|Ck| + 1) − z)�3 (matched 0′�3)

+ |Ck|
(

max
t∈Ck

RNA(0�4 CGα(t)) + max
t∈Ck

RNA(0�4 CGβ(t)) (trapped clique gadgets)

+ max
t∈Ck

RNA(0�4 CGγ (t))

)
+ (3 + 2z) max

t∈Ck,x∈{α,β,γ } |CGx(t)|. (remaining clique gadgets)

In view of the calculation in Lemma 6, |A| is at most

m1 − z�3 + (
2�2 + min(�CLG,1, �CNG,1) + 2�1 + �CLG,0 + �CNG,0

) + (3 + 2z)max
t,x

|CGx(t)|.

Due to the two facts (i) 2�2 + min(�CLG,1, �CNG,1) + 2�1 + �CLG,0 + �CNG,0 < 0.1�3, and (ii) the length of a clique gadget 
< 0.1�3, we have:

|A| < m1 − 0.8z�3 + 0.4�3.

Thus, if z > 0, then |A| < m1 < RNA(SG), contradicting the assumption that A is optimal. Hence we must have z = 0, i.e., 
A satisfies (P1). �

Next, we deal with property (P2). We need some terminologies for ease of notation. For each x ∈ {α, β, γ }, we call CGx(t)

a type-x clique gadget. We say that the two clique gadgets C1 and C2 are linked in A if C1
A←→ C2. We write Mα,β,γ to 

denote the set of all RNA foldings A of SG satisfying (P1) and (P2). We write Mα to denote the set of all RNA foldings A of 
SG satisfying (P1) and the following condition (P2′

α ).

(P2′
α) There exist tα,1, tα,2, tβ, tγ ∈ Ck satisfying tα,1 	= tα,2 such that the following holds. If CGu1 (t1) 

A←→ CGu2(t2), then 
{(u1, t1), (u2, t2)} ∈ {{(α, tα,1), (β, tβ)}, {(α, tα,2), (γ , tγ )}}.

The two properties (P2′
β ) and (P2′

γ ), and the two sets Mβ and Mγ are defined analogously.

Lemma 9. Let A be an optimal RNA folding of SG satisfying (P1). For each x ∈ {α, β, γ }, there do not exist two distinct type-x clique 
gadgets C1 and C2 with C1

A←→ C2 .
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Fig. 4. Alignment in Mα .

Proof. There is a substring S� = 0′�3 located between C1 and C2. The existence of a pair in A linking a letter in C1 and 
a letter in C2 makes it impossible for any letter in S� be matched to letters in any 0�4 , which is a contradiction to the 
assumption that A has property (P1). �
Lemma 10. Let A be an optimal RNA folding of SG satisfying (P1). For each {x, y} ∈ {{α, β}, {α, γ }, {β, γ }}, there do not exist two 
distinct type-x clique gadgets C1 and C2 and two not necessarily distinct type-y clique gadgets C3 and C4 such that C1

A←→ C3 and 
C2

A←→ C4 .

Proof. There is a substring S� = 0′�3 located between C1 and C2. Since C1
A←→ C3 and C2

A←→ C4, letters in S� can only 
be matched to (i) letters in C1, C2, C3, and C4, (i) letters located between C1 and C2, and (iii) letters located between C3
and C4. This contradicts the assumption that A has property (P1). �
Lemma 11. Let A be an optimal RNA folding of SG satisfying (P1). Let x ∈ {α, β, γ }. Suppose that there are two distinct type-x clique 
gadgets C1 and C2 such that C1

A←→ C3 and C2
A←→ C4 , where C3 and C4 are two not necessarily distinct clique gadgets. Then 

A ∈Mx.

Proof. Suppose that C3 is a type-y clique gadget, and C4 is a type-z clique gadget. By Lemma 9 and Lemma 10, the three 
symbols x, y, and z must be distinct, and so C3 	= C4.

To prove that A ∈Mx , it suffices to show that A satisfies (P2′
x). Suppose that (P2′

x) is not met, then there are two clique 
gadgets C5 and C6 that are linked in A, and {C5, C6} /∈ {{C1, C3}, {C2, C4}}. We show that this leads to a contradiction.

