

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 1, pp. 33--69

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL\ast

YI-JUN CHANG\dagger AND SETH PETTIE\dagger

Abstract. The celebrated time hierarchy theorem for Turing machines states, informally, that
more problems can be solved given more time. The extent to which a time hierarchy--type theorem
holds in the classic distributed \sansL \sansO \sansC \sansA \sansL model has been open for many years. In particular, it is
consistent with previous results that all natural problems in the \sansL \sansO \sansC \sansA \sansL model can be classified

according to a small constant number of complexities, such as O(1), O(log\ast n), O(logn), 2O(
\surd
logn),

etc. In this paper we establish the first time hierarchy theorem for the \sansL \sansO \sansC \sansA \sansL model and prove that
several gaps exist in the \sansL \sansO \sansC \sansA \sansL time hierarchy. Our main results are as follows: (a) We define an
infinite set of simple coloring problems called hierarchical 2 1

2
-coloring. A correctly colored graph can

be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class
of locally checkable labeling (LCL) problems. However, the complexity of the k-level hierarchical 2 1

2
-

coloring problem is \Theta (n1/k) for k \in \BbbZ +. The upper and lower bounds hold for both general graphs
and trees and for both randomized and deterministic algorithms. (b) Consider any LCL problem on
bounded degree trees. We prove an automatic speedup theorem that states that any randomized no(1)-
time algorithm solving the LCL can be transformed into a deterministic O(logn)-time algorithm.
Together with a previous result [Y.-J. Chang, T. Kopelowitz, and S. Pettie, Proceedings of FOCS,
2016, pp. 615--624], this establishes that on trees, there are no natural deterministic complexities
in the ranges \omega (log\ast n)---o(logn) or \omega (logn)---no(1). (c) We expose a new gap in the randomized
time hierarchy on general graphs. Roughly speaking, any randomized algorithm that solves an
LCL problem in sublogarithmic time can be sped up to run in O(TLLL) time: the complexity
of the distributed Lov\'asz local lemma (LLL) problem. In other words, the LLL is complete for
sublogarithmic time. Finally, we revisit Naor and Stockmeyer's characterization of O(1)-time \sansL \sansO \sansC \sansA \sansL
algorithms for LCL problems (as order-invariant w.r.t. vertex IDs) and calculate the complexity gaps
that are directly implied by their proof. For n-rings we see an \omega (1)---o(log\ast n) complexity gap, for

(
\surd
n \times

\surd
n)-tori an \omega (1)---o(

\sqrt{}
log\ast n) gap, and for bounded degree trees and general graphs, an

\omega (1)---o(log(log\ast n)) complexity gap.

Key words. distributed local model, local checkable labeling, Lov\'asz local lemma, time hierar-
chy theorem

AMS subject classifications. 05C85, 68W15

DOI. 10.1137/17M1157957

1. Introduction. The goal of this paper is to understand the spectrum of nat-
ural problem complexities that can exist in the \sansL \sansO \sansC \sansA \sansL model [38, 43] of distributed
computation and to quantify the value of randomness in this model. Whereas the
time hierarchy of Turing machines is known1 to be very ``dense,"" recent work [9, 7]
has exhibited strange gaps in the \sansL \sansO \sansC \sansA \sansL complexity hierarchy. Indeed, prior to this
work it was not even known if the \sansL \sansO \sansC \sansA \sansL model could support more than a small
constant number of problem complexities. Before surveying prior work in this area,
let us formally define the deterministic and randomized variants of the \sansL \sansO \sansC \sansA \sansL model
and the class of locally checkable labeling (LCL) problems, which are intuitively those
graph problems that can be computed locally in nondeterministic constant time.

\ast Received by the editors November 21, 2017; accepted for publication (in revised form) October
16, 2018; published electronically January 3, 2019. A preliminary version of this paper appeared in
Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science, 2017.

http://www.siam.org/journals/sicomp/48-1/M115795.html
Funding: This work was supported by NSF grants CCF-1514383 and CCF-1637546.

\dagger University of Michigan, Ann Arbor, MI 48109 (cyijun@umich.edu, pettie@umich.edu).
1For any time-constructible function T (n), there is a problem solvable in O(T (n)) but not o(T (n))

time [30, 17].

33

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicomp/48-1/M115795.html
mailto:cyijun@umich.edu
mailto:pettie@umich.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

34 YI-JUN CHANG AND SETH PETTIE

In both the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL and \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL models the input graph G = (V,E) and
communications network are identical. Each vertex hosts a processor and all vertices
run the same algorithm. Each edge supports communication in both directions. The
computation proceeds in synchronized rounds. In a round, each processor performs
some computation and sends a message along each incident edge, which is delivered
before the beginning of the next round. Each vertex v is initially aware of its degree
deg(v), a port numbering mapping its incident edges to \{ 1, . . . ,deg(v)\} , certain global

parameters such as n
def
= | V | , \Delta def

= maxv\in V deg(v), and possibly other information.
The assumption that global parameters are common knowledge can sometimes be
removed; see Korman, Sereni, and Viennot [35]. The only measure of efficiency is the
number of rounds. All local computation is free and the size of messages is unbounded.
Henceforth ``time"" refers to the number of rounds. The differences between \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
and \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL are as follows:
\sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL . In order to avoid trivial impossibilities, all vertices are assumed to hold

unique \Theta (log n)-bit IDs. Except for the information about deg(v), ID(v), and
the port numbering, the initial state of v is identical to every other vertex.
The algorithm executed at each vertex is deterministic.

\sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL . In this model each vertex may locally generate an unbounded number
of independent truly random bits, but there are no globally shared random
bits. Except for the information about deg(v) and its port numbering, the
initial state of v is identical to every other vertex. Algorithms in this model
operate for a specified number of rounds and have some probability of failure,
the definition of which is problem specific. We fix the maximum tolerable
global probability of failure to be 1/n.

Clearly \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithms can generate distinct IDs (with high probability
(w.h.p.)) if desired. Observe that the role of ``n"" is different in the two \sansL \sansO \sansC \sansA \sansL
models: in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL it affects the ID length, whereas in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL it affects the
failure probability.

LCL problems. Naor and Stockmeyer [42] introduced locally checkable labelings to
formalize a large class of natural graph problems. Fix a class \scrG of possible input graphs
and let \Delta be the maximum degree in any such graph. Formally, an LCL problem \scrP for
\scrG has a radius r = O(1), input and output alphabets \Sigma in,\Sigma out (which can depend on \Delta
but not n), and a set \scrC of acceptable configurations. Each C \in \scrC is a graph centered at
a specific vertex, in which each vertex has a degree, a port numbering, and two labels
from \Sigma in and \Sigma out. Given the input graph G(V,E, \phi in), where \phi in : V (G) \rightarrow \Sigma in, an
acceptable output is any function \phi out : V (G) \rightarrow \Sigma out such that for each v \in V (G),
the subgraph induced by Nr(v) (denoting the r-neighborhood of v together with
information stored there: vertex degrees, port numberings, input labels, and output
labels) is isomorphic to a member of \scrC .

For bounded degree graphs, an LCL can be described explicitly by enumerating a
finite number of acceptable configurations. For graph classes with unbounded degrees,
LCLs can be defined through logic expression. Many natural symmetry breaking
problems can be expressed as LCLs, such as MIS, maximal matching, (\alpha , \beta)-ruling
sets, (\Delta + 1)-vertex coloring, and sinkless orientation.

1.1. The complexity landscape of \sansL \sansO \sansC \sansA \sansL . The complexity landscape for
LCL problems is defined by ``natural"" complexities (sharp lower and upper bounds
for specific LCL problems) and provably empty gaps in the complexity spectrum. We
now have an almost perfect understanding of the complexity landscape for two simple
topologies: n-cycles/paths [12, 38, 41, 42, 9] and (

\surd
n\times
\surd
n)-grids/tori [42, 9, 7]. See

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 35

Figure 1, top and middle. On the n-cycle/path, the only possible problem complexities
are O(1), \Theta (log\ast n) (e.g., 3-coloring), and \Theta (n) (e.g., 2-coloring, if bipartite). The
gaps between these three complexities are obtained by automatic speedup theorems.
Naor and Stockmeyer's [42] characterization of O(1)-time LCL algorithms actually
implies that any o(log\ast n)-time algorithm on the n-cycle/path can be transformed to
run in O(1) time; see Appendix A. Chang, Kopelowitz, and Pettie [9] showed that any
o(n)-time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm can be made to run in O(log\ast n) time in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL .

The situation with (
\surd
n \times
\surd
n)-grids/tori is almost identical [7]: every known

LCL has complexity O(1), \Theta (log\ast n) (e.g., 4-coloring), or \Theta (
\surd
n) (e.g., 3-coloring).

Whereas the gap implied by [42] is \omega (1)---o(log\ast n) on the n-cycle/path, it is \omega (1)---

o(
\sqrt{}
log\ast n) on the (

\surd
n\times
\surd
n)-torus; see Appendix A.2 Whereas randomness is known

not to help in n-cyles/paths [42, 9], it is an open question on grids/tori [7]. Whereas
the classification question (whether an LCL is O(log\ast n) or \Omega (n)) is decidable on
n-cycles/paths, the same question is undecidable on (

\surd
n\times
\surd
n)-grids/tori [42, 7].

The gap theorems of Chang, Kopelowitz, and Pettie [9] show that no LCL problem
on general graphs has \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexity in the range \omega (log\ast n)---o(log\Delta n) nor
\sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity in the range \omega (log\ast n)---o(log\Delta log n). Some problems exhibit
an exponential separation (O(log\Delta log n) versus \Omega (log\Delta n)) between their \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL
and \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexities, such as \Delta -coloring degree-\Delta trees [6, 9, 44], sinkless
orientation [6, 21], and (2\Delta - 2)-edge coloring trees [8]. More generally, Chang,
Kopelowitz, and Pettie [9] proved that the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity of any LCL prob-
lem on graphs of size n is, holding \Delta fixed, at least its deterministic complexity on
instances of size

\surd
log n. Thus, on the class of degree \Delta = O(1) graphs there were only

five known natural complexities: O(1), \Theta (log\ast n), randomized \Theta (log log n), \Theta (log n),
and \Theta (n). For nonconstant \Delta , the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL lower bounds of Kuhn, Moscibroda,

and Wattenhofer [36] \Omega (min\{ log\Delta
log log\Delta ,

\sqrt{}
logn

log logn\}) lower bounds on O(1)-approximate

vertex cover, MIS, and maximal matching. This \Omega (log\Delta / log log\Delta) lower bound
is only known to be tight for O(1)-approximate vertex cover [4]; the best maximal

matching [5] and MIS [18] algorithms' dependence on \Delta is \Omega (log\Delta). The \Omega (
\sqrt{}

logn
log logn)

lower bound is not known to be tight for any problem but is almost tight for maximal
matching on bounded arboricity graphs [5], e.g., trees or planar graphs.

New results. In this paper we study the \sansL \sansO \sansC \sansA \sansL complexity landscape on bounded
degree trees and bounded degree general graphs; see Figure 1. We establish a new
(deterministic and randomized) complexity gap for bounded degree trees, a new ran-
domized complexity gap for general graphs, and a new infinite hierarchy of coloring
problems with polynomial time complexities:

\bullet We prove that on the class of bounded degree trees, no LCL has complexity in
the range \omega (log n)---no(1). Specifically, any no(1)-time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm
can be converted to an O(log n)-time \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm. Moreover, given
a description of an LCL problem \scrP , it is decidable whether the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL
complexity of \scrP is n\Omega (1) or the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexity of \scrP is O(log n). It
turns out that this gap is maximal. That is, we cannot extend it lower than
\omega (log n) [38, 9] nor higher than no(1), as we show below.

\bullet We define an infinite class of LCL problems called hierarchical 2 1
2 -coloring.

We prove that k-level hierarchical 2 1
2 -coloring has complexity \Theta (n1/k). The

2Suomela [46] has a proof that there is an \omega (1)---o(log\ast n) complexity gap for grids/tori, at least
for LCLs that do not use port numberings or input labels. The issues that arise with port numbering
and input labels can be very subtle.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

36 YI-JUN CHANG AND SETH PETTIE

Fig. 1. Top: The complexity landscape for LCL problems on the n-cycle/path. Middle: The
complexity landscape for LCL problems on the (

\surd
n \times

\surd
n)-grid/torus. Refer to [42, 9, 7] and Ap-

pendix A for proofs of the complexity gaps (``X"") on paths/cycles and grids/tori. Bottom: The com-
plexity landscape for LCL problems on bounded degree trees. The \omega (log\ast n)---o(logn) \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL gap
and \omega (log\ast n)---o(log logn) \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL gap are due to [9]. The \omega (TLLL)---o(logn) and \omega (logn)---
no(1) gaps are new. Recent results [8, 15] have put TLLL = \Theta (log logn) on trees. Refer to Appendix A
for the \omega (1)---o(log(log\ast n)) gap. It is unknown whether there are \omega (n1/(k+1))---o(n1/k) gaps on
trees. With the exception of the \omega (logn)---no(1) gap, all known complexity gaps on bounded degree
trees apply to bounded degree general graphs as well; however, the exact complexity of the Lov\'asz
local lemma (LLL) on general graphs has not been settled.

upper bound holds in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL on general graphs, and the lower bound holds
even on degree-3 trees in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL . Thus, in contrast to paths/cycles and
grids/tori, trees and general graphs support an infinite number of natural
problem complexities.

\bullet Suppose we have a \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm for general graphs running in
C(\Delta) + \epsilon log\Delta n time for any desired \epsilon > 0 and some function C.3 We
can transform this algorithm to run in O(C(\Delta) \cdot TLLL) time, where TLLL is
the complexity of a weak (i.e., ``easy"") version of the constructive LLL. At
present, TLLL is known to be \Omega (log log n) [6] even on trees [8]. This establishes
a new \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity gap between \omega (TLLL) and o(log n).

Finally, it seems to be folklore that Naor and Stockmeyer's work [42] implies some
kind of complexity gap, which has been cited as \omega (1)---o(log\ast n) [7, p. 2]. However,
to our knowledge, no proof of this complexity gap has been published. We show how
Naor and Stockmeyer's approach implies complexity gaps that depend on the graph
topology:

\bullet \omega (1)---o(log\ast n) on cycles/paths,

\bullet \omega (1)---o(
\sqrt{}
log\ast n) on grids/tori,

\bullet \omega (1)---o(log(log\ast n)) on bounded degree trees and general graphs.
These gaps apply to the general class of LCL problems defined in this paper, in which
vertices initially hold an input label and possible port numbering. Port number-
ings are needed to represent ``edge labeling"" problems (like maximal matching, edge
coloring, and sinkless orientation) unambiguously as vertex labelings. They are not
needed for native ``vertex labeling"" problems like (\Delta + 1)-coloring or MIS. Suomela
[46] gave a proof that the \omega (1)---o(log\ast n) gap exists in grids/tori as well, for the class
of LCL problems without input labels or port numbering. This proof is reproduced
in Appendix A.

Commentary. All the existing automatic speedup theorems are quite different
in terms of proof techniques. Naor and Stockmeyer's approach is based on Ramsey

3This is a convoluted way of saying ``sublogarithmic time."" Because of the nature of the proof,
we care about what the time complexity is when n is small, not just when n \rightarrow \infty .

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 37

theory. The speedup theorems of [9, 7] use the fact that o(log\Delta n) algorithms on
general graphs (and o(n) algorithms on n-cycles/paths and o(

\surd
n) algorithms on (

\surd
n\times \surd

n)-grids/tori) cannot ``see"" the whole graph and can therefore be efficiently tricked
into thinking the graph has constant size. Our no(1) \rightarrow O(log n) speedup theorem
introduces an entirely new set of techniques based on classic automata theory. We
show that any LCL problem gives rise to a regular language that represents partial
labelings of the tree that can be consistently extended to total labelings. By applying
the pumping lemma for regular languages, we can ``pump"" the input tree into a much
larger tree that behaves similar to the original tree. The advantage of creating a larger
imaginary tree is that each vertex can (mentally) simulate the behavior of an no(1)-
time algorithm on the imaginary tree, merely by inspecting its O(log n)-neighborhood
in the actual tree. Moreover, because the pumping operation preserves properties of
the original tree, a labeling of the imaginary tree can be efficiently converted to a
labeling of the original tree.

1.2. Related results. There are several \sansL \sansO \sansC \sansA \sansL lower bounds for natural prob-
lems that do not quite fit in the LCL framework. G\"o\"os, Hirvonen, and Suomela [22]
proved a sharp \Omega (\Delta) lower bound for fractional maximal matching and G\"o\"os and
Suomela [24] proved \Omega (log n) lower bounds on (1 + \delta)-approximating the minimum
vertex cover, \delta > 0, even on degree-3 graphs. See [37, 32] for lower bounds on coloring
problems that apply to constrained algorithms or a constrained version of the \sansL \sansO \sansC \sansA \sansL
model.

In recent years there have been efforts to develop a complexity theory of locality
in distributed computing. The gap theorems of [42, 9, 7] have already been discussed.
Suomela surveys [45] the class of problems that can be computed with O(1) time.
Fraigniaud, Korman, and Peleg [16] defined a distributed model for locally deciding
graph properties; see [13] for a survey of variants of the local distributed decision
model. G\"o\"os and Suomela [23] considered the proof complexity (measured in terms
of bits-per-vertex label) of locally verifying graph properties. Very recently, Ghaffari,
Kuhn, and Maus [20] defined the \sansS \sansL \sansO \sansC \sansA \sansL model (sequential \sansL \sansO \sansC \sansA \sansL) and exhibited
several complete problems for this model, inasmuch as a polylog(n)-time \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
algorithm for any complete problem implies a polylog(n) \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm for
every polylog(n)-time problem in \sansS \sansL \sansO \sansC \sansA \sansL .4

1.3. Recent developments. The preliminary version of this work [10] con-
cluded with two conjectures, one on the complexity of the distributed LLL under a
``polynomial"" LLL criterion, and one on further gaps in the \sansL \sansO \sansC \sansA \sansL complexity hi-
erarchy. Subsequent work by Fischer and Ghaffari [15], Chang et al. [8], Ghaffari,
Harris, and Kuhn [19], and Balliu et al. [3] has offered compelling evidence in favor
of the first conjecture and disproved the second conjecture.

