Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. COMPUT. (© 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 1, pp. 33-69

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL*

YI-JUN CHANG'! AND SETH PETTIEf

Abstract. The celebrated time hierarchy theorem for Turing machines states, informally, that
more problems can be solved given more time. The extent to which a time hierarchy—type theorem
holds in the classic distributed LOCAL model has been open for many years. In particular, it is
consistent with previous results that all natural problems in the LOCAL model can be classified
according to a small constant number of complexities, such as O(1), O(log* n), O(log n), 20 (VIogn)
etc. In this paper we establish the first time hierarchy theorem for the LOCAL model and prove that
several gaps exist in the LOCAL time hierarchy. Our main results are as follows: (a) We define an
infinite set of simple coloring problems called hierarchical 2% -coloring. A correctly colored graph can
be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class
of locally checkable labeling (LCL) problems. However, the complexity of the k-level hierarchical 2%—
coloring problem is G(nl/k) for k € Zt. The upper and lower bounds hold for both general graphs
and trees and for both randomized and deterministic algorithms. (b) Consider any LCL problem on
bounded degree trees. We prove an automatic speedup theorem that states that any randomized n°(1)-
time algorithm solving the LCL can be transformed into a deterministic O(logn)-time algorithm.
Together with a previous result [Y.-J. Chang, T. Kopelowitz, and S. Pettie, Proceedings of FOCS,
2016, pp. 615-624], this establishes that on trees, there are no natural deterministic complexities
in the ranges w(log* n)—o(logn) or w(logn)—n°1). (c) We expose a new gap in the randomized
time hierarchy on general graphs. Roughly speaking, any randomized algorithm that solves an
LCL problem in sublogarithmic time can be sped up to run in O(Trrr) time: the complexity
of the distributed Lovész local lemma (LLL) problem. In other words, the LLL is complete for
sublogarithmic time. Finally, we revisit Naor and Stockmeyer’s characterization of O(1)-time LOCAL
algorithms for LCL problems (as order-invariant w.r.t. vertex IDs) and calculate the complexity gaps
that are directly implied by their proof. For n-rings we see an w(1)—o(log* n) complexity gap, for
(v/n X y/n)-tori an w(1l)—o(1/log* n) gap, and for bounded degree trees and general graphs, an
w(1)—o(log(log* n)) complexity gap.

Key words. distributed local model, local checkable labeling, Lovész local lemma, time hierar-
chy theorem

AMS subject classifications. 05C85, 68W15

DOI. 10.1137/17TM1157957

1. Introduction. The goal of this paper is to understand the spectrum of nat-
ural problem complexities that can exist in the LOCAL model [38, 43] of distributed
computation and to quantify the value of randomness in this model. Whereas the
time hierarchy of Turing machines is known! to be very “dense,” recent work [9, 7]
has exhibited strange gaps in the LOCAL complexity hierarchy. Indeed, prior to this
work it was not even known if the LOCAL model could support more than a small
constant number of problem complexities. Before surveying prior work in this area,
let us formally define the deterministic and randomized variants of the LOCAL model
and the class of locally checkable labeling (LCL) problems, which are intuitively those
graph problems that can be computed locally in nondeterministic constant time.

*Received by the editors November 21, 2017; accepted for publication (in revised form) October

16, 2018; published electronically January 3, 2019. A preliminary version of this paper appeared in
Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science, 2017.
http://www.siam.org/journals/sicomp/48-1/M115795.html
Funding: This work was supported by NSF grants CCF-1514383 and CCF-1637546.
fUniversity of Michigan, Ann Arbor, MI 48109 (cyijun@umich.edu, pettie@umich.edu).
IFor any time-constructible function T'(n), there is a problem solvable in O(T'(n)) but not o(T(n))
time [30, 17].

33

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

http://www.siam.org/journals/sicomp/48-1/M115795.html
mailto:cyijun@umich.edu
mailto:pettie@umich.edu

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

34 YI-JUN CHANG AND SETH PETTIE

In both the DetLOCAL and RandLOCAL models the input graph G = (V, E) and
communications network are identical. Each vertex hosts a processor and all vertices
run the same algorithm. Each edge supports communication in both directions. The
computation proceeds in synchronized rounds. In a round, each processor performs
some computation and sends a message along each incident edge, which is delivered
before the beginning of the next round. Each vertex v is initially aware of its degree
deg(v), a port numbering mapping its incident edges to {1, ..., deg(v)}, certain global

parameters such as n & V], A def max,cy deg(v), and possibly other information.

The assumption that global parameters are common knowledge can sometimes be

removed; see Korman, Sereni, and Viennot [35]. The only measure of efficiency is the

number of rounds. All local computation is free and the size of messages is unbounded.

Henceforth “time” refers to the number of rounds. The differences between DetLOCAL

and RandLOCAL are as follows:

DetLOCAL. In order to avoid trivial impossibilities, all vertices are assumed to hold
unique O(logn)-bit IDs. Except for the information about deg(v),ID(v), and
the port numbering, the initial state of v is identical to every other vertex.
The algorithm executed at each vertex is deterministic.

RandLOCAL. In this model each vertex may locally generate an unbounded number
of independent truly random bits, but there are no globally shared random
bits. Except for the information about deg(v) and its port numbering, the
initial state of v is identical to every other vertex. Algorithms in this model
operate for a specified number of rounds and have some probability of failure,
the definition of which is problem specific. We fix the maximum tolerable
global probability of failure to be 1/n.

Clearly RandLOCAL algorithms can generate distinct IDs (with high probability
(w.h.p.)) if desired. Observe that the role of “n” is different in the two LOCAL
models: in DetLOCAL it affects the ID length, whereas in RandLOCAL it affects the
failure probability.

LCL problems. Naor and Stockmeyer [42] introduced locally checkable labelings to
formalize a large class of natural graph problems. Fix a class G of possible input graphs
and let A be the maximum degree in any such graph. Formally, an LCL problem P for
G has aradius r = O(1), input and output alphabets i, Yoyt (which can depend on A
but not n), and a set C of acceptable configurations. Each C' € C is a graph centered at
a specific vertex, in which each vertex has a degree, a port numbering, and two labels
from %, and 3oyut. Given the input graph G(V, E, ¢in), where ¢, : V(G) — Zip, an
acceptable output is any function ¢oys @ V(G) — oyt such that for each v € V(G),
the subgraph induced by N7(v) (denoting the r-neighborhood of v together with
information stored there: vertex degrees, port numberings, input labels, and output
labels) is isomorphic to a member of C.

For bounded degree graphs, an LCL can be described explicitly by enumerating a
finite number of acceptable configurations. For graph classes with unbounded degrees,
LCLs can be defined through logic expression. Many natural symmetry breaking
problems can be expressed as LCLs, such as MIS, maximal matching, (a,)-ruling
sets, (A + 1)-vertex coloring, and sinkless orientation.

