Theoretical Computer Science 757 (2019) 11-26

Contents lists available at ScienceDirect & o

Theoretical Computer Science

www.elsevier.com/locate/tcs e

W

Hardness of RNA folding problem with four symbols N
Check for

. updates
Yi-Jun Chang
University of Michigan, Ann Arbor, MI, USA
ARTICLE INFO ABSTRACT
Am‘c{e history: An RNA sequence is a string composed of four types of nucleotides, A, C, G, and U. The goal
Received 17 March 2018 of the RNA folding problem is to find a maximum cardinality set of crossing-free pairs of

Received in revised form 5 July 2018
Accepted 17 July 2018

Available online 31 July 2018
Communicated by T. Calamoneri

the form {A, U} or {C, G} in a given RNA sequence. The problem is central in bioinformatics
and has received much attention over the years. Abboud, Backurs, and Williams (FOCS
2015) demonstrated a conditional lower bound for a generalized version of the RNA folding
problem based on a conjectured hardness of the k-clique problem. Their lower bound

Keywords: requires the RNA sequence to have at least 36 types of symbols, making the result not
Conditional lower bound applicable to the RNA folding problem in real life (i.e., alphabet size 4). In this paper, we
Dyck edit distance present an improved lower bound that works for the alphabet size 4 case.

Longest common subsequence We also investigate the Dyck edit distance problem, which is a string problem closely
RNA folding related to RNA folding. We demonstrate a reduction from RNA folding to Dyck edit distance

with alphabet size 10. This leads to a much simpler proof of the conditional lower bound
for Dyck edit distance problem given by Abboud, Backurs, and Williams (FOCS 2015), and
lowers the alphabet size requirement.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An RNA sequence is a string composed of four types of nucleotides, namely A, C, G, and U. Given an RNA sequence, the
goal of the RNA folding problem is to find a maximum cardinality set of crossing-free pairs of nucleotides, where all the
pairs are either {A, U} or {C, G}. The problem is central in bioinformatics, and it has found application in predicting the
secondary structure of RNA molecules, which is of importance in molecular biology; see e.g., [2] for more details.

It is well-known that the RNA folding problem can be solved in 0 (n?) time via dynamic programming [3]. Due to the
importance of the problem in practice, there has been a long line of research aiming at improving the runtime, practically or
theoretically [4,2,5-7]. Based on log-shaving techniques such as the four-Russian method, the time complexity of O (1022 n)
can be obtained [6].

Whether the RNA folding problem can be solved in truly sub-cubic time (i.e., O (n3~€) time for some constant € > 0) had
been a major open problem until recently. In 2016, Bringmann, Grandoni, Saha, and Williams [8] showed that the problem
can be solved in randomized O (n%8244) time and deterministic O (n2-8693) time via fast bounded-difference min-plus matrix
multiplication. The RNA folding problem can be reduced to min-plus matrix multiplication [8]. The current state-of-the-art

algorithm for min-plus matrix multiplication [9] takes O (n3/cV98") time, for some constant ¢ > 1. Using this algorithm, one

* A preliminary version of this paper was presented at the 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016) Tel Aviv, Israel, June
27-29, 2016 [1]. This work is supported by NSF grants CCF-1217338, CNS-1318294, and CCF-1514383.
E-mail address: cyijun@umich.edu.

https://doi.org/10.1016/.tcs.2018.07.010
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.07.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:cyijun@umich.edu
https://doi.org/10.1016/j.tcs.2018.07.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.07.010&domain=pdf

12 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

immediately obtains an RNA folding algorithm with the same time complexity. Bringmann, Grandoni, Saha, and Williams
observed that the min-plus matrix multiplication instance resulting from the reduction has the “bounded differences” prop-
erty, and they showed that bounded-difference min-plus matrix multiplication can be solved in truly sub-cubic time [8].

The algorithm of [8] uses fast matrix multiplication, which does not perform very efficiently in practice. It is still an open
question whether there is a combinatorial, non-algebraic, truly sub-cubic time algorithm for RNA folding.

1.1. Conditional lower bounds

A popular way to show hardness of a problem is to demonstrate a lower bound conditioned on some widely accepted
hypothesis.

Conjecture 1 (Strong exponential time hypothesis). There exist no € > 0 and ko > 0 such that k-SAT with n variables can be solved in
time 0 (21— for all k > k.

Conjecture 2 (k-clique conjecture). There exist no € > 0 and ko > 0 such that k-clique on graphs with n nodes can be solved in time
0 (n“=9%/3) for all k > ko, where w < 2.373 is the matrix multiplication exponent.

For instance, assuming Strong Exponential Time Hypothesis (SETH), the following bounds are unattainable for any € > 0:
(i) an O(n*—€) algorithm for k-dominating set problem [10]; (ii) an O (n?~€) algorithm for dynamic time warping, longest
common subsequence, and edit distance [11-13]; (iii) an 0 (m2~¢) algorithm for (3/2 — €)-approximating the diameter of a
graph with m edges [14].

As remarked in [15], it is straightforward to reduce the longest common subsequence (LCS) problem on binary strings
to the RNA folding problem as follows. Given two binary strings X, Y, let X e{A,)Xl be a string defined as X[i]=A if
X[i]=0, and X[i] = C if X[i] = 1; similarly, let ¥ € {G, U}Y! be a string defined as V[i]=U if Y[i]=0, and V[i] =G if
Y[i] = 1. Then we have an 1-1 correspondence between RNA foldings of Xo VR (i.e., concatenation of X and the reversal
of Y) and common subsequences of X and Y. It has been shown in [13] that there is no O(n?~¢)-time algorithm for LCS
on binary strings, assuming SETH. Thus, we immediately obtain the same conditional lower bound for RNA folding.

Abboud, Backurs, and Williams demonstrated a higher conditional lower bound for a generalized version of the RNA fold-
ing problem (which coincides with the RNA folding problem when the alphabet size is 4) from the k-clique Conjecture [15].

Theorem 1 ([15]). If the generalized RNA folding problem on sequences of length n with alphabet size 36 can be solved in T (n) time,
then 3k-clique on graphs with |V | =n can be solved in T (O (nk+2 log n)) time.

Therefore, an O (n®~€)-time algorithm for the generalized RNA folding with alphabet size at least 36 will disprove the
k-clique Conjecture, yielding a breakthrough to the parameterized complexity of the k-clique problem. The current state-
of-the-art algorithm for k-clique takes O (n“’"/3) time (when k is a multiple of 3), and it requires the use of fast matrix
multiplication [16]. For combinatorial, non-algebraic algorithms for k-clique, the current state-of-the-art upper bound is

(0] (lo’;—’;n> [17]. Therefore, an O (n3~€)-time combinatorial algorithm for RNA folding would imply a breakthrough for com-

binatorial algorithms for k-clique.
1.2. Our contribution

Due to its alphabet size requirement, Theorem 1 is not applicable to the RNA folding problem in real life (i.e., alphabet
size 4). It is unknown whether the generalized RNA folding for alphabet size 4 admits a faster algorithm than the case for
alphabet size > 4. There are plenty of string algorithms whose runtime depends on the alphabet size (e.g., string matching
with mismatches [18] and jumbled indexing [19,20]). Note that when the alphabet size is 2, the generalized RNA folding
problem can be trivially solved in linear time. In this paper, we improve upon Theorem 1 by showing the same conditional
lower bound still for the case of alphabet size 4. Note that we also get an O (n) factor improvement inside T(-), though it
does not affect the conditional lower bound.

Theorem 2. If the RNA folding problem on sequences in {A, C, G, U}" can be solved in T (n) time, then 3k-clique on graphs with
|V| =n can be solved in T (O(nk“ logn)) time.

In what follows, we briefly overview the proof of Theorem 2. At a high level, our reduction (from 3k-clique to RNA
folding) follows the approach in [15]. Given a graph G, enumerate all k-cliques, and each of them is encoded as some
gadgets. All the gadgets are then put together to form an RNA sequence. The goal is to ensure that an optimal RNA folding
corresponds to choosing three k-cliques that form a 3k-clique, given that the underlying graph admits a 3k-clique.

Intuitively, in order to force the gadgets to be matched in a desired manner in an optimal RNA folding, we have to build
various “walls” that prevent undesired pairings. The main challenge is that we have to achieve this goal using merely 4

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 13

types of symbols. Our main tool is to use the technique “alignment gadget” developed in [13], whose original purpose is to
prove that longest common subsequence and other edit distance problems are SETH-hard even on binary strings. We apply
this tool as a black box during the construction of the RNA sequence.

Dyck edit distance. The RNA folding problem can be alternatively defined as follows. Given a string S, delete the min-
imum number of letters in S to transform it into another string S’ in the language defined by the grammar S —
SS, ASU, USA, CSG, GSC, € (empty string). The Dyck edit distance problem [21,22], which asks for the minimum number of
edits to transform a given string to well-balanced parentheses of s different types, admits a similar formulation. Due to the
similarity, the Dyck edit distance problem was shown to admit the same conditional lower bound as Theorem 1 [15]. Their
conditional lower bound requires the alphabet size to be at least 48. In this paper, we present a simple reduction from RNA
folding to Dyck edit distance.

Theorem 3. If Dyck edit distance problem on sequences of length n with alphabet size 10 can be solved in T (n) time, then the RNA
folding problem on sequences in {A, C, G, U}" can be solved in O (T (n)) time.

Combining Theorem 2 and Theorem 3, we obtain the following corollary.