Fischer and Ghaffari [15] gave a deterministic LLL algorithm with complexity

O(n1/\lambda +O(1/
\surd
logn)) under criterion p(ed)\lambda < 1 and a randomized algorithm with

complexity O(d2 + (log n)1/\lambda +O(1/
\surd
log logn)) under criterion p(ed)4\lambda < 1. (See

section 4 for the definition of p, d and a discussion of LLL criteria.) When d <

(log log n)1/5, they improved their randomized algorithm to 2O(
\surd
log logn) time un-

der criterion p(ed)32 < 1. Under criterion p(ed)d
2

< 1, the LLL can be solved
in O(d2 + log\ast n) time [15], which matches the Chung--Pettie--Su [11] lower bound
\Omega (log\ast n) in terms of n and gives a new proof [15, Corollary 3] of the \omega (log\ast n)---

4The class of O(1)-time \sansS \sansL \sansO \sansC \sansA \sansL algorithms is, roughly speaking, those graph labelings that can
be computed sequentially, by a truly local algorithm. This class is a strict subset of LCLs.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

38 YI-JUN CHANG AND SETH PETTIE

o(log log n) \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity gap [9] on bounded degree graphs. Chang et al. [8]
designed special LLL algorithms for ``tree structured"" dependency graphs.5 Under cri-
terion p(ed)\lambda < 1, they run in O(max\{ log\lambda n, log n/ log log n\}) time in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL and
O(max\{ log\lambda log n, log log n/ log log log n\}) time in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL , with no dependency
on d. This work confirmed [10, Conjecture 1] for the special case of trees. In [19],
the upper bound for TLLL on bounded degree general graphs was further improved

to exp(i)(ci

\sqrt{}
log(i+1) n), for any i, where ci depends only on i and exp(i), log(i+1) are

iterated i-fold applications of exp and log, respectively.
Balliu et al. [3] disproved [10, Conjecture 2] and showed that on bounded degree

general graphs, the complexity hierarchy is very dense in essentially every region
left open by this work. In particular, there are an infinite number of LCL problem
complexities between \Omega (log(log\ast n)) and O(log\ast n), an infinite number of complexities
between \Omega (log n) and no(1) (provably distinguishing the complexity hierarchies for
trees and general graphs), and an infinite number of complexities of the form \Theta (nr)
for rationals r not of the form 1/k. Whether bounded degree trees can support the
first and third categories is still open.

1.4. Organization. In section 2 we introduce hierarchical 2 1
2 -coloring and prove

that the k-level variant of this problem has complexity \Theta (n1/k). In section 3 we prove
the no(1) \rightarrow O(log n) speedup theorem for bounded degree trees. In section 4 we dis-
cuss the constructive LLL and prove the o(log\Delta n)\rightarrow TLLL randomized speedup theo-
rem. In section 5 we discuss open problems and outstanding conjectures. Appendix A
reviews Naor and Stockmeyer's characterization of O(1)-time LCL algorithms, using
Ramsey theory, and explains how it implies gaps in the complexity hierarchy that
depend on graph topology.

2. An infinitude of complexities: Hierarchical 2\bfone
\bftwo
-coloring. In this section

we give an infinite sequence (\scrP k)k\in \BbbZ + of LCL problems, where the complexity of \scrP k

is precisely \Theta (n1/k).6 The upper bound holds on general graphs in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL and
the lower bound holds in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL , even on degree-3 trees. Informally, the task
of \scrP k is to 2-color (with \{ a,b\}) certain specific subgraphs of the input graph. Some
vertices are exempt from being colored (in which case they are labeled X), and in
addition, it is possible to decline to 2-color certain subgraphs, by labeling them D.

There are no input labels. The output label set is \Sigma out = \{ a,b,D,X\} . The
problem \scrP k is an LCL defined by the following rules:

Levels. Subsequent rules depend on the levels of vertices. Let Vi, i \in \{ 1, . . . , k + 1\} ,
be the set of vertices on level i, defined as follows:

G1 = G,

Gi = Gi - 1 - Vi - 1 for i \in [2, k + 1],

Vi = \{ v \in V (Gi) | degGi
(v) \leq 2\} for i \in [1, k],

Vk+1 = V (Gk+1) (the remaining vertices).

Remember that vertices know their degrees, so a vertex in V1 deduces this
with 0 rounds of communication. In general the level of v can be calculated
from information in Nk(v).

5If T is a tree and r = O(1), the graph T r = (V (T), \{ \{ u, v\} | distT (u, v) \leq r\}) is tree structured.
6Brandt et al. [7, Appendix A.3] described an LCL that has complexity \Theta (

\surd
n) on general graphs,

but not trees. It may be possible to generalize their LCL to any complexity of the form \Theta (n1/k).

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 39

Exemption. A vertex labeled X is called exempt. No V1 vertex is labeled X; all Vk+1

vertices are labeled X. Any Vi vertex is labeled X if and only if it is adjacent
to a lower level vertex labeled a,b, or X. Define Xi \subseteq Vi to be the set of
level i exempt vertices.

Two-coloring. Vertices not covered by the exemption rule are labeled one of a,b,D.
\bullet Any vertex in Vi, i \in [1, k], labeled a has no neighbor in Vi labeled a or D.
\bullet Any vertex in Vi, i \in [1, k], labeled b has no neighbor in Vi labeled b or D.
\bullet Any vertex in Vk - Xk with exactly 0 or 1 neighbors in Vk - Xk must be
labeled a or b.

Commentary. The level rule implies that the graph induced by Vi consists of
paths and cycles. The two-coloring rule implies that each component of nonexempt
vertices in the graph induced by Vi - Xi must either (a) be labeled uniformly by
D or (b) be properly 2-colored by \{ a,b\} . Every path in Vk - Xk must be properly
2-colored, but cycles in Vk - Xk are allowed to be labeled uniformly by D. This last
provision is necessary to ensure that every graph can be labeled according to \scrP k since
there is no guarantee that cycles in Vk - Xk are bipartite.

Remark 2.1. As stated \scrP k is an LCL with an alphabet size of 4 and a radius k,
since the coloring rules refer to levels, which can be deduced by looking up to radius
k. On the other hand, we can also represent \scrP k as an LCL with radius 1 and alphabet
size 4k by including a vertex's level in its output label. A correct level assignment can
be verified within radius 1. For example, level 1 vertices are those with degree at most
2, and a vertex is labeled i \in [2, k] if and only if all but at most 2 neighbors have
levels less than i.

Theorem 2.2. The \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexity of \scrP k on general graphs is O(n1/k).

Proof. The algorithm fixes the labeling of V1, . . . , Vk, Vk+1 in order, according to
the following steps. Assume that all vertices in V1, . . . , Vi - 1 have already been labeled.

\bullet Compute Xi according to the exemption rule (e.g., X1 = \emptyset , Xk+1 = Vk+1).
\bullet Each path in the subgraph induced by Vi - Xi calculates its length. If it

contains at most
\bigl\lceil
2n1/k

\bigr\rceil
vertices, it properly 2-colors itself with \{ a,b\} ; longer

paths and cycles in Vi - Xi label themselves uniformly by D.
This algorithm correctly solves \scrP k provided that it never labels a path in Vk - Xk

with D. Let Ui be the subgraph induced by those vertices in V1 \cup \cdot \cdot \cdot \cup Vi labeled
D. Consider a connected component C in Ui whose Vi-vertices are arranged in a
path (not a cycle). We argue by induction that C has at least 2ni/k vertices. This
is clearly true in the base case i = 1: if a path component of U1 were colored D, it
must have more than

\bigl\lceil
2n1/k

\bigr\rceil
vertices. Now assume the claim is true for i - 1 and

consider a component C of Ui. If the Vi-vertices in C form a path, it must have length
greater than 2n1/k. Each vertex in that path must be adjacent to an endpoint of a
Vi - 1 path. Since Vi - 1 paths have two endpoints, the Vi path is adjacent to at least\bigl\lceil
2n1/k

\bigr\rceil
/2 \geq n1/k components in Ui - 1, each of which has size at least 2n(i - 1)/k, by the

inductive hypothesis. Thus, the size of C is at least n1/k \cdot 2n(i - 1)/k + 2n1/k > 2ni/k.
Because there are at most n vertices in the graph, it is impossible for Vk vertices
arranged in a path to be colored D.

Theorem 2.3. The \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity of \scrP k on trees with maximum degree
\Delta = 3 is \Omega (n1/k).

Proof. Fix an integer parameter x and define a sequence of graphs (Hi)1\leq i\leq k as
follows. Each Hi has a head and a tail.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

40 YI-JUN CHANG AND SETH PETTIE

Fig. 2. The graph Hk with parameters k = 3, x = 7. White vertices are in V1, gray in V2, and
black in V3. V4 = Vk+1 is empty.

\bullet H1 is a path (or backbone) of length x. One end of the path is the head and
the other end the tail.

\bullet To construct Hi, i \in [2, k - 1], begin with a backbone path (v1, v2, . . . , vx),

with head v1 and tail vx. Form x + 1 copies (H
(j)
i - 1)1\leq j\leq x+1 of Hi - 1, where

v(j) is the head of H
(j)
i - 1. Connect v(j) to vj by an edge, for j \in [1, x], and

also connect v(x+1) to vx by an edge.
\bullet Hk is constructed exactly as above, except that we generate x + 2 copies of
Hk - 1 and connect the heads of two copies of Hk - 1 to both v1 and vx. See
Figure 2 for an example with k = 3.

We make several observations about the construction of Hk. First, it is a tree with
maximum degree 3. Second, when decomposing V (Hk) into levels (V1, . . . , Vk, Vk+1),
Vi is precisely the union of the backbones in all copies of Hi, and Vk+1 = \emptyset . Third,
the number of vertices in Hk is \Theta (xk), so a o(n1/k) algorithm for \scrP k must run in o(x)
time on Hk.

Consider a \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA solving \scrP k on Hk within t < x/5 - O(1)
time that fails with probability pfail. If \scrA is a good algorithm, then pfail \leq 1/| V (Hk)| .
However, we will now show that pfail is constant, independent of | V (Hk)| .

Define \scrE i to be the event that Xi \not = \emptyset and pi = Pr(\scrE i). By an induction from
i = 2 to k, we prove that pi \leq 2(i - 1) \cdot pfail.

Base case. We first prove that

Pr (Hk is not correctly colored according to \scrP k | \scrE 2) \geq 1/2.

Conditioning on \scrE 2 means that X2 \not = \emptyset . Fix any v \in X2 and let P be a copy of H1

(a path) adjacent to v. In order for v \in X2, it must be that P is properly 2-colored
with \{ a,b\} . Since t < x/5 - O(1), there exist two vertices u and u\prime in P such that

1. N t(u), N t(u\prime), and N t(v) are disjoint sets,
2. the subgraphs induced by N t(u) and N t(u\prime) are isomorphic, and
3. the distance between u and u\prime is odd.

Let p\bfa and p\bfb be the probabilities that u/u\prime is labeled a and b, respectively. A proper
2-coloring of P assigns u and u\prime different colors, and that occurs with probability
2p\bfa p\bfb \leq 2p\bfa (1 - p\bfa) \leq 1/2. Moreover, this holds independent of the random bits
generated by vertices in N t(v). The algorithm fails unless u, u\prime have different colors,
thus pfail \geq p2/2, and hence p2 \leq 2 \cdot pfail.

Inductive step. Let 3 \leq i \leq k. The inductive hypothesis states that pi - 1 \leq
2(i - 2) \cdot pfail. By a proof similar to the base case, we have that

Pr (Hk is not correctly colored according to \scrP k | \scrE i\setminus \scrE i - 1) \geq 1/2.

We are conditioning on \scrE i\setminus \scrE i - 1. If this event is empty, then pi \leq pi - 1 \leq 2(i - 2) \cdot pfail
and the induction is complete. On the other hand, if \scrE i\setminus \scrE i - 1 holds, then there is some

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 41

v \in Xi adjacent to a copy of Hi - 1 with backbone path P , where P \cap Xi - 1 = \emptyset . In
other words, if Hk is colored according to \scrP k, then P must be properly 2-colored with
\{ a,b\} . The argument above shows this occurs with probability at least 1/2. Thus,

pfail = Pr(Hk is incorrectly colored) \geq Pr(\scrE i\setminus \scrE i - 1)/2 \geq (pi - pi - 1)/2,

or pi \leq 2pfail + pi - 1 \leq 2(i - 1)pfail, completing the induction.
Finally, let P be the path induced by vertices in Vk. The probability that

\scrE k holds (P \cap Xk \not = \emptyset) is pk \leq 2(k - 1) \cdot pfail. On the other hand, we have
Pr(Hk not colored correctly | \scrE k) \geq 1/2 by the argument above, hence pfail \geq (1 -
pk)/2, or pk \geq 1 - 2pfail. Combining the upper and lower bounds on pk we conclude
that pfail \geq (2k) - 1 is constant, independent of | V (Hk)| . Thus, algorithm \scrA cannot
succeed w.h.p.

3. A complexity gap on bounded degree trees. In this section we prove an
no(1) \rightarrow O(log n) speedup theorem for LCL problems on bounded degree trees. The
progression of definitions and lemmas in sections 3.2--3.13 is logical but obscures the
high level structure of the proof. Section 3.1 gives an informal tour of the proof and
its key ideas. Throughout, \scrP is a radius-r LCL and \scrA is an no(1)-time algorithm for
\scrP on bounded degree trees.

3.1. A tour of the proof. Consider this simple way to decompose a tree in
O(log n) time, inspired by Miller and Reif [39]. Iteratively remove paths of degree-
2 vertices (compress) and vertices with degree 0 or 1 (rake). Vertices removed in
iteration i are at level i. If O(log n) rakes alone suffice to decompose a tree, then it
has O(log n) diameter and any LCL can be solved in O(log n) time on such a graph.
Thus, we mainly have to worry about the situation where compress removes very long
(\omega (1)-length) paths.

The first observation is that it is easy to split up long degree-2 paths of level-
i vertices into constant length paths, by artificially promoting a well-spaced subset
of level-i vertices to level i + 1. Thus, we have a situation that looks like this (see
Figure 3): level-i vertices are arranged in an O(1)-length path, each the root of a
subtree of level-(< i) vertices (colored subtrees in the figure) that were removed in
previous rake/compress steps, and bookended by level-(> i) vertices (black in the
figure). Call the subgraph between the bookends H.

In our approach it is the level-(> i) vertices that are in charge of coordinating the
labeling of level-(\leq i) vertices in their purview. In this diagram, H is in the purview
of both black bookends. We have only one tool available for computing a labeling
of this subgraph: an no(1)-time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA that works w.h.p. What
would happen if we simulated \scrA on the vertices of H? The simulation would fail
catastrophically of course, since it needs to look up to an no(1) radius, to parts of the
graph far outside of H.

Fig. 3. A constant length path resulting from spliting up long degree-2 paths of level-i vertices.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

42 YI-JUN CHANG AND SETH PETTIE

Fig. 4. Class of a rooted tree.

Fig. 5. Pumping lemma for trees.

The colored subtrees are unbounded in terms of size and depth. Nonetheless, they
fall into a constant number of equivalence classes in the following sense. The class of
a rooted tree is the set of all labelings of the r-neighborhood of its root that can be
extended to total labelings of the tree that are consistent with \scrP (see Figure 4).

In other words, the large and complex graph H can be succinctly encoded as
a simple class vector (c1, c2, . . . , c\ell), where cj is the class of the jth colored tree.
Consider the set of all labelings of H that are consistent with \scrP . This set can also be
succinctly represented by listing the labelings of the r-neighborhoods of the bookends
that can be extended to all of H, while respecting \scrP . The set of these partial labelings
defines the type of H. We show that H's type can be computed by a finite automaton
that reads the class vector (c1, . . . , c\ell) one character at a time. By the pigeonhole
principle, if \ell is sufficiently large, then the automaton loops, meaning that (c1, . . . , c\ell)
can be written as x\circ y\circ z, which has the same type as every x\circ yj \circ z, for all j \geq 1. This
pumping lemma for trees lets us dramatically expand the size of H without affecting
its type, i.e., how it interacts with the outside world beyond the bookends.

Figure 5 illustrates the pumping lemma with a substring of | y| = 3 trees (rooted
at gray vertices) repeated j = 3 times. Now let us reconsider the simulation of
\scrA . If we first pump H to be long enough, and then simulate \scrA on the middle
section of pumped-H, \scrA must, according to its no(1) time bound, compute a labeling
without needing any information outside of pumped-H, i.e., beyond the bookends.
Thus, we can use \scrA to precommit to a labeling of a small (radius-r) subgraph of
pumped-H. Given this precommitment, the left and right bookends no longer need
to coordinate their activities: everything left (right) of the precommitted zone is now
in the purview of the left (right) bookend. Interestingly, these manipulations (tree
surgery and precommitments) can be repeated for each i, yielding a hierarchy of
imaginary trees such that a proper labeling at one level of the hierarchy implies a
proper labeling at the previous level.

Roadmap. This short proof sketch has been simplified to the point that it is rid-
dled with small inaccuracies. Nonetheless, it does accurately capture the difficulties,
ideas, and techniques used in the actual proof. In section 3.2 we formally define

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 43

the notion of a partially labeled graph, i.e., one with certain vertices precommited
to their output labels. Section 3.3 defines a surgical ``cut-and-paste"" operation on
graphs. Section 3.4 defines a partition of the vertices of a subgraph H, which dif-
ferentiates between vertices that ``see"" the outside graph and those that see only H.
Section 3.5 defines an equivalence relation on graphs that, intuitively, justifies sur-
gically replacing a subgraph with an equivalent graph. Sections 3.6 and 3.7 explore
properties of the equivalence relation. Section 3.8 introduces the pumping lemma
for trees, and section 3.9 defines a specialized rake/compress-style graph decomposi-
tion. Section 3.10 presents the operations \sansE \sansx \sanst \sanse \sansn \sansd (which pumps a subtree) and \sansL \sansa \sansb \sanse \sansl
(which precommits a small partial labeling) in terms of a black-box labeling function
f . Section 3.11 defines the set of all (partially labeled) trees that can be encountered,
by considering the interplay between the graph decomposition, \sansE \sansx \sanst \sanse \sansn \sansd , and \sansL \sansa \sansb \sanse \sansl .
It is important that for each tree encountered, its partial labeling can be extended
to a complete labeling consistent with \scrP ; whether this actually holds depends on the
choice of black-box f . Section 3.12 shows that \scrP can be solved in O(log n) time, given
a feasible labeling function f . Section 3.13 shows how a feasible f can be extracted
from any no(1)-time algorithm \scrA .

3.2. Partially labeled graphs. A partially labeled graph \scrG = (G,\scrL) is a graph
G together with a function \scrL : V (G) \rightarrow \Sigma out \cup \{ \bot \} . The vertices in \scrL - 1(\bot) are
unlabeled. A complete labeling \scrL \prime : V (G) \rightarrow \Sigma out for \scrG is one that labels all vertices
and is consistent with \scrG 's partial labeling, i.e., \scrL \prime (v) = \scrL (v) whenever \scrL (v) \not = \bot . A
legal labeling is a complete labeling that is locally consistent for all v \in V (G), i.e.,
the labeled subgraph induced by Nr(v) is consistent with the LCL \scrP . Here Nr(v) is
the set of all vertices within distance r of v.