1.1. The complexity landscape of LOCAL. The complexity landscape for
LCL problems is defined by “natural” complexities (sharp lower and upper bounds
for specific LCL problems) and provably empty gaps in the complexity spectrum. We
now have an almost perfect understanding of the complexity landscape for two simple
topologies: n-cycles/paths [12, 38, 41, 42, 9] and (v/n X y/n)-grids/tori [42, 9, 7]. See

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 35

Figure 1, top and middle. On the n-cycle/path, the only possible problem complexities
are O(1), O(log" n) (e.g., 3-coloring), and O(n) (e.g., 2-coloring, if bipartite). The
gaps between these three complexities are obtained by automatic speedup theorems.
Naor and Stockmeyer’s [42] characterization of O(1)-time LCL algorithms actually
implies that any o(log™ n)-time algorithm on the n-cycle/path can be transformed to
run in O(1) time; see Appendix A. Chang, Kopelowitz, and Pettie [9] showed that any
o(n)-time RandLOCAL algorithm can be made to run in O(log” n) time in DetLOCAL.
The situation with (y/n x y/n)-grids/tori is almost identical [7]: every known
LCL has complexity O(1), ©(log™n) (e.g., 4-coloring), or O(y/n) (e.g., 3-coloring).
Whereas the gap implied by [42] is w(1)—o(log™ n) on the n-cycle/path, it is w(1)—
o(y/log® n) on the (y/n x \/n)-torus; see Appendix A.> Whereas randomness is known
not to help in n-cyles/paths [42, 9], it is an open question on grids/tori [7]. Whereas
the classification question (whether an LCL is O(log*n) or Q(n)) is decidable on
n-cycles/paths, the same question is undecidable on (y/n x y/n)-grids/tori [42, 7].
The gap theorems of Chang, Kopelowitz, and Pettie [9] show that no LCL problem
on general graphs has DetLOCAL complexity in the range w(log™ n)—o(loga n) nor
RandLOCAL complexity in the range w(log™ n)—o(log log n). Some problems exhibit
an exponential separation (O(loga logn) versus Q(loga 7)) between their RandLOCAL
and DetLOCAL complexities, such as A-coloring degree-A trees [6, 9, 44], sinkless
orientation [6, 21], and (2A — 2)-edge coloring trees [8]. More generally, Chang,
Kopelowitz, and Pettie [9] proved that the RandLOCAL complexity of any LCL prob-
lem on graphs of size n is, holding A fixed, at least its deterministic complexity on
instances of size v/logn. Thus, on the class of degree A = O(1) graphs there were only
five known natural complexities: O(1), ©(log™ n), randomized ©(loglogn), ©(logn),
and ©(n). For nonconstant A, the RandLOCAL lower bounds of Kuhn, Moscibroda,

and Wattenhofer [36] Q(min{ log’i ? <V log’ﬁ;) <7) lower bounds on O(1)-approximate
vertex cover, MIS, and maximal matching. This Q(log A/loglog A) lower bound

is only known to be tight for O(1)-approximate vertex cover [4]; the best maximal
matching [5] and MIS [18] algorithms’ dependence on A is Q(log A). The Q(V &)

lower bound is not known to be tight for any problem but is almost tight for rﬁl%}gﬁlnal
matching on bounded arboricity graphs [5], e.g., trees or planar graphs.

New results. In this paper we study the LOCAL complexity landscape on bounded
degree trees and bounded degree general graphs; see Figure 1. We establish a new
(deterministic and randomized) complexity gap for bounded degree trees, a new ran-
domized complexity gap for general graphs, and a new infinite hierarchy of coloring
problems with polynomial time complexities:

e We prove that on the class of bounded degree trees, no LCL has complexity in
the range w(logn)—n°M). Specifically, any n°")-time RandLOCAL algorithm
can be converted to an O(logn)-time DetLOCAL algorithm. Moreover, given
a description of an LCL problem P, it is decidable whether the RandLOCAL
complexity of P is n*(M) or the DetLOCAL complexity of P is O(logn). It
turns out that this gap is maximal. That is, we cannot extend it lower than
w(logn) [38, 9] nor higher than n°() as we show below.

e We define an infinite class of LCL problems called hierarchical 2%-colom'ng.

We prove that k-level hierarchical 2%—coloring has complexity @(nl/ k). The

2Suomela [46] has a proof that there is an w(1)—o(log* n) complexity gap for grids/tori, at least

for LCLs that do not use port numberings or input labels. The issues that arise with port numbering
and input labels can be very subtle.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

36 YI-JUN CHANG AND SETH PETTIE

0(1) log* n n
. X . X A
O(1) Vieg'n log'n vn
X 4 2. 4 X .

(Det.)
O(1) loglog'n log*n X logn RSO IS VSN VE SRS VP n
PX & 2 Py Py 5'¢ & Iy 9. Py 2 Py 2 Py

X ' X
IOg IOgTI =T1LL
(Rand.)

Fi1G. 1. Top: The complezity landscape for LCL problems on the n-cycle/path. Middle: The
complezity landscape for LCL problems on the (v/n X /n)-grid/torus. Refer to [42, 9, 7] and Ap-
pendiz A for proofs of the complexity gaps (“X ”) on paths/cycles and grids/tori. Bottom: The com-
plexity landscape for LCL problems on bounded degree trees. The w(log* n)—o(logn) DetLOCAL gap
and w(log* n)—o(loglogn) RandLOCAL gap are due to [9]. The w(TLrr)—o(logn) and w(logn)—
n°) gaps are new. Recent results [8, 15] have put Ty 1.1, = ©(loglogn) on trees. Refer to Appendiz A
for the w(1)—o(log(log* n)) gap. It is unknown whether there are w(n/+1))—o(nl/k) gaps on
trees. With the exception of the w(logn) —n°() gap, all known complezity gaps on bounded degree
trees apply to bounded degree gemeral graphs as well; however, the exact complexity of the Lovdsz
local lemma (LLL) on general graphs has not been settled.

upper bound holds in DetLOCAL on general graphs, and the lower bound holds
even on degree-3 trees in RandLOCAL. Thus, in contrast to paths/cycles and
grids/tori, trees and general graphs support an infinite number of natural
problem complexities.

e Suppose we have a RandLOCAL algorithm for general graphs running in
C(A) + eloga n time for any desired ¢ > 0 and some function C.3 We
can transform this algorithm to run in O(C(A) - Trry) time, where T, is
the complexity of a weak (i.e., “easy”) version of the constructive LLL. At
present, T, 11, is known to be Q(loglogn) [6] even on trees [8]. This establishes
a new RandLOCAL complexity gap between w(Tr 1) and o(logn).

Finally, it seems to be folklore that Naor and Stockmeyer’s work [42] implies some
kind of complexity gap, which has been cited as w(1)—o(log™ n) [7, p. 2]. However,
to our knowledge, no proof of this complexity gap has been published. We show how
Naor and Stockmeyer’s approach implies complexity gaps that depend on the graph
topology:

e w(1)—o(log™ n) on cycles/paths,

e w(1)—o(y/log" n) on grids/tori,

e w(1)—o(log(log™n)) on bounded degree trees and general graphs.

These gaps apply to the general class of LCL problems defined in this paper, in which
vertices initially hold an input label and possible port numbering. Port number-
ings are needed to represent “edge labeling” problems (like maximal matching, edge
coloring, and sinkless orientation) unambiguously as vertex labelings. They are not
needed for native “vertex labeling” problems like (A + 1)-coloring or MIS. Suomela
[46] gave a proof that the w(1)—o(log™ n) gap exists in grids/tori as well, for the class
of LCL problems without input labels or port numbering. This proof is reproduced
in Appendix A.

Commentary. All the existing automatic speedup theorems are quite different
in terms of proof techniques. Naor and Stockmeyer’s approach is based on Ramsey

3This is a convoluted way of saying “sublogarithmic time.” Because of the nature of the proof,
we care about what the time complexity is when n is small, not just when n — co.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 37

theory. The speedup theorems of [9, 7] use the fact that o(loga n) algorithms on
general graphs (and o(n) algorithms on n-cycles/paths and o(y/n) algorithms on (y/nx
\/n)-grids/tori) cannot “see” the whole graph and can therefore be efficiently tricked
into thinking the graph has constant size. Our n°) — O(logn) speedup theorem
introduces an entirely new set of techniques based on classic automata theory. We
show that any LCL problem gives rise to a regular language that represents partial
labelings of the tree that can be consistently extended to total labelings. By applying
the pumping lemma for regular languages, we can “pump” the input tree into a much
larger tree that behaves similar to the original tree. The advantage of creating a larger
imaginary tree is that each vertex can (mentally) simulate the behavior of an no.
time algorithm on the imaginary tree, merely by inspecting its O(logn)-neighborhood
in the actual tree. Moreover, because the pumping operation preserves properties of
the original tree, a labeling of the imaginary tree can be efficiently converted to a
labeling of the original tree.