Observe that none of C5 and C6 can be a type-x clique gadget. Suppose that C5 is of type-x. Then C6 is either type-y
or type-z by Lemma 9. In any case, Lemma 10 is violated. Therefore, without loss of generality, we assume C5 is of type-y. 
Then, by Lemma 9, C6 must be of type-z.

Since C1 and C2 are distinct, there must be a substring S� = 0′�3 located between C1 and C2. Since C1 is linked to a 
type-y clique gadget, and since C2 is linked to a type-z clique gadget, letters in S� can only be paired up with letters in the 
substring S ′ = 0�4 bordering both 0′�3 ©

t∈Ck

(
CGy(t)0′�3

)
and 0′�3 ©

t∈Ck

(
CGz(t)0′�3

)
, viewing SG as a circular string. However, 

the existence of a pair linking a letter in C5 (which is of type-y) and a letter in C6 (which is of type-z) implies that no letter 
in S ′ can be matched with a letter in 0′�3 without a crossing. This contradicts the assumption that A has property (P1). �

Lemma 12 follows from Lemma 8 and Lemma 11. An illustration of alignment in Mα can be found in Fig. 4 (Mβ and 
Mγ are analogous). Note that an illustration of alignment in Mα,β,γ is in Fig. 1.

Lemma 12. There is an optimal RNA folding of SG that belongs to Mα ∪Mβ ∪Mγ ∪Mα,β,γ .

Proof. By Lemma 8, we restrict our consideration to optimal RNA foldings having (P1), and let A be any such optimal RNA 
folding. There are two cases.

Case 1: For each x ∈ {α, β, γ }, there is at most one type-x clique gadget that is linked to other clique gadgets. Then A
satisfies (P2), and so A ∈ Mα,β,γ .

Case 2: For some x ∈ {α, β, γ }, there are two distinct type-x clique gadgets that are linked to other clique gadgets. By 
Lemma 11, A ∈Mx . �

We are now in a position to prove the main lemma in this section, which shows that there is an optimal RNA folding 
satisfying (P1) and (P2).

Lemma 13. There is an optimal RNA folding of SG that belongs to Mα,β,γ .
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Proof. In view of Lemma 12, it suffices to show that for any A ∈ Mα ∪Mβ ∪Mγ , we have |A| < RNA(SG). Let A ∈Mx . Let 

tx,1, tx,2, t y, tz ∈ Ck and {y, z} = {α, β, γ } \ {x} be the parameters specified in the definition of Mx . That is, if CGu1 (t1) 
A←→

CGu2 (t2), then {(u1, t1), (u2, t2)} ∈ {{(α, tα,1), (β, tβ)}, {(α, tα,2), (γ , tγ )}}. Each pair in A falls into one of the following cases.

Case 1: The pair links a letter 0′ in some substring 0′�3 to a letter 0 in some substring 0�4 . Note that there are exactly 
3(|Ck| + 1)�3 number of such pairs in A.

Case 2: The pair contains a letter in some CGu(t), where (u, t) /∈ {(x, tx,1), (x, tx,2), (y, t y), (z, tz)}. Observe that any letter 
in such CGu(t) can only be matched to letters within the same clique gadget CGu(t) or some substring 0�4 , 
and so the number of pairs in A that fall into this case is upper bounded by (|Ck| − 2) max

t∈Ck

RNA
(
0�4 CGx(t)

) +
(|Ck| − 1) max

t∈Ck

RNA
(
0�4 CGy(t)

) + (|Ck| − 1) max
t∈Ck

RNA
(
0�4 CGz(t)

)
.

Case 3: The pair involves a letter in some CGu(t), where (u, t) ∈ {(x, tx,1), (x, tx,2), (y, t y), (z, tz)}. The number of such pairs 
is upper bounded by max

t,t′∈Ck

RNA
(
0�4 CGx(t)0�4 CGy(t′)

) + max
t,t′∈Ck

RNA
(
0�4 CGx(t)0�4 CGz(t′)

)
.