Corollary 1. If the Dyck edit distance problem on sequences of length n with alphabet size 10 can be solved in T (n) time, then 3k-clique
on graphs with |V| = n can be solved in T (0 ("** logn)) time.

This improves upon the conditional lower bound in [15] (reducing the alphabet size from 48 to 10), and it also simplifies
the proof (the original proof in [15] takes about 9 pages).

2. Preliminaries

Given a set of letters ¥, the set ¥’ is defined as {X' | x € T}. It is required that TNY =0, and Vx,y € =, x £ y) —
(¥ #y). Therefore, |¥'| =|%| and |ZU Y| =2|Z|.

For any string X = (x1, ..., Xx) € =¥, we write p(X) to denote (P x;). The letter p stands for the prime symbol. We
denote the reversal of the sequence X as XR. The concatenation of two sequences X, Y is denoted as X o Y, or simply XY.
We write substring to denote a contiguous subsequence. We say that two pairs of indices (i1, j1), (i2, j2), with i; < j; and
iy < ja, form a crossing pair if

(i1, jiyn{iz, j2} #D) v (i1 <iz < j1 < j2) V(i2 <i1 < j2 < j1).

Generalized RNA folding. Given a string S € (X U X')", an RNA folding of S is a set A C{(i,j) | 1 <i < j <n} meeting the
following two conditions.

e A does not contain any crossing pair.
e For each (i, j) € A, either S[i] € £ and S[j] = S[i], or S[j] € £ and S[i] = S[j]’ is true.

The goal of the generalized RNA folding problem is to find a maximum cardinality RNA folding A*. We write RNA(S) = |A*|,
where A* is any maximum cardinality RNA folding of S. Any RNA folding A satisfying |A| = RNA(S) is said to be optimal.

In the paper we only focus on the generalized RNA folding problem with four types of letters, i.e. ¥ ={0,1}, ¥’ = {0/, 1},
which coincides with the RNA folding problem for alphabet {A, C, G, U}. With a slight abuse of notation, sometimes we
write (S[i], S[j]) to denote a pair (i, j) € A. The notation {-, -} is used to indicate an unordered pair.

Longest common subsequence. Given X € X" and Y € ¥™, we define 8ics(X, Y) as the minimum number of letters from X
and Y needed to be deleted to make them identical. That is, §ics(X, Y) =n +m — 2k, where k is the length of the longest
common subsequence (LCS) of X and Y. Observe that RNA(X o p(Y®)) = (n 4+ m — 8ics(X, Y))/2 equals the length of LCS of
X and Y. Hence the LCS problem can be viewed as the RNA folding problem with some structural constraint on the RNA
sequence.

Alignment gadgets. In [13], a SETH-based conditional lower bound for LCS with |X| =2 was shown. A key technique in their
approach is a function that transforms an instance of an alignment problem between two sets of sequences to an instance
of the LCS problem, which is briefly described as follows.

Let X=(X1,...,Xy) and Y= (Yq,...,Yy) be two linearly ordered sets of sequences of alphabet ¥. We assume that
n > m. An alignment is a set A = {(i1, j1), (i2, j2), ..., (ija;, jjap} with 1 <ij <ip <---<ip<nand 1 <ji<jo<--- <
Jjla) <m. An alignment A is called structural iff |A| =m and i, = i1 +m — 1. That is, all sequences in Y are matched, and the
matched positions in X are contiguous. The set of all alignments is denoted by 4, m, and the set of all structural alignments
is denoted by S, m. The cost of an alignment A (with respect to X and Y) is defined as

8(A) = Z Sres(Xi, Yj) + (m —|A)) n?%xaLCS(Xi» Yj).
(i,j)eA '

14 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

That is, unaligned parts of Y are penalized by max; jdics(Xi, Y;). Given a sequence X, the type of X is defined as
(IX1, >-; X[i]), where each letter is assumed to be a number. Note that if the alphabet is ¥ = {0, 1} (which is the case
in this paper), then) _; X[i] is the number of occurrences of 1 in X. The following lemma was proved in [13].!

Lemma 1 ([13]). Let X = (X1, ..., Xp) and Y = (Y1, ..., Ym) be two linearly ordered sets of binary strings such that n > m. All
X; are of type Tx = (£x,sx), and all Y; are of type Ty = (Ly, Sy). There are two binary strings Sx = GAQTY(XL ., Xp), Sy =
GA';’TX (Y1, ..., Yn) and an integer C meeting the following requirements.

® MiNpcg, , §(A) <dcs(Sx, Sy) — C <minges, , 6(A).
o the integer C and the types of Sx and Sy only depend onn,m, Tx, Ty.
e Sx, Sy, and C can be calculated in time O ((n +m)(£x + Ly)); hence |Sx| and |Sy| are both O ((n +m)(£x + Ly)).

In Lemma 1, GAr)'g’ﬂ’(X1,...,Xn) is a function of X1q,..., X, parameterized by m and 7y; and GA'Z,‘TX(YL...,Ym) is a
function of Yy, ..., Y, parameterized by n and 7.

Intuitively, computing an optimal alignment (or an optimal structural alignment) of two sets of sequences is at least
as hard as computing a longest common subsequence. Lemma 1 gives a reduction from the computation of a number s
with mingeg, , §(A) <s < mingeg,,, §(A) (which can be regarded as an approximately optimal alignment) to a single LCS
instance.

We use Lemma 1 as a black box to devise two encodings, the clique node gadget CNG(t) and the clique list gadget
CLG(t), for any k-clique t in a graph, in such a way that whether two k-cliques t; and t; form a 2k-clique can be inferred
from the value of §;cs(CNG(t1), CLG(t2)).

3. From cliques to RNA folding

The goal of this section is to prove Theorem 2. Let G = (V, E) be a graph, and let n =|V|. We write Cj to denote the set
of k-cliques in G. We fix ¥ = {0, 1}. As in [15], we construct a sequence Sg € (X U X')* such that we can decide whether G
has a 3k-clique according to the value of RNA(S¢). The building blocks in the construction of S carry the same names as
their analogues in [15], though they have different lower-level implementations.

The organization of this section is as follows. In Section 3.1 we describe the two gadgets CNG(t) and CLG(t) for a k-clique
t based on the black box tool of Lemma 1. In Section 3.2, adapting the gadgets developed in Section 3.1, we present the
definition of the binary sequence S¢. In Section 3.3, we show that there exists an optimal RNA foldings of S¢ satisfying
some good properties, and then we calculate the value of RNA(S¢) in Section 3.4.

3.1. Testing 2k-cliques via LCS

We associate with each vertex v € V a unique ID in {0, 1,... n—1}. Let s, be the binary encoding of the ID of v. Note
that |sy| = [log(n)] for each vertex v. We define v as the binary string resulting from replacing each 0 in s, by 01 and
replacing each 1 in s, by 10. Observe that (i) v is of type 7o = (2[log(n)7, [log(n)]) for each v € V, and (ii) dics(u, v) =0 if
and only if u =v.

Let v € V be any vertex, and let N(v) = {u1, uz, ..., u|n)|} be the set of neighbors of v. The list gadget LG(v) and the
node gadget NG(v) for the vertex v are defined as follows.

LG(v) = GALT® (ﬂl g, ... Ny, 11108 gMoE™T 1rlog(nﬂ0rlog<n)1) ,
where the number of occurrences of 1M1°8™1gMe™T jsn — |N(v)|.

NG(v) = GAY 0 ().

Lemma 2. There is a number cg, depending only on n, such that for any two vertices v1, v, € V, we have d1cs(LG(v1), NG(v2)) > co,
with equality if and only if {v1, v3} € E.

Proof. Let vi, vy € V. Let N(v1) = {u1, U2, ..., Un)}. Define the two sequences of binary strings X and Y as follows.
X — (l—“, I, ..., Uiy, 1708 TQMos®1 1ﬂog(n)10ﬂog(nﬂ> ,

where the number of occurrences of 1/°8™1gMeM1 sy — |N(vy)|.
Y= (vy).

Note that |X| =n and |Y| =1; we have LG(v) = GA}(%(X) and NG(v) = GA';,’%(Y).

1 See Lemma 4.3 in the arXiv version (1504.01431v2) of [13].

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 15

In view of Lemma 1, we have minaez,, §(A) < dics(LG(v1), NG(v2)) — C < minges, ; 6(A), for some number C whose
value depends on |X|, |Y|, and 7. As these parameters depend solely on n, the number C also depends only on n (i.e., the
choice of the two vertices vy and v, does not affect C). We claim that setting co = C suffices to prove the lemma.

Since |Y| =1, any non-empty alignment between X and Y is structural. This implies that d;cs(LG(v1), NG(v2)) — C =
mingegq, ; 6(A) = Minges, , §(A).

For the case {viq, vz} € E, since v, is contained in X, clearly minges,,, 6(A) = 0. For the case {vq,v3} ¢ E, V2 does

not appear in X, so minaes,,, 6(A) > 0. Note that 1M°8MToMoe™1 o£ § for each v € V. As a result, for any two vertices
v1, vy € V, we have 81cs(LG(v1), NG(v2)) > co, with equality if and only if {vq,v2} € E. O

In view of Lemma 1, the type of list gadgets and the type of node gadgets depends only on n; that is, they are indepen-
dent of the underlying vertex v. Let Tx be the type of the list gadgets, and let 7y be the type of the node gadgets. For each
k-clique t = {uq,uy, ..., uy}, define the clique node gadget CNG(t) and the clique list gadget CLG(t) as follows.