1.2. Related results. There are several LOCAL lower bounds for natural prob-
lems that do not quite fit in the LCL framework. G&os, Hirvonen, and Suomela [22]
proved a sharp Q(A) lower bound for fractional maximal matching and G&éoés and
Suomela [24] proved Q(logn) lower bounds on (1 4 §)-approximating the minimum
vertex cover, § > 0, even on degree-3 graphs. See [37, 32] for lower bounds on coloring
problems that apply to constrained algorithms or a constrained version of the LOCAL
model.

In recent years there have been efforts to develop a complexity theory of locality
in distributed computing. The gap theorems of [42, 9, 7] have already been discussed.
Suomela surveys [45] the class of problems that can be computed with O(1) time.
Fraigniaud, Korman, and Peleg [16] defined a distributed model for locally deciding
graph properties; see [13] for a survey of variants of the local distributed decision
model. G66s and Suomela [23] considered the proof complexity (measured in terms
of bits-per-vertex label) of locally verifying graph properties. Very recently, Ghaffari,
Kuhn, and Maus [20] defined the SLOCAL model (sequential LOCAL) and exhibited
several complete problems for this model, inasmuch as a polylog(n)-time DetLOCAL
algorithm for any complete problem implies a polylog(n) DetLOCAL algorithm for
every polylog(n)-time problem in SLOCAL.*

1.3. Recent developments. The preliminary version of this work [10] con-
cluded with two conjectures, one on the complexity of the distributed LLL under a
“polynomial” LLL criterion, and one on further gaps in the LOCAL complexity hi-
erarchy. Subsequent work by Fischer and Ghaffari [15], Chang et al. [8], Ghaffari,
Harris, and Kuhn [19], and Balliu et al. [3] has offered compelling evidence in favor
of the first conjecture and disproved the second conjecture.

Fischer and Ghaffari [15] gave a deterministic LLL algorithm with complexity
O(n!/*+00/viegn)) ynder criterion p(ed)® < 1 and a randomized algorithm with
complexity O(d?> + (logn)t/A+O1/Vioglogn)y ynder criterion pled)* < 1. (See
section 4 for the definition of p,d and a discussion of LLL criteria.) When d <
(loglogn)'/>, they improved their randomized algorithm to 20(VI°glogn) time un-
der criterion p(ed)®? < 1. Under criterion p(eal)d2 < 1, the LLL can be solved
in O(d? + log*n) time [15], which matches the Chung—Pettie-Su [11] lower bound
Q(log" n) in terms of n and gives a new proof [15, Corollary 3| of the w(log” n)—

4The class of O(1)-time SLOCAL algorithms is, roughly speaking, those graph labelings that can

be computed sequentially, by a truly local algorithm. This class is a strict subset of LCLs.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

38 YI-JUN CHANG AND SETH PETTIE

o(loglog n) RandLOCAL complexity gap [9] on bounded degree graphs. Chang et al. [8]
designed special LLL algorithms for “tree structured” dependency graphs.> Under cri-
terion p(ed)* < 1, they run in O(max{log, n,logn/loglogn}) time in DetLOCAL and
O(max{log, log n,loglogn/logloglogn}) time in RandLOCAL, with no dependency
on d. This work confirmed [10, Conjecture 1] for the special case of trees. In [19],
the upper bound for Ty ;7 on bounded degree general graphs was further improved

to exp(i)(cm/log(i"’l) n), for any 4, where ¢; depends only on ¢ and exp?, log(”l)

iterated i-fold applications of exp and log, respectively.

Balliu et al. [3] disproved [10, Conjecture 2] and showed that on bounded degree
general graphs, the complexity hierarchy is very dense in essentially every region
left open by this work. In particular, there are an infinite number of LCL problem
complexities between Q(log(log™ n)) and O(log™ n), an infinite number of complexities
between Q(logn) and n°M) (provably distinguishing the complexity hierarchies for
trees and general graphs), and an infinite number of complexities of the form ©(n")
for rationals r not of the form 1/k. Whether bounded degree trees can support the
first and third categories is still open.

are

1.4. Organization. In section 2 we introduce hierarchical 2%-coloring and prove

that the k-level variant of this problem has complexity @(nl/ k). In section 3 we prove
the n°) — O(logn) speedup theorem for bounded degree trees. In section 4 we dis-
cuss the constructive LLL and prove the o(loga n) — Tr.r1 randomized speedup theo-
rem. In section 5 we discuss open problems and outstanding conjectures. Appendix A
reviews Naor and Stockmeyer’s characterization of O(1)-time LCL algorithms, using
Ramsey theory, and explains how it implies gaps in the complexity hierarchy that
depend on graph topology.

2. An infinitude of complexities: Hierarchical 2%-coloring. In this section
we give an infinite sequence (Pj)pez+ of LCL problems, where the complexity of Py
is precisely ©(n'/%).% The upper bound holds on general graphs in DetLOCAL and
the lower bound holds in RandLOCAL, even on degree-3 trees. Informally, the task
of Py, is to 2-color (with {a,b}) certain specific subgraphs of the input graph. Some
vertices are exempt from being colored (in which case they are labeled X), and in
addition, it is possible to decline to 2-color certain subgraphs, by labeling them D.

There are no input labels. The output label set is ¥, = {a,b,D,X}. The
problem Py, is an LCL defined by the following rules:

Levels. Subsequent rules depend on the levels of vertices. Let V;, i € {1,...,k+ 1},
be the set of vertices on level i, defined as follows:

G =G,
Gi=G;_1 -V fori € 2,k + 1],
Vi={v e V(G;) | degg,(v) <2} for i € [1, k],

Vir1 = V(Gr41) (the remaining vertices).

Remember that vertices know their degrees, so a vertex in V; deduces this
with 0 rounds of communication. In general the level of v can be calculated
from information in N*(v).

5If T'is a tree and r = O(1), the graph T" = (V(T'), {{u,v} | distr(u,v) < r}) is tree structured.

6Brandt et al. [7, Appendix A.3] described an LCL that has complexity ©(1/n) on general graphs,
but not trees. It may be possible to generalize their LCL to any complexity of the form ©(n!/F).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 39

Exemption. A vertex labeled X is called exempt. No V; vertex is labeled X; all Vi1
vertices are labeled X. Any V; vertex is labeled X if and only if it is adjacent
to a lower level vertex labeled a, b, or X. Define X; C V; to be the set of
level ¢ exempt vertices.

Two-coloring. Vertices not covered by the exemption rule are labeled one of a, b, D.
e Any vertex in V;, i € [1, k], labeled a has no neighbor in V; labeled a or D.
e Any vertex in V;, ¢ € [1, k], labeled b has no neighbor in V; labeled b or D.
e Any vertex in V, — X with exactly 0 or 1 neighbors in V, — X} must be
labeled a or b.

Commentary. The level rule implies that the graph induced by V; consists of
paths and cycles. The two-coloring rule implies that each component of nonexempt
vertices in the graph induced by V; — X; must either (a) be labeled uniformly by
D or (b) be properly 2-colored by {a,b}. Every path in V), — X} must be properly
2-colored, but cycles in Vi — X are allowed to be labeled uniformly by D. This last
provision is necessary to ensure that every graph can be labeled according to Py since
there is no guarantee that cycles in Vi, — X are bipartite.

Remark 2.1. As stated Py is an LCL with an alphabet size of 4 and a radius k,
since the coloring rules refer to levels, which can be deduced by looking up to radius
k. On the other hand, we can also represent Py, as an LCL with radius 1 and alphabet
size 4k by including a vertex’s level in its output label. A correct level assignment can
be verified within radius 1. For example, level 1 vertices are those with degree at most
2, and a vertex is labeled i € [2,k] if and only if all but at most 2 neighbors have
levels less than :.

THEOREM 2.2. The DetLOCAL complezity of Py on general graphs is O(n'/%).