All graph operations can be extended naturally to partially labeled graphs. For
instance, a subgraph of a partially labeled graph \scrG = (G,\scrL) is a pair \scrH = (H,\scrL \prime)
such that H is a subgraph of G, and \scrL \prime is \scrL restricted to the domain V (H). With
slight abuse of notation, we usually write \scrH = (H,\scrL).

3.3. Graph surgery. Let \scrG = (G,\scrL) be a partially labeled graph, and let
\scrH = (H,\scrL) be a subgraph of \scrG . The poles of \scrH are those vertices in V (H) that are
adjacent to some vertex in the outside graph V (G) - V (H). We define an operation
\sansR \sanse \sansp \sansl \sansa \sansc \sanse that surgically removes \scrH and replaces it with some \scrH \prime .

\sansR \sanse \sansp \sansl \sansa \sansc \sanse . Let S = (v1, . . . , vp) be a list of the poles of \scrH and let S = (v\prime 1, . . . , v
\prime
p)

be a designated set of poles in some partially labeled graph \scrH \prime . The par-
tially labeled graph \scrG \prime = \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG , (\scrH , S), (\scrH \prime , S\prime)) is constructed as fol-
lows. Beginning with \scrG , replace \scrH with \scrH \prime , and replace any edge \{ u, vi\} ,
u \in V (G) - V (H), with \{ u, v\prime i\} . If the poles S, S\prime are clear from context,
we may also simply write \scrG \prime = \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG ,\scrH ,\scrH \prime). Writing \scrG \prime = (G\prime ,\scrL \prime) and
\scrH \prime = (H \prime ,\scrL \prime), there is a natural 1-1 correspondence between the vertices in
V (G) - V (H) and V (G\prime) - V (H \prime). See Figure 6.

In the proof of our no(1) \rightarrow O(log n) speedup thereom we only consider unipolar
and bipolar graphs (p \in \{ 1, 2\}) but for maximum generality we define everything
w.r.t. graphs having p \geq 1 poles.

Given a legal labeling \scrL \diamond of \scrG , we would like to know whether there is a legal
labeling \scrL \prime

\diamond of \scrG \prime that agrees with \scrL \diamond , i.e., \scrL \diamond (v) = \scrL \prime
\diamond (v

\prime) for each v \in V (G) - V (H)
and the corresponding v\prime \in V (G\prime) - V (H \prime). Our goal is to define an equivalence

relation
 \star \sim on partially labeled graphs (with designated poles) so that the following is

true: if (\scrH , S) \star \sim (\scrH \prime , S\prime), then such a legal labeling \scrL \prime
\diamond must exist, regardless of the

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

44 YI-JUN CHANG AND SETH PETTIE

Fig. 6. The operation Replace.

Fig. 7. A partially labeled subgraph \scrH with poles S = (s, t), embedded in a larger graph \scrG . In
the partition \xi (\scrH , S) = (D1, D2, D3), D1 is the set of vertices in V (H) within radius r - 1 of S, D2

are those within radius 2r - 1 of S, excluding D1, and D3 is the rest of V (H). When \scrH is embedded
in some larger graph \scrG , D0 denotes the remaining vertices in V (G) - V (H).

choice of \scrG and \scrL \diamond . Observe that since \scrP has radius r, the interface between V (H)
(or V (H \prime)) and the rest of the graph only occurs around the O(r)-neighborhoods of
the poles of \scrH (or \scrH \prime). This motivates us to define a certain partition of \scrH 's vertices
that depends on its poles and r.

3.4. A tripartition of the vertices. Let \scrH = (H,\scrL) be a partially labeled
graph with poles S = (v1, . . . , vp). Define \xi (\scrH , S) = (D1, D2, D3) to be a tripartition
of V (H), where

D1 =
\bigcup
v\in S

Nr - 1(v),

D2 =
\bigcup

v\in D1

Nr(v) - D1,

and D3 = V (H) - (D1 \cup D2).

See Figure 7 for an illustration.
Consider the partition \xi (\scrH , S) = (D1, D2, D3) of a partially labeled graph \scrH =

(H,\scrL). Let \scrL \ast : D1 \cup D2 \rightarrow \Sigma out assign output labels to D1 \cup D2. We say that \scrL \ast is
extendible (to all of V (H)) if there exists a complete labeling \scrL \diamond of H such that \scrL \diamond

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 45

agrees with \scrL where it is defined, agrees with \scrL \ast on D1\cup D2, and is locally consistent
with \scrP on all vertices in D2 \cup D3.

7

3.5. An equivalence relation on graphs. Consider two partially labeled
graphs \scrH and \scrH \prime with poles S = (v1, . . . , vp) and S\prime = (v\prime 1, . . . , v

\prime
p), respectively.

Let \xi (\scrH , S) = (D1, D2, D3) and \xi (\scrH \prime , S\prime) = (D\prime
1, D

\prime
2, D

\prime
3). Define \scrQ = (Q,\scrL) and

\scrQ \prime = (Q\prime ,\scrL \prime) as the subgraphs of \scrH and \scrH \prime induced by the vertices in D1 \cup D2 and
D\prime

1 \cup D\prime
2, respectively.

The relation (\scrH , S) \star \sim (\scrH \prime , S\prime) holds if and only if there is a 1-1 correspondence
\phi : (D1 \cup D2)\rightarrow (D\prime

1 \cup D\prime
2) meeting the following conditions:

Isomorphism. The two graphs Q and Q\prime are isomorphic under \phi . Moreover, for each
v \in D1 \cup D2 and its corresponding vertex v\prime = \phi (v) \in D\prime

1 \cup D\prime
2, (i) \scrL (v) =

\scrL \prime (v\prime), (ii) if the underlying LCL problem has input labels, then the input
labels of v and v\prime are the same, and (iii) v is the ith pole in S if and only if
v\prime is the ith pole in S\prime .

Extendibility. Let \scrL \ast be any assignment of output labels to vertices in D1\cup D2 and let
\scrL \prime
\ast be the corresponding labeling of D\prime

1 \cup D\prime
2 under \phi . Then \scrL \ast is extendible

to V (H) if and only if \scrL \prime
\ast is extendible to V (H \prime).

Notice that there could be many 1-1 correspondences between D1 \cup D2 and D\prime
1 \cup D\prime

2

that satisfy the isomorphism requirement, though only some subset may satisfy the
extendibility requirement due to differences in the topology and partial labeling of
D3 and D\prime

3. Any \phi meeting both requirements is a witness of the relation (\scrH , S) \star \sim
(\scrH \prime , S\prime).

3.6. Properties of the equivalence relation. Let us consider the graph \scrG \prime =
\sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG , (\scrH , S), (\scrH \prime , S\prime)) and the two partitions \xi (\scrH , S) = (D1, D2, D3) and
\xi (\scrH \prime , S\prime) = (D\prime

1, D
\prime
2, D

\prime
3). Let D0 = V (G) - V (H) and D\prime

0 = V (G\prime) - V (H \prime) be
the remaining vertices in G and G\prime , respectively.

If (\scrH , S) \star \sim (\scrH \prime , S\prime), then there exists a 1-1 correspondence \phi : (D0\cup D1\cup D2)\rightarrow
(D\prime

0 \cup D\prime
1 \cup D\prime

2) such that (i) \phi restricted to D0 is the natural 1-1 correspondence

between D0 and D\prime
0 and (ii) \phi restricted to D1 \cup D2 witnesses the relation (\scrH , S) \star \sim

(\scrH \prime , S\prime). Such a 1-1 correspondence \phi is called good. We have the following lemma.

Lemma 3.1. Let \scrG \prime = Replace(\scrG , (\scrH , S), (\scrH \prime , S\prime)). Consider the two partitions
\xi (\scrH , S) = (D1, D2, D3) and \xi (\scrH \prime , S\prime) = (D\prime

1, D
\prime
2, D

\prime
3) and let D0 = V (G) - V (H)

and D\prime
0 = V (G\prime) - V (H \prime). Suppose that (\scrH , S) \star \sim (\scrH \prime , S\prime), so there is a good 1-1

correspondence \phi : (D0 \cup D1 \cup D2)\rightarrow (D\prime
0 \cup D\prime

1 \cup D\prime
2). Let \scrL \diamond be a complete labeling

of \scrG that is locally consistent for all vertices in D2\cup D3. Then there exists a complete
labeling \scrL \prime

\diamond of \scrG \prime such that the following conditions are met:
Condition 1. \scrL \diamond (v) = \scrL \prime

\diamond (v
\prime) for each v \in D0 \cup D1 \cup D2 and its corresponding vertex

v\prime = \phi (v) \in D\prime
0 \cup D\prime

1 \cup D\prime
2. Moreover, if \scrL \diamond is locally consistent for v, then

\scrL \prime
\diamond is locally consistent for v\prime .

Condition 2. \scrL \prime
\diamond is locally consistent for all vertices in D\prime

2 \cup D\prime
3.

Proof. We construct \scrL \prime
\diamond as follows. First of all, for each v \in D0 \cup D1 \cup D2, fix

\scrL \prime
\diamond (\phi (v)) = \scrL \diamond (v). It remains to show how to assign output labels to vertices in D\prime

3

to meet Conditions 1 and 2.

7We are not concerned with whether \scrL \diamond is consistent with \scrP for vertices in D1. Ultimately, \scrH
will be a subgraph of a larger graph \scrG . Since the r-neighborhoods of vertices in D1 will intersect
V (G) - V (H), the labeling of H does not provide enough information to tell if these vertices' r-
neighborhoods will be consistent with \scrP . See Figure 7.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

46 YI-JUN CHANG AND SETH PETTIE

Let \scrL \ast be \scrL \diamond restricted to the domain D1 \cup D2. Similarly, let \scrL \prime
\ast be \scrL \prime

\diamond restricted
to D\prime

1 \cup D\prime
2. Due to the fact that \scrL \diamond is locally consistent for all vertices in D2 \cup D3,

the labeling \scrL \ast is extendible to all of \scrH . Since (\scrH , S) \star \sim (\scrH \prime , S\prime), the labeling \scrL \prime
\ast must

also be extendible to all of \scrH \prime . Thus, we can set \scrL \prime
\diamond (v

\prime) for all v\prime \in D\prime
3 in such a way

that \scrL \prime
\diamond is locally consistent for all vertices in D\prime

2\cup D\prime
3. Therefore, Condition 2 is met.

To see that (the second part of) Condition 1 is also met, observe that for v \in
D0\cup D1, N

r(v) \subseteq D0\cup D1\cup D2. Therefore, if \scrL \diamond is locally consistent for v \in D0\cup D1,
then \scrL \prime

\diamond is locally consistent for \phi (v) since they have the same radius-r neighborhood
view. Condition 2 already guarantees that \scrL \prime

\diamond is locally consistent for all v\prime \in D\prime
2.

8

Theorem 3.2 provides a user-friendly corollary of Lemma 3.1, which does not
mention the tripartition \xi .

Theorem 3.2. Let \scrG = (G,\scrL) and \scrH = (H,\scrL) be a subgraph \scrG . Suppose \scrH \prime is a

graph for which (\scrH , S) \star \sim (\scrH \prime , S\prime) and let \scrG \prime = Replace(\scrG , (\scrH , S), (\scrH \prime , S\prime)). We write
\scrG \prime = (G\prime ,\scrL \prime) and \scrH \prime = (H \prime ,\scrL \prime). Let \scrL \diamond be a complete labeling of \scrG that is locally
consistent for all vertices in H. Then there exists a complete labeling \scrL \prime

\diamond of \scrG \prime such
that the following conditions are met:

\bullet For each v \in V (G) - V (H) and its corresponding v\prime \in V (G\prime) - V (H \prime), we
have \scrL \diamond (v) = \scrL \prime

\diamond (v
\prime). Moreover, if \scrL \diamond is locally consistent for v, then \scrL \prime

\diamond is
locally consistent for v\prime .

\bullet \scrL \prime
\diamond is locally consistent for all vertices in H \prime .

Theorem 3.2 has several useful consequences. If \scrL \diamond is a legal labeling of \scrG , then
the output labeling \scrL \prime

\diamond of \scrG \prime guaranteed by Theorem 3.2 is also legal. Observe that
setting \scrG = \scrH in Theorem 3.2 implies \scrG \prime = \scrH \prime . Suppose that \scrH admits a legal
labeling. For any (\scrH \prime , S\prime) such that (\scrH \prime , S\prime)

 \star \sim (\scrH , S), the partially labeled graph \scrH \prime

also admits a legal labeling. Thus, whether \scrH admits a legal labeling is determined
by the equivalence class of (\scrH , S) (for any choice of S).

Roughly speaking, Theorem 3.3 shows that the equivalence class of (\scrG , X) is
preserved after replacing a subgraph \scrH of \scrG by another partially labeled graph \scrH \prime

such that (\scrH , S) \star \sim (\scrH \prime , S\prime).

Theorem 3.3. Let \scrG = (G,\scrL), and let \scrH = (H,\scrL) be a subgraph of \scrG . Suppose

\scrH \prime is a graph that satisfies (\scrH , S) \star \sim (\scrH \prime , S\prime) for some pole lists S, S\prime . Let \scrG \prime =
Replace(\scrG , (\scrH , S), (\scrH \prime , S\prime)) be a partially labeled graph. Designate a set X \subseteq (V (G) -
V (H))\cup S as the poles of \scrG , listed in some order, and let X \prime be the corresponding list

of vertices in \scrG \prime . It follows that (\scrG , X)
 \star \sim (\scrG \prime , X \prime).

Proof. Consider the partitions \xi (\scrH , S) = (B1, B2, B3), \xi (\scrH \prime , S\prime) = (B\prime
1, B

\prime
2, B

\prime
3),

\xi (\scrG , X) = (D1, D2, D3), and \xi (\scrG \prime , X \prime) = (D\prime
1, D

\prime
2, D

\prime
3). We write B0 = V (G) - V (H)

and B\prime
0 = V (G\prime) - V (H \prime). Let \phi be any good 1-1 correspondence from B0 \cup B1 \cup B2

to B\prime
0 \cup B\prime

1 \cup B\prime
2. Because X \subseteq B0 \cup S, we have D1 \cup D2 \subseteq B0 \cup B1 \cup B2 and

D\prime
1 \cup D\prime

2 \subseteq B\prime
0 \cup B\prime

1 \cup B\prime
2. To show that (\scrG , X)

 \star \sim (\scrG \prime , X \prime), it suffices to prove that \phi

(restricted to the domain D1 \cup D2) is a witness to the relation (\scrG , X)
 \star \sim (\scrG \prime , X \prime).

Let \scrL \ast : (D1 \cup D2) \rightarrow \Sigma out and \scrL \prime
\ast be the corresponding labeling of D\prime

1 \cup D\prime
2.

All we need to do is show that \scrL \ast is extendible to all of V (G) if and only if \scrL \prime
\ast is

extendible to all of V (G\prime). Since we can also write \scrG = \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG \prime , (\scrH \prime , S\prime), (\scrH , S)),
it suffices to show just one direction, i.e., if \scrL \ast is extendible, then \scrL \prime

\ast is extendible.

8It is this lemma that motivates our definition of the tripartition \xi (\scrH , S). It is not clear how
an analogue of Lemma 3.1 could be proved using the seemingly more natural bipartition, i.e., by
collapsing D1, D2 into one set.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 47

Suppose that \scrL \ast is extendible. Then there exists an output labeling \scrL \diamond of \scrG such
that (i) for each v \in D1 \cup D2, we have \scrL \ast (v) = \scrL \diamond (v), and (ii) \scrL \diamond is locally consistent
for all vertices in D2 \cup D3. Observe that D2 \cup D3 \supseteq B2 \cup B3. By Lemma 3.1, there
exists a complete labeling \scrL \prime

\diamond of \scrG \prime such that the two conditions in Lemma 3.1 are
met. We show that this implies that \scrL \prime

\ast is extendible.
Lemma 3.1 guarantees that \scrL \diamond (v) = \scrL \prime

\diamond (\phi (v)) for each v \in B0 \cup B1 \cup B2 and its
corresponding vertex \phi (v) \in B\prime

0 \cup B\prime
1 \cup B\prime

2. Since D\prime
1 \cup D\prime

2 \subseteq B\prime
0 \cup B\prime

1 \cup B\prime
2, we have

\scrL \prime
\ast (v

\prime) = \scrL \prime
\diamond (v

\prime) for each v\prime \in D\prime
1 \cup D\prime

2.
Since \scrL \diamond is locally consistent for all vertices inD2\cup D3, Lemma 3.1 guarantees that

\scrL \prime
\diamond is locally consistent for all vertices in D\prime

2 \cup D\prime
3. More precisely, due to Condition

1, \scrL \prime
\diamond is locally consistent for all vertices in (D\prime

2 \cup D\prime
3) - B\prime

3; due to Condition 2, \scrL \prime
\diamond

is locally consistent for all vertices in B\prime
2 \cup B\prime

3.
Thus, \scrL \prime

\ast is extendible, as the complete labeling \scrL \prime
\diamond of \scrG \prime satisfies that (i) for each

v\prime \in D\prime
1 \cup D\prime

2, we have \scrL \prime
\ast (v

\prime) = \scrL \prime
\diamond (v

\prime), and (ii) \scrL \prime
\diamond is locally consistent for all vertices

in D\prime
2 \cup D\prime

3.

3.7. The number of equivalence classes. An important feature of
 \star \sim is that

it has a constant number of equivalence classes for any fixed number p of poles. Which
constant is not important, but we shall work out an upper bound nonetheless.9

Consider a partially labeled graph \scrH with poles S = (v1, . . . , vp). Let \xi (\scrH , S) =
(D1, D2, D3) and define \scrQ = (Q,\scrL) to be the subgraph of \scrH induced by D1 \cup D2.
Observe that the equivalence class of (\scrH , S) is determined by (i) the topology of Q
(including its input labels from \Sigma in, if \scrP has input labels), (ii) the locations of the
poles S \subseteq V (Q) in Q, and (iii) the subset of all output labelings of V (Q) = D1 \cup D2

that are extendible.
The number of vertices in D1 \cup D2 is at most p\Delta 2r. The total number of distinct

graphs of at most p\Delta 2r vertices (with input labels from \Sigma in and a set of p desig-

nated poles) is at most 2(
p\Delta 2r

2)| \Sigma in| p\Delta
2r

. The total number of output labelings of

D1 \cup D2 is at most | \Sigma out| p\Delta
2r

. Therefore, the total number of equivalence classes of

graphs with p poles is at most 2(
p\Delta 2r

2)| \Sigma in| p\Delta
2r

2| \Sigma out| p\Delta
2r

, which is constant whenever
\Delta , r, | \Sigma in| , | \Sigma out| , and p are.