Using the above calculation and the formulas in Lemma 6, we can derive |A| < m1 +m2, as follows. Note that m2 ≥ 6�2 +3�1.

|A| ≤

⎧⎪⎨
⎪⎩

m1 + 2�2 + 4.2�1 − min(�CLG,1, �CNG,1) if x = α

m1 + 6�2 + 2.2�1 − �CLG,0 − �CNG,0 if x = β

m1 + 6�2 + 2.2�1 if x = γ

Note that m1 + m2 ≤ RNA(SG) by Lemma 5. �
3.4. Calculating RNA(SG)

In this section, we prove that RNA(SG) = m1 + m2, and finish the proof of Theorem 2. In view of Lemma 13, in the 
calculation of RNA(SG), we can restrict our consideration to RNA foldings in Mα,β,γ . Based on the structural property of 
RNA foldings in Mα,β,γ , we first reduce the calculation of RNA(SG) to the calculation of optimal RNA foldings of simpler 
strings.

Lemma 14. RNA(SG) ≤ m1 + max
tα,tβ ,tγ ∈Ck

RNA(0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ )).

Proof. By Lemma 13, there is an optimal RNA folding of SG in Mα,β,γ . For any A ∈Mα,β,γ , let tα, tβ, tγ ∈ Ck be the three 
cliques in the definition of (P2). Each pair in A falls into one of the following cases.

Case 1: The pair links a letter 0′ in some substring 0′�3 to a letter 0 in some substring 0�4 . Note that there are exactly 
3(|Ck| + 1)�3 number of such pairs in A.

Case 2: The pair contains a letter in some CGu(t), where (u, t) /∈ {(α, tα), (β, tβ), (γ , tγ )}. Observe that any letter in 
such CGu(t) can only be matched to letters within the same clique gadget CGu(t) or some substring 0�4 , and 
so the number of pairs in A that fall into this case is upper bounded by (|Ck| − 1) max

t∈Ck

RNA(0�4 CGα(t)) +
(|Ck| − 1) max

t∈Ck

RNA(0�4 CGβ(t)) + (|Ck| − 1) max
t∈Ck

RNA(0�4 CGγ (t)).

Case 3: The pair involves a letter in some CGu(t), where (u, t) ∈ {(α, tα), (β, tβ), (γ , tγ )}. The number of such pairs is 
upper bounded by RNA(0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ )).

Applying the formulas in Lemma 6, we have |A| = m1 + RNA(0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ )). Hence we conclude the 
proof. �

For any choices of three k-cliques tα, tβ, tγ ∈ Ck , we define:

Stα,tβ ,tγ = 1�2 ◦ Stγ ,tα ◦ 1�2 ◦ Stα,tβ , ◦ 1′2�2 ◦ Stβ ,tγ ,

where

Stγ ,tα = 0�1 CNG(tγ )p(CLG(tα)R)0′�1 ,

Stα,tβ = 0�1 CNG(tα)p(CLG(tβ)R)0′�1 ,

Stβ ,tγ = 0′�1 p(CNG(tβ))CLG(tγ )R 0�1 .
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Note that Stα,tβ ,tγ is simply a cyclic shift of the concatenation of CGα(tα), CGβ(tβ), and CGγ (tγ ) after removing the 
sequences of 1s and 1′s at the beginning and the end of these clique gadgets. Lemma 17, together with Lemma 14, reduces 
the calculation of RNA(SG) to the calculation of RNA(Stα,tβ ,tγ ). Lemma 15 and Lemma 16 are auxiliary lemmas.

Lemma 15. Let S = S1 ◦ S2 ◦ S3 ∈ {0, 1, 0′, 1′}∗ be a string, where the substring S2 is either 11′ or 1′1. Then RNA(S) =
RNA(S1 ◦ S3) + 1.

Proof. It suffices to show that there exists an optimal RNA folding of S where the two letters in S2 are paired up. Let A be 
any optimal RNA folding of S . We show that it is possible to modify A in such a way that the two letters in S2 are paired 
up, and the total number of matched pairs is unchanged.

Case 1: If the two letters in S2 are already paired up, then no modification is needed.
Case 2: If exactly one of the two letters in S2 is matched in A, we first unmatch it, and then we pair up the two letters 

in S2.
Case 3: Suppose that both two letters in S2 are matched to letters not in S2. Suppose that the letter 1 ∈ S2 is paired up 

with x in A, and the letter 1′ ∈ S2 is paired up with y in A. We remove these two pairs from A, and then we add 
the two pairs {x, y} and {1, 1′} to A. �

Lemma 16. In any optimal RNA folding of 0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ ), no letter within the three substrings 0�4 is matched.