Proof. The algorithm fixes the labeling of Vi, ..., Vi, Vi1 in order, according to
the following steps. Assume that all vertices in V7, ..., V;_; have already been labeled.
e Compute X; according to the exemption rule (e.g., X1 =0, X411 = Vir1).
e Each path in the subgraph induced by V; — X, calculates its length. If it
contains at most [2n'/¥] vertices, it properly 2-colors itself with {a, b}; longer
paths and cycles in V; — X; label themselves uniformly by D.

This algorithm correctly solves Py provided that it never labels a path in Vi — Xy,
with D. Let U; be the subgraph induced by those vertices in V3 U --- U V; labeled
D. Consider a connected component C' in U; whose V;-vertices are arranged in a
path (not a cycle). We argue by induction that C' has at least 2n*/* vertices. This
is clearly true in the base case ¢ = 1: if a path component of U; were colored D, it
must have more than {2n1/ k-| vertices. Now assume the claim is true for ¢ — 1 and
consider a component C of U;. If the V;-vertices in C' form a path, it must have length
greater than 2n'/*. Each vertex in that path must be adjacent to an endpoint of a
Vi—1 path. Since V;_; paths have two endpoints, the V; path is adjacent to at least
[2n!/k] /2 > n!/* components in U;_1, each of which has size at least 2n(i=1/¥ by the
inductive hypothesis. Thus, the size of C is at least n'/* . 2n(=1/F £ opl/k > opi/k,
Because there are at most n vertices in the graph, it is impossible for V}, vertices
arranged in a path to be colored D.]

THEOREM 2.3. The RandLOCAL complexity of Py, on trees with maximum degree
A =3 is Q(n'/*),

Proof. Fix an integer parameter x and define a sequence of graphs (H;)1<;<i as
follows. Each H; has a head and a tail.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

40 YI-JUN CHANG AND SETH PETTIE

Fi1G. 2. The graph Hj, with parameters k = 3,x = 7. White vertices are in V1, gray in Va, and
black in V3. Vi = Vi1 is empty.

e H; is a path (or backbone) of length x. One end of the path is the head and
the other end the tail.

e To construct H;, i € [2,k — 1], begin with a backbone path (vi,va,...,v,),
with head v; and tail v,. Form x + 1 copies (H;i)l)lgjgm_i_l of H;_1, where
vU) is the head of H,L-(Z)l. Connect v7) to v; by an edge, for j € [1,z], and
also connect v(®*t1) to v, by an edge.

e Hj is constructed exactly as above, except that we generate x + 2 copies of
Hj,_1 and connect the heads of two copies of Hi_; to both v; and v,. See
Figure 2 for an example with k = 3.

We make several observations about the construction of Hy. First, it is a tree with
maximum degree 3. Second, when decomposing V (Hy) into levels (Vi,..., Vi, Vit1),
V; is precisely the union of the backbones in all copies of H;, and Vi, = @. Third,
the number of vertices in Hy, is ©(x*), so a o(n!/*) algorithm for P}, must run in o(z)
time on Hy.

Consider a RandLOCAL algorithm A solving P on Hj within ¢t < z/5 — O(1)
time that fails with probability pe.i. If A is a good algorithm, then pg.y < 1/|V (Hg)|.
However, we will now show that pg.; is constant, independent of |V (Hy)|.

Define &; to be the event that X; # () and p; = Pr(&;). By an induction from
i =2 to k, we prove that p; < 2(i — 1) - Ptail-

Base case. We first prove that

Pr (Hy, is not correctly colored according to Py | £2) > 1/2.

Conditioning on £ means that X; # (). Fix any v € X5 and let P be a copy of Hy
(a path) adjacent to v. In order for v € X, it must be that P is properly 2-colored
with {a,b}. Since t < z/5 — O(1), there exist two vertices u and v’ in P such that

1. N'(u), N*(u'), and N*(v) are disjoint sets,

2. the subgraphs induced by N*(u) and Nt(u’) are isomorphic, and

3. the distance between u and u’ is odd.
Let p, and py, be the probabilities that u/u’ is labeled a and b, respectively. A proper
2-coloring of P assigns u and v’ different colors, and that occurs with probability
2Dapb < 2pa(l — pa) < 1/2. Moreover, this holds independent of the random bits
generated by vertices in N*(v). The algorithm fails unless u, ' have different colors,
thus prain > p2/2, and hence pa < 2 - prair-

Inductive step. Let 3 < ¢ < k. The inductive hypothesis states that p;_; <

2(i — 2) - prann. By a proof similar to the base case, we have that

Pr (Hy, is not correctly colored according to Py, | £\Ei—1) > 1/2.

We are conditioning on £;\&;_1. If this event is empty, then p; < p;_1 < 2(i — 2) - Pail
and the induction is complete. On the other hand, if £;\&;_1 holds, then there is some

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 41

v € X; adjacent to a copy of H;_; with backbone path P, where PN X;_; = (. In
other words, if Hy is colored according to Py, then P must be properly 2-colored with
{a,b}. The argument above shows this occurs with probability at least 1/2. Thus,

Drail = Pr(Hj, is incorrectly colored) > Pr(&\&—1)/2 > (pi — pi—1)/2,

or p; < 2pgait + pi—1 < 2(i — 1)prait, completing the induction.

Finally, let P be the path induced by vertices in Vi. The probability that
& holds (PN Xy, # 0) is pr < 2(k — 1) - pai- On the other hand, we have
Pr(H}, not colored correctly | &) > 1/2 by the argument above, hence pgap > (1 —
Pr)/2, or pr > 1 — 2pp.;. Combining the upper and lower bounds on p; we conclude
that pei > (2k)~! is constant, independent of |V (Hy)|. Thus, algorithm A cannot
succeed w.h.p. 0

3. A complexity gap on bounded degree trees. In this section we prove an
ne — O(logn) speedup theorem for LCL problems on bounded degree trees. The
progression of definitions and lemmas in sections 3.2-3.13 is logical but obscures the
high level structure of the proof. Section 3.1 gives an informal tour of the proof and
its key ideas. Throughout, P is a radius-r LCL and A is an n°M-time algorithm for
‘P on bounded degree trees.

3.1. A tour of the proof. Consider this simple way to decompose a tree in
O(logn) time, inspired by Miller and Reif [39]. ITteratively remove paths of degree-
2 vertices (compress) and vertices with degree 0 or 1 (rake). Vertices removed in
iteration 4 are at level i. If O(logn) rakes alone suffice to decompose a tree, then it
has O(logn) diameter and any LCL can be solved in O(logn) time on such a graph.
Thus, we mainly have to worry about the situation where compress removes very long
(w(1)-length) paths.

The first observation is that it is easy to split up long degree-2 paths of level-
1 vertices into constant length paths, by artificially promoting a well-spaced subset
of level-i vertices to level ¢ + 1. Thus, we have a situation that looks like this (see
Figure 3): level-i vertices are arranged in an O(1)-length path, each the root of a
subtree of level-(<) vertices (colored subtrees in the figure) that were removed in
previous rake/compress steps, and bookended by level-(> i) vertices (black in the
figure). Call the subgraph between the bookends H.

In our approach it is the level-(> 7) vertices that are in charge of coordinating the
labeling of level-(< @) vertices in their purview. In this diagram, H is in the purview
of both black bookends. We have only one tool available for computing a labeling
of this subgraph: an n°M-time RandLOCAL algorithm A that works w.h.p. What
would happen if we simulated A on the vertices of H? The simulation would fail
catastrophically of course, since it needs to look up to an n°!) radius, to parts of the
graph far outside of H.

Fic. 3. A constant length path resulting from spliting up long degree-2 paths of level-i vertices.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

42 YI-JUN CHANG AND SETH PETTIE

Fic. 4. Class of a rooted tree.

Fic. 5. Pumping lemma for trees.