3.8. A pumping lemma for trees. In this section we consider partially la-
beled trees with one and two poles; they are called unipolar (or rooted) and bipolar,
respectively. Let \scrT = (T,\scrL) be a unipolar tree with pole list S = (z), z \in V (T) being

the root. Define \sansC \sansl \sansa \sanss \sanss (\scrT) to be the equivalence class of (\scrT , S) w.r.t. \star \sim . Notice that
whether a partially labeled rooted tree \scrT admits a legal labeling is determined by
\sansC \sansl \sansa \sanss \sanss (\scrT) (Theorem 3.2). We say that a class is good if each partially labeled rooted
tree in the class admits a legal labeling; otherwise the class is bad. We write C to
denote the set of all classes. Notice that | C | is constant. The following lemma is a
specialization of Theorem 3.3.

Lemma 3.4. Let \scrT be a partially labeled rooted (unipolar) tree, and let \scrT \prime be a
rooted subtree of \scrT , whose leaves are also leaves of \scrT . Let \scrT \prime \prime be another partially
labeled rooted tree such that Class(\scrT \prime) = Class(\scrT \prime \prime). Then replacing \scrT \prime with \scrT \prime \prime does
not alter the class of \scrT .

9For the sake of simplicity, in the calculation we assume that the underlying LCL problem does
not refer to port numbering. It is straightforward to see that even if port numbering is taken into
consideration, the number of equivalence classes (for any fixed p) is still a constant.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

48 YI-JUN CHANG AND SETH PETTIE

Let \scrH = (H,\scrL) be a bipolar tree with poles S = (s, t). The unique oriented path
in H from s to t is called the core path of \scrH . It is more convenient to express a bipolar
tree as a sequence of rooted/unipolar trees, as follows. The partially labeled bipolar
tree \scrH = (\scrT i)i\in [k] is formed by arranging the roots of unipolar trees (\scrT i) into a path
P = (v1, . . . , vk), where vi is the root/pole of \scrT i. The two poles of \scrH are s = v1
and t = vk, so P is the core path of \scrH . Define \sansT \sansy \sansp \sanse (\scrH) as the equivalence class of

(\scrH , S = (s, t)) w.r.t.
 \star \sim . The following lemma follows from Theorem 3.3.

Lemma 3.5. Let \scrH be a partially labeled bipolar tree with poles (s, t). Let \scrT be \scrH ,
but regarded as a unipolar tree rooted at s. Then Class(\scrT) is determined by Type(\scrH).
If we write \scrH = (\scrT i)i\in [k], then Type(\scrH) is determined by Class(\scrT 1), . . . ,Class(\scrT k).

Let \scrG = (G,\scrL) be a partially labeled graph, and let \scrH = (H,\scrL) be a bipolar
subtree of \scrG with poles (s, t). Let \scrH \prime be another partially labeled bipolar tree. Recall
that \scrG \prime = \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG ,\scrH ,\scrH \prime) is defined as the partially labeled graph resulting from
replacing the subgraph \scrH with \scrH \prime in \scrG . We write \scrG \prime = (G\prime ,\scrL \prime) and \scrH \prime = (H \prime ,\scrL \prime).
The following lemmas follow from Theorems 3.2 and 3.3.

Lemma 3.6. Consider \scrG \prime = Replace(\scrG ,\scrH ,\scrH \prime). If Type(\scrH \prime) = Type(\scrH) and \scrG
admits a legal labeling \scrL \diamond , then \scrG \prime admits a legal labeling \scrL \prime

\diamond such that \scrL \diamond (v) = \scrL \prime
\diamond (v

\prime)
for each vertex v \in V (G) - V (H) and its corresponding v\prime \in V (G\prime) - V (H \prime).

Lemma 3.7. Suppose that \scrG = (\scrT i)i\in [k] is a partially labeled bipolar tree, \scrH =
(\scrT i, . . . , \scrT j) is a bipolar subtree of \scrG , and \scrH \prime is some other partially labeled bipolar
tree with Type(\scrH \prime) = Type(\scrH). Then \scrG \prime = Replace(\scrG ,\scrH ,\scrH \prime) is a partially labeled
bipolar tree and Type(\scrG \prime) = Type(\scrG).

Lemma 3.8. Let \scrH = (\scrT i)i\in [k] and \scrH \prime = (\scrT i)i\in [k+1] be identical to \scrH in its first
k trees. Then Type(\scrH \prime) is a function of Type(\scrH) and Class(\scrT k+1).

Lemma 3.8 is what allows us to bring classical automata theory into play. Suppose
that we somehow computed and stored ci = \sansC \sansl \sansa \sanss \sanss (\scrT i) at the root of \scrT i. Lemma 3.8
implies that a finite automaton walking along the core path of \scrH \prime = (\scrT i)i\in [k+1] can
compute \sansT \sansy \sansp \sanse (\scrH \prime), by reading the vector (c1, . . . , ck+1) one character at a time. The
number of states in the finite automaton depends only on the number of types (which
is constant) and is independent of k+1 and the size of the individual trees (\scrT i). Define
\ell pump = O(1) as the number of states in this finite automaton. The following pumping
lemma for bipolar trees is analogous to the pumping lemma for regular languages.

Lemma 3.9. Let \scrH = (\scrT 1, . . . , \scrT k) with k \geq \ell pump. We regard each \scrT i in the
string notation \scrH = (\scrT 1, . . . , \scrT k) as a character. Then \scrH can be decomposed into
three substrings \scrH = x \circ y \circ z such that (i) | xy| \leq \ell pump, (ii) | y| \geq 1, and (iii)
Type(x \circ yj \circ z) = Type(\scrH) for each nonnegative integer j.

We will use Lemma 3.9 to expand the length of the core path of a bipolar tree to
be close to a desired target length w. The specification for the function \sansP \sansu \sansm \sansp is as
follows:

\sansP \sansu \sansm \sansp . Let \scrH = (\scrT i)i\in [k] be a partially labeled bipolar tree with k \geq \ell pump. The
function \sansP \sansu \sansm \sansp (\scrH , w) produces a partially labeled bipolar tree \scrH \prime = (\scrT \prime

i)i\in [k\prime]

such that (i) \sansT \sansy \sansp \sanse (\scrH) = \sansT \sansy \sansp \sanse (\scrH \prime), (ii) k\prime \in [w,w + \ell pump], and (iii) if we let
Z = \{ \scrT i\} i\in [k] (resp., Z

\prime = \{ \scrT \prime
i \} i\in [k\prime]) be the set of rooted trees appearing in

the tree list of \scrH (resp., \scrH \prime), then Z \prime = Z.
By Lemma 3.9, such a function \sansP \sansu \sansm \sansp exists.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 49

3.9. Rake and compress graph decomposition. In this section we describe
an O(log n)-round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm to decompose the vertex set V (G) of a tree
into the disjoint union V1 \cup \cdot \cdot \cdot \cup VL, L = O(log n). Our algorithm is inspired by
Miller and Reif's parallel tree contraction [39]. We first describe the decomposition
algorithm then analyze its properties.

Fix the constant \ell = 2(r+\ell pump), where r and \ell pump depend on the LCL problem
\scrP . In the postprocessing step of the decomposition algorithm we compute an (\ell , 2\ell)-
independent set, in O(log\ast n) time [38], defined as follows.

Definition 3.10. Let P be a path. A subset I \subset V (P) is called an (\alpha , \beta)-
independent set if the following conditions are met: (i) I is an independent set, and I
does not contain either endpoint of P , and (ii) each connected component induced by
V (P) - I has at least \alpha vertices and at most \beta vertices, unless | V (P)| < \alpha , in which
case I = \emptyset .

The decomposition algorithm. The algorithm begins with U = V (G) and i = 1,
repeats Steps 1--3 until U = \emptyset , then executes the postprocessing step.

1. For each v \in U :
(a) \sansC \sanso \sansm \sansp \sansr \sanse \sanss \sanss . If v belongs to a path P such that | V (P)| \geq \ell and degU (u) = 2

for each u \in V (P), then tag v with iC .
(b) \sansR \sansa \sansk \sanse . If degU (v) = 0, then tag v with iR. If degU (v) = 1 and the unique

neighbor u of v in U satisfies either (i) degU (u) > 1 or (ii) degU (u) = 1
and ID(v) > ID(u), then tag v with iR.

2. Remove from U all vertices tagged iC or iR.
3. i\leftarrow i+ 1.

Postprocessing step. Initialize Vi as the set of all vertices tagged iC or iR. At
this point the graph induced by Vi consists of unbounded length paths, but we prefer
constant length paths. For each edge \{ u, v\} such that v is tagged iR and u is tagged
iC , promote v from Vi to Vi+1. For each path P that is a connected component
induced by vertices tagged iC , compute an (\ell , 2\ell)-independent set IP of P , and then
promote every vertex in IP from Vi to Vi+1. Notice that the set Vi in the graph
decomposition is analogous to (but clearly different from) the set Vi defined in the
hierarchical 2 1

2 -coloring problem from section 2.
Properties of the decomposition. As we show below, L = O(log n) iterations suf-

fice, i.e., V (G) = V1 \cup \cdot \cdot \cdot \cup VL. The following properties are easily verified:

\bullet Define Gi as the graph induced by vertices at level i or above:
\bigcup L

j=i Vj . For
each v \in Vi, degGi

(v) \leq 2.
\bullet Define Pi as the set of connected components (paths) induced by vertices in

Vi that contain more than one vertex. For each P \in Pi, \ell \leq | V (P)| \leq 2\ell
and degGi

(v) = 2 for each vertex v \in V (P).
\bullet The graph GL contains only isolated vertices, i.e., PL = \emptyset .

As a consequence, each vertex v \in Vi falls into exactly one of two cases: (i) v has
degGi

(v) \leq 1 and has no neighbor in Vi, or (ii) v has degGi
(v) = 2 and is in some

path P \in Pi.
Analysis. We prove that for L = O(log1+1/\ell n) = O(log n), L iterations of the

graph decomposition routine suffices to decompose any n-vertex tree. Each iteration
of the routine takes O(1) time, and the (\ell , 2\ell)-independent set computation at the
end takes O(log\ast n) time, so O(log n) time suffices in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL .

Let W be the vertices of a connected component induced by U at the beginning
of the ith iteration. In general, the graph induced by U is a forest, but it is simpler to
analyze a single connected component W . We claim that at least a constant \Omega (1/\ell)

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

50 YI-JUN CHANG AND SETH PETTIE

fraction of vertices in W are eliminated (i.e., tagged iC or iR) in the ith iteration.
The proof of the claim is easy for the special case of \ell = 1, as follows. If W is not a
single edge, then all v \in W with degU (v) \leq 2 are eliminated. Since the degree of at
least half of the vertices in a tree is at most 2, the claim follows. In general, degree-2
paths of length less than \ell are not eliminated quickly. If one endpoint of such a path
is a leaf, vertices in the path are peeled off by successive rake steps.

Assume without loss of generality (w.l.o.g.) that | W | > 2(\ell +1). DefineW1 = \{ v \in
W | degU (v) = 1\} , W2 = \{ v \in W | degU (v) = 2\} , and W3 = \{ v \in W | degU (v) \geq 3\} .
Case 1: | W2| \geq \ell | W |

\ell +1 . The number of connected components induced by vertices in

W2 is at most | W1| + | W3| - 1 < | W |
\ell +1 . The number of vertices in W2 that

are not tagged iC during \sansC \sanso \sansm \sansp \sansr \sanse \sanss \sanss is less than (\ell - 1)| W |
\ell +1 . Therefore, at least

\ell | W |
\ell +1 -

(\ell - 1)| W |
\ell +1 = | W |

\ell +1 vertices are tagged iC by \sansC \sanso \sansm \sansp \sansr \sanse \sanss \sanss .

Case 2: | W2| < \ell | W |
\ell +1 . In any tree | W1| > | W3| , so | W1| > | W1| +| W3|

2 = | W | - | W2|
2 \geq

| W |
2(\ell +1) . Therefore, at least

| W |
2(\ell +1) vertices are tagged iR by \sansR \sansa \sansk \sanse .

Hence the claim follows.

3.10. Extend and Label operations. In this section we define three operations
\sansE \sansx \sanst \sanse \sansn \sansd , \sansL \sansa \sansb \sanse \sansl , and \sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst which are used extensively in sections 3.11 and 3.12.
All these operations are graph-theoretic operations, and they are not implemented in
a distributed manner.

The operation \sansE \sansx \sanst \sanse \sansn \sansd is parameterized by a target length w \geq \ell = 2(r + \ell pump).
The operation \sansL \sansa \sansb \sanse \sansl is parameterized by a function f which takes a partially labeled
bipolar tree\scrH as input and assigns output labels to the vertices in v \in Nr - 1(e), where
e is the middle edge in the core path of \scrH .10 The function f will be constructed in
section 3.13.

\sansL \sansa \sansb \sanse \sansl . Let \scrH = (\scrT 1, . . . , \scrT x) be a partially labeled bipolar tree with x \geq \ell . Let
(v1, . . . , vx) be the core path of \scrH and e = \{ v\lfloor x/2\rfloor , v\lfloor x/2\rfloor +1\} be the middle
edge of the core path. It is guaranteed that all vertices in Nr - 1(e) in \scrH
are not already assigned output labels. The partially labeled bipolar tree
\scrH \prime = \sansL \sansa \sansb \sanse \sansl (\scrH) is defined as the result of assigning output labels to vertices
in Nr - 1(e) by the function f .11

\sansE \sansx \sanst \sanse \sansn \sansd . Let \scrH = (\scrT 1, . . . , \scrT x) be a partially labeled bipolar tree with x \in [\ell , 2w]. The
partially labeled bipolar tree \scrH \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\scrH) is defined as follows. Consider
the decomposition \scrH = \scrX \circ \scrY \circ \scrZ , where \scrY = (\scrT \lfloor x/2\rfloor - r+1, . . . , \scrT \lfloor x/2\rfloor +r).
Then \scrH \prime = \sansP \sansu \sansm \sansp (\scrX , w) \circ \scrY \circ \sansP \sansu \sansm \sansp (\scrZ , w).

Intuitively, the goal of the operation \sansE \sansx \sanst \sanse \sansn \sansd is to extend the length of the core
path of\scrH while preserving the type of\scrH , due to Lemma 3.7. Suppose that the number
of vertices in the core path of \scrH is in the range [\ell , 2\ell]. The prefix \scrX and suffix \scrZ are
stretched to lengths in the range [w,w+ \ell pump], and the middle part \scrY has length 2r,
so the core path of \scrH \prime has length in the range [2(w + r), 2(w + r + \ell pump)].

The reason that the \sansE \sansx \sanst \sanse \sansn \sansd operation does not modify the middle part \scrY is to
ensure that (given any labeling function f) the type of \scrH \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\scrH)) is
invariant over all choices of the parameter w.12 We have the following lemma.

10By definition, if e = \{ x, y\} , then Nr - 1(e) = Nr - 1(x) \cup Nr - 1(y).
11Note that the neighborhood function is evaluated w.r.t. H. In particular, the set Nr - 1(e)

contains the vertices v\lfloor x/2\rfloor - r+1, . . . , v\lfloor x/2\rfloor +r of the core path and also contains parts of the trees
\scrT \lfloor x/2\rfloor - r+1, . . . , \scrT \lfloor x/2\rfloor +r.

12Notice that \sansE \sansx \sanst \sanse \sansn \sansd is applied after \sansL \sansa \sansb \sanse \sansl . Thus, the vertices that are assigned output labels
during \sansL \sansa \sansb \sanse \sansl must be within the middle part \scrY , no part of which is modified during \sansE \sansx \sanst \sanse \sansn \sansd .

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 51

Fig. 8. Left: A bipolar subtree \scrH is attached to the rest of the graph \scrG via edges \{ u, s\} , \{ v, t\} .
The pink nodes have been precommitted to output labels by Label (r = 1). Right: The Duplicate-Cut
operation duplicates \scrH and attaches one copy to u and the other to v.

Lemma 3.11. Let \scrG = (G,\scrL) be a partially labeled graph and \scrH = (H,\scrL) be a
bipolar subtree of \scrG with poles (s, t). Let \~\scrH be another partially labeled bipolar tree with
Type(\~\scrH) = Type(\scrH) and \scrH \prime = Extend(Label(\~\scrH)). If \scrG \prime = Replace(\scrG ,\scrH ,\scrH \prime) admits a
legal labeling \scrL \prime

\diamond , then \scrG admits a legal labeling \scrL \diamond such that \scrL \diamond (v) = \scrL \prime
\diamond (v

\prime) for each
vertex v \in V (G) - V (H) and its corresponding vertex v\prime \in V (G\prime) - V (H \prime).

Proof. Recall that the operation \sansE \sansx \sanst \sanse \sansn \sansd guarantees that

\sansT \sansy \sansp \sanse (\sansE \sansx \sanst \sanse \sansn \sansd (\~\scrH)) = \sansT \sansy \sansp \sanse (\~\scrH) = \sansT \sansy \sansp \sanse (\scrH).

Define \scrH \prime \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\~\scrH) and \scrG \prime \prime = \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG ,\scrH ,\scrH \prime \prime). Observe that the graph
\scrH \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\~\scrH)) can be seen as the result of fixing the output labels of some
unlabeled vertices in \scrH \prime \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\~\scrH). Therefore, \scrL \prime

\diamond is also a legal labeling of \scrG \prime \prime . By
Lemma 3.6, the desired legal labeling \scrL \diamond of \scrG = \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\scrG \prime \prime ,\scrH \prime \prime ,\scrH) can be obtained
from the legal labeling \scrL \prime

\diamond of \scrG \prime \prime .

In addition to \sansE \sansx \sanst \sanse \sansn \sansd and \sansL \sansa \sansb \sanse \sansl , we also modify trees using the \sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst
operation, defined below.

\sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst . Let \scrG = (G,\scrL) be a partially labeled graph and \scrH = (H,\scrL) be a
bipolar subtree with poles (s, t). Suppose that \scrH is connected to the rest
of \scrG via two edges \{ u, s\} and \{ v, t\} . The partially labeled graph \scrG \prime =
\sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst (\scrG ,\scrH) is formed by (i) duplicating \scrH and the edges \{ u, s\} , \{ v, t\}
so that u and v are attached to both copies of \scrH , (ii) removing the edge that
connects u to one copy of \scrH , and removing the edge from v to the other copy
of \scrH .

Later on we will see that both poles of a bipolar tree are responsible for computing
the labeling of the tree. On the other hand, we do not want the poles to have
to communicate too much. As Lemma 3.12 shows, the \sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst operation (in
conjunction with \sansE \sansx \sanst \sanse \sansn \sansd and \sansL \sansa \sansb \sanse \sansl) allows both poles to work independently and
cleanly integrate their labelings afterward.

Lemma 3.12. Let \scrH = Extend(Label(\~\scrH)) for some partially labeled bipolar tree \~\scrH .
If \scrG \prime = Duplicate-Cut(\scrG ,\scrH) admits a legal labeling \scrL \prime

\diamond , then \scrG admits a legal labeling
\scrL \diamond such that \scrL \diamond (v) = \scrL \prime

\diamond (v
\prime) for each vertex v \in V (G) - V (H) and a particular

corresponding vertex v\prime in \scrG \prime .