Proof. For ease of notation, we write S
 to denote 0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ ). We first state a few simple observa-
tions.

(O1) By simply matching only the letters in CGα(tα), CGβ(tβ), and CGγ (tγ ), as described in Fig. 3, we infer that 
RNA(S
) ≥ 6�2 + 3�1.

(O2) The total number of 0′ and 1′ in S
 is at most 6�2 + 3.1�1, and so RNA(S
) ≤ 6�2 + 3.1�1.
(O3) The absolute difference between the number of 1 and the number of 1′ in S
 is at most 0.1�1.

Note that CGγ (tγ ) does not contain 0′ . To prove the lemma, we show that in any optimal RNA folding A of S
 , no letter 
in 0�4 is matched to letters in CGβ(tβ) and CGα(tα). We write S1, S2, and S3 to denote the first, second, and the third 
substring 0�4 .

We show that there is no pair in A linking a letter 0′ ∈ CGβ(tβ) to a letter 0 ∈ S2 ∪ S3. Recall that CGβ(tβ) =
1′�2 p(CLG(tβ)R)0′�1 1′2�2 0′�1 p(CNG(tβ))1′�2 . If there is such a pair, then at least �2 amount of 1′ cannot participate in 
the RNA folding. Therefore, by (O2), |A| ≤ (6�2 + 3.1�1) − �2 ≤ 5�2 + 3.1�1. However, by (O1), RNA(S
) ≥ 6�2 + 3�1 > |A|, 
contradicting with the assumption that A is optimal.

Next, we show that there is no pair in A linking a letter 0′ ∈ CGβ(tβ) to a letter 0 ∈ S1. Recall that CGα(tα) =
1′2�2 p(CLG(tα)R)0′�1 1�2 0�1 CNG(tα)1�2 . Suppose that there is such a pair. Then the 3�2 amount of 1′ in (i) the substring 
1′2�2 of CGα(tα) and (ii) the first substring 1′�2 of CGβ(tβ) can only be matched to letters in CGα(tα). However, the 
amount of 1 in CGα(tα) is at most 2.1�1, and so at least 0.9�2 amount of 1′ are not matched. Therefore, by (O1) and (O2), 
|A| ≤ (6�2 + 3.1�1) − 0.9�2 < RNA(S
), contradicting with the assumption that A is optimal.

Lastly, we show that there is no pair in A linking a letter 0′ ∈ CGα(tα) to a letter 0 ∈ S1 ∪ S2 ∪ S3. Suppose that there 
is such a pair. We show that at least �2 amount of 1′ cannot participate in the RNA folding. Then, by (O1) and (O2), 
|A| ≤ (6�2 + 3.1�1) − �2 < RNA(S
), contradicting with the assumption that A is optimal. We divide the analysis into cases.

Case 1: A letter 0′ ∈ CGα(tα) is matched to a letter 0 ∈ S1. Then all letters in the substring 1′2�2 of CGα(tα) cannot 
participate in the RNA folding.

Case 2: A letter 0′ ∈ CGα(tα) is matched to a letter 0 ∈ S2. Then all letters in the two substrings 1�2 of CGα(tα) can only 
be matched to letters within p(CLG(tα)R). Therefore, at least 2�2 − |p(CLG(tα)R)| > 2�2 − 0.1�1 amount of 1 are 
unmatched. By (O3), the absolute difference between the number of 1 and the number of 1′ in S
 is at most 0.1�1, 
and so at least 2�2 − 0.2�1 > �2 amount of 1′ cannot participate in the RNA folding.

Case 3: A letter 0′ ∈ CGα(tα) is matched to a letter 0 ∈ S3. Then all 1′ in CGβ(tβ) can only be matched to letters in 
CGα(tα). Observe that the number of 1′ in CGβ(tβ) is at least �2 more than the number of 1 in CGα(tα), and so 
at least �2 amount of 1′ cannot participate in the RNA folding. �

Lemma 17. RNA(0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ )) = 4�2 + RNA(Stα,tβ ,tγ ).