The colored subtrees are unbounded in terms of size and depth. Nonetheless, they
fall into a constant number of equivalence classes in the following sense. The class of
a rooted tree is the set of all labelings of the r-neighborhood of its root that can be
extended to total labelings of the tree that are consistent with P (see Figure 4).

In other words, the large and complex graph H can be succinctly encoded as
a simple class vector (ci,ca,...,cs), where ¢; is the class of the jth colored tree.
Consider the set of all labelings of H that are consistent with . This set can also be
succinctly represented by listing the labelings of the r-neighborhoods of the bookends
that can be extended to all of H, while respecting P. The set of these partial labelings
defines the type of H. We show that H’s type can be computed by a finite automaton
that reads the class vector (ci,...,c¢p) one character at a time. By the pigeonhole
principle, if £ is sufficiently large, then the automaton loops, meaning that (cy,...,cy)
can be written as royoz, which has the same type as every xoy’ oz, for all j > 1. This
pumping lemma for trees lets us dramatically expand the size of H without affecting
its type, i.e., how it interacts with the outside world beyond the bookends.

Figure 5 illustrates the pumping lemma with a substring of |y| = 3 trees (rooted
at gray vertices) repeated j = 3 times. Now let us reconsider the simulation of
A. If we first pump H to be long enough, and then simulate A on the middle
section of pumped-H, A must, according to its n°(!) time bound, compute a labeling
without needing any information outside of pumped-H, i.e., beyond the bookends.
Thus, we can use A to precommit to a labeling of a small (radius-r) subgraph of
pumped-H. Given this precommitment, the left and right bookends no longer need
to coordinate their activities: everything left (right) of the precommitted zone is now
in the purview of the left (right) bookend. Interestingly, these manipulations (tree
surgery and precommitments) can be repeated for each i, yielding a hierarchy of
imaginary trees such that a proper labeling at one level of the hierarchy implies a
proper labeling at the previous level.

Roadmap. This short proof sketch has been simplified to the point that it is rid-
dled with small inaccuracies. Nonetheless, it does accurately capture the difficulties,
ideas, and techniques used in the actual proof. In section 3.2 we formally define

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 43

the notion of a partially labeled graph, i.e., one with certain vertices precommited
to their output labels. Section 3.3 defines a surgical “cut-and-paste” operation on
graphs. Section 3.4 defines a partition of the vertices of a subgraph H, which dif-
ferentiates between vertices that “see” the outside graph and those that see only H.
Section 3.5 defines an equivalence relation on graphs that, intuitively, justifies sur-
gically replacing a subgraph with an equivalent graph. Sections 3.6 and 3.7 explore
properties of the equivalence relation. Section 3.8 introduces the pumping lemma
for trees, and section 3.9 defines a specialized rake/compress-style graph decomposi-
tion. Section 3.10 presents the operations Extend (which pumps a subtree) and Label
(which precommits a small partial labeling) in terms of a black-box labeling function
f- Section 3.11 defines the set of all (partially labeled) trees that can be encountered,
by considering the interplay between the graph decomposition, Extend, and Label.
It is important that for each tree encountered, its partial labeling can be extended
to a complete labeling consistent with P; whether this actually holds depends on the
choice of black-box f. Section 3.12 shows that P can be solved in O(logn) time, given
a feasible labeling function f. Section 3.13 shows how a feasible f can be extracted
from any n°(")-time algorithm A.

3.2. Partially labeled graphs. A partially labeled graph G = (G, L) is a graph
G together with a function £ : V(G) — Xou U {L}. The vertices in £7!(L) are
unlabeled. A complete labeling L' : V(G) — Zout for G is one that labels all vertices
and is consistent with G’s partial labeling, i.e., £'(v) = L£(v) whenever L(v) # L. A
legal labeling is a complete labeling that is locally consistent for all v € V(G), i.e.,
the labeled subgraph induced by N”(v) is consistent with the LCL P. Here N"(v) is
the set of all vertices within distance r of v.

All graph operations can be extended naturally to partially labeled graphs. For
instance, a subgraph of a partially labeled graph G = (G, L) is a pair H = (H,L’)
such that H is a subgraph of G, and £’ is L restricted to the domain V(H). With
slight abuse of notation, we usually write H = (H, L).

3.3. Graph surgery. Let G = (G,L) be a partially labeled graph, and let
‘H = (H, L) be a subgraph of G. The poles of H are those vertices in V(H) that are
adjacent to some vertex in the outside graph V(G) — V(H). We define an operation
Replace that surgically removes H and replaces it with some #'.

Replace. Let S = (v1,...,v,) be a list of the poles of # and let S = (vy,...,v;)
be a designated set of poles in some partially labeled graph H’. The par-
tially labeled graph G’ = Replace(G, (H,S), (H',S’)) is constructed as fol-
lows. Beginning with G, replace X with H’, and replace any edge {u,v;},
u € V(G) — V(H), with {u,v;}. If the poles S, S’ are clear from context,
we may also simply write G’ = Replace(G, H,H’). Writing G’ = (G', L) and
H' = (H', L), there is a natural 1-1 correspondence between the vertices in
V(G)—V(H) and V(G') — V(H’). See Figure 6.

In the proof of our n°™®) — O(logn) speedup thereom we only consider unipolar
and bipolar graphs (p € {1,2}) but for maximum generality we define everything
w.r.t. graphs having p > 1 poles.

Given a legal labeling L, of G, we would like to know whether there is a legal
labeling £} of G’ that agrees with Lo, i.e., L,(v) = L (v") for each v € V(G) — V(H)
and the corresponding v € V(G') — V(H'). Our goal is to define an equivalence
relation < on partially labeled graphs (with designated poles) so that the following is
true: if (#,S) X (H',S’), then such a legal labeling £, must exist, regardless of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

44 YI-JUN CHANG AND SETH PETTIE

g Replace(G, H,H')

|

/

S\,

Fi1G. 6. The operation Replace.

Fic. 7. A partially labeled subgraph H with poles S = (s,t), embedded in a larger graph G. In
the partition £(H,S) = (D1, D2, D3), D1 is the set of vertices in V (H) within radius r — 1 of S, D2
are those within radius 2r — 1 of S, excluding D1, and D3 is the rest of V(H). When H is embedded
in some larger graph G, Do denotes the remaining vertices in V(G) — V(H).

choice of G and L,. Observe that since P has radius r, the interface between V(H)
(or V(H')) and the rest of the graph only occurs around the O(r)-neighborhoods of
the poles of H (or H’). This motivates us to define a certain partition of H’s vertices
that depends on its poles and r.

3.4. A tripartition of the vertices. Let H = (H, L) be a partially labeled
graph with poles S = (v1,...,vp). Define {(H,S) = (D1, D2, D3) to be a tripartition
of V(H), where

Dy = J N,
vES

Dy = U N"(v) = Dx,
veD

and D3 = V(H) — (D, U Dy).

See Figure 7 for an illustration.

Consider the partition £(H, S) = (D1, D2, D3) of a partially labeled graph H =
(H,L). Let L, : D1 U Dy — X, assign output labels to Dy U Dy. We say that L, is
extendible (to all of V(H)) if there exists a complete labeling £, of H such that L,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 45

agrees with £ where it is defined, agrees with £, on Dy U D5, and is locally consistent
with P on all vertices in Dy U D3.”

3.5. An equivalence relation on graphs. Consider two partially labeled
graphs H and H' with poles S = (vi,...,v,) and S = (v},...,v,), respectively.
Let &(H,S) = (D1, D2, D3) and £(H',S") = (D4, D}, D). Define Q = (Q, L) and
Q' = (Q', L) as the subgraphs of H and H’ induced by the vertices in D; U Dy and
D} U D}, respectively.