Proof. Let \scrG \prime = (G\prime ,\scrL \prime). We write \scrH = (\scrT 1, . . . , \scrT x). Let (v1, . . . , vx) be the core
path of \scrH , where s = v1 and t = vx are the two poles of \scrH . Let \{ u, s\} and \{ v, t\} be

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

52 YI-JUN CHANG AND SETH PETTIE

the two edges that connect H two the rest of G. Let e = \{ vj , vj+1\} be the edge in
the core path of \scrH such that the output labels of vertices in Nr - 1(e) in \scrH were fixed
by \sansL \sansa \sansb \sanse \sansl .13 We write \scrH u (resp., \scrH v) to denote the copy of \scrH in \scrG \prime that attaches to
u (resp., v). Define a mapping \phi from V (G) to V (G\prime) as follows:

\bullet For z \in V (G) - V (H), \phi (z) is the corresponding vertex in G\prime .

\bullet For z \in
\bigcup j

i=1 \scrT i, \phi (z) is the corresponding vertex in Hu.
\bullet For z \in

\bigcup x
i=j+1 \scrT i, \phi (z) is the corresponding vertex in Hv.

We set \scrL \diamond (z) = \scrL \prime
\diamond (\phi (z)) for each z \in V (G). It is straightforward to verify that

the distance-r neighborhood view (with output labeling \scrL \diamond) of each vertex z \in V (G)
is the same as the distance-r neighborhood view (with output labeling \scrL \prime

\diamond) of its
corresponding vertex \phi (z) in G\prime . Thus, \scrL \diamond is a legal labeling.

Notice that in the proof of Lemma 3.12, the only property of \scrH that we use is
that Nr - 1(e) was assigned output labels in the application of \sansL \sansa \sansb \sanse \sansl (\~\scrH).

3.11. A hierarchy of partially labeled trees. In this section we construct
several sets of partially labeled unipolar and bipolar trees---\{ Ti\} , \{ Hi\} , and \{ H +

i \} ,
i \in \BbbZ +---using the operations \sansE \sansx \sanst \sanse \sansn \sansd and \sansL \sansa \sansb \sanse \sansl . If each member of T \star =

\bigcup
i Ti admits

a legal labeling, then we can use these trees to design an O(log n)-time \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
algorithm for \scrP . Each \scrT \in T \star is partially labeled in the following restricted manner.
The tree \scrT = (T,\scrL) has a set of designated edges such that \scrL (v) \not = \bot is defined if and
only if v \in Nr - 1(e) for some designated edge e; these vertices were issued labels by
some invocation of \sansL \sansa \sansb \sanse \sansl .

The sets of bipolar trees \{ Hi\} i\in Z+ and \{ H +
i \} i\in Z+ and unipolar trees \{ Ti\} i\in Z+

are defined inductively. In the base case we have T1 = \{ \scrT \} , where \scrT is the unique
unlabeled, single-vertex, unipolar tree.

T Sets: For each i > 1, Ti consists of all partially labeled rooted trees \scrT formed
in the following manner. The root z of \scrT has degree 0 \leq deg(z) \leq \Delta . Each
child of z is either (i) the root of a partially labeled rooted tree \scrT \prime from Ti - 1

(having degree at most \Delta - 1 in \scrT \prime) or (ii) one of the two poles of a bipolar
tree \scrH from H +

i - 1.
H Sets: For each i \geq 1, Hi contains all partially labeled bipolar trees\scrH = (\scrT j)j\in [x]

such that x \in [\ell , 2\ell], and for each j \in [x], \scrT j \in Ti, where the root of \scrT j
has degree at most \Delta - 2 in \scrT j . For example, since T1 contains only the
single-vertex unlabeled tree, H1 is the set of all bipolar, unlabeled paths
with between \ell and 2\ell vertices.

H + Sets: For each i \geq 1, H +
i is constructed by the following procedure. If i = 1,

initialize H +
1 \leftarrow \emptyset ; otherwise initialize H +

i \leftarrow H +
i - 1. Consider each \scrH \in Hi

in some canonical order. If there does not already exist a partially labeled
bipolar tree \~\scrH such that \sansT \sansy \sansp \sanse (\~\scrH) = \sansT \sansy \sansp \sanse (\scrH) and \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\~\scrH)) \in H +

i ,
then update H +

i \leftarrow H +
i \cup \{ \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\scrH))\} .

Observe that whereas \{ Ti\} and \{ Hi\} grow without end, and contain arbitrarily large
trees, the cardinality of H +

i is at most the total number of types, which is constant.14

This is due to the observation that whenever we add a new partially labeled bipolar
tree \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\scrH)) to H +

i , it is guaranteed that there is no other partially labeled
bipolar tree \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\~\scrH)) \in H +

i such that \sansT \sansy \sansp \sanse (\~\scrH) = \sansT \sansy \sansp \sanse (\scrH). The property

13Since \sansP \sansu \sansm \sansp usually does not extend \scrX and \scrZ by precisely the same amount, the edge e is
generally not exactly in the middle.

14However, it is not necessarily true that H +
i contains at most one bipolar tree of each type.

The \sansE \sansx \sanst \sanse \sansn \sansd operation is type-preserving, but this is not true of \sansL \sansa \sansb \sanse \sansl : \sansT \sansy \sansp \sanse (\sansL \sansa \sansb \sanse \sansl (H)) may not equal
\sansT \sansy \sansp \sanse (H), so it is possible that H +

i contains two members of the same type.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 53

that | H +
i | is constant is crucial in the proof of Lemma 3.20. Lemmas 3.13--3.16 reveal

some useful properties of these sets.

Lemma 3.13. We have (i) T1 \subseteq T2 \subseteq \cdot \cdot \cdot , (ii) H1 \subseteq H2 \subseteq \cdot \cdot \cdot , and (iii) H +
1 \subseteq

H +
2 \subseteq \cdot \cdot \cdot .
Proof. By construction, we already have H +

1 \subseteq H +
2 \subseteq \cdot \cdot \cdot . Due to the construc-

tion of Hi from the set Ti, it is guaranteed that if Tj \subseteq Tj+1 holds, then Hj \subseteq Hj+1

holds as well. Thus, it suffices to show that T1 \subseteq T2 \subseteq \cdot \cdot \cdot . This is proved by
induction.

For the base case, we have T1 \subseteq T2 because T2 also contains \scrT \in T1, the
unlabeled, single-vertex, unipolar tree.

For the inductive step, suppose that we already have T1 \subseteq T2 \subseteq \cdot \cdot \cdot \subseteq Ti, i \geq 2.
Then we show that Ti \subseteq Ti+1. Observe that the set Ti+1 contains all partially labeled
rooted trees constructed by attaching partially labeled trees from the sets H +

i and
Ti to the root vertex. We already know that H +

i - 1 \subseteq H +
i , and by the inductive

hypothesis we have Ti - 1 \subseteq Ti. Thus, each \scrT \in Ti must also appear in the set
Ti+1.

If T and H are arbitrary sets of unipolar and bipolar trees, we define \sansC \sansl \sansa \sanss \sanss (T) =
\{ \sansC \sansl \sansa \sanss \sanss (\scrT) | \scrT \in T \} and \sansT \sansy \sansp \sanse (H) = \{ \sansT \sansy \sansp \sanse (\scrH) | \scrH \in H \} to be the set of classes and
types appearing among them.

Lemma 3.14. Define k \star = | C | , where C is the set of all classes. Then we have
Class(T \star) = Class(Tk \star).

Proof. For each i > 1, \sansC \sansl \sansa \sanss \sanss (Ti) depends only on \sansT \sansy \sansp \sanse (H +
i - 1) and \sansC \sansl \sansa \sanss \sanss (Ti - 1),

due to Lemmas 3.4 and 3.5. Let i\ast be the smallest index such that \sansC \sansl \sansa \sanss \sanss (Ti\ast) =
\sansC \sansl \sansa \sanss \sanss (Ti\ast +1). Then we have \sansT \sansy \sansp \sanse (Hi\ast) = \sansT \sansy \sansp \sanse (Hi\ast +1) and as a consequence, H +

i\ast =
H +

i\ast +1. This implies that \sansC \sansl \sansa \sanss \sanss (Ti\ast +1) = \sansC \sansl \sansa \sanss \sanss (Ti\ast +2). By repeating the same argu-
ment, we conclude that for each j \geq i\ast , we have \sansC \sansl \sansa \sanss \sanss (Tj) = \sansC \sansl \sansa \sanss \sanss (Ti\ast) = \sansC \sansl \sansa \sanss \sanss (T \star).
Since T1 \subseteq T2 \subseteq \cdot \cdot \cdot (Lemma 3.13), we have i\ast \leq | C | .

Lemma 3.15. For each i, Class(Ti) does not depend on the parameter w used in
the operation Extend.

Proof. Let \scrH = (\scrT 1, . . . , \scrT x) be any partially labeled bipolar tree with x \geq 2r +
2\ell pump. The type of \scrH \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\scrH) is invariant over all choices of the parameter w.
Thus, by induction, the sets \sansC \sansl \sansa \sanss \sanss (Ti), \sansT \sansy \sansp \sanse (Hi), and \sansT \sansy \sansp \sanse (H +

i) are also invariant
over the choice of w.

Lemma 3.16. The maximum number of vertices of a tree in Ti, over all choices
of labeling function f , is at most \lambda i - 1, where \lambda = 2\Delta (r + w + \ell pump).

Proof. For any i, we write ti (resp., hi) to denote the maximum number of vertices
of a tree in Ti (resp., H +

i). By the definition of these sets, we have the following
formulas, which together imply that ti \leq \lambda i - 1, where \lambda = 2\Delta (r + w + \ell pump):

t1 = 1,(3.1)

ti \leq \Delta max\{ ti - 1, hi - 1\} for i > 1,(3.2)

hi \leq (2(w + \ell pump) + 2r)ti for i \geq 1.(3.3)

We explain the numbers in the upper bound on hi. The operation \sansE \sansx \sanst \sanse \sansn \sansd takes
\scrH = \scrX \circ \scrY \circ \scrZ as an input and returns \scrH \prime = \sansP \sansu \sansm \sansp (\scrX , w) \circ \scrY \circ \sansP \sansu \sansm \sansp (\scrZ , w); the
length of the core path of \scrY is 2r; the length of the core path of both \sansP \sansu \sansm \sansp (\scrX , w)
and \sansP \sansu \sansm \sansp (\scrZ , w) is at most w + \ell pump.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

54 YI-JUN CHANG AND SETH PETTIE

Notice that Formula 3.3 is not tight in the sense that we actually have H +
i\ast =

H +
i\ast +1 = \cdot \cdot \cdot , i.e., the sequence (hi) stops growing as i \geq i\ast . However, even for i \geq i\ast ,

the sequence (ti) still grows exponentially in view of Formula 3.2.

Feasible labeling function. In view of Lemma 3.15, \sansC \sansl \sansa \sanss \sanss (T \star) depends only on
the choice of the labeling function f used by \sansL \sansa \sansb \sanse \sansl . We call a function f feasible if
implementing \sansL \sansa \sansb \sanse \sansl with f makes each tree in \sansC \sansl \sansa \sanss \sanss (T \star) good, i.e., its partial labeling
can be extended to a complete and legal labeling. In section 3.12 we show that given
a feasible function, we can generate a \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm to solve \scrP in O(log n)-
time. In section 3.13, we show that (i) a feasible function can be derived from any
no(1)-time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm for \scrP , and (ii) the existence of a feasible function
is decidable. These results together imply the \omega (log n)---no(1) gap. Moreover, given
an LCL problem \scrP on bounded degree trees, it is decidable whether the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL
complexity of \scrP is n\Omega (1) or the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexity of \scrP is O(log n).

3.12. An \bfitO (log\bfitn)-time DetLOCAL algorithm from a feasible labeling
function. In this section, we show that given a feasible function f for the LCL
problem \scrP , it is possible to design an O(log n)-time \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm for \scrP on
bounded degree trees.

Regardless of f , the algorithm begins by computing the graph decomposition
V (G) = V1 \cup \cdot \cdot \cdot \cup VL with L = O(log n); see section 3.9. We let the three infinite
sequences \{ Hi\} i\in Z+ , \{ H +

i \} i\in Z+ , and \{ Ti\} i\in Z+ be constructed with respect to a
feasible function f and a sufficiently large parameter w. We will choose w to be large
enough so that a feasible function exists. Notice that the operation \sansE \sansx \sanst \sanse \sansn \sansd already
requires w \geq \ell = 2(r + \ell pump).

A sequence of partially labeled graphs. We define below a sequence of partially
labeled graphs \scrR 1,\scrR 2, . . . ,\scrR L, where \scrR 1 is the unlabeled tree G (the underlying
communications network), and \scrR i+1 is constructed from \scrR i using the graph opera-
tions \sansE \sansx \sanst \sanse \sansn \sansd , \sansL \sansa \sansb \sanse \sansl , and \sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst . An alternative and helpful way to visualize \scrR i

is that it is obtained by stripping away some vertices of G, and then grafting on some
imaginary subtrees to its remaining vertices. Formally, the graph \scrR i is formed by
taking Gi (the subforest induced by

\bigcup L
j=i Vj , defined in section 3.9), and identifying

each vertex u \in V (Gi) with the root of a partially labeled imaginary tree \scrT u,i \in Ti

(defined within the proof of Lemma 3.17). Since GL consists solely of isolated vertices,
\scrR L is the disjoint union of trees drawn from TL.

Once each vertex v \in V (Gi) =
\bigcup L

j=i Vj in the communication network G knows
\scrT v,i, we are able to simulate the imaginary graph \scrR i in the communication network
G. In particular, a legal labeling of \scrR i is represented by storing the entire output
labeling of the (imaginary) tree \scrT v,i at the (real) vertex v \in V (Gi).

The official, inductive construction of \scrR i is described in the proof of Lemma 3.17.
We remark that the ``precommitment"" of output labeling specified by the function
f during the operation \sansL \sansa \sansb \sanse \sansl (in the construction of \scrR 1,\scrR 2, . . . ,\scrR L) is used only in
the imaginary trees. This does not directly lead to any real vertices committing to
specific output labels.

Lemma 3.17. Suppose that a feasible function f is given. The partially labeled
graphs \scrR 1, . . . ,\scrR L and partially labeled trees \{ \scrT v,i | v \in V (Gi), i \in [L]\} can be
constructed in O(log n) time meeting the following conditions:

1. For each i \in [1, L], each vertex v \in V (Gi) =
\bigcup L

j=i Vj knows \scrT v,i \in Ti.
2. For each i \in [2, L], given a legal labeling of \scrR i, a legal labeling of \scrR i - 1 can

be computed in O(1) time.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 55

Proof. Part 1 of the lemma is proved by induction.
Base case. Define \scrR 1 = G. This satisfies the lemma since \scrT v,1 \in T1 must be the

unlabeled single-vertex tree, for each v \in V (G).
Inductive step. We can assume inductively that \scrR i - 1 and \{ \scrT v,i - 1 | v \in V (Gi - 1)\}

have been defined and satisfy the lemma. The set Pi - 1 was defined in section 3.9.
Each P \in Pi - 1 is a path such that degGi - 1

(v) = 2 for each vertex v \in V (P) and
| V (P)| \in [\ell , 2\ell]. Fix a path P = (v1, . . . , vx) \in Pi - 1. The bipolar graphs \scrH P and
\scrH +

P are defined as follows:
\bullet Define \scrH P to be the partially labeled bipolar tree (\scrT v1,i - 1, . . . , \scrT vx,i - 1). No-
tice that \scrH P is a subgraph of \scrR i - 1. Since \scrT vj ,i - 1 \in Ti - 1, for each j \in [x], it
follows that \scrH P \in Hi - 1.

\bullet Construct \scrH +
P as follows. Select the unique member \~\scrH \in Hi - 1 such that

(i) \sansT \sansy \sansp \sanse (\~\scrH) = \sansT \sansy \sansp \sanse (\scrH P) and (ii) \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\~\scrH)) \in H +
i - 1, and then set

\scrH +
P = \sansE \sansx \sanst \sanse \sansn \sansd (\sansL \sansa \sansb \sanse \sansl (\~\scrH)) \in H +

i - 1. Due to the way we define H +
i - 1, such a

graph \~\scrH \in Hi - 1 must exist, as \scrH P \in Hi - 1.
The partially labeled graph \scrR i is constructed from \scrR i - 1 with the following three-step
procedure. See Figure 9 for a schematic example of how these steps work.
Step 1. Define \scrR \prime

i - 1 as the result of applying the following operations on \scrR i - 1. For
each v \in Vi - 1 such that \scrT v,i - 1 is a connected component of \scrR i - 1, remove
\scrT v,i - 1. Notice that a tree \scrT v,i - 1 is a connected component of \scrR i - 1 if and only
if v's neighborhood in G contains only vertices at lower levels: V1, . . . , Vi - 2.

Step 2. Define \scrR +
i - 1 by the following procedure: (i) Initialize \~\scrG \leftarrow \scrR \prime

i - 1. (ii) For each

P \in Pi - 1, do \~\scrG \leftarrow \sansR \sanse \sansp \sansl \sansa \sansc \sanse (\~\scrG ,\scrH P ,\scrH +
P). (iii) Set \scrR

+
i - 1 \leftarrow \~\scrG .

Step 3. Define \scrR i by the following procedure: (i) Initialize \~\scrG \leftarrow \scrR +
i - 1. (ii) For each

P \in Pi - 1, do \~\scrG \leftarrow \sansD \sansu \sansp \sansl \sansi \sansc \sansa \sanst \sanse -\sansC \sansu \sanst (\~\scrG ,\scrH +
P). (iii) Set \scrR i \leftarrow \~\scrG .

After Steps 1--3, for v \in V (Gi), \scrT v,i is now defined to be the tree in \scrR i - (V (Gi) -
\{ v\}) rooted at v. Notice that the two copies of \scrH +

P generated during Step 3(ii) become
subtrees of \scrT u,i and \scrT v,i, where u and v are the two vertices in V (Gi) adjacent to the
two endpoints of P in the graph G. See Figure 9.

We now need to verify that \scrR i satisfies all the claims of the lemma. Given
the partially labeled graph \scrR i, the partially labeled trees \scrT v,i for all v \in V (Gi) are
uniquely determined. According to the construction of \scrR i, each connected component
of \scrR i - V (Gi) must be an imaginary tree that is either (i) some \scrT v,j , where v \in Vj

and j \in \{ 1, . . . , i - 1\} , or (ii) a copy of \scrH +
P , where P \in Pj and j \in \{ 1, . . . , i - 1\} . By

induction (and Lemma 3.13), for v \in V1\cup \cdot \cdot \cdot \cup Vj and j \in \{ 1, . . . , i - 1\} , we have \scrT v,j \in
Tj \subseteq Ti - 1; for each P \in Pj where j \in \{ 1, . . . , i - 1\} , we have \scrH +

P \in H +
j \subseteq H +

i - 1.
According to the inductive definition of Ti, for each v \in V (Gi) we have \scrT v,i \in Ti.
This concludes the induction of part 1.