Proof. We bound RNA(0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ )) as follows.

RNA(0�4 CGα(tα)0�4 CGβ(tβ)0�4 CGγ (tγ ))

= RNA(CGα(tα)CGβ(tβ)CGγ (tγ )) (Lemma 16)
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= RNA(1′2�2 p(CLG(tα)R)0′�1 1�2 0�1 CNG(tα)1�2 1′�2 p(CLG(tβ)R)0′�1 1′2�2 (by definition)

0′�1 p(CNG(tβ))1′�2 1�2 CLG(tγ )R 0�1 1�2 0�1 CNG(tγ )12�2)

= RNA(1�2 0�1 CNG(tγ )12�2 1′2�2 p(CLG(tα)R)0′�1 1�2 0�1 CNG(tα)1�2 1′�2 (cyclic shift)

p(CLG(tβ)R)0′�1 1′2�2 0′�1 p(CNG(tβ))1′�2 1�2 CLG(tγ )R 0�1)

= 4�2 + RNA(1�2 0�1 CNG(tγ )p(CLG(tα)R)0′�1 1�2 0�1 CNG(tα)p(CLG(tβ)R)0′�1 (Lemma 15)

1′2�2 0′�1 p(CNG(tβ))CLG(tγ )R 0�1)

= 4�2 + RNA(Stα,tβ ,tγ ). (by definition)

For the third equality, we move 1�2 0�1 CNG(tγ )12�2 from the end of the sequence to the beginning. The fourth equality 
follows by applying Lemma 15 iteratively to remove the substrings 12�2 1′2�2 , 1�2 1′�2 , and 1′�2 1�2 . �

Lemma 18 shows that RNA(SG) = m1 + m2 by calculating the exact value of RNA(Stα,tβ ,tγ ).

Lemma 18. RNA(SG) = m1 + m2 .

Proof. By Lemma 5, we already have RNA(SG) ≥ m1 + m2. By Lemma 14 and Lemma 17, we have RNA(SG) ≤ m1 + 4�2 +
max

tα,tβ ,tγ ∈Ck

RNA(Stα,tβ ,tγ ). Thus, to prove the lemma, it suffices to show that RNA(Stα,tβ ,tγ ) = 2�2 + 3�1 + 3
2 �0 − Q (tα, tβ, tγ ). 

Recall that Q (tα, tβ, tγ ) is defined as 1
2

(
δLCS(CLG(tα), CNG(tβ)) + δLCS(CLG(tα), CNG(tγ )) + δLCS(CLG(tβ), CNG(tγ ))

)
.

First of all, we calculate a simple lower bound on RNA(Stα,tβ ,tγ ). Pairing up letters not residing in clique node gadgets 
and clique list gadgets yields an RNA folding of Stα ,tβ ,tγ with cardinality 2�2 + 3�1, and so RNA(Stα,tβ ,tγ ) ≥ 2�2 + 3�1. We 
claim that for any optimal RNA folding A of Stα,tβ ,tγ , the following two statements are true.

(S1) For each of the two substrings 1�2 , there is a letter 1 paired up with a letter 1′ in the substring 1′2�2 .
(S2) For each S ′ ∈ {Stγ ,tα , Stα,tβ , Stβ ,tγ }, there is a pair linking a letter 0′ in 0′�1 ⊆ S ′ and a letter 0 in 0�1 ⊆ S ′ .

To prove the statement (S1), suppose that a substring 1�2 does not have any letter matched to a letter in the sub-
string 1′2�2 . We show that this leads to a contradiction. Observe that the number of 1′ in Stα,tβ ,tγ that does not belong to 
1′2�2 is at most 0.1�1. Thus, |A| is at most the total number of 0′ plus the total number of 1 minus (�2 − 0.1�1). By a simple 
calculation, |A| ≤ (3�1 + 0.1�1) + (2�2 + 0.1�1) − (�2 − 0.1�1) = �2 + 3.3�1 < 2�2 + 3�1, contradicting with the known lower 
bound of RNA(Stα,tβ ,tγ ).