The relation (H, S) < (#',S’) holds if and only if there is a 1-1 correspondence
¢ : (D1 UDy) — (D} U Dj) meeting the following conditions:

Isomorphism. The two graphs @ and Q' are isomorphic under ¢. Moreover, for each
v € D1 U Ds and its corresponding vertex v’ = ¢(v) € D} U D}, (i) L(v) =
L'(v"), (ii) if the underlying LCL problem has input labels, then the input
labels of v and v are the same, and (iii) v is the ith pole in S if and only if
v’ is the ith pole in 5.

Extendibility. Let £, be any assignment of output labels to vertices in Dy UD5 and let
L! be the corresponding labeling of D} U D/, under ¢. Then L, is extendible
to V(H) if and only if £ is extendible to V (H’).

Notice that there could be many 1-1 correspondences between Dy U Dy and D7 U D)

that satisfy the isomorphism requirement, though only some subset may satisfy the

extendibility requirement due to differences in the topology and partial labeling of

D3 and Dj. Any ¢ meeting both requirements is a witness of the relation (H,S) <

(H', S").

3.6. Properties of the equivalence relation. Let us consider the graph G’ =
Replace(G, (H,5),(H',S")) and the two partitions &(H,S) = (D1, Dz, D3) and
EH',S) = (D}, D5, DE). Let Dp = V(G) — V(H) and D) = V(G') — V(H') be
the remaining vertices in G and G’, respectively.

If (H,S) X (H',S'), then there exists a 1-1 correspondence ¢ : (DoUD;UDsy) —
(Dj U D} U Dj) such that (i) ¢ restricted to Dy is the natural 1-1 correspondence
between Dy and D}y and (ii) ¢ restricted to Dy U Dy witnesses the relation (H, S) <
(H',S"). Such a 1-1 correspondence ¢ is called good. We have the following lemma.

LEMMA 3.1. Let G’ = Replace(G, (H,S),(H',S")). Consider the two partitions
E(H,8) = (D1, Dy, D3) and E(H,8') = (D), D}y, DY) and let Dy = V(G) — V(H)
and D}y = V(G') — V(H"). Suppose that (H,S) ~ (H',S"), so there is a good 1-1
correspondence ¢ : (Do U Dy U Dy) — (D{U D} UDY). Let L, be a complete labeling
of G that is locally consistent for all vertices in Dy U D3. Then there exists a complete
labeling L, of G’ such that the following conditions are met:

Condition 1. Lo(v) = LL(v") for each v € Dy U Dy U Dy and its corresponding vertex
v’ = ¢(v) € Dj U D} U D, Moreover, if Lo is locally consistent for v, then
L), is locally consistent for v'.

Condition 2. L] is locally consistent for all vertices in D4y U Dj.

Proof. We construct £} as follows. First of all, for each v € Dy U Dy U Da, fix
Ll (4(v)) = Lo(v). Tt remains to show how to assign output labels to vertices in Dj
to meet Conditions 1 and 2.

"We are not concerned with whether Lo is consistent with P for vertices in Dj. Ultimately, H
will be a subgraph of a larger graph G. Since the r-neighborhoods of vertices in D; will intersect
V(G) — V(H), the labeling of H does not provide enough information to tell if these vertices’ r-
neighborhoods will be consistent with P. See Figure 7.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

46 YI-JUN CHANG AND SETH PETTIE

Let L. be L, restricted to the domain Dy U Dy. Similarly, let £/, be £} restricted
to D} U Dj. Due to the fact that £, is locally consistent for all vertices in Dy U D3,
the labeling £, is extendible to all of H. Since (H,S) < (H’,S’), the labeling £/, must
also be extendible to all of H'. Thus, we can set £} (v") for all v' € Dj in such a way
that £} is locally consistent for all vertices in D} U Dj. Therefore, Condition 2 is met.

To see that (the second part of) Condition 1 is also met, observe that for v €
DyUDq, N"(v) € DgUD;UDsy. Therefore, if £, is locally consistent for v € DyU Dy,
then L7 is locally consistent for ¢(v) since they have the same radius-r neighborhood
view. Condition 2 already guarantees that L, is locally consistent for all v’ € D48 O

Theorem 3.2 provides a user-friendly corollary of Lemma 3.1, which does not
mention the tripartition &.

THEOREM 3.2. Let G = (G, L) and H = (H, L) be a subgraph G. Suppose H' is a
graph for which (H,8) < (H',S') and let G' = Replace(G, (H,S), (H',S")). We write
G = (G, L") and H = (H',L). Let L, be a complete labeling of G that is locally
consistent for all vertices in H. Then there exists a complete labeling L of G’ such
that the following conditions are met:

e For each v € V(G) — V(H) and its corresponding v' € V(G') — V(H'), we
have Lo(v) = LL(v"). Moreover, if L, is locally consistent for v, then L is
locally consistent for v'.

o L} is locally consistent for all vertices in H'.

Theorem 3.2 has several useful consequences. If L, is a legal labeling of G, then
the output labeling £, of G’ guaranteed by Theorem 3.2 is also legal. Observe that
setting G = H in Theorem 3.2 implies G’ = H’. Suppose that H admits a legal
labeling. For any (H’,S’) such that (H’,S") < (#,S), the partially labeled graph #’
also admits a legal labeling. Thus, whether H admits a legal labeling is determined
by the equivalence class of (#,.S) (for any choice of S).

Roughly speaking, Theorem 3.3 shows that the equivalence class of (G, X) is
preserved after replacing a subgraph H of G by another partially labeled graph H’

such that (H,S) < (H',S").

THEOREM 3.3. Let G = (G, L), and let H = (H, L) be a subgraph of G. Suppose
H' is a graph that satisfies (H,S) ~ (H',S') for some pole lists S,S’. Let G' =
Replace(G, (H, S), (H',S")) be a partially labeled graph. Designate a set X C (V(G) —
V(H))US as the poles of G, listed in some order, and let X' be the corresponding list
of vertices in G'. It follows that (G, X) < (G, X").

Proof. Consider the partitions {(H,S) = (Bi1, B2, Bs), £(H',S") = (Bj, B, BS),
€(G,X) = (D1, Dy, D3), and £(G', X') = (D}, Db, D}). We write By = V(G) — V(H)
and B =V(G') — V(H'). Let ¢ be any good 1-1 correspondence from By U By U Bo
to By U B} U Bj. Because X C By U S, we have D; U Dy C By U By U By and
D, U D}y C ByU B, UBj. To show that (G, X) < (G', X'), it suffices to prove that ¢
(restricted to the domain Dj U Ds) is a witness to the relation (G, X) < (G, X').

Let L. : (D1 U D3) — Yoyt and L], be the corresponding labeling of D} U Dj.
All we need to do is show that £, is extendible to all of V(G) if and only if £} is
extendible to all of V(G’). Since we can also write G = Replace(G’, (H',5), (H, S)),
it suffices to show just one direction, i.e., if £, is extendible, then £’ is extendible.

81t is this lemma that motivates our definition of the tripartition £&(H,S). It is not clear how
an analogue of Lemma 3.1 could be proved using the seemingly more natural bipartition, i.e., by
collapsing D1, D2 into one set.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 47

Suppose that L, is extendible. Then there exists an output labeling £, of G such
that (i) for each v € Dy U Dy, we have L, (v) = L,(v), and (ii) L, is locally consistent
for all vertices in Do U D3. Observe that Do U D3 O By U Bs. By Lemma 3.1, there
exists a complete labeling £ of G’ such that the two conditions in Lemma 3.1 are
met. We show that this implies that £/ is extendible.

Lemma 3.1 guarantees that L,(v) = L(¢(v)) for each v € By U By U By and its
corresponding vertex ¢(v) € By U By U Bj. Since D] U D} C B U B] U Bj, we have
L, (V') = LL(v') for each v € Dj U Dj.

Since L, is locally consistent for all vertices in DoUD3, Lemma 3.1 guarantees that
L] is locally consistent for all vertices in D} U Dj. More precisely, due to Condition
1, £ is locally consistent for all vertices in (D5 U Dj}) — Bj; due to Condition 2, £
is locally consistent for all vertices in Bj U Bj.