CLG(t) = GAI)c(Z’TY (LG(u1),...,LG(u1),LG(uz), ..., LG(u2), ..., LG(ug), ..., LG(ux)),

where the number of occurrences of each LG (u;) is k.
CNG(t) = GA’{,Z’TX(NG(u]), NG(u2), ..., NG(uy),
NG(u1), NG(uz), ..., NG(u),

ey

NG(u1), NG(uy), ..., NG(uy)),

where the number of occurrences of each NG(u1), NG(u>), ..., NG(uy) is k.

Lemma 3. There is a number cy, depending only on n and k, such that for any two k-cliques t1, ty € C, we have & cs(CLG(t1),
CNG(tp)) > cq, with equality if and only if the set of vertices t1 U tp form a 2k-clique.

Proof. Let t1 = {uq,uy,...,u}, and let t; = {vq, va,..., vi} be two k-cliques. Define the two sequences of binary strings X
and Y as follows.

X =(LG(uy),...,LG(uy1),LG(uy),...,LG(uz),...,LG(ug), ..., LG(ug)),
where the number of occurrences of each LG(u;) is k.
Y = (NG(v1),NG(v2), ..., NG(vy),
NG(v1),NG(v2),...,NG(vy),
NG(v1),NG(v2), ..., NG(vy)),

where the number of occurrences of each NG(v1), NG(v3), ..., NG(vy) is k.

Note that |X| = |Y| = k?; we have CLG(t) = GA’)‘;’TY(X) and CNG(t) = GA’;,Z’TX(Y). In view of Lemma 2,
Minw, wyev dics (LG(wW1), NG(w2)) = co, and so min,qeﬂ,1<2 ,8(A) > k%co.

In view of Lemma 1, mingeg 2 2 8(A) < 81cs(CLG(t1), CNG(t2)) — C <minges 22 8(A), for some number C whose value
depends on |X|, |Y|, 7x, and Ty. "As these parameters depend solely on n, k, the number C only depends on n,k (i.e., the
choice of the two k-cliques t; and t, does not affect C). We claim that setting c; = C + k?cq suffices to prove the lemma.

Consider the case t; Ut form a 2k-clique. That is, each u; e t; is adjacent to each v; € t. Thus, by Lemma 2, we have
Ses(Xi, Yj) =co, for all i, j. Recall that X; denotes the ith string in X, and Y; denotes the jth string in Y. The structural
alignment A* ={(i,i) |ie{1,2,...,k*}} € Sy2 2 achieves the minimum possible cost k?cg. Thus, for the case t; Ut, form a
2k-clique, we have

d1cs(CLG(t1), CNGi(tp)) — C = Ak min §(A)= min §(A)=k>co,

A2 42 AES)2 12
and 5o 8;cs(CLG(t1), CNG(t2)) = C + k?co = c1, as desired.
Next, consider the case t; Ut, does not form a 2k-clique. That is, there exist two vertices uy € t; and vj € tp that are
not adjacent. By Lemma 2, we have 8ics(LG(uy), NG(uj)) > co. We claim that min,qeqk2 2 8(A) > k?cq. Suppose that there

exists an alignment A’ € 42 4> such that §(A") = k?co. Then all k? strings in Y must be aligned, as each unaligned string in
Y contributes a cost that is higher than cq. Thus, we must have A’ = {(i,i) | i €{1,2,...,k?}}. In order to have §(A’") = k?cq,

16 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

we must have 8ics(X;, Yi) = co, for all i € {1,2,...,k%}. However, Xjrk@—1) = LG(uy) and Yjyi—1) = NG(vj), and so
SLes(Xj4i(ir—1)» Y ji4k(i'—1)) > Co, @ contradiction.
Since minAEqk2 2 8(A) > kcq for the case t; Ut; is not a 2k-clique, we have

S81cs(CLG(t1), CNG(t2)) — C > min 8(A) > k?co,

AGﬂkZ,kz

and 50 8;cs(CLG(t1), CNG(t2)) > C + k%co = c1, as desired. O
The following lemma is a simple consequence of Lemma 1.

Lemma 4. There exist four integers £cng.0, £cna.1, £cLa,0, and £cig,1 € O (k*nlogn) such that for any t € Cy, and for any b € {0, 1},
we have (i) £cng,p 1S the number of occurrences of b in CNG(t), and (ii) £ciap is the number of occurrences of b in CLG(t).

Proof. As a consequence of Lemma 1, all CNG(t) have the same type, and all CLG(t) have the same type. Therefore, the
existence of these four integers is guaranteed. We show that these numbers are O (k?nlogn). In view of Lemma 1, for each
v € V, both LG(v) and NG(v) have length at most (n+ 1) - (2[logn] + 2[logn]) = O (nlogn). Applying Lemma 1 again, the
length of both CNG(t) and CLG(t) for each t € C is (k% 4+ k2)(0 (nlogn) + O (nlogn)) = 0 (k*nlogn). O

3.2. The RNA sequence S

Based on the parameters in Lemma 4, we define ¢o = ¢cng.o + fong,1 + foig.o + fog1 = 0 (k*nlogn); for each i
{1,2,3}, we set £; =100¢;_1; and ¢4 = 100|Cx|¢3 = (}) O (k*nlogn) = O (n*+1logn/(k — 2)!). The RNA sequence Sg is then
defined as follows.

S¢ =0 [0"33 O (CGa(t)O’e3):| 0t [o"3 O (CGﬁ(t)O’e3>:| 0t {o’“ O (CGy(t)O/[3)i|,

teCy teCy teCy
where

124> 11

CGy () = 1" pcLGa ()0 1201 NG (1) 12,
%)

CG4(t) =12 p(CLG(HR)0' 120" p(CNG(1)) 12,
CG, () = 12CLG(HR0"1 120 CNG(H) 1%42.

For each t € Cy, and for each x € {«, B, v}, the string CGy(t) is called a clique gadget. Note that CGy(t) € (ZU X')¥,
CGg(t) € >'* and CG, (t) € X*. The length of this RNA sequence is [S¢g| = O(|Ck|to) = O(nk+l logn/(k — 2)!). Before pro-
ceeding further, we present a simple lower bound on RNA(S¢) by constructing an RNA folding of S¢ as follows.

Step 1: Matching the Letters in 0’3, Given some pairings between the letters in 0’% and the letters in 0%, a clique gadget
C is said to be blocked if all letters within C can only be paired up with the letters within the same clique gadget
or the letters in 0%, In particular, a clique gadget that is blocked is unable to participate in the RNA folding with
other clique gadgets.

We link all 0 in all 0’ to some 0 in some 0% in such a way that for each x € {«, 8, y}, there is exactly one
clique gadget CGg(tx) that is not blocked, among all clique gadgets {CGx(t) | t € Cx}. The three clique gadgets
CGq(ty), CGp(tp), and CGy (t,) that are not blocked are called the selected clique gadgets. See Fig. 1. This step
makes 3(|Cy| + 1)¢3 pairs.

Step 2: Matching the Letters in a Blocked Clique Gadget. Pair up the letters in each blocked clique gadget as follows. For
each blocked CGy (t), we pair up as many {1’,1} pairs as possible within the clique gadget; this gives us 2¢, +
min({cia,1, £cne,1) pairs. For each blocked CGg(t), we pair up all 0’ to some 0 in 0%4; this gives us 2¢; +{cLg.0 +
£cng,0 pairs. For each blocked CGy, (t), no pairing can be made. See Fig. 2. In this step, (|Cx| — 1)(2¢1 + 22 +
min({cLa,1, £cna,1) + £oLa,0 + £ong,0) Pairs are produced.

Step 3: Matching the Letters in the Three Selected Clique Gadget. For the three clique gadgets CGg(ty), CGg(tg), and
CGy, (t,) that are not blocked, We pair up the letters in these clique gadgets in such a way that
e all letters in 122, 12¢2, 12, 1©2, 0’1, and 0% are matched, and
e for each (x,y) € {(«, B), (&,), (B, ¥)}, %(Eo — 81cs(CLG(ty), CNG(ty))) number of pairs are made between the

two gadgets CLG(ty) and CNG(ty).

See Fig. 3. Recall that %(Zo — 81cs(CLG(ty), CNG(ty))) is the length of the LCS between CLG(tx) and CNG(ty). The
total number of pairs made in this step is

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 17

0:1?3

0+ 0,?3 0,23 CGu(ta) ort’z oyfz 0?4 Olla 01?3 CGB(tﬁ) 0:#3 0,4’3 0 On’g CGy(ty) Oyt’g 0,4’3

0% Oree, (CGa(£)0'3) 0" Oreg, (CGp()0"3) 0" Oree, (CGy (£)0"%)

Fig. 1. The three selected clique gadgets and the matchings between 0’ and 0%,

0% 0% 0fs
Ir”z p(CLG(OR) |07%1] 122|01| CNG(6)|1%2 |[[1"2[p(CLG(E))| 072|172 0% p(CNc(:))Ir"z 142 |CLG(E)R 0% [1%2[0%1 CNG() |12fz
CGg(t) CGp(t) CG, ()
i z b X

Fig. 2. The matchings between a blocked clique gadget and 0.

N

1'”Z|p(CLG(t,,)R) 0 1%z fots CNG(t,,,)Il’Z “lp (cL6(tp)") o"’llr”z 0% p (NG (1)) |17 | 172 |cL(e,)" [0
CGq(ta) CGﬁ(tﬁ) CGy(ty)
b) b pX

Fig. 3. The matchings within the three selected clique gadgets.