To prove the statement (S2) suppose that there is a substring S ′ ∈ {Stγ ,tα , Stα,tβ , Stβ ,tγ } that has no pair linking a letter 
0′ in 0′�1 ⊆ S ′ and a letter 0 in 0�1 ⊆ S ′ . Due to (S1), any pair in A involving letters in 0′�1 ⊆ S ′ or 0�1 ⊆ S ′ are confined to 
be within S ′ . Therefore, the number of pairs in A involving letters in S ′ is at most |S| − 2�1 ≤ 0.1�1. This is certainly not 
optimal, since simply matching all 0′ in 0′�1 to all 0 in 0�1 gives us �1 amount of pairs.

We can infer from the above two statements that for each S ′ ∈ {Stγ ,tα , Stα,tβ , Stβ ,tγ }, letters within S ′ are only matched 
to letters within S in any optimal RNA folding of Stα,tβ ,tγ . As a result,

RNA(Stα,tβ ,tγ ) = RNA(1�2 ◦ 1�2 ◦ 1′2�2) + RNA(Stγ ,tα ) + RNA(Stα,tβ ) + RNA(Stβ ,tγ )

= 2�2 + 3�1 + RNA(CNG(tγ )p(CLG(tα)R)) + RNA(CNG(tα)p(CLG(tβ)R))

+ RNA(p(CNG(tβ))CLG(tγ )R)

= 2�2 + 3�1 + 3

2
�0 − 1

2

(
δLCS(CLG(tα),CNG(tβ)) + δLCS(CLG(tα),CNG(tγ ))

+ δLCS(CLG(tβ),CNG(tγ ))
)
. �

We are ready to prove Theorem 2.

Proof of Theorem 2. Throughout the proof, k is treated as a constant. Given a graph G , we construct the string SG . According 
to Lemma 1 and Lemma 4, the length of SG is O (nk+1 log n), and SG can be constructed in time O  

(
nk+1 log n

)
. We let 

tα, tβ, tγ ∈ Ck be chosen to minimize

Q (tα, tβ, tγ ) = 1

2

(
δLCS(CLG(tα),CNG(tβ)) + δLCS(CLG(tα),CNG(tγ )) + δLCS(CLG(tβ),CNG(tγ ))

)
.

By Lemma 3, there exists a number c1 meeting the following conditions.
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• The number c1 depends only on n and k, and Q (tα, tβ, tγ ) ≥ 3c1/2.
• If Q (tα, tβ, tγ ) = 3c1/2, then each of tα ∪ tβ , tα ∪ tγ , and tβ ∪ tγ is a 2k-clique; in other words, tα ∪ tβ ∪ tγ is a 3k-clique.
• If Q (tα, tβ, tγ ) > 3c1/2, then the graph has no 3k-clique.

According to Lemma 18, RNA(SG) = m1 + m2. By its definition, m1 only depends on n and k; and m2 = 6�2 + 3�1 + 3
2 �0 −

mintα,tβ ,tγ ∈Ck Q (tα, tβ, tγ ). Hence we are able to infer whether G has a 3k-clique from the value of RNA(SG), which can be 
calculated in time T

(
O

(
nk+1 log n

))
. �

4. Hardness of Dyck edit distance problem

In this section, we consider the Dyck edit distance problem. The goal of this section is to present a simple reduction 
from RNA folding problem (with alphabet size 4) to Dyck edit distance problem (with alphabet size 10).

Dyck edit distance. Recall that the Dyck edit distance problem asks for the minimum number of edits to transform a given 
string to well-balanced parentheses of s different types. The formal definition of the problem is as follows. Given S ∈
(� ∪ �′)n , the goal of the Dyck edit distance problem is to find a minimum number of edit operations (insertion, deletion, 
and substitution) that transform S into a string in the Dyck context free language.

Given � and its corresponding �′ , the Dyck context free language is defined by the grammar with following production 
rules: S → SS, ∀x ∈ �, S → xSx′ , and S → ε (empty string). Note that for each x ∈ �, the two symbols x and x′ represent one 
type of parenthesis.

An alternate formulation. An alternative definition of the Dyck edit distance problem is as follows. Given a sequence S ∈
(� ∪ �′)n , find a minimum cost set A ⊆ {(i, j) | 1 ≤ i < j ≤ n} satisfying the following conditions:

• A = AM ∪ A S has no crossing pair.
• AM contains only pairs of the form (x, x′), x ∈ � (i.e. for all (i, j) ∈ AM , we have S[i] = x, S[ j] = x′ , for some x ∈ �). AM

corresponds to the set of matched pairs.
• A S does not contain any pair of the form (y′, x), x, y ∈ � (i.e. for all (i, j) ∈ A S we have either S[i] ∈ � or S[ j] ∈ �′). 