Thus, £, is extendible, as the complete labeling £} of G’ satisfies that (i) for each
v' € Dy UDj, we have L) (v') = L, (v"), and (ii) £} is locally consistent for all vertices
in Dy U Dj. |

3.7. The number of equivalence classes. An important feature of < is that
it has a constant number of equivalence classes for any fixed number p of poles. Which
constant is not important, but we shall work out an upper bound nonetheless.’

Consider a partially labeled graph H with poles S = (v1,...,vp). Let £&(H,5) =
(D1, D2, D3) and define Q = (Q, L) to be the subgraph of H induced by Dy U Ds.
Observe that the equivalence class of (H,S) is determined by (i) the topology of @
(including its input labels from Xi,, if P has input labels), (ii) the locations of the
poles S C V(Q) in @, and (iii) the subset of all output labelings of V(Q) = D; U Dy
that are extendible.

The number of vertices in D; U D5 is at most pA%". The total number of distinct
graphs of at most pA?" vertices (with input labels from X, and a set of p desig-

A2r .

nated poles) is at most 2("%)|Zin|pA2 . The total number of output labelings of
2r

D1 U Dy is at most | Sou|” AT Therefore, the total number of equivalence classes of

AZT » 2r
graphs with p poles is at most 2")|Zin\pA2 2/Toue P4 , which is constant whenever
A,T, |Ein|; |Zout‘7 and p are.

3.8. A pumping lemma for trees. In this section we consider partially la-
beled trees with one and two poles; they are called unipolar (or rooted) and bipolar,
respectively. Let 7 = (T, £) be a unipolar tree with pole list S = (z), z € V(T') being
the root. Define Class(7) to be the equivalence class of (7, S) w.r.t. ~. Notice that
whether a partially labeled rooted tree 7 admits a legal labeling is determined by
Class(7T) (Theorem 3.2). We say that a class is good if each partially labeled rooted
tree in the class admits a legal labeling; otherwise the class is bad. We write € to
denote the set of all classes. Notice that |%| is constant. The following lemma is a
specialization of Theorem 3.3.

LEMMA 3.4. Let T be a partially labeled rooted (unipolar) tree, and let T' be a
rooted subtree of T, whose leaves are also leaves of T. Let T" be another partially
labeled rooted tree such that Class(T") = Class(T"). Then replacing T' with T" does
not alter the class of T.

9For the sake of simplicity, in the calculation we assume that the underlying LCL problem does
not refer to port numbering. It is straightforward to see that even if port numbering is taken into
consideration, the number of equivalence classes (for any fixed p) is still a constant.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

48 YI-JUN CHANG AND SETH PETTIE

Let H = (H, L) be a bipolar tree with poles S = (s,t). The unique oriented path
in H from s to ¢ is called the core path of H. It is more convenient to express a bipolar
tree as a sequence of rooted/unipolar trees, as follows. The partially labeled bipolar
tree H = (7;)icy is formed by arranging the roots of unipolar trees (7;) into a path
P = (v1,...,v;), where v; is the root/pole of 7;. The two poles of H are s = vy
and t = v, so P is the core path of H. Define Type(H) as the equivalence class of
(H,S = (s,t)) w.r.t. <. The following lemma, follows from Theorem 3.3.

LEMMA 3.5. Let H be a partially labeled bipolar tree with poles (s,t). Let T be H,
but regarded as a unipolar tree rooted at s. Then Class(T) is determined by Type(H).
If we write H = (T;)icpi), then Type(H) is determined by Class(T1),. .., Class(Ty).

Let G = (G, L) be a partially labeled graph, and let H = (H,L) be a bipolar
subtree of G with poles (s,t). Let H' be another partially labeled bipolar tree. Recall
that G’ = Replace(G,H,H’) is defined as the partially labeled graph resulting from
replacing the subgraph H with H' in G. We write G’ = (G', L) and H' = (H',L).
The following lemmas follow from Theorems 3.2 and 3.3.

LEMMA 3.6. Consider G’ = Replace(G,H,H'). If Type(H') = Type(H) and G
admits a legal labeling L, then G' admits a legal labeling L}, such that Lo(v) = L (V")
for each vertex v € V(G) — V(H) and its corresponding v' € V(G') — V(H').

LEMMA 3.7. Suppose that G = (T:)iclx) is a partially labeled bipolar tree, H =
(Tiy...,T;) is a bipolar subtree of G, and H' is some other partially labeled bipolar
tree with Type(H') = Type(H). Then G' = Replace(G,H,H') is a partially labeled
bipolar tree and Type(G') = Type(G).

LeEMMA 3.8. Let H = (Ti)ier) and H' = (Ti)ick+1) be identical to H in its first
k trees. Then Type(H') is a function of Type(H) and Class(Ty41).

Lemma 3.8 is what allows us to bring classical automata theory into play. Suppose
that we somehow computed and stored ¢; = Class(7;) at the root of 7;. Lemma 3.8
implies that a finite automaton walking along the core path of H' = (T;)ic[r+1] can
compute Type(H'), by reading the vector (cy,...,cry1) one character at a time. The
number of states in the finite automaton depends only on the number of types (which
is constant) and is independent of k+1 and the size of the individual trees (7;). Define
Loump = O(1) as the number of states in this finite automaton. The following pumping
lemma for bipolar trees is analogous to the pumping lemma for regular languages.

LEMMA 3.9. Let H = (T1,...,Tx) with k > lpump. We regard each T; in the
string notation H = (Ti,...,Tx) as a character. Then H can be decomposed into
three substrings H = x oy o z such that (1) |zy| < Loump, (1) |y| > 1, and (iii)
Type(x oy’ o z) = Type(H) for each nonnegative integer j.

We will use Lemma 3.9 to expand the length of the core path of a bipolar tree to
be close to a desired target length w. The specification for the function Pump is as
follows:

Pump. Let H = (7:)ie[x) be a partially labeled bipolar tree with k& > ,ump. The
function Pump(#, w) produces a partially labeled bipolar tree H' = (7})ice
such that (i) Type(H) = Type(H'), (ii) k' € [w,w + Lpump), and (iii) if we let
Z = {Ti}iepw (vesp., Z' = {T/}icir)) be the set of rooted trees appearing in
the tree list of H (resp., H'), then Z' = Z.

By Lemma 3.9, such a function Pump exists.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 49

3.9. Rake and compress graph decomposition. In this section we describe
an O(logn)-round DetLOCAL algorithm to decompose the vertex set V(G) of a tree
into the disjoint union V3 U---UVy, L = O(logn). Our algorithm is inspired by
Miller and Reif’s parallel tree contraction [39]. We first describe the decomposition
algorithm then analyze its properties.

Fix the constant £ = 2(r+{pump), where 7 and £pymp depend on the LCL problem
P. In the postprocessing step of the decomposition algorithm we compute an (¢, 2¢)-
independent set, in O(log* n) time [38], defined as follows.

DEFINITION 3.10. Let P be a path. A subset I C V(P) is called an (o, f)-
independent set if the following conditions are met: (i) I is an independent set, and I
does not contain either endpoint of P, and (ii) each connected component induced by
V(P) — I has at least o vertices and at most B vertices, unless |V (P)| < «, in which
case I = .

The decomposition algorithm. The algorithm begins with U = V(G) and i = 1,

repeats Steps 1-3 until U = (), then executes the postprocessing step.
1. For each v € U:

(a) Compress. If v belongs to a path P such that |V (P)| > ¢ and deg;; (u) = 2
for each u € V(P), then tag v with ic.

(b) Rake. If degy(v) = 0, then tag v with ig. If deg;;(v) = 1 and the unique
neighbor w of v in U satisfies either (i) degy(w) > 1 or (ii) degy(u) =1
and ID(v) > ID(u), then tag v with ip.