1
60y +301 + 3 (€0 — 81cs(CLG(te), CNG(tg)))
1 1
+ 5 (€0 = 81cs(CLG(t), CNG(ty) + 5 (¢o — dics(CLG(E4), CNG(Ly)
In view of the above discussion, we define the following two numbers.

my =3(|Ck| + €3 + (ICk| — 1)(2¢1 + 2€2 + min(€cia.1, one.1) + LeLa.o + £ong.o),

3
my =60 +3¢1+-fo— min Q(ty,ts.ty), where Q (ty, tg, ty) is defined as
2 ta,tg,ty €Cx

1
5 (8Lcs(CLG(ta), CNG(tp)) 4 S1cs(CLG(ty), CNG(ty) + S1cs(CLG(tg), CNGi(ty))) -

The RNA folding given in the above construction has cardinality mq 4+ 6£; + 341 + %Zo — Q(ty,tp,ty), and so my +my is
a lower bound of RNA(S¢).

Lemma 5. RNA(Sg) > mq +my.

We will ultimately show that RNA(S¢) =mq +my. Due to Lemma 3, if t, Utg Ut, form a 3k-clique, then Q (ty, tg, ty) =
3c1/2; otherwise Q (ty,tg,ty) > 3cq1/2. Therefore, the number RNA(S¢) = m1 + m;y offers sufficient information to decide
whether G has a 3k-clique. The following auxiliary lemma will be useful in subsequent discussion.

18 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

Lemma 6. The following statements are true for any two cliques t, t’ € Cy.

. RNA(0%CGq (1)) = 23 + min({oLe. 1. £ong,1)
. RNA(0“CGp (1)) = 21 + £c16.0 + Long.0

. RNA(0%“CGy, (t)) =0

. RNA(0%4CGq (£)0%CGa(t")) < 3.141 +2¢,

. RNA(0%CGq (1)0%CGy (') < 1.141 + 203

. RNA(0%“CGg(1)0%CG, (1) < 1.1¢1 + 44,

DDA WN -

Proof. The value of RNA(-) for each of the six strings are calculated as follows.

(1) RNA(0“CGq (t)) = 205 + min({cie,1, fong,1): Pairing up as many 1 to 1’ yields a matching of size m = 24, +
min(cig,1, £ong,1)- To see that it is optimal, it suffices to show that both (0’,0) and (0,0’) cannot appear in
an optimal RNA folding.

o If the RNA folding contains (0, 0"), then none of 1’ can participate in the RNA folding. As the total number of 0’
is £1 4+ £ciLa,0, the size of RNA folding is at most £1 + {cLg,0 <M.

o If the RNA folding contains (0', 0), then at most ¢c g 1 number of letters within the middle 12 (the one between
0" and 01) can participate in the RNA folding. It implies that the number of (1’,1) pairs in the RNA folding is
at most ¢cig,1+£2. Hence the size of the RNA folding can be upper bounded by (¢1 +{cig,0) + (¢cLa,1 +£2) <m.

(2) RNA(O“CGﬁ(t)) =201+ Lcig.0 + €ong,0: Since there is no 1, the equation follows from the fact that there are 2¢; +
LoLe.0 + Cona,o occurrences of 0, all of which can be matched to some 0 without crossing.

(3) RNA(O“CGy(t)) =0: It is impossible to produce any pair since there are no 0’ and 1’ in the string.

(4) RNA(0%CGy (t)O“CG,g(t’)) <3.1¢1 + 2¢3: The value of RNA(-) can be upper bounded by the number of 1 and 0’, which
is (2€2 + £eng,1) + (361 + 2€cia,0 + eng,0) < 3.141 + 245,

(5) RNA(O“CGD,(t)Oe“CGy(ﬂ)) <1.141 +243: The value of RNA(-) can be upper bounded by the number of 1’ and 0’,
which is (2€2 + £cie.1) + (U1 + Lerg.o) < 1.141 + 2¢5.

(6) RNA(0“4CGp(t)0%4CG,, (t')) < 1.1¢1 4 4€5: Define the string S = 0% o (1/‘“’20/‘1 112020t 1/‘2) 00% 0 (120411%20412%) as

the result of removing the clique node gadgets and the clique list gadgets in 0% CG;;(()O“l CGy (t). It is clear that
RNA(O‘Z‘*CGﬁ (t)0‘54CGy(t’)) < 0.1¢1 +RNA(S), as the total length of the removed substrings can be upper bounded
by 0.1¢1. Therefore, it suffices to show that RNA(S) < £1 + 4¢;. Let A be any RNA folding of S.

Case1: There is a pair (0,0') € A where the letter 0' comes from the first 0'! in S. Clearly, the first substring
1'% cannot participate in any pairing. Therefore, |A| < |0/“11220/“11"2| = 201 + 3¢5 < ¢4 + 4¢5.

Case2: There is a pair (0, 0) € A where the letter 0’ comes from the first 0'“! in S. Consider any pair (1’, 1) such
that the letter 1 is in the substring 12¢2 in S. In order to have this pair not crossing any pair (0’,0) € A,
the letter 1’ must be in the first substring 1'% in S. Therefore, at most half of the letters in the substring
12% can participate in the RNA folding A, and so |A| is at most the total number of 0’ and 1 in S minus
£y, ie., |A] <201 430, <1 +4L,.

Case3: The first 0" in S does not participate in the RNA folding. In this case, we have |A] < [1721%%20“11/%| =
l1+4¢,. O

Note that Lemma 6(1, 2, 3) implies that the RNA folding for blocked clique gadgets described in Fig. 2 is optimal, and
the optimal number of pairings is irrelevant to the underlying k-clique.

3.3. Optimal RNA foldings of S¢

In this section, we show that there exists an optimal RNA folding of S¢ satisfying some good properties. Let A be an
RNA folding of a string S, and let S; and S, be two disjoint substrings of S. Recall that a substring is a subsequence of

consecutive elements. We write Sq A, S, if there exists a pair {x1,x2} € A with x; € S1, x2 € S,. Given an RNA folding A
of the string S¢, the two properties (P1) and (P2) are defined as follows.

(P1) All 0’ in all 0'** are paired up with some 0 in some 0% in A.
(P2) There exist ty,tg,t, € C, such that the following holds. If CGy, (t1) A, CGy, (t2), then {(uq,t1), (u2,t2)} €
{(a7 tO()? (ﬂs tﬂ)’ (y’ ty)}~

Intuitively, (P2) says that all clique gadgets are blocked by the pairings between 0’ and 0%, except the three selected
clique gadgets CGy (tn), CGg(tp), and CGy (t,), for some choices of three k-cliques ty, tg, and ty,.

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 19

Lemma 7. Let A be any RNA folding of S¢. Let S1 be a substring 0 of S¢, and let Sy be a substring 0% of S¢. If there is a pair in A
linking a letter 0’ in S1 to a letter 0 in Sy, then there is another RNA folding A’ of S with |A’| > |A| where all letters in Sy are paired
up with letters in S.

Proof. The lemma immediately follows from the fact that £4 is greater than the total number of 0’ in Sg, which makes it
possible to rematch all the letters in Sq to letters in S;. O

Lemma 8 shows that there is an optimal RNA folding A of S¢ satisfying (P1).
Lemma 8. There is an optimal RNA folding of S¢ satisfying (P1).

Proof. Choose any RNA folding A of S¢ with |A| = RNA(Sg). In view of Lemma 7, we assume that for each substring 0%
in Sg, either (i) all its letters are matched to letters in the same 0%, or (ii) none of its letters is matched to any letters in
any 0%. Let z be the number of 0'% such that none of its letters is matched to any letters in any 0%4.

Let t € C, and let x € {«, B, y}. We say that CGx(t) is trapped in A if each letter in CG(t) is either (i) unmatched, (ii)
matched to letters within CGy(t), or (iii) matched to a letter in some 0%. Note that a sufficient condition for a clique gadget
CGy(t) to be trapped is that all letters in its two neighboring 0'% are matched to letters in the same substring 0%.

Suppose that the clique gadget CGy(t) is not trapped in A, then CGy(t) falls into one of the following two cases.

Case 1: The letters in the two neighboring substrings 0% of CGy(t) are matched to letters in two distinct substrings 0%4.
Case 2: A neighboring 0" of CGy(t) is not matched to any 0%.

Observe that at most 3 clique gadgets belong to the first case, and at most 2z clique gadgets belong to the second case.
Thus, the number of clique gadgets that are not trapped in A is at most 3 + 2z. We derive an upper bound of |A| as follows.

[A] < BUCkI+1) —2)¢3 (matched 0'®)
+ 1Ckl (m;éx RNA(0“CGq (1)) + meéx RNA(0%CG g(6)) (trapped clique gadgets)
teCy teCy
-+ max RNA(0*CG,, (r)))
teCy
+ 3+22) max |CGx(D)]. (remaining clique gadgets)
teCy,xe{a, By}

In view of the calculation in Lemma 6, |A] is at most
my — z€3 + (2, + min(¢cLa, 1, €ong,1) + 201 + Lota,o + Lone,0) + 3 +22) max |CGx (D).

Due to the two facts (i) 2¢2 + min({ciLg,1, £ong,1) + 281 + £oLe.0 + Lene.o < 0.1¢3, and (ii) the length of a clique gadget
< 0.1¢3, we have:

|A] <mq —0.8z¢35 + 0.4¢5.