A S corresponds to the set of pairs that can be fixed by one substitution operation per each pair.
• Let D be the set of letters in S that do not belong to any pair in A. Each letter in D requires one deletion/insertion 

operation to fix.

The cost of A is then defined as |A S | + |D|, and the Dyck edit distance of the string S is the cost of a minimum cost set 
meeting the above conditions.

Discussion. Dyck edit distance problem can be thought of as an asymmetric version of the RNA folding problem that also 
handles substitution, in addition to deletion and insertion. Though these two problems look similar, they can behave quite 
differently. For example, in Section 1 we describe a simple reduction from LCS to RNA folding; since LCS is basically the 
edit distance problem without substitution, one might feel that the same reduction also reduces the edit distance problem 
to the Dyck edit distance problem. However, this is not true. The following example shows that the edit distance between 
two strings X and Y cannot be inferred from the Dyck edit distance of X ◦ p(Y R). Both the two strings X1 = ababa and 
X2 = abbaa require 4 edit operations to transform into the string Y = caaac; but the Dyck edit distance of X1 ◦ p(Y R) =
ababac′a′a′a′c′ is 4 (by deleting all b and c′), while the Dyck edit distance of X2 ◦ p(Y R) = abbaac′a′a′a′c′ is 3 (by deleting 
all c′ and substituting the second b with b′).

Intuitively, the substitution operation makes Dyck edit distance more complicated than RNA folding. Indeed, the con-
ditional lower bound for Dyck edit distance shown in [15] requires a big alphabet size of 48 and a longer proof. In the 
remainder of this section, we prove Theorem 3 by demonstrating a simple reduction from RNA folding problem (with al-
phabet size 4) to Dyck edit distance problem (with alphabet size 10). This improves upon the hardness result in [15], and 
justifies the intuition that Dyck edit distance is at least as hard as RNA folding.

Proof of Theorem 3. For notational simplicity, we let the alphabet for the RNA folding problem be � ∪ �′ = {0, 0′, 1, 1′}
instead of {A, C, G, U }. Let S be any string in (� ∪ �′)n . We define the string SDyck as the result of applying the following 
operations on S:

• Replace each letter 0 with the sequence S0 = aeb′aeb′ .
• Replace each letter 0′ with the sequence S0′ = bba′a′ .
• Replace each letter 1 with the sequence S1 = ced′ced′ .
• Replace each letter 1′ with the sequence S1′ = ddc′c′ .

The sequence SDyck is of length at most 6n on the alphabet {a, b, c, d, e} ∪ {a′, b′, c′, d′, e′}, though the letter e′ is not used. 
We claim that the Dyck edit distance of SDyck is |SDyck| − 2RNA(S).
2
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Upper bound. We show that the Dyck edit distance of SDyck is at most |SDyck|
2 − 2RNA(S). Given an optimal RNA folding of S , 

we construct a crossing-free matching A with cost |SDyck|
2 − 2RNA(S) as follows.

For matched pairs in the RNA folding of S:

• For each matched pair (0, 0′) in the RNA folding of S , we add two pairs (a, a′), (a, a′) to AM , and add three pairs 
(e, b′), (e, b′), (b, b) to A S in its corresponding pair of substrings (S0 = a(eb′)a(eb′), S0′ = (bb)a′a′) in SDyck.

• For each matched pair (0′, 0) in the RNA folding of S , we add two pairs (b, b′), (b, b′) to AM , and add three pairs 
(a′, a′), (a, e), (a, e) to A S in its corresponding pair of substrings (S0′ = bb(a′a′), S0 = (ae)b′(ae)b′) in SDyck.

• Similarly, for each matched pair (1, 1′), (1′, 1) in the RNA folding of S , we add two pairs to AM and three pairs to A S .