We now turn to the proof of part 2 of the lemma. Suppose that we have a legal
labeling of \scrR i, where the labeling of \scrT v,i is stored in v \in V (Gi). We show how to
compute a legal labeling of \scrR i - 1 in O(1) time as follows. Starting with any legal
labeling \scrL 1 of \scrR i, we compute a legal labeling \scrL 2 of \scrR +

i - 1, a legal labeling \scrL 3 of
\scrR \prime

i - 1, and finally a legal labeling \scrL 4 of \scrR i - 1. Throughout the process, the labels

of all vertices in
\bigcup L

j=i Vj are stable under \scrL 1,\scrL 2,\scrL 3, and \scrL 4. Recall that \scrR i, \scrR +
i - 1,

\scrR \prime
i - 1, and \scrR i - 1 are all imaginary. ``Time"" refers to communications rounds in the

actual network G, not any imaginary graph.
From \scrL 1 to \scrL 2. Let s, t be the poles of \scrH +

P and u, v be the vertices outside of \scrH +
P in

\scrR +
i - 1 adjacent to s, t, respectively. At this point u and v have legal labelings

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

56 YI-JUN CHANG AND SETH PETTIE

Fig. 9. Top: In this example v was a vertex in a long degree-2 path tagged (i - 1)C by the
decomposition procedure and subsequently promoted to Vi. Black vertices are in Vi (or above);
white vertices are in Vi - 1; gray vertices are in Vi - 2 or below. The paths P0 = (s0, . . . , t0) and
P1 = (s1, . . . , t1) adjacent to v have constant length, between \ell and 2\ell . The colored subtrees grafted
onto white and gray vertices are imaginary subtrees formed in the construction of \scrR i - 1. Middle:
The graph is transformed by finding the graph \~\scrH b \in H +

i - 1, b \in \{ 0, 1\} that has the same type as

\scrH Pb
, and replacing \scrH Pb

with \scrH +
Pb

= Extend(Label(\~\scrH b)). The vertices receiving precommitted labels

are indicated in pink (r = 1). Bottom: We duplicate \scrH +
Pb

, b \in \{ 0, 1\} , and attach one of the copies

of each duplicate to v. (The copies of \scrH +
Pb

attached to v\prime , v\prime \prime are not shown.) The tree \scrT v,i is the

resulting tree rooted at v. Since each subtree of v is in Ti - 1 or H +
i - 1, it follows that \scrT v,i \in Ti. In

this case v had no neighbors at higher levels (i+ 1 and above), so \scrT v,i is a connected component of
\scrR i. Thus, v can locally compute a legal labeling of \scrT v,i.

of \scrT u,i and \scrT v,i, both trees of which contain a copy of \scrH +
P . Using Lemma 3.12

we integrate the labelings of \scrT u,i and \scrT v,i to fix a single legal labeling \scrL 2 of
\scrH +

P in \scrR +
i - 1.

15

15It is not necessary to physically store the entire \scrL 2 on \scrH +
P . To implement the following steps,

it suffices that s, t both know what \scrL 2 is on the subgraph induced by the (2r - 1)-neighborhood of
\{ s, t\} in \scrH +

P .

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 57

From \scrL 2 to \scrL 3. A legal labeling \scrL 3 of \scrR \prime
i - 1 is obtained by applying Lemma 3.11. For

each P \in Pi - 1, the labeling \scrL 3 on \scrH P in \scrR \prime
i - 1 can be determined from the

labeling \scrL 2 of \scrH +
P in \scrR +

i - 1. In greater detail, suppose s and t are the poles

of \scrH P /\scrH +
P , and s and t know \scrL 2 on the (2r - 1)-neighborhood of s and t in

\scrH +
P . By Lemma 3.11, there exists a legal labeling \scrL 3 on \scrH P , which can be

succinctly encoded by fixing \scrL 3 on the (2r - 1)-neighborhoods of the roots of
each unipolar tree on the core path (s = v1, . . . , vx = t) of \scrH P . Thus, once
s, t calculate \scrL 3, they can transmit the relevant information with constant-
length messages to the roots v1, . . . , vx. At this point each vj \in Vi - 1 can
locally compute an extension of its labeling to all of \scrT vj ,i - 1.

From \scrL 3 to \scrL 4. Notice that \scrR i - 1 is simply the disjoint union of \scrR \prime
i - 1---for which

we already have a legal labeling \scrL 3---and each \scrT v,i - 1 that is a connected
component of \scrR i - 1. A legal labeling \scrL 4 of \scrT v,i - 1 is computed locally at v,
which is guaranteed to exist since \scrT v,i - 1 \in Ti - 1.

This concludes the proof of the lemma.

Lemma 3.18. Let \scrP be any LCL problem on trees with \Delta = O(1). Given a feasible
function f , the LCL problem \scrP can be solved in O(log n) time in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL .

Proof. First compute a graph decomposition in O(log n) time. Given the graph
decomposition, for each i \in [L], each vertex v \in Vi computes the partially labeled
rooted trees \scrT v,j for all j \in [1, i]; this can be done in O(log n) rounds. Since f is
feasible, each partially labeled tree in T \star admits a legal labeling. Therefore, \scrR L

admits a legal labeling, and such a legal labeling can be computed without com-
munication by the vertices in VL. Starting with any legal labeling of \scrR L, legal la-
belings of \scrR L - 1, . . . ,\scrR 1 = G can be computed in O(log n) additional time, using
Lemma 3.17(2).

3.13. Existence of feasible labeling function. In Lemmas 3.19 and 3.20 we
show two distinct ways to arrive at a feasible labeling function. In Lemma 3.19 we
assume that we are given the code of a \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA that solves \scrP in
no(1) time with at most 1/n probability of failure. Using \scrA we can extract a feasible
labeling function f .16 Lemma 3.19 suffices to prove our no(1) \rightarrow O(log n) speedup
theorem but, because it needs the code of \scrA , it is insufficient to answer a more basic
question. Given the description of an LCL \scrP , is \scrP solvable in O(log n) time on trees
or not? Lemma 3.20 proves that this question is, in fact, decidable, which serves to
highlight the delicate boundary between decidable and undecidable problems in LCL
complexity [7, 42].

We briefly discuss some ideas behind the way we construct f . One natural at-
tempt to assigning the output labels during \sansL \sansa \sansb \sanse \sansl is by simulating the given no(1)-time
\sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA . If we choose w to be sufficiently large (depending on n),
then we can still force the runtime of the simulation to be less than w. This gives us a
feasible function f that is randomized, which is enough for the purpose of establishing
the \omega (log n)---no(1) gap in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL .

In Lemma 3.19, we derandomize the above process with a choice of w independent
of the size of the underlying graph n, thereby establishing the \omega (log n)---no(1) gap in
\sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL . In Lemma 3.20, we show that our construction of f leads to a decidability
result.

16The precise running time of \scrA influences the w parameter used by \sansE \sansx \sanst \sanse \sansn \sansd . For example, if \scrA
runs in O(log2 n) time, then w will be smaller than if \scrA runs in n1/ log log logn time.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

58 YI-JUN CHANG AND SETH PETTIE

Lemma 3.19. Suppose that there exists a \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA that solves \scrP
in no(1) time on n-vertex bounded degree trees, with local probability of failure at most
1/n. Then there exists a feasible function f .

Proof. Define \beta = | \Sigma out| \Delta
r

to be an upper bound on the number of distinct
output labelings of Nr - 1(e), where e is any edge in any graph of maximum degree
\Delta . Define N as the maximum number of vertices of a tree in Tk \star over all choices of
labeling function f . As \Delta , r, \ell pump, and k \star are all constants, we have N = wO(1); see
Lemma 3.16. Define t to be the running time of \scrA on a (\beta N + 1)-vertex tree. Notice
that t depends on N , which depends on w.

Choices of w and f . We select w to be sufficiently large such that w \geq 4(r + t).
Such a w exists since \scrA runs in no(1) time on an n-vertex graph, and in our case n
is polynomial in w. By our choice of w, the labeled parts of \scrT = (T,\scrL) \in Tk \star are
spread far apart. In particular, (i) the sets N (r - 1)+t(e) for all designated edges e in
\scrT are disjoint, (ii) for each vertex v \in V (T), there is at most one designated edge e
such that the set Nr+t(v) intersects Nr - 1+t(e).

Let the function f be defined as follows. Take any bipolar tree \scrH = (H,\scrL \prime) with
middle edge e on its core path. The output labels of Nr - 1(e) are assigned by selecting
the most probable labeling that occurs when running \scrA on the tree \scrH \prime = \sansE \sansx \sanst \sanse \sansn \sansd (\scrH),
while pretending that the underlying graph has \beta N + 1 vertices. Notice that even
though \scrA is a randomized algorithm, there is no randomness involved in the definition
of the labeling function f ; that is, given the description of \scrA , the function f is defined
deterministically. In the subsequent discussion, we will use the fact that the most
probable labeling occurs with probability at least | \Sigma out| - \Delta r

= 1/\beta .
Proof idea. To show that f is good, all we need is to show that each member of

Tk \star admits a legal labeling. In what follows, consider any partially labeled rooted
tree \scrT = (T,\scrL) \in Tk \star , where the set Tk \star is constructed with the parameter w and
function f . We prove that \scrT admits a legal labeling \scrL \diamond .

Suppose that we execute\scrA on T while pretending that the total number of vertices
is \beta N + 1. Let v be any vertex in T . According to \scrA 's specs, the probability that
the output labeling of Nr(v) is inconsistent with \scrP is at most 1/(\beta N + 1). However,
it is not guaranteed that the output labeling resulting from \scrA is also consistent with
\scrT , since \scrT is partially labeled. To handle the partial labeling of \scrT , our strategy is to
consider a modified distribution of random bits generated by vertices in T that forces
any execution of \scrA to agree with \scrL , wherever it is defined. We will later see that
with an appropriately chosen distribution of random bits, the outcome of \scrA is a legal
labeling of \scrT with positive probability.

Modified distribution of random bits. Suppose that an execution of \scrA on a (\beta N +
1)-vertex graph needs a b-bit random string for each vertex. For each designated edge
e, let Ue be the set of all assignments of b-bit strings to vertices in N (r - 1)+t(e). Define
Se as the subset of Ue such that \rho \in Se if and only if the following is true. Suppose
that the b-bit string of each u \in N (r - 1)+t(e) is \rho (u). Using the b-bit string \rho (u) for
each u \in N (r - 1)+t(e), the output labeling of the vertices in Nr - 1(e) resulting from
executing \scrA is the same as the output labeling specified by \scrL . According to our choice
of f , we must have | Se| /| Ue| \geq 1/\beta .

Define the modified distribution \scrD of b-bit random strings to the vertices in T as
follows. For each designated edge e, the b-bit strings of the vertices in N (r - 1)+t(e)
are chosen uniformly at random from the set Se. For the remaining vertices, their
b-bit strings are chosen uniformly at random.D

ow
nl

oa
de

d
08

/0
8/

19
 to

 1
41

.2
11

.4
.2

24
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 59

Legal labeling \scrL \diamond exists. Suppose that \scrA is executed on T with the modified
distribution of random bits \scrD . Then it is guaranteed that \scrA outputs a complete
labeling that is consistent with \scrT . Of course, the probability that \scrA outputs an
illegal labeling under \scrD may be larger than under uniform randomness. We need to
show that \scrA nonetheless succeeds with non-zero probability.

Consider any vertex v \in V (T). The probability that Nr(v) is inconsistent with \scrP
is at most \beta /(\beta N +1) under distribution \scrD , as explained below. Due to our choice of
w, the set Nr+t(v) intersects at most one set Nr - 1+t(e), where e is a designated edge.
Let Uv be the set of all assignments of b-bit strings to vertices in Nr+t(v). For each
\rho \in Uv, the probability that \rho occurs in an execution of \scrA is 1/| Uv| if all random bits
are chosen uniformly at random and is at most \beta /| Uv| under \scrD . Thus, the probability
that \scrA (using distribution \scrD) labels Nr(v) incorrectly is at most \beta /(\beta N + 1). The
total number of vertices in T is at most N . Thus, by the union bound, the probability
that the output labeling of \scrA (using \scrD) is not a legal labeling is \beta N/(\beta N + 1) < 1.
Thus, \scrT = (T,\scrL) admits a legal labeling \scrL \diamond .

Lemma 3.20. Given an LCL problem \scrP on bounded degree graphs, it is decidable
whether there exists a feasible function f .

Proof. Throughout the construction of the three infinite sequences \{ Hi\} i\in Z+ ,
\{ H +

i \} i\in Z+ , and \{ Ti\} i\in Z+ , the number of distinct applications of the operation \sansL \sansa \sansb \sanse \sansl
is constant, as | H +

i | is at most the total number of types.
Therefore, the number of distinct candidate functions f that need to be examined

is finite. For each candidate labeling function f (with any parameter w \geq \ell), in
bounded amount of time we can construct the set Tk \star , as k \star = | C | is a constant. By
examining the classes of the partially labeled rooted trees in Tk \star we can infer whether
the function f is feasible (Lemma 3.14). Thus, deciding whether there exists a feasible
function f can be done in bounded amount of time.

Combining Lemmas 3.18, 3.19, and 3.20, we obtain the following theorem.

Theorem 3.21. Let \scrP be any LCL problem on trees with \Delta = O(1). If there exists
a \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA that solves \scrP in no(1) rounds, then there exists a \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
algorithm \scrA \prime that solves \scrP in O(log n) rounds. Moreover, given a description of \scrP ,
it is decidable whether the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity of \scrP is n\Omega (1) or the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
complexity of \scrP is O(log n).

Discussion. To better understand Theorem 3.21, we consider some concrete ex-
amples. What would happen if we tried to apply the speedup theorem to the hierar-
chical 2 1

2 -coloring \scrP 2 defined in section 2? Since the complexity of \scrP 2 is \Theta (
\surd
n), there

does not exist a feasible function f for \scrP 2. In principle, one can write a program to
test whether a feasible function f exists for a given LCL, but it is not hard to see that
there is no feasible function for \scrP 2. Recall that H1 is the set of all bipolar, unlabeled
paths with between \ell and 2\ell vertices. The partial labeling in H +

1 must not involve a
and b, since the usage of these colors will make some members in T2 to have no legal
labeling, due to the two-coloring rule. For example, consider a path \scrH = \scrH 1\circ \scrH 2\circ \scrH 3,
where both \scrH 1 and \scrH 3 are colored by a and b, and \scrH 2 is unlabeled. Let \scrH \prime

2 be the
path resulting from contracting one edge in \scrH 2, and let \scrH \prime = \scrH 1 \circ \scrH \prime

2 \circ \scrH 3. If \scrH
admits a legal labeling, then \scrH \prime must not have a legal labeling. Therefore, if there
is a feasible function f for \scrP 2, then it must color all level 1 vertices D, since no V1

vertex can be labeled X by the exemption rule. This coloring strategy clearly does
not work (i.e., this does not give us an O(log n) time algorithm), since this requires
each level 2 path (whose length can be \Theta (n)) to solve a 2-coloring problem.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

60 YI-JUN CHANG AND SETH PETTIE

Let us consider another problem. The problem of 3-coloring a 3-regular tree can
be solved in O(log n) time, and so it admits a feasible function f . It is not hard
to see that any function f that does a proper 3-coloring is feasible, i.e., the partial
proper 3-coloring of any trees in T \star can be completed to a full proper 3-coloring.
For example, consider the above paths \scrH and \scrH \prime , but here \scrH 1 and \scrH 3 are properly
3-colored. As long as \scrH 2 contain at least two vertices, both \scrH and \scrH \prime admits a proper
3-coloring.

4. A gap in the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity hierarchy. Consider a set \scrV of
independent random variables and a set \scrX of bad events, where A \in \scrX depends only
on some subset vbl(A) \subset \scrV of variables. Each variable V \in \scrV may have a different
distribution and range, so long as the range is some finite set. The dependency graph
G\scrX = (\scrX , \{ (A,B) | vbl(A) \cap vbl(B) \not = \emptyset \}) joins events by an edge if they depend
on at least one common variable. The LLL and its variants give criteria under which
Pr(

\bigcap
A\in \scrX A) > 0, i.e., it is possible that none of the bad events occurs. We will

narrow our discussion to symmetric criteria, expressed in terms of p and d, where
p = maxA\in \scrX Pr(A) and d \geq 2 is the maximum degree in G\scrX . A standard version of
the LLL states that if ep(d + 1) < 1, then Pr(

\bigcap
A) > 0. Given that all bad events

can be avoided, it is often desirable to constructively find a point in the probability
space (i.e., an assignment to variables in \scrV) that avoids them. This problem has been
investigated in the sequential context [40, 29, 28, 33, 34, 31, 1] and from the point of
the view of parallel and distributed computation [11, 18, 6, 9, 26, 15, 8, 19].

The distributed constructive LLL problem is the following. The communications
network is precisely G\scrX . Each vertex (event) A knows the number of bad events
in G\scrX and the distribution of those variables appearing in vbl(A) \subset \scrV . Vertices
communicate for some number of rounds and collectively reach a consensus on an
assignment to \scrV in which no bad event occurs. Moser and Tardos's [40] parallel
resampling algorithm implies an O(log2 n) time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm under the LLL
criterion ep(d + 1) < 1. Chung, Pettie, and Su [11] gave an O(log1/epd2 n) time

algorithm under the LLL criterion epd2 < 1 and an O(log n/ log log n) time algorithm
under criterion p \cdot poly(d)2d < 1. They observed that under any criterion of the
form p \cdot f(d) < 1, \Omega (log\ast n) time is necessary. Ghaffari's [18] weak MIS algorithm,
together with [11], implies an O(log d \cdot log1/ep(d+1) n) algorithm under LLL criterion
ep(d+1) < 1. Brandt et al. [6] proved that \Omega (loglog(1/p) log n) time in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL is

necessary, even under the permissive LLL criterion p2d \leq 1. Chang, Kopelowitz, and
Pettie's [9] results imply that \Omega (logd n) time is necessary in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL , again, under
the LLL criterion p2d \leq 1.

We define TLLL(n, d, c) to be the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL time to compute a point in the
probability space avoiding all bad events (w.h.p.), under a ``polynomial"" LLL criterion
of the form

(4.1) pdc < 1.

It is conceivable that the distributed complexity of the LLL is sensitive to the criterion
used and depends on c. However, for our purpose (Theorem 4.1), any constant c
is enough. In the subsequent discussion, we slightly abuse the notation to denote
TLLL(n, d) as the distributed complexity of the LLL, where c is allowed to be an
arbitrary constant. Earlier results [11, 6] imply that TLLL(n, d) is \Omega (loglog(1/p) log n),
\Omega (log\ast n), and O(log1/epd2 n).