Thus, if z > 0, then |A| < m; < RNA(S¢), contradicting the assumption that A is optimal. Hence we must have z =0, i.e,,
A satisfies (P1). O

Next, we deal with property (P2). We need some terminologies for ease of notation. For each x € {«, 8, v}, we call CGx(t)

a type-x clique gadget. We say that the two clique gadgets C; and C; are linked in A if Cq A, C2. We write Mgy g, to
denote the set of all RNA foldings A of S¢ satisfying (P1) and (P2). We write M, to denote the set of all RNA foldings A of
S¢ satisfying (P1) and the following condition (P2},).

(P2;,) There exist ty 1,tq,2,tg, ty € Ci satisfying ty 1 # ty,2 such that the following holds. If CGy, (t1) A, CGy, (t2), then
{(u1,t1), (u2, t2)} € {{(a, te,1), (B, tp)}, {(@, te 2), (¥, ty)}).

The two properties (PZ%) and (PZ’V), and the two sets Mg and M, are defined analogously.

Lemma 9. Let A be an optimal RNA folding of S¢ satisfying (P1). For each x € {«, B, '}, there do not exist two distinct type-x clique
gadgets C1 and C, with Cq <i> Ca.

20 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

DA N

] o] 07" . ‘0”3

0fs O:t’s 0:6’3 Ort’s Oré’z . 0:6’3 0fs 0:6’3 0;!3

CGy(tas) ‘0"’3 CGy(tay) CGg(ts) ‘0”3 ‘0"’3 G, (t,) ‘0"’3

0% Otecy (CGa(t)O%) 0'*s Otecy, (CGB(t)O%) 0'%s Orecy (CGy(t)O%)

Fig. 4. Alignment in M.

Proof. There is a substring S° = 0’3 located between Cq1 and C,. The existence of a pair in A linking a letter in C; and
a letter in C, makes it impossible for any letter in S° be matched to letters in any 0%, which is a contradiction to the
assumption that A has property (P1). O

Lemma 10. Let A be an optimal RNA folding of S¢ satisfying (P1). For each {x, y} € {{«, B}, {c, ¥}, {B. ¥ }}, there do not exist two

distinct type-x clique gadgets C1 and C, and two not necessarily distinct type-y clique gadgets C3 and C4 such that Cq A, C3 and
A

Cy «— Cy.

Proof. There is a substring S° = 0" located between C1 and C;. Since C; <i> C3 and Cy PEN Cy, letters in S° can only
be matched to (i) letters in Cq1, Ca, C3, and Cjg, (i) letters located between Ci and Cy, and (iii) letters located between C3
and C4. This contradicts the assumption that A has property (P1). O

Lemma 11. Let A be an optimal RNA folding of S¢ satisfying (P1). Let x € {«, B, y }. Suppose that there are two distinct type-x clique

gadgets Cq and Cy such that Cq PLIN C3 and Cy PN C4, where C3 and C4 are two not necessarily distinct clique gadgets. Then
A e My.

Proof. Suppose that C3 is a type-y clique gadget, and C4 is a type-z clique gadget. By Lemma 9 and Lemma 10, the three
symbols x, y, and z must be distinct, and so C3 # C4.

To prove that A € My, it suffices to show that A satisfies (P2},). Suppose that (P2;) is not met, then there are two clique
gadgets C5 and Cg that are linked in A, and {Cs, Cg} ¢ {{C1, C3}, {C2, C4}}. We show that this leads to a contradiction.

Observe that none of Cs5 and Cg can be a type-x clique gadget. Suppose that Cs is of type-x. Then Cg is either type-y
or type-z by Lemma 9. In any case, Lemma 10 is violated. Therefore, without loss of generality, we assume Cs is of type-y.
Then, by Lemma 9, C¢ must be of type-z.

Since Cq and C, are distinct, there must be a substring S°® = 0’8 located between Cq and Cs. Since C; is linked to a
type-y clique gadget, and since C5 is linked to a type-z clique gadget, letters in S° can only be paired up with letters in the
substring S’ = 0% bordering both s O (CGy (t)O’“) and 0 O (CGz(t)O’&'), viewing S¢ as a circular string. However,

teCy teCy
the existence of a pair linking a letter in C5 (which is of type-y) and a letter in Cg (which is of type-z) implies that no letter
in S’ can be matched with a letter in 0'> without a crossing. This contradicts the assumption that A has property (P1). O

Lemma 12 follows from Lemma 8 and Lemma 11. An illustration of alignment in M, can be found in Fig. 4 (Mg and
M, are analogous). Note that an illustration of alignment in My g, is in Fig. 1.

Lemma 12. There is an optimal RNA folding of S¢ that belongs to My U Mg UM, UMy g .

Proof. By Lemma 8, we restrict our consideration to optimal RNA foldings having (P1), and let A be any such optimal RNA
folding. There are two cases.

Case1: For each x € {«, B, ¥}, there is at most one type-x clique gadget that is linked to other clique gadgets. Then A
satisfies (P2), and so A € Mg g,y.

Case2: For some x € {«, 8, '}, there are two distinct type-x clique gadgets that are linked to other clique gadgets. By
Lemma 11, Ae M. O

We are now in a position to prove the main lemma in this section, which shows that there is an optimal RNA folding
satisfying (P1) and (P2).

Lemma 13. There is an optimal RNA folding of S that belongs to Mg g, .

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 21

Proof. In view of Lemma 12, it suffices to show that for any A € My UMpgUM,,, we have |A| < RNA(S¢). Let A € My. Let

tx1,tx2,ty, t; € Cc and {y, z} = {«, B, ¥} \ {x} be the parameters specified in the definition of M. That is, if CGy, (t1) PLIN
CGy, (t2), then {(u1, t1), (uz, t2)} € {{(c, te,1), (B, tp)}, {(, ta,2), (¥, t))}}. Each pair in A falls into one of the following cases.

Case 1: The pair links a letter 0’ in some substring 0’ to a letter 0 in some substring 0. Note that there are exactly
3(|Ck| + 1)€3 number of such pairs in A.
Case 2: The pair contains a letter in some CGy(t), where (u, t) ¢ {(x, tx,1), (X, tx2), (¥, ty), (z,tz)}. Observe that any letter
in such CGy(t) can only be matched to letters within the same clique gadget CGy(t) or some substring 0%,
and so the number of pairs in A that fall into this case is upper bounded by (|Cx| — 2) rtn.éx RNA (Ol“CGX(t)) +
eCk

(ICkl — 1) max RNA (0%4CGy (t)) + (ICk| — 1) max RNA (0“4CG;(1)).
teCy teCy

Case 3: The pair involves a letter in some CGy (t), where (u,t) € {(x, tx 1), (X, tx2), (¥, ty), (z, tz)}. The number of such pairs
is upper bounded by max RNA (0%4CGx()0%4CGy (t))) + max RNA (0%4CGx(1)04CG,(t)).
t,t'eCy t,t'eCy

Using the above calculation and the formulas in Lemma 6, we can derive |A| < mj+mjy, as follows. Note that m; > 6£;, +3¢7.

mq+ 20, +4.201 — min(ZCLGJ ,leng,1) ifx=o
|Al < ymy +6£3 +2.2¢1 — LcLe,0 — Long,0 ifx=p
mq + 64y + 2.2¢4 ifX:)/

Note that my +my < RNA(Sg) by Lemma 5. O
3.4. Calculating RNA(S¢)

In this section, we prove that RNA(Sg) = my + my, and finish the proof of Theorem 2. In view of Lemma 13, in the
calculation of RNA(S¢), we can restrict our consideration to RNA foldings in M, g ;. Based on the structural property of
RNA foldings in My, g 5, we first reduce the calculation of RNA(S¢) to the calculation of optimal RNA foldings of simpler
strings.

Lemma 14. RNA(S¢) <mj + max c RNA(0%CGq (to)04 CGp (t)0%CGy, (1))
ta,tﬁ,tye k

Proof. By Lemma 13, there is an optimal RNA folding of S¢ in My g y,. For any A € My gy, let ty, tg, ty € Cx be the three
cliques in the definition of (P2). Each pair in A falls into one of the following cases.

Case 1: The pair links a letter 0’ in some substring 0’ to a letter 0 in some substring 0. Note that there are exactly
3(|Ck| + 1)£3 number of such pairs in A.
Case 2: The pair contains a letter in some CGy(t), where (u,t) ¢ {(@,ty),(B,tg), (¥,ty)}. Observe that any letter in
such CGy(t) can only be matched to letters within the same clique gadget CGy(t) or some substring 0%, and
so the number of pairs in A that fall into this case is upper bounded by (|Cy| — 1)r[nacx RNA(0%4CGq () +
eCk

(Ckl = 1) meéx RNA(O“CGﬁ(t)) + (ICkl = 1) macx RNA(OZ“CGy(t)).
teCy teCy
Case 3: The pair involves a letter in some CGy(t), where (u,t) € {(«, ty), (B,tg), (y,ty)}. The number of such pairs is

upper bounded by RNA(0%CGy (t4)0%CGp(t5)0“CGy, (ty)).