For unmatched letters in S:

• For each unmatched letter 0 in S , we add three pairs (a, b′), (e, b′), (a, e) to A S in its corresponding substring S0 =
(a(eb′)(ae)b′). Similarly, for each unmatched letter 1, we add three pairs to A S .

• For each unmatched letter 0′ in S , we add two pairs (b, b), (a′, a′) to A S in its corresponding substring S0 = (bb)(a′a′). 
Similarly, for each unmatched letter 1′ , we add two pairs to A S .

The set AM has size 2RNA(S), the set A S has size |SDyck|−4RNA(S)

2 , and D is an empty set. Therefore, the cost of A is 
|SDyck|−4RNA(S)

2 = |SDyck|
2 − 2RNA(S).

Lower bound. We show that the Dyck edit distance of SDyck is at least |SDyck|
2 − 2RNA(S). Given a crossing-free matching A

(on the string SDyck) of cost C , we recover an RNA folding of S that has ≥ |SDyck|
4 − C

2 number of matched pairs.
We build a multi-graph G = (V , E) such that V is the set of all substrings S0, S0′ , S1, and S1′ that constitute SDyck, 

and the number of edges between two substrings in V is the number of pairs in AM linking letters between these two 
substrings. Note that |V | = n and |E| = AM . It is clear that C ≥ |SDyck|−2|E|

2 , since |A S | + |D| ≥ |SDyck|−2|AM |
2 = |SDyck|−2|E|

2 . We 
show that we can obtain an RNA folding of S that has size ≥ |E|

2 . Note that |E|
2 ≥ |SDyck|

4 − C
2 . We make the following three 

observations.

(O1) G has degree at most 2. The reason is that at most two letters in each substring S0 , S0′ , S1, S1′ can participate in 
pairings of the form (x, x′), x ∈ {a, b, c, d}, without crossing.

(O2) In the graph G , each edge either (i) links a substring S0 with a substring S0′ , or (ii) links a substring S1 with a 
substring S1′ . The reason is that any pairing of the form (x, x′), x ∈ {a, b, c, d}, must be made between S0 and S0′ , 
or between S1 and S1′ .

(O3) G does not contain any cycle of odd length. This is due to (O2).

In view of (O2), a (graph-theoretic) matching M ⊆ E of G naturally corresponds to a size-|M| RNA folding of S , as follows. 
For each edge, which is a pair of substrings in SDyck, in M , we add its corresponding pair of letters in S to the RNA folding. 
By (O1) and (O3), G in a graph of maximum degree 2 without odd cycles, and a maximum matching in such a graph has 
size at least |E|

2 , and so we conclude the proof. �
The reason that the letter e is essential in the proof is briefly explained as follows. Suppose that e is removed. For each 

matched pair (0, 0′) in the RNA folding of S , after adding two pairs (a, a′) and (a, a′) to AM , the letter b′ between two letters 
a in S0 = ab′ab′ cannot participate in any matching. Hence some letters have to be in D according to our construction of 
the crossing-free matching A, which implies that our construction might not be optimal.

Consider the case S = (00′0′). We would have SDyck = ab′ab′bba′a′bba′a′ after removing e. If we match the two pairs 
(a, a′) and (a, a′) in ab′ab′bba′a′bba′a′ , then the cost will be at least 5 (three substitutions and two deletions are needed). 
However, there is a solution that uses only 4 substitutions: a(b′a(b′(bb)a′)a′(bb)a′)a′ .

Note that if substitution is not allowed in the definition of Dyck edit distance, then the letter e in the above proof is not 
needed, and this lowers the alphabet size requirement from 10 to 8.

5. Conclusion

In this paper we present a conditional lower bound of RNA folding problem with alphabet size 4, and demonstrate a 
simple reduction from RNA folding problem to Dyck edit distance problem. One open problem that still remains is whether 
it is possible to reduce Dyck edit distance problem to RNA folding problem (i.e., the reverse of Theorem 3). The “standard” 
RNA folding problem only finds an optimal pseudoknot-free fold for an RNA sequence; however, the “real world” RNA folding 
includes pseudoknots, and is more complicated. There are variants of RNA folding problem that consider pseudoknots; see 
e.g., [23] and the citations therein. It would be interesting to see whether the techniques presented in this paper and [15,13]
can be adapted to provide meaningful lower bounds for these problems.
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