In this section we prove an automatic speedup theorem for \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL subloga-
rithmic algorithms. We do not assume that \Delta = O(1) in this section. Theorem 4.1

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 61

considers algorithms that run in ``sublogarithmic"" time in \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL . The term
sublogarithmic is insufficiently detailed, for two reasons. First, asymptotic notation is
not always well defined when there are multiple free parameters (e.g., n and \Delta). Sec-
ond, and more importantly, the proof of Theorem 4.1 considers what happens when n
gets very small, rather than n\rightarrow \infty . It is for these reasons that Theorem 4.1 assumes
the running time can be written in a specific form.

Theorem 4.1. Suppose that \scrA is a \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm that solves some LCL
problem \scrP (w.h.p.) in T\Delta (n) time. For any sufficiently small constant \epsilon > 0 and
some function C, suppose T\Delta (n) is upper bounded by C(\Delta) + \epsilon log\Delta n. It is possible
to transform \scrA into a new \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA \prime that solves \scrP (w.h.p.) in O(C(\Delta)\cdot
TLLL(n,\Delta

O(C(\Delta)))) time.

Proof. Suppose that \scrA has a local probability of failure 1/n, that is, for any v \in
V (G), the probability that Nr(v) is inconsistent with \scrP is 1/n, where r is the radius
of \scrP . Once we settle on the LLL criterion exponent c in (4.1), we fix \epsilon = O((2c) - 1).
Define n \star as the minimum value for which

t \star = T\Delta (n
 \star) < (1/2c) \cdot log\Delta n \star - r.

It follows that t \star = O(C(\Delta)) and n \star = \Delta O(C(\Delta)).
The algorithm \scrA \prime applied to an n-vertex graph G works as follows. Imagine an

experiment where we run \scrA but lie to the vertices, telling them that ``n"" = n \star . Any
v \in V (G) will see a t \star -neighborhood N t \star (v) that is consistent with some n \star -vertex
graph. However, the probability of the bad event that Nr(v) is incorrectly labeled is
1/n \star , not 1/poly(n), as desired. We now show that this system of bad events satisfies
the LLL criterion (4.1). Define the following events, graph, and quantities:

\scrE v : the event that Nr(v) is incorrectly labeled

according to \scrP ,

\scrX = \{ \scrE v | v \in V (G)\} the set of bad events,

G\scrX = (\scrX , \{ (\scrE u, \scrE v) | Nr+t \star (u) \cap Nr+t \star (v) \not = \emptyset \}) the dependency graph,

d \leq \Delta 2(r+t \star),

p = 1/n \star .

The event \scrE v is determined by the labeling of Nr(v) and the label of each v\prime \in Nr(v)
is determined by N t \star (v\prime), hence \scrE v is determined by (the data stored in, and random
bits generated by) vertices in Nr+t \star (v). Clearly \scrE v is independent of any \scrE u for which
Nr+t \star (u) \cap Nr+t \star (v) = \emptyset , which justifies the definition of the edge set of G\scrX . Since
the maximum degree in G is \Delta , the maximum degree d in G\scrX is less than \Delta 2(r+t \star).
By definition of \scrA , Pr(\scrE v) \leq 1/n \star = p. This system satisfies LLL criterion (4.1) since,
by definition of t \star ,

pdc = p\Delta 2c(r+t \star) < (1/n \star) \cdot n \star = 1.

The algorithm \scrA \prime now simulates a constructive LLL algorithm on G\scrX in order to
find a labeling such that no bad event occurs. Since a virtual edge (\scrE u, \scrE v) exists if

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

62 YI-JUN CHANG AND SETH PETTIE

and only if u and v are at distance at most 2(r + t \star) = O(C(\Delta)), any \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL
algorithm in G\scrX can be simulated in G with O(C(\Delta)) slowdown. Thus, \scrA \prime runs in
O(C(\Delta) \cdot TLLL(n,\Delta

O(C(\Delta)))) time.

Theorem 4.1 shows that when \Delta = O(1), o(log n)-time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithms
can be sped up to run in O(TLLL(n,O(1))) time. Another consequence of this same
technique is that sublogarithmic \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithms with large messages can be
converted to (possibly slightly slower) algorithms with small messages. The statement
of Theorem 4.2 reflects the use of a particular distributed LLL algorithm, namely,
[11, Corollary 1 and Algorithm 2]. It may be improvable using future distributed LLL
technology.

The LLL algorithm of [11] works under the assumption that epd2 < 1 and that
each bad event A \in \scrX is associated with a unique ID. The algorithm starts with a
random assignment to the variables \scrV . In each iteration, let \scrF be the set of bad
events that occur under the current variable assignment; let \scrI be the subset of \scrF
such that A \in \scrI if and only if ID(A) < ID(B) for each B \in \scrF such that vbl(A) \cap
vbl(B) \not = \emptyset . The next variable assignment is obtained by resampling all variables in\bigcup

A\in \scrI vbl(A). After O(log1/epd2 n) iterations, no bad event occurs with probability
1 - 1/poly(n).

Theorem 4.2. Let \scrA be a (C(\Delta) + \epsilon log\Delta n)-time \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm that
solves some LCL problem \scrP w.h.p., where \epsilon > 0 is a sufficiently small constant.
Each vertex locally generates r\Delta (n) random bits and sends m\Delta (n)-bit messages. It is
possible to transform \scrA into a new \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL algorithm \scrA \prime that solves \scrP (w.h.p.)
in O(log\Delta n) time, where each vertex generates O(log n+ r\Delta (\zeta) \cdot log\zeta n) random bits,

and sends O(min\{ log(| \Sigma out|) \cdot \Delta O(1) + m\Delta (\zeta) + \zeta , r\Delta (\zeta) \cdot \zeta \})-bit messages, where
\zeta = \Delta O(C(\Delta)) depends on \Delta .

Proof. We continue to use the notation and definitions from Theorem 4.1 and fix
c = 3 in the LLL criterion (4.1). Since d = \Omega (\Delta O(C(\Delta))) = \Omega (\zeta) and we selected
t \star w.r.t. c = 3 (i.e., LLL criterion pd3 < 1), we have 1/epd2 = \Omega (\zeta). If \scrA \prime uses
the LLL algorithm of [11], each vertex v \in V (G) will first generate an O(log n)-bit
unique identifier ID(\scrE v) (which costs O(log n) random bits) and generate r\Delta (n

 \star) \cdot
O(log1/epd2 n) = O(r\Delta (\zeta) \cdot log\zeta n) random bits throughout the computation. Thus,
the total number of random bits per vertex is O(log n+ r\Delta (\zeta) \cdot log\zeta n).

In each resampling step of \scrA \prime , in order for v to tell whether \scrE v \in \scrI , it needs the
following information: (i) ID(\scrE u) for all u \in N2(r+t \star)(v), and (ii) whether \scrE u occurs
under the current variable assignment, for all u \in N2(r+t \star)(v). We now present two
methods to execute one resampling step of \scrA \prime ; they both take O(C(\Delta)) time using a
message size that depends on \Delta but is independent of n. There are O(log1/epd2 n) =

O(log\zeta n) = O(log\Delta n
C(\Delta)) resampling steps, so the total time is O(log\Delta n), independent

of the function C.
Method 1. Before the LLL algorithm proper begins, we do the following prepro-

cessing step. Each vertex v gathers up all IDs and random bits in its 3(t \star + r)-
neighborhood. This takes O((log n + r\Delta (\zeta) \cdot log\zeta n) \cdot \zeta /b) time with b-bit messages

(recall that \Delta O(t \star +r) = \Delta O(C(\Delta)) = \zeta). In particular, the runtime can be made
O(log\Delta n) if we set b = O(r\Delta (\zeta) \cdot \zeta).

During the LLL algorithm, each vertex u owns one random variable: an r\Delta (n
 \star)-

bit string Vu. In order for v to tell whether \scrE u occurs for each u \in N2(r+t \star)(v) under
the current variable assignment, it only needs to know how many times each Vu, u \in

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 63

N3(r+t \star)(v), has been resampled. Whether the output labeling of u \in N2(r+t \star)(v) is
locally consistent depends on the output labeling of vertices in Nr(u), which depends
on the random bits and the graph topology within Nr+t \star (u) \subseteq N3(r+t \star)(v). Given
the graph topology, IDs, and the random bits within N3(r+t \star)(v), the vertex v can
locally simulate \scrA and decides whether \scrE v \in \scrI .

Thus, in each iteration of the LLL algorithm, each vertex v simply needs to alert
its 3(r+ t \star)-neighborhood whether Vv is resampled or not. This can be accomplished
in O(r + t \star) = O(C(\Delta)) time with \zeta -bit messages.

Method 2. In the second method, vertices keep their random bits private. Similar
to the first method, we do a preprocessing step to let each vertex gather up all IDs in
its 2(t \star + r)-neighborhood. This can be done in O(log\Delta n) time using \zeta -bit messages.

During the LLL algorithm, in order to tell which subset of bad events \{ \scrE v\} v\in V (G)

occur under the current variable assignment, all vertices simulate \scrA for t \star rounds,
sending m\Delta (n

 \star)-bit messages. After the simulation, for a vertex v to tell whether \scrE v
occurs, it needs to gather the output labeling of the vertices in Nr(v). This can be
done in r = O(1) rounds, sending log(| \Sigma out|) \cdot \Delta O(1)-bit messages.17 Next, for a vertex
v to tell whether \scrE v \in \scrI , it needs to know whether \scrE u occurs for all u \in N2(r+t \star)(v).
This information can be gathered in O(C(\Delta)) time using messages of size O(\zeta). To
summarize, the required message size is O(log(| \Sigma out|) \cdot \Delta O(1) +m\Delta (\zeta) + \zeta).

An interesting corollary of Theorem 4.2 is that when \Delta = O(1), randomized
algorithms with unbounded length messages can be simulated with 1-bit messages.

Corollary 4.3. Let \scrP be any LCL problem. When \Delta = O(1), any o(log n)
algorithm solving \scrP w.h.p. using unbounded length messages can be made to run in
O(log n) time with 1-bit messages.

5. Conclusion. We now have a very good understanding of the \sansL \sansO \sansC \sansA \sansL com-
plexity landscape for paths/cycles, grids/tori, and, to a lesser extent, bounded degree
trees and bounded degree general graphs. After the preliminary publication of this
paper [10], an impressive body of work [15, 19, 3, 8, 2] has improved our understand-
ing of the complexity hierarchy on bounded degree graphs and the complexity of the
distributed LLL. We restate a more detailed version of Conjecture 1 from [10].

Conjecture 5.1. There exists a sufficiently large constant c such that the com-
plexity of the distributed LLL problem under criterion pdc < 1 is O(log log n) in
\sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL and O(log n) in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL .

According to [9, Theorem 3], proving the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexity of the LLL is
O(log n) is a necessary (but not sufficient) precondition for showing its \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL
complexity is O(log log n). To prove Conjecture 5.1 we also need to show that LLL
instances can be shattered in O(log log n) time. Conjecture 5.1 has been confirmed
for tree-structured dependency graphs (of any degree d); see [8, 15].

The results of Balliu et al. [3] imply that the complexity hierarchies for bounded
degree trees and general graphs are definitely different. Whereas trees have no natural
complexities between \omega (log n) and no(1) (Theorem 3.21), there are an infinite number
of such complexities on general graphs [3]. It is an open question whether the other
parts of the complexity spectrum addressed in [3] are the same for trees and general
graphs. In particular, are there any LCL problems whose complexity on bounded

17An output label can be encoded as a log(| \Sigma out|)-bit string. We do not assume that \Delta is constant
so | \Sigma out| , which may depend on \Delta but not directly on n, is also not constant. For example, consider
the O(\Delta) vertex coloring problem.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

64 YI-JUN CHANG AND SETH PETTIE

degree trees is in the range \Omega (log(log\ast n))---o(log\ast n)? Can complexities of the form
\Theta (nr) be achieved for LCL problems on bounded degree trees, where r is not of the
form 1/k? Balliu et al. [2] demonstrated an \omega (

\surd
n)---o(n) gap for bounded degree

trees.
Given a description of any LCL problem \scrP , Theorem 3.21 shows that it is decid-

able whether the \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexity of \scrP is n\Omega (1) or the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL complexity
of \scrP is O(log n). For other gaps on bounded degree trees (e.g., \omega (log\ast n)---o(log n)),
the decidability problem is still open.

Appendix A. Speedup implications of Naor and Stockmeyer. Let \scrA be
any T (n)-round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm. Let \eta and \eta \prime be any two order-indistinguishable
assignments of distinct IDs to NT (n)(v), i.e., for u,w \in NT (n)(v), \eta (u) > \eta (w) if and
only if \eta \prime (u) > \eta \prime (w). If, for every possible input graph fragment induced by NT (n)(v),
the output label of v is identical under every pair of order-indistinguishable \eta , \eta \prime , then
\scrA is order-invariant.

Suppose that there exists a number n\prime = O(1) such that \Delta T (n\prime)+r < n\prime . If \scrA is
order-invariant, then it can be turned into an O(1)-round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm \scrA \prime ,
since we can pretend that the total number of vertices is n\prime instead of n.

Naor and Stockmeyer [42] proved that any \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm that takes \tau =
O(1) rounds on a bounded degree graph can be turned into an order-invariant \tau -round
\sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm. A more careful analysis shows that the proof still works when
\tau is a slowly growing function of n.

A.1. Requirements for automatic speedup. The multicolor hypergraph
Ramsey number R(p,m, c) is the minimum number such that the following holds.
Let H be a complete p-uniform hypergraph of at least R(p,m, c) vertices. Then any
c-edge-coloring of H contains a monochromatic clique of size m.

Given the number \tau \geq 2, the three parameters p, m, and c are selected as follows.
(See the proof of [42, Lemma 3.2] for more details.)

\bullet The number p is the maximum number of vertices in N\tau (v), over all vertices
v \in V (G) and all graphs G under consideration. For paths/cycles, p = 2\tau +1.
For grids/tori, p \leq 2(\tau + 1)2. For trees or general graphs, p \leq \Delta \tau .

\bullet The number m is the maximum number of vertices in N\tau +r(v), over all
vertices v \in V (G) and all graphs G under consideration. For example, for
paths/cycles, p = 2\tau + 2r + 1, and for general graphs, p \leq \Delta \tau +r.

\bullet The number z counts the distinguishable radius-\tau centered subgraphs, dis-
regarding IDs. For example, for LCLs on the n-cycle without input labels
or port numbering, z = 1, whereas with input labels and port numbering
it is (2| \Sigma in|)2\tau +1 since each vertex has one of | \Sigma in| input labels and 2 port

numberings. In general z is less than 2(
\Delta \tau

2) \cdot (\Delta !| \Sigma in|)p.
\bullet The number c is defined as | \Sigma out| p!z. Intuitively, we can use a number in [c]

to encode a function that maps a radius-\tau centered subgraph, whose vertices
are equipped with distinct vertex IDs drawn from some set S with cardinality
p, to an output label in \Sigma out.

Recall that vertices in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL have O(log n)-bit IDs, i.e., they can be viewed
as elements of [nk] for some k = O(1). Naor and Stockmeyer's proof implies that,
as long as nk \geq R(p,m, c), any \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL \tau -round algorithm on a bounded degree
graph can be turned into an order-invariant \tau -round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm, which then
implies an O(1)-round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 65

A.2. Automatic speedup theorems. According to the proof of [25, section
1, Theorem 2], we have

for p = 1, R(p,m, c) = c(m - 1) + 1,

for p > 1, R(p,m, c) \leq 2cx,

where x =

R(p - 1,m,c) - 1\sum
i=p - 1

\biggl(
i+ 1

p - 1

\biggr)
< R(p - 1,m, c)p.

Therefore, log\ast (R(p,m, c)) \leq p+ log\ast m+ log\ast c+O(1).
Observe that in all scenarios described in section A.1, if the running time \tau satisfies

\tau = \tau (n) = \omega (1), we have log\ast m + log\ast c = o(p). Therefore, having p \leq \epsilon log\ast n for
some small enough constant \epsilon suffices to meet the condition nk \geq R(p,m, c). We
conclude that the complexity of any LCL problem (with or without input labels and
port numbering) in the \sansL \sansO \sansC \sansA \sansL model never falls in the following gaps:

\omega (1)---o(log\ast n) for n-paths/cycles,

\omega (1)---o
\Bigl(\sqrt{}

log\ast n
\Bigr)

for (
\surd
n\times
\surd
n)-grids/tori,

\omega (1)---o(log(log\ast n)) for bounded degree trees or bounded degree general graphs.

By [9, Corollary 1], the \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL and \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL complexities of any LCL problem
are asymptotically the same if they are at most 2O(log\ast n). Therefore, the above gaps
apply not only to \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL but also to \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL .

Due to the ``stepping-up lemma"" (see [25, section 4, Lemma 17]), we have a lower
bound log\ast (R(p,m, 2)) = \Omega (p) (for any p,m). Therefore, Naor and Stockmeyer's
approach alone cannot give an \omega (1)---o(log\ast n) gap for bounded degree trees. However,
for a certain class of LCL problems on (

\surd
n\times
\surd
n)-grids/tori, the gap can be widened

to \omega (1)---o(log\ast n) [7, p. 2]. The following proof is due to Suomela [46].

Theorem A.1 (Suomela). Let \scrP be any LCL problem on (
\surd
n\times
\surd
n)-grids/tori

that does not refer to input labels or port numbering. The \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL and \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL
complexity of \scrP is either O(1) or \Omega (log\ast n).

Proof. Given a (
\surd
n \times
\surd
n)-torus G, we associate each vertex v \in V (G) with a

coordinate (\alpha , \beta), where \alpha , \beta \in \{ 0, . . . ,
\surd
n - 1\} . We consider the following special

way to generate unique 2k log n-bit IDs. Let \phi x and \phi y be two functions mapping
integers in \{ 0, . . . ,

\surd
n - 1\} to integers in \{ 0, . . . , nk - 1\} . We additionally require that

\phi x(0) < \cdot \cdot \cdot < \phi x(
\surd
n - 1) < \phi y(0) < \cdot \cdot \cdot < \phi y(

\surd
n - 1). If v is at position (\alpha , \beta), it

has ID \phi x(\alpha) \cdot nk+\phi y(\beta). Notice that the IDs of all vertices in N\tau (v) can be deduced
from just 4\tau + 2 numbers: \phi x(i), i \in [\alpha - \tau , \alpha + \tau], and \phi y(j), j \in [\beta - \tau , \beta + \tau].