Applying the formulas in Lemma 6, we have |A|=mq + RNA(0%“4CGy (ta)O“CG,s(t,g)O“CGy(ty)). Hence we conclude the
proof. O

For any choices of three k-cliques ty, tg, t, € Cy, we define:

2¢
Sta,tﬁ,[y = 182 [e] St}htu [e] 1@2 [e] Sta,fﬁ. o 1/ 2 o Stﬂ,ty7
where
—oh R\n/1
Sty ty =07TCNG(t,)p(CLG(ty))0,

Sta.ty = 0CNGI(ta) P(CLG(t))0,
Sty.t, =01 p(CNG(t4))CLG(t,) R0

22 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

Note that S, rsr, is simply a cyclic shift of the concatenation of CGg(te), CGg(tp), and CGy (ty) after removing the
sequences of 1s and 1’s at the beginning and the end of these clique gadgets. Lemma 17, together with Lemma 14, reduces
the calculation of RNA(S¢) to the calculation of RNA(Stq,t4,1,)- Lemma 15 and Lemma 16 are auxiliary lemmas.

Lemma 15. Let S = S; 0 Sy 0 S3 € {0,1,0,1'}* be a string, where the substring S, is either 11’ or 1'1. Then RNA(S) =
RNA(S7 0 S3) + 1.

Proof. It suffices to show that there exists an optimal RNA folding of S where the two letters in S, are paired up. Let A be
any optimal RNA folding of S. We show that it is possible to modify A in such a way that the two letters in S, are paired
up, and the total number of matched pairs is unchanged.

Case 1: If the two letters in S, are already paired up, then no modification is needed.

Case 2: If exactly one of the two letters in S is matched in A, we first unmatch it, and then we pair up the two letters
in Sy.

Case 3: Suppose that both two letters in S, are matched to letters not in Sy. Suppose that the letter 1 € Sy is paired up
with x in A, and the letter 1’ € S, is paired up with y in A. We remove these two pairs from A, and then we add
the two pairs {x, y} and {1,1'} to A. O

Lemma 16. In any optimal RNA folding of 0°4CGq (to)0%4CGp (t3)0*4CGy, (¢,), no letter within the three substrings 0% is matched.

Proof. For ease of notation, we write S* to denote 04CGy (t,),)O‘q‘chf;(t;;)Oe‘1 CGy (ty). We first state a few simple observa-
tions.

(01) By simply matching only the letters in CGy(ty),CGg(tg), and CGy (t,), as described in Fig. 3, we infer that
RNA(S*) > 605 + 3¢1.

(02) The total number of 0’ and 1’ in S* is at most 63 + 3.1¢1, and so RNA(S*) < 6¢, + 3.1¢1.

(03) The absolute difference between the number of 1 and the number of 1’ in S* is at most 0.1¢7.

Note that CG, (t,) does not contain 0'. To prove the lemma, we show that in any optimal RNA folding A of S*, no letter
in 0% is matched to letters in CGg(tg) and CGy(ty). We write Sq, Sz, and S3 to denote the first, second, and the third
substring 0.

We show that there is no pair in A linking a letter 0’ € CGg(tg) to a letter 0 € Sp U S3. Recall that CGg(tg) =
1/£2p(CLG(tﬂ)R)0/e‘1’2520/"71p(CNG(t5))1’£2. If there is such a pair, then at least ¢, amount of 1’ cannot participate in
the RNA folding. Therefore, by (02), |A| < (62 + 3.1¢1) — €2 < 53 + 3.1¢1. However, by (01), RNA(S*) > 64, + 3¢1 > |A|,
contradicting with the assumption that A is optimal.

Next, we show that there is no pair in A linking a letter 0’ € CGg(tg) to a letter 0 € Sq. Recall that CGy(ty) =
122 p(CLG(ty))01 1201 CNG(t4) 1. Suppose that there is such a pair. Then the 3¢, amount of 1’ in (i) the substring
122 of CGg(ty) and (ii) the first substring 1'% of CGg(tg) can only be matched to letters in CGg/(ty). However, the
amount of 1 in CGy (ty) is at most 2.1¢1, and so at least 0.9¢; amount of 1’ are not matched. Therefore, by (01) and (02),
|A] < (6£2 +3.1¢1) — 0.9¢3 < RNA(S*), contradicting with the assumption that A is optimal.

Lastly, we show that there is no pair in A linking a letter 0’ € CGy(ty) to a letter 0 € S; U S U S3. Suppose that there
is such a pair. We show that at least ¢, amount of 1’ cannot participate in the RNA folding. Then, by (01) and (02),
|A] < (643 +3.1¢1) — €2 < RNA(S*), contradicting with the assumption that A is optimal. We divide the analysis into cases.

Case1: A letter 0' € CGy(ty) is matched to a letter O € S1. Then all letters in the substring 122 of CGy (ty) cannot
participate in the RNA folding.

Case2: A letter 0/ € CGq(ty) is matched to a letter 0 € S,. Then all letters in the two substrings 1¢2 of CGg (ty) can only
be matched to letters within p(CLG(ty)®). Therefore, at least 2¢5 — |p(CLG(ty)®)| > 2¢5 — 0.1¢; amount of 1 are
unmatched. By (03), the absolute difference between the number of 1 and the number of 1’ in S* is at most 0.1¢1,
and so at least 2¢; — 0.2¢1 > £; amount of 1’ cannot participate in the RNA folding.

Case3: A letter 0' € CGy(ty) is matched to a letter 0 € Ss. Then all 1" in CGg(tg) can only be matched to letters in
CGy (ty). Observe that the number of 1’ in CGg(tg) is at least £, more than the number of 1 in CGgy (ty), and so
at least ¢, amount of 1’ cannot participate in the RNA folding. O

Lemma 17. RNA(0%4CGy, (t4)0**CGp (t3)0CGy, (t)) = 42 + RNA(St, 15t)-
Proof. We bound RNA(0%CGy (to)0%CGp(t5)0CGy, (ty,)) as follows.

RNA(0*CGq (ta)0“CGp (t5)0%CGy (1))
= RNA(CGi (t)CGp (t5)CGy () (Lemma 16)

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 23

= RNA(1"*2 p(CLG (1))01 1201 CNG(t4) 121 p(CLG(t5))0/ 117272 (by definition)
0" p(CNG(t5))1"212CLG(t,) R0 1201 CNG(t,) 1222)
= RNA(120"CNG(t,) 1221”2 p(CLG(t4))0 120 CNG(£4,) 1212 (cyclic shift)

p(CLG(tp))0" 1 120" p(CNG(t5))1"212CLG(t,) R0’

= 4¢, + RNA(120" CNG(t,) p(CLG(ts) F)0'“ 120 CNG(t4) p (CLG () F) 0" (Lemma 15)
1220 p(CNGi(t4))CLG(t,)R0")
=44y + RNA(Sta,tﬁ,t},). (by definition)

For the third equality, we move 120“CNG(t,)1?‘2 from the end of the sequence to the beginning. The fourth equality
follows by applying Lemma 15 iteratively to remove the substrings 12¢21%%, 1212 and 1'%21%. o

Lemma 18 shows that RNA(S¢) =mj +my by calculating the exact value of RNA(St, i1,)-
Lemma 18. RNA(Sg) = mq + my.

Proof. By Lemma 5, we already have RNA(S¢) > m; + my. By Lemma 14 and Lemma 17, we have RNA(S¢) <mq + 443 +

max c RNA(S;,,). Thus, to prove the lemma, it suffices to show that RNA(Sty,t5,6,) =282 + 361 + %ﬁo = Q(ta, tg, ty).
ta,tg,ty €Cx

Recall that Q (ty, tg, ty) is defined as %(SLCS(CLG(tO,), CNG(tp)) + 81cs(CLG(ty), CNG(ty)) + 81cs (CLG(tp), CNG(ty))).

First of all, we calculate a simple lower bound on RNA(S¢, t,.r,). Pairing up letters not residing in clique node gadgets
and clique list gadgets yields an RNA folding of S, with cardinality 2¢; + 3¢, and so RNA(S;,,) > 20y 4+ 3¢1. We
claim that for any optimal RNA folding A of S,

tg,ty

[ﬂ,ty tﬂ,[-,/

the following two statements are true.

gty
(s1) For each of the two substrings 12, there is a letter 1 paired up with a letter 1/ in the substring 124,
(S2) For each S’ e {St, .ty s Sta.tg> Sty t, }, there is a pair linking a letter 0 in 0 € §' and a letter 0 in 0% C S,

To prove the statement (S1), suppose that a substring 1¢2 does not have any letter matched to a letter in the sub-
string 172%_ We show that this leads to a contradiction. Observe that the number of 1’ in Stantpty that does not belong to
122 is at most 0.1¢;. Thus, |A| is at most the total number of 0’ plus the total number of 1 minus (¢; —0.1¢1). By a simple
calculation, |A| < (341 +0.1¢1) + (2¢2 +0.1¢1) — (€3 — 0.1£1) = £ + 3.3¢1 < 2¢3 + 3£4, contradicting with the known lower
bound of RNA(Stq,t4,6,)-

To prove the statement (S2) suppose that there is a substring S’ € {Sty,ta, Sta,tﬁ, Stﬂ.ty} that has no pair linking a letter
0’ in 0’ € S’ and a letter 0 in 0“1 C S’. Due to (S1), any pair in A involving letters in 0’ € S" or 0“1 C S’ are confined to
be within S’. Therefore, the number of pairs in A involving letters in S’ is at most |S| — 2¢; < 0.1¢1. This is certainly not
optimal, since simply matching all 0’ in 0" to all 0 in 0% gives us ¢1 amount of pairs.

We can infer from the above two statements that for each S’ {Sty ta> Startys Stp.t, by letters within S’ are only matched
to letters within S in any optimal RNA folding of St, ¢, t, . As a result,

tgo

RNA(S, . 2t

) =RNA(12 012 0 1"*?) + RNA(St,, .¢,,) + RNA(S¢,.5) + RNA(S, 1)
=205 +3¢1 + RNA(CNG(ty) p(CLG(t)®)) + RNA(CNG(t) p(CLG(tp)R))

+ RNA(p(CNG(tﬁ))CLG(tV)R)

tg,ty

=20y + 341 + %Zo — %((SLCS(CLG(tO,), CNG(tg)) + SLcs(CLG(tw), CNG(ty)
+ 81cs(CLG(tp), CNGi(ty))). O
We are ready to prove Theorem 2.
Proof of Theorem 2. Throughout the proof, k is treated as a constant. Given a graph G, we construct the string S¢. According

to Lemma 1 and Lemma 4, the length of S¢ is O(**!logn), and S¢ can be constructed in time O (n"Jr1 logn). We let
to,tp, ty € Cr be chosen to minimize

1
Q(ta.tp,ty) = 3 (8Lcs(CLG(te), CNG(tg)) + SLcs(CLG(te), CNG(ty) + Sies(CLG(t), CNG(ty).

By Lemma 3, there exists a number c; meeting the following conditions.

24 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

e The number c1 depends only on n and k, and Q (ty, tg,ty) > 3c1/2.
o If Q (ty,tg, ty) =3c1/2, then each of t, Utg, ty Uty, and tg Uty is a 2k-clique; in other words, ty Utg Ut is a 3k-clique.
o If Q (ty,tp,ty) > 3c1/2, then the graph has no 3k-clique.

According to Lemma 18, RNA(S¢) = my + my. By its definition, m; only depends on n and k; and my = 6£; + 341 + %KO —

ming, ¢y, ec, Q (Lo, tg, ty). Hence we are able to infer whether G has a 3k-clique from the value of RNA(S¢), which can be
calculated in time T (0 (n**!logn)). O

4. Hardness of Dyck edit distance problem

In this section, we consider the Dyck edit distance problem. The goal of this section is to present a simple reduction
from RNA folding problem (with alphabet size 4) to Dyck edit distance problem (with alphabet size 10).

Dyck edit distance. Recall that the Dyck edit distance problem asks for the minimum number of edits to transform a given
string to well-balanced parentheses of s different types. The formal definition of the problem is as follows. Given S €
(XU X, the goal of the Dyck edit distance problem is to find a minimum number of edit operations (insertion, deletion,
and substitution) that transform S into a string in the Dyck context free language.

Given X and its corresponding X', the Dyck context free language is defined by the grammar with following production
rules: S — SS, Vx € ©,S — xSx/, and S — € (empty string). Note that for each x € X, the two symbols x and X’ represent one
type of parenthesis.

An alternate formulation. An alternative definition of the Dyck edit distance problem is as follows. Given a sequence S €
(ZU XH", find a minimum cost set A C {(i, j) | 1 <i < j <n} satisfying the following conditions:

e A= Apm U As has no crossing pair.

e Ay contains only pairs of the form (x, x'), x € ¥ (i.e. for all (i, j) € Ay, we have S[i] =x, S[j] =/, for some x € X). Ay
corresponds to the set of matched pairs.

e As does not contain any pair of the form (y’,x), x, y € ¥ (i.e. for all (i, j) € As we have either S[i] € ¥ or S[j] € X').
As corresponds to the set of pairs that can be fixed by one substitution operation per each pair.

e Let D be the set of letters in S that do not belong to any pair in A. Each letter in D requires one deletion/insertion
operation to fix.

The cost of A is then defined as |As| + |D|, and the Dyck edit distance of the string S is the cost of a minimum cost set
meeting the above conditions.

Discussion. Dyck edit distance problem can be thought of as an asymmetric version of the RNA folding problem that also
handles substitution, in addition to deletion and insertion. Though these two problems look similar, they can behave quite
differently. For example, in Section 1 we describe a simple reduction from LCS to RNA folding; since LCS is basically the
edit distance problem without substitution, one might feel that the same reduction also reduces the edit distance problem
to the Dyck edit distance problem. However, this is not true. The following example shows that the edit distance between
two strings X and Y cannot be inferred from the Dyck edit distance of X o p(YR). Both the two strings X; = ababa and
X, = abbaa require 4 edit operations to transform into the string Y = caaac; but the Dyck edit distance of X; o p(Y®) =
ababac'd'd'a’c’ is 4 (by deleting all b and c’), while the Dyck edit distance of X o p(Y®) = abbaac’a’a’a’c’ is 3 (by deleting
all ¢’ and substituting the second b with b’).

Intuitively, the substitution operation makes Dyck edit distance more complicated than RNA folding. Indeed, the con-
ditional lower bound for Dyck edit distance shown in [15] requires a big alphabet size of 48 and a longer proof. In the
remainder of this section, we prove Theorem 3 by demonstrating a simple reduction from RNA folding problem (with al-
phabet size 4) to Dyck edit distance problem (with alphabet size 10). This improves upon the hardness result in [15], and
justifies the intuition that Dyck edit distance is at least as hard as RNA folding.

Proof of Theorem 3. For notational simplicity, we let the alphabet for the RNA folding problem be X U ¥’ ={0,0/,1,1'}
instead of {A, C, G, U}. Let S be any string in (¥ U X')". We define the string Spyck as the result of applying the following
operations on S:

Replace each letter 0 with the sequence So = aeb’aeb’.
Replace each letter 0’ with the sequence Sy = bba'd’.
Replace each letter 1 with the sequence S; = ced’ced’.
Replace each letter 1" with the sequence Sy =ddc’'c’.

The sequence Spyc is of length at most 6n on the alphabet {a,b,c,d,e} U{d’,b’,c’,d’, e}, though the letter e’ is not used.
We claim that the Dyck edit distance of Spyck is ‘SDZL"' — 2RNA(S).

Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26 25

Upper bound. We show that the Dyck edit distance of Spyck is at most lsnzﬂ — 2RNAC(S). Given an optimal RNA folding of S,

we construct a crossing-free matching A with cost lSDZLk‘ — 2RNA(S) as follows.

For matched pairs in the RNA folding of S:

e For each matched pair (0,0) in the RNA folding of S, we add two pairs (a,a’), (a,a’) to Ay, and add three pairs
(e,b), (e,b’), (b,b) to As in its corresponding pair of substrings (So =a(eb’)a(eb’), Sy = (bb)a'a’) in Spyck.

e For each matched pair (0’,0) in the RNA folding of S, we add two pairs (b,b’), (b,b") to Ay, and add three pairs
(a’,d’), (a,e), (a,e) to As in its corresponding pair of substrings (S¢ =bb(a’a’), So = (ae)b’(ae)b’) in Spy.

o Similarly, for each matched pair (1, 1), (1, 1) in the RNA folding of S, we add two pairs to Ay and three pairs to As.

For unmatched letters in S:

e For each unmatched letter 0 in S, we add three pairs (a,b’), (e,b’), (a,e) to As in its corresponding substring Sg =
(a(eb)(ae)b’). Similarly, for each unmatched letter 1, we add three pairs to As.

e For each unmatched letter 0’ in S, we add two pairs (b, b), (a’,a’) to As in its corresponding substring So = (bb)(a’a’).
Similarly, for each unmatched letter 1/, we add two pairs to As.

The set Ay has size 2RNA(S), the set As has size w

\SDyckI—z‘lRNA(S) _ \SDz_wkI — 2RNA(S).

,and D is an empty set. Therefore, the cost of A is

|S Dyck

Lower bound. We show that the Dyck edit distance of Spyc is at least T‘ — 2RNA(S). Given a crossing-free matching A
(on the string Spyck) of cost C, we recover an RNA folding of S that has > % — % number of matched pairs.

We build a multi-graph G = (V, E) such that V is the set of all substrings So, S¢', S1, and Sy that constitute Spyck,
and the number of edges between two substrings in V is the number of pairs in Ay linking letters between these two
substrings. Note that |V|=n and |E| = Ap. It is clear that C > w since |As| + |D| > ‘SDy‘“;z‘AM‘ = 'SDVCkzl_Z‘El. We
show that we can obtain an RNA folding of S that has size > @ Note that % > ‘s"‘lﬂ - % We make the following three
observations.

(01) G has degree at most 2. The reason is that at most two letters in each substring Sg, S/, S1, S1/ can participate in
pairings of the form (x,x'), x € {a, b, c, d}, without crossing.

(02) In the graph G, each edge either (i) links a substring S¢ with a substring Sy, or (ii) links a substring S; with a
substring Sq/. The reason is that any pairing of the form (x, x), x € {a, b, ¢, d}, must be made between Sy and Sq,
or between S and Sy.

(03) G does not contain any cycle of odd length. This is due to (02).

In view of (02), a (graph-theoretic) matching M C E of G naturally corresponds to a size-|M| RNA folding of S, as follows.
For each edge, which is a pair of substrings in Spyck, in M, we add its corresponding pair of letters in S to the RNA folding.
By (01) and (03), G in a graph of maximum degree 2 without odd cycles, and a maximum matching in such a graph has

size at least @ and so we conclude the proof. O

The reason that the letter e is essential in the proof is briefly explained as follows. Suppose that e is removed. For each
matched pair (0, 0’) in the RNA folding of S, after adding two pairs (a,a’) and (a, a’) to Ay, the letter b’ between two letters
a in Sg =ab’ab’ cannot participate in any matching. Hence some letters have to be in D according to our construction of
the crossing-free matching A, which implies that our construction might not be optimal.