Suppose that the complexity of \scrP is o(log\ast n). Let \scrA be any \tau -round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
algorithm for solving \scrP , where \tau = o(log\ast n). Notice that the algorithm \scrA works
correctly even when we restrict ourselves to the above special ID assignment. Our
goal is to show that \scrP is actually trivial in the sense that there exists an element \sigma \in
\Sigma out such that labeling all vertices by \sigma gives a legal labeling, assuming w.l.o.g. that\surd
n > 2r + 1. Thus, \scrP can be solved in O(1) rounds.
In subsequent discussion, we let v be any vertex whose position is (\alpha , \beta), where

\tau + r \leq \alpha \leq (
\surd
n - 1) - (\tau + r) and \tau + r \leq \beta \leq (

\surd
n - 1) - (\tau + r). That is, v is

sufficiently far from the places where the coordinates wrap around.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

66 YI-JUN CHANG AND SETH PETTIE

Given \scrA , we construct a function f as follows. Let S = (s1, . . . , s4\tau +2) be a vector
of 4\tau + 2 numbers in \{ 0, . . . , nk - 1\} such that sl < sl+1 for each l \in [4\tau + 2]. Then
f(S) \in \Sigma out is defined as the output labeling of v resulting from executing \scrA with the
following ID assignment of vertices in N\tau (v). We set \phi x(\alpha - \tau - 1 + i) = si for each
i \in [2\tau + 1] and set \phi y(\beta - \tau - 1 + j) = sj+2\tau +1 for each j \in [2\tau + 1]. Recall that \scrP
does not use port numbering and input labeling, so the output labeling of v depends
only on IDs of vertices in N\tau (v).

We set p = 4\tau + 2, m = 4\tau + 4r + 2, and c = | \Sigma out| . Notice that the calculation
of the parameter c here is different from the original proof of Naor and Stockmeyer.
Since we already force that \phi x(0) < \cdot \cdot \cdot < \phi x(

\surd
n - 1) < \phi y(0) < \cdot \cdot \cdot < \phi y(

\surd
n - 1),

we do not need to consider all p! permutations of the set S.
We have R(p,m, c) \ll nk (since p = o(log\ast n)). Thus, there exists a set S\prime of

m distinct numbers in \{ 0, . . . , nk\} such that the following is true. We label these m
numbers \phi x(i), i \in [\alpha - \tau - r, \alpha + \tau + r], and \phi y(j), j \in [\beta - \tau - r, \beta + \tau + r] by the set
S\prime such that \phi x(\alpha - \tau - r) < \cdot \cdot \cdot < \phi x(\alpha +\tau +r) < \phi y(\beta - \tau - r) < \cdot \cdot \cdot < \phi y(\beta +\tau +r).
Then the output labels of all vertices in Nr(v) assigned by \scrA are identical.

Therefore, there exists an element \sigma \in \Sigma out such that labeling all vertices by \sigma
yields a legal labeling of G. Thus, \scrP can be solved in O(1) rounds.

On grids, the proof above shows that the LCL \scrP admits a labeling where all
interior vertices (those at distance greater than r from the boundary) can be labeled
uniformly by some \sigma \in \Sigma out and every other vertex can be labeled according to an
O(1)-round order-invariant algorithm.

Similarly, by [9, Corollary 1], the \omega (1)---o(log\ast n) gap given in this proof applies
to both \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL and \sansR \sansa \sansn \sansd \sansL \sansO \sansC \sansA \sansL .

A.3. Discussion. It still remains an outstanding open problem whether the gap
for other cases can also be widened to \omega (1)---o(log\ast n).

The proof of Theorem A.1 extends easily to d-dimensional tori but does not extend
to bounded degree trees, since there is a nontrivial problem that can be solved in O(1)
rounds on a subset of bounded degree trees (see the proof of Theorem A.1 for the
definition of a trivial problem). A weak coloring is a coloring in which every vertex
is colored differently than at least one neighbor. Naor and Stockmeyer [42] showed
that on any graph class in which all vertex degrees are odd, weak 2O(\Delta log\Delta)-coloring
can be solved in two rounds and weak 2-coloring can be solved in O(log\ast \Delta) rounds
in \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL . This problem is nontrivial in the sense that coloring all vertices by the
same color is not a legal solution. Since the d-dimensional torus is \Delta -regular, \Delta = 2d,
we infer that the complexity of weak O(1)-coloring on \Delta -regular graphs is \Theta (log\ast n)
for every fixed even number \Delta \geq 2.

Theorem A.1 also does not extend to LCL problems that use input labels or
port numbering. If either input labels or port numbering is allowed, then one can
construct a nontrivial LCL problem that can be solved in O(1) rounds even on cycle
graphs. An orientation of a vertex v \in V (G) is defined as a port number in [deg(v)],
indicating a vertex in N(v) that v is pointed toward. An \ell -orientation of a cycle G
is an orientation of all vertices in G meeting the following conditions. If | V (G)| \leq \ell ,
then all vertices in G are oriented to the same direction, i.e., no two vertices point
toward each other. If | V (G)| > \ell , then each vertex v \in V (G) belongs to a path P
such that (i) all vertices in P are oriented to the same direction (no two point to each
other) and (ii) the number of vertices in P is at least \ell . Notice that \ell -orientation,
\ell = O(1), is an LCL that refers to port numbering. We show that in O(1) rounds we
can compute an \ell -orientation of G for any constant \ell .

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 67

Theorem A.2. Let G be a cycle graph and \ell be a constant. There is a \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL
algorithm that computes an \ell -orientation of G in O(1) rounds.

Proof. This is a known result. See [27, Fact 5.2] or [14, Lemma 14 (Rounding
Lemma), Case B] for a sketch of the proof. For the sake of completeness, we present a
full proof. We first show how to compute a 2-orientation of a cycle G in O(1) rounds,
and then we extend it to any constant \ell .

Computing a 2-orientation. We assume | V (G)| \geq 3. A \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL O(1)-round
algorithm to compute a 2-orientation is described as follows: First, each vertex v \in
V (G) computes an arbitrary orientation. With respect to this orientation of G, define
sets V1, V2, V3 as follows.

\bullet v \in V1 if and only if there exists u \in N(v) such that u and v are oriented to
the same direction.

\bullet v \in V2 if and only if there exists u \in N(v) \setminus V1 such that u and v are oriented
toward each other.

\bullet V3 = V (G)\setminus (V1\cup V2). Observe that for each v \in V3, there exists u \in N(v)\cap V1.
A 2-orientation is obtained by reorienting the vertices in V2 and V3. The vertices in
V2 are partitioned into unordered pairs such that u, v \in V2 are paired up if and only
if (i) \{ u, v\} \in E(G) and (ii) u and v are oriented toward each other. For each pair
\{ u, v\} , reverse the orientation of any one of \{ u, v\} . For each vertex v \in V3, let u be
any neighbor of v such that u \in V1, and reorient v to the orientation of u.

Computing an \ell -orientation. We define an O(1)-round \sansD \sanse \sanst \sansL \sansO \sansC \sansA \sansL algorithm \scrA \ell

that computes an \ell -orientation. It makes recursive calls to \scrA \lceil \ell /2\rceil . In what follows,
we assume \ell \geq 3 and | V (G)| \geq 3.

First, execute \scrA \lceil \ell /2\rceil to obtain an \lceil \ell /2\rceil -orientation of G. With respect to this
orientation of G, define the following terminologies. Let P be the set of all maximal-
size connected subgraphs in G such that all constituent vertices are oriented to the
same direction. Notice that if P contains a cycle, then P = \{ G\} . Otherwise P
contains only paths. Define P1 as the subset of P such that P \in P1 if and only if
the number of vertices in P is at least \ell . Define P2 as the subset of P \setminus P1 such that
P \in P2 if and only if there exists another path P \prime \in P \setminus P1 meeting the following
condition. There exist an endpoint u of P and an endpoint v of P \prime such that \{ u, v\} \in
E(G), and u and v are oriented toward each other. Define P3 = P \setminus (P1 \cup P2).
Observe that each P \in P3 is adjacent to a path in P1.

The paths in P2 are partitioned into unordered pairs such that P, P \prime \in P2 are
paired up if and only if there exist an endpoint u of P and an endpoint v of P \prime

such that \{ u, v\} \in E(G), and u and v are oriented toward each other. For each pair
\{ P, P \prime \} , reverse the orientation of all the vertices in any one of \{ P, P \prime \} . For each path
P \in P3, let P

\prime \in P1 be any path adjacent to P , and re-orient P to the orientation
of P \prime .

The round complexity of \scrA \ell satisfies the recurrence T (\ell) = T (\lceil \ell /2\rceil)+O(\ell), which
is O(\ell).

Notice that even though orienting all vertices in the cycle to the same direction
gives a legal labeling, \ell -orientation is still a nontrivial LCL problem. Consider a
subpath (v1, v2, v3, v4) in the cycle. Suppose that the port number of (v2, v3) stored
at v2 is 1, but the port number of (v3, v4) stored at v3 is 2. Then we need to label v2 and
v3 differently (1 and 2, respectively) in order to orient them in the same direction ``\rightarrow "".

Last, we remark that for the case the given (
\surd
n \times
\surd
n)-torus is oriented in the

sense that the input port numberings all agree with a fixed N/S/E/W orientation [7];
then there is no nontrivial LCL problem solvable in O(1) time.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

68 YI-JUN CHANG AND SETH PETTIE

REFERENCES

[1] D. Achlioptas and F. Iliopoulos, Random walks that find perfect objects and the Lov\'asz local
lemma, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2014, pp. 494--503, https://doi.org/10.1109/FOCS.2014.59.

[2] A. Balliu, S. Brandt, D. Olivetti, and J. Suomela, Almost global problems in the LOCAL
model, in Proceedings of the 32nd International Symposium on Distributed Computing,
2018.

[3] A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempi\"ainen, D. Olivetti, and J. Suomela,
New classes of distributed time complexity, in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), New York, 2018, pp. 1307--1318,
https://doi.org/10.1145/3188745.3188860.

[4] R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman, A distributed (2 + \epsilon)-
approximation for vertex cover in O(log\Delta /\epsilon log log\Delta) rounds, J. ACM, 64 (2017), 23.

[5] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, The locality of distributed symmetry
breaking, J. ACM, 63 (2016), 20.

[6] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempi\"ainen, J. Rybicki, J. Suomela,
and J. Uitto, A lower bound for the distributed Lov\'asz local lemma, in Proceedings of the
48th ACM Symposium on the Theory of Computing (STOC), 2016, pp. 479--488.

[7] S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempi\"ainen, P. R. J. \"Osterg\r ard, C. Purcell,
J. Rybicki, J. Suomela, and P. Uznanski, LCL problems on grids, in Proceedings of the
36th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2017,
pp. 101--110.

[8] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, The complexity of distributed edge
coloring with small palettes, in Proceedings of the 29th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2018, pp. 2633--2652.

[9] Y.-J. Chang, T. Kopelowitz, and S. Pettie, An exponential separation between randomized
and deterministic complexity in the LOCAL model, in Proceedings of the 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 615--624, https:
//doi.org/10.1109/FOCS.2016.72.

[10] Y.-J. Chang and S. Pettie, A time hierarchy theorem for the LOCAL model, in Proceedings
of the 58th IEEE Symposium on Foundations of Computer Science (FOCS), 2017, pp. 156--
167.

[11] K.-M. Chung, S. Pettie, and H.-H. Su, Distributed algorithms for the Lov\'asz local lemma
and graph coloring, Distrib. Comput., 30 (2017), pp. 261--280.

[12] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list
ranking, Inform. Control, 70 (1986), pp. 32--53.

[13] L. Feuilloley and P. Fraigniaud, Survey of distributed decision, Bull. Eur. Assoc. Theor.
Comput. Sci. EATCS, 119 (2016), pp. 41--65.

[14] M. Fischer, Improved deterministic distributed matching via rounding, in Proceedings of the
31st International Symposium on Distributed Computing (DISC), 2017, pp. 17:1--17:15.

[15] M. Fischer and M. Ghaffari, Sublogarithmic distributed algorithms for Lov\'asz local lemma,
and the complexity hierarchy, in Proceedings of the 31st International Symposium on Dis-
tributed Computing (DISC), 2017, 18.

[16] P. Fraigniaud, A. Korman, and D. Peleg, Towards a complexity theory for local distributed
computing, J. ACM, 60 (2013), 35, https://doi.org/10.1145/2499228.

[17] M. F\"urer, Data structures for distributed counting, J. Comput. System Sci., 28 (1984), pp. 231--
243, https://doi.org/10.1016/0022-0000(84)90067-9.

[18] M. Ghaffari, An improved distributed algorithm for maximal independent set, in Proceed-
ings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016,
pp. 270--277, https://doi.org/10.1137/1.9781611974331.ch20.

[19] M. Ghaffari, D. G. Harris, and F. Kuhn, On Derandomizing Local Distributed Algorithms,
in Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS),
2018.

[20] M. Ghaffari, F. Kuhn, and Y. Maus, On the complexity of local distributed graph problems,
in Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), 2017,
pp. 784--797.

[21] M. Ghaffari and H.-H. Su, Distributed degree splitting, edge coloring, and orientations, in
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2017, pp. 2505--2523, https://doi.org/10.1137/1.9781611974782.166.

[22] M. G\"o\"os, J. Hirvonen, and J. Suomela, Linear-in-\Delta lower bounds in the LOCAL model,
Distrib. Comput., 30 (2015), pp. 325--338, https://doi.org/10.1007/s00446-015-0245-8.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1109/FOCS.2014.59
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1145/2499228
https://doi.org/10.1016/0022-0000(84)90067-9
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1007/s00446-015-0245-8

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 69

[23] M. G\"o\"os and J. Suomela, Locally checkable proofs in distributed computing, Theory Comput.,
12 (2016), pp. 1--33, https://doi.org/10.4086/toc.2016.v012a019.

[24] M. G\"o\"os and J. Suomela, No sublogarithmic-time approximation scheme for bipar-
tite vertex cover, Distrib. Comput., 27 (2014), pp. 435--443, https://doi.org/10.1007/
s00446-013-0194-z.

[25] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, 2nd ed., John Wiley
and Sons, New York, 1990.

[26] B. Haeupler and D. G. Harris, Parallel algorithms and concentration bounds for the Lov\'asz
local lemma via witness-DAGs, in Proceedings of the 28th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2017, pp. 1170--1187, https://doi.org/10.1137/1.
9781611974782.76.

[27] M. Ha\'n\'ckowiak, M. Karo\'nski, and A. Panconesi, On the distributed complexity of comput-
ing maximal matchings, SIAM J. Discrete Math., 15 (2001), pp. 41--57.

[28] D. G. Harris, Lopsidependency in the Moser-Tardos framework: Beyond the lopsided Lov\'asz
local lemma, ACM Trans. Algorithms, 13 (2016), 17, https://doi.org/10.1145/3015762.

[29] D. G. Harris and A. Srinivasan, A constructive algorithm for the Lov\'asz local lemma on
permutations, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2014, pp. 907--925, https://doi.org/10.1137/1.9781611973402.68.

[30] J. Hartmanis and R. E. Stearns, On the computational complexity of algorithms, Trans.
Amer. Math. Soc., 117 (1965), pp. 285--306.

[31] N. J. A. Harvey and J. Vondr\'ak, An algorithmic proof of the Lov\'asz local lemma via re-
sampling oracles, in Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2015, pp. 1327--1346, https://doi.org/10.1109/FOCS.2015.85.

[32] D. Hefetz, F. Kuhn, Y. Maus, and A. Steger, Polynomial lower bound for distributed
graph coloring in a weak LOCAL model, in Proceedings of the 30th International Sym-
posium on Distributed Computing (DISC), 2016, pp. 99--113, https://doi.org/10.1007/
978-3-662-53426-7 8.

[33] K. B. R. Kolipaka and M. Szegedy, Moser and Tardos meet Lov\'asz, in Proceedings of
the 43rd ACM Symposium on Theory of Computing (STOC), 2011, pp. 235--244, https:
//doi.org/10.1145/1993636.1993669.

[34] V. Kolmogorov, Commutativity in the algorithmic Lov\'asz local lemma, in Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016,
pp. 780--787, https://doi.org/10.1109/FOCS.2016.88.

[35] A. Korman, J.-S. Sereni, and L. Viennot, Toward more localized local algorithms: removing
assumptions concerning global knowledge., Distrib. Comput., 26 (2013), pp. 289--308.

[36] F. Kuhn, T. Moscibroda, and R. Wattenhofer, Local computation: Lower and upper
bounds, J. ACM, 63 (2016), 17, https://doi.org/10.1145/2742012.

[37] F. Kuhn and R. Wattenhofer, On the complexity of distributed graph coloring, in Proceedings
of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC),
2006, pp. 7--15.

[38] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193--201.
[39] G. L. Miller and J. H. Reif, Parallel tree contraction---Part I: Fundamentals, Adv. Comput.

Res., 5 (1989), pp. 47--72.
[40] R. A. Moser and G. Tardos, A constructive proof of the general Lov\'asz local lemma, J. ACM,

57 (2010), 11, https://doi.org/10.1145/1667053.1667060.
[41] M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J. Dis-

crete Math., 4 (1991), pp. 409--412, https://doi.org/10.1137/0404036.
[42] M. Naor and L. J. Stockmeyer, What can be computed locally?, SIAM J. Comput., 24 (1995),

pp. 1259--1277, https://doi.org/10.1137/S0097539793254571.
[43] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, Discrete Math. Appl. 5,

SIAM, Philadelphia, 2000.
[44] S. Pettie and H.-H. Su, Distributed algorithms for coloring triangle-free graphs, Inform. and

Comput., 243 (2015), pp. 263--280.
[45] J. Suomela, Survey of local algorithms, ACM Comput. Surv., 45 (2013), 24, https://doi.org/

10.1145/2431211.2431223.
[46] J. Suomela, private communication, 2017.

D
ow

nl
oa

de
d

08
/0

8/
19

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.1007/s00446-013-0194-z
https://doi.org/10.1007/s00446-013-0194-z
https://doi.org/10.1137/1.9781611974782.76
https://doi.org/10.1137/1.9781611974782.76
https://doi.org/10.1145/3015762
https://doi.org/10.1137/1.9781611973402.68
https://doi.org/10.1109/FOCS.2015.85
https://doi.org/10.1007/978-3-662-53426-7_8
https://doi.org/10.1007/978-3-662-53426-7_8
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1109/FOCS.2016.88
https://doi.org/10.1145/2742012
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/2431211.2431223
https://doi.org/10.1145/2431211.2431223

	Introduction
	The complexity landscape of LOCAL
	Related results
	Recent developments
	Organization

	An infinitude of complexities: Hierarchical 212-coloring
	A complexity gap on bounded degree trees
	A tour of the proof
	Partially labeled graphs
	Graph surgery
	A tripartition of the vertices
	An equivalence relation on graphs
	Properties of the equivalence relation
	The number of equivalence classes
	A pumping lemma for trees
	Rake and compress graph decomposition
	Extend and Label operations
	A hierarchy of partially labeled trees
	An O(logn)-time DetLOCAL algorithm from a feasible labeling function
	Existence of feasible labeling function

	A gap in the RandLOCAL complexity hierarchy
	Conclusion
	Appendix A. Speedup implications of Naor and Stockmeyer
	Requirements for automatic speedup
	Automatic speedup theorems
	Discussion

	References