Consider the case S = (00'0"). We would have Spy = ab’ab’bba’a’bba’a’ after removing e. If we match the two pairs
(a,a’) and (a,a’) in ab’ab’bba’a’bba’a’, then the cost will be at least 5 (three substitutions and two deletions are needed).
However, there is a solution that uses only 4 substitutions: a(b’a(b’(bb)a’)a’(bb)a")a’.

Note that if substitution is not allowed in the definition of Dyck edit distance, then the letter e in the above proof is not
needed, and this lowers the alphabet size requirement from 10 to 8.

5. Conclusion

In this paper we present a conditional lower bound of RNA folding problem with alphabet size 4, and demonstrate a
simple reduction from RNA folding problem to Dyck edit distance problem. One open problem that still remains is whether
it is possible to reduce Dyck edit distance problem to RNA folding problem (i.e., the reverse of Theorem 3). The “standard”
RNA folding problem only finds an optimal pseudoknot-free fold for an RNA sequence; however, the “real world” RNA folding
includes pseudoknots, and is more complicated. There are variants of RNA folding problem that consider pseudoknots; see
e.g., [23] and the citations therein. It would be interesting to see whether the techniques presented in this paper and [15,13]
can be adapted to provide meaningful lower bounds for these problems.

26 Y.-J. Chang / Theoretical Computer Science 757 (2019) 11-26

Acknowledgements
The author thanks Seth Pettie for helpful discussions and comments.

References

[1] Y.-J. Chang, Hardness of RNA folding problem with four symbols, in: R. Grossi, M. Lewenstein (Eds.), Proceedings of 27th Annual Symposium on
Combinatorial Pattern Matching, CPM, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 54, Schloss Dagstuhl-Leibniz-Zentrum Fuer
Informatik, Dagstuhl, Germany, 2016, pp. 13:1-13:12, URL http://drops.dagstuhl.de/opus/volltexte/2016/6089.

[2] Y. Frid, D. Gusfield, A simple, practical and complete O(%)—time algorithm for RNA folding using the four-Russians speedup, Algorithms Mol. Biol.
5 (1) (2010) 13, https://doi.org/10.1186/1748-7188-5-13.

[3] R. Durbin, S.R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University
Press, 1998.

[4] T. Akutsu, Approximation and exact algorithms for RNA secondary structure prediction and recognition of stochastic context-free languages, J. Comb.
Optim. 3 (2) (1999) 321-336, https://doi.org/10.1023/A:1009898029639.

[5] T. Pinhas, D. Tsur, S. Zakov, M. Ziv-Ukelson, Edit distance with duplications and contractions revisited, in: R. Giancarlo, G. Manzini (Eds.), Combinatorial
Pattern Matching, CPM, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 441-454.

[6] T. Pinhas, S. Zakov, D. Tsur, M. Ziv-Ukelson, Efficient edit distance with duplications and contractions, Algorithms Mol. Biol. 8 (1) (2013) 27, https://
doi.org/10.1186/1748-7188-8-27.

[7] B. Venkatachalam, D. Gusfield, Y. Frid, Faster algorithms for RNA-folding using the four-Russians method, in: A. Darling, J. Stoye (Eds.), Algorithms in
Bioinformatics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 126-140.

[8] K. Bringmann, F. Grandoni, B. Saha, V.V. Williams, Truly sub-cubic algorithms for language edit distance and RNA-folding via fast bounded-difference
min-plus product, in: Proceedings of IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, 2016, pp. 375-384.

[9] R. Williams, Faster all-pairs shortest paths via circuit complexity, in: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC,
ACM, New York, NY, USA, 2014, pp. 664-673, URL http://doi.acm.org/10.1145/2591796.2591811.

[10] M. Patrascu, R. Williams, On the possibility of faster SAT algorithms, in: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2010, pp. 1065-1075, URL http://dl.acm.org/citation.cfm?id=1873601.
1873687.

[11] A. Abboud, A. Backurs, V.V. Williams, Tight hardness results for LCS and other sequence similarity measures, in: Proceedings of IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS, 2015, pp. 59-78.

[12] A. Backurs, P. Indyk, Edit distance cannot be computed in strongly subquadratic time (unless SETH is false), in: Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, STOC, ACM, New York, NY, USA, 2015, pp. 51-58, URL http://doi.acm.org/10.1145/2746539.2746612.

[13] K. Bringmann, M. Kunnemann, Quadratic conditional lower bounds for string problems and dynamic time warping, in: Proceedings of IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS, 2015, pp. 79-97.

[14] L. Roditty, V.V. Williams, Fast approximation algorithms for the diameter and radius of sparse graphs, in: Proceedings of the 45th Annual ACM Sym-
posium on Theory of Computing, STOC, ACM, New York, NY, USA, 2013, pp. 515-524, URL http://doi.acm.org/10.1145/2488608.2488673.

[15] A. Abboud, A. Backurs, V.V. Williams, If the current clique algorithms are optimal, so is valiant’s parser, in: Proceedings of IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS, 2015, pp. 98-117.

[16] F. Eisenbrand, F. Grandoni, On the complexity of fixed parameter clique and dominating set, Theoret. Comput. Sci. 326 (1) (2004) 57-67, https://
doi.org/10.1016/j.tcs.2004.05.009, URL http://www.sciencedirect.com/science/article/pii/S030439750400372X.

[17] V. Vassilevska, Efficient algorithms for clique problems, Inform. Process. Lett. 109 (4) (2009) 254-257, https://doi.org/10.1016/j.ipl.2008.10.014, URL
http://www.sciencedirect.com/science/article/pii/S0020019008003293.

[18] A. Amir, G.M. Landau, Fast parallel and serial multidimensional approximate array matching, Theoret. Comput. Sci. 81 (1) (1991) 97-115, https://
doi.org/10.1016/0304-3975(91)90318-V, URL http://www.sciencedirect.com/science/article/pii/030439759190318V.

[19] A. Amir, TM. Chan, M. Lewenstein, N. Lewenstein, On hardness of jumbled indexing, in:]. Esparza, P. Fraigniaud, T. Husfeldt, E. Koutsoupias (Eds.),
Automata, Languages, and Programming, ICALP, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 114-125.

[20] T.M. Chan, M. Lewenstein, Clustered integer 3SUM via additive combinatorics, in: Proceedings of the 47th Annual ACM Symposium on Theory of
Computing, STOC, ACM, New York, NY, USA, 2015, pp. 31-40, URL http://doi.acm.org/10.1145/2746539.2746568.

[21] B. Saha, The Dyck language edit distance problem in near-linear time, in: Proceedings of IEEE 55th Annual Symposium on Foundations of Computer
Science, FOCS, 2014, pp. 611-620.

[22] B. Saha, Language edit distance and maximum likelihood parsing of stochastic grammars: faster algorithms and connection to fundamental graph
problems, in: Proceedings of IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, 2015, pp. 118-135.

[23] Y. Frid, D. Gusfield, Speedup of RNA pseudoknotted secondary structure recurrence computation with the four-Russians method, in: G. Lin (Ed.),
Combinatorial Optimization and Applications, COCOA, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 176-187.

http://drops.dagstuhl.de/opus/volltexte/2016/6089
https://doi.org/10.1186/1748-7188-5-13
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib44454B4D3938s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib44454B4D3938s1
https://doi.org/10.1023/A:1009898029639
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib50545A5A3131s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib50545A5A3131s1
https://doi.org/10.1186/1748-7188-8-27
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib5647463133s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib5647463133s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib424653573136s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib424653573136s1
http://doi.acm.org/10.1145/2591796.2591811
http://dl.acm.org/citation.cfm?id=1873601.1873687
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib41425631352As1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib41425631352As1
http://doi.acm.org/10.1145/2746539.2746612
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib424B3135s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib424B3135s1
http://doi.acm.org/10.1145/2488608.2488673
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib4142563135s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib4142563135s1
https://doi.org/10.1016/j.tcs.2004.05.009
http://www.sciencedirect.com/science/article/pii/S030439750400372X
https://doi.org/10.1016/j.ipl.2008.10.014
http://www.sciencedirect.com/science/article/pii/S0020019008003293
https://doi.org/10.1016/0304-3975(91)90318-V
http://www.sciencedirect.com/science/article/pii/030439759190318V
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib41434C4C3134s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib41434C4C3134s1
http://doi.acm.org/10.1145/2746539.2746568
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib533134s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib533134s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib5331352As1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib5331352As1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib46473132s1
http://refhub.elsevier.com/S0304-3975(18)30491-2/bib46473132s1
https://doi.org/10.1186/1748-7188-8-27
http://dl.acm.org/citation.cfm?id=1873601.1873687
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/0304-3975(91)90318-V

	Hardness of RNA folding problem with four symbols
	1 Introduction
	1.1 Conditional lower bounds
	1.2 Our contribution

	2 Preliminaries
	3 From cliques to RNA folding
	3.1 Testing 2k-cliques via LCS
	3.2 The RNA sequence SG
	3.3 Optimal RNA foldings of SG
	3.4 Calculating RNA(SG)

	4 Hardness of Dyck edit distance problem
	5 Conclusion
	Acknowledgements
	References