2. Remove from U all vertices tagged ic or ig.
3. i i+1.

Postprocessing step. Initialize V; as the set of all vertices tagged i¢ or ig. At
this point the graph induced by V; consists of unbounded length paths, but we prefer
constant length paths. For each edge {u, v} such that v is tagged ir and w is tagged
ic, promote v from V; to V;;;. For each path P that is a connected component
induced by vertices tagged i¢, compute an (¢, 2¢)-independent set Ip of P, and then
promote every vertex in Ip from V; to V;;;. Notice that the set V; in the graph
decomposition is analogous to (but clearly different from) the set V; defined in the
hierarchical 2%—coloring problem from section 2.

Properties of the decomposition. As we show below, L = O(logn) iterations suf-
fice, i.e., V(G) = V1 U--- U Vy. The following properties are easily verified:

e Define G; as the graph induced by vertices at level ¢ or above: U;;:l V;. For
each v € V;, degg. (v) < 2.

e Define &; as the set of connected components (paths) induced by vertices in
V; that contain more than one vertex. For each P € #;, £ < |[V(P)| < 2¢
and degg, (v) = 2 for each vertex v € V(P).

e The graph G contains only isolated vertices, i.e., Zp = ().

As a consequence, each vertex v € V; falls into exactly one of two cases: (i) v has
degg, (v) < 1 and has no neighbor in V;, or (ii) v has degg, (v) = 2 and is in some
path P € &;.

Analysis. We prove that for L = O(logy,,,n) = O(logn), L iterations of the
graph decomposition routine suffices to decompose any n-vertex tree. Each iteration
of the routine takes O(1) time, and the (¢, 2¢)-independent set computation at the
end takes O(log™ n) time, so O(logn) time suffices in DetLOCAL.

Let W be the vertices of a connected component induced by U at the beginning
of the ith iteration. In general, the graph induced by U is a forest, but it is simpler to
analyze a single connected component W. We claim that at least a constant 2(1/¢)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

50 YI-JUN CHANG AND SETH PETTIE

fraction of vertices in W are eliminated (i.e., tagged i¢ or ig) in the ith iteration.
The proof of the claim is easy for the special case of £ = 1, as follows. If W is not a
single edge, then all v € W with deg;;(v) < 2 are eliminated. Since the degree of at
least half of the vertices in a tree is at most 2, the claim follows. In general, degree-2
paths of length less than ¢ are not eliminated quickly. If one endpoint of such a path
is a leaf, vertices in the path are peeled off by successive rake steps.

Assume without loss of generality (w.l.0.g.) that |WW| > 2(¢+1). Define W; = {v €
W | degy(v) =1}, Wo ={v € W | degy(v) =2}, and W3 = {v € W | degy(v) > 3}.
Case 1: |[Wy| > 4W] " The number of connected components induced by vertices in

{41 "
Wo is at most |[Wi|+ [Ws| — 1 < % The number of vertices in Wy that
are not tagged ¢ during Compress is less than %. Therefore, at least
qwil _ e=Dw| _ W] i ; C
v 7T 71 vertices are tagged ic by Compress.
Case 2: |Wy| < %. In any tree |W1| > |Ws|, so |[W1] > |W1‘J2r|W3| = |W|_2‘W2| >
%. Therefore, at least % vertices are tagged ir by Rake.

Hence the claim follows.

3.10. Extend and Label operations. In this section we define three operations
Extend, Label, and Duplicate-Cut which are used extensively in sections 3.11 and 3.12.
All these operations are graph-theoretic operations, and they are not implemented in
a distributed manner.

The operation Extend is parameterized by a target length w > ¢ = 2(r + {pump)-
The operation Label is parameterized by a function f which takes a partially labeled
bipolar tree H as input and assigns output labels to the vertices in v € N"~1(e), where
e is the middle edge in the core path of H.!® The function f will be constructed in
section 3.13.

Label. Let H = (7T1,...,72) be a partially labeled bipolar tree with = > ¢. Let
(v1,...,vz) be the core path of H and e = {v|;/2,V|z/2)4+1} be the middle
edge of the core path. It is guaranteed that all vertices in N"~1(e) in H
are not already assigned output labels. The partially labeled bipolar tree
H' = Label(H) is defined as the result of assigning output labels to vertices
in N"~1(e) by the function f.!!

Extend. Let H = (T1,...,T,) be a partially labeled bipolar tree with x € [¢, 2w]. The
partially labeled bipolar tree H’' = Extend(#) is defined as follows. Consider
the decomposition H = X oY o Z, where Y = (T|z/2)—r415-- > T|a/2]+r)-
Then H' = Pump(X,w) oY o Pump(Z, w).

Intuitively, the goal of the operation Extend is to extend the length of the core
path of ‘H while preserving the type of H, due to Lemma 3.7. Suppose that the number
of vertices in the core path of # is in the range [¢,2¢]. The prefix X and suffix Z are
stretched to lengths in the range [w, w + ¢pump), and the middle part) has length 2r,
so the core path of H’ has length in the range [2(w + 1), 2(w + r + Lpump)]-

The reason that the Extend operation does not modify the middle part) is to
ensure that (given any labeling function f) the type of H’ = Extend(Label(#)) is
invariant over all choices of the parameter w.'? We have the following lemma.

10By definition, if e = {x,y}, then N"~1(e) = N"~1(z) U N"~1(y).

I Note that the neighborhood function is evaluated w.r.t. H. In particular, the set N"1(e)
contains the vertices vz /2| _ry1,---,V|z/2|4r Of the core path and also contains parts of the trees
7’|_z/2j77'+17 BN 712/2J+7"

12Notice that Extend is applied after Label. Thus, the vertices that are assigned output labels
during Label must be within the middle part), no part of which is modified during Extend.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 51

g G' = Duplicate-Cut(G, H)

&

F1G. 8. Left: A bipolar subtree H 1is attached to the rest of the graph G via edges {u, s}, {v,t}.
The pink nodes have been precommitted to output labels by Label (r = 1). Right: The Duplicate-Cut
operation duplicates H and attaches one copy to w and the other to v.

LEMMA 3.11. Let G = (G, L) be a partially labeled graph and H = (H,L) be a
bipolar subtree of G with poles (s,t). Let H be another partially labeled bipolar tree with
Type(H) = Type(H) and H' = Extend(Label(H)). If G' = Replace(G,H,H') admits a
legal labeling L, then G admits a legal labeling L, such that Lo(v) = L, (V") for each

vertez v € V(G) — V(H) and its corresponding vertex v' € V(G') — V(H').
Proof. Recall that the operation Extend guarantees that

Type(Extend(H)) = Type(H) = Type(H).

Define H” = Extend(H) and G” = Replace(G,H,H"”). Observe that the graph

H' = Extend(Label(#{)) can be seen_as the result of fixing the output labels of some
unlabeled vertices in H" = Extend(#). Therefore, L] is also a legal labeling of G”. By
Lemma 3.6, the desired legal labeling £, of G = Replace(G”, H",H) can be obtained

from the legal labeling £} of G". |

In addition to Extend and Label, we also modify trees using the Duplicate-Cut
operation, defined below.

Duplicate-Cut. Let G = (G, L) be a partially labeled graph and H = (H,L) be a
bipolar subtree with poles (s,¢). Suppose that H is connected to the rest
of G via two edges {u,s} and {v,t}. The partially labeled graph G' =
Duplicate-Cut(G, H) is formed by (i) duplicating H and the edges {u, s}, {v,t}
so that u and v are attached to both copies of H, (ii) removing the edge that
connects u to one copy of H, and removing the edge from v to the other copy
of H.

Later on we will see that both poles of a bipolar tree are responsible for computing
the labeling of the tree. On the other hand, we do not want the poles to have
to communicate too much. As Lemma 3.12 shows, the Duplicate-Cut operation (in
conjunction with Extend and Label) allows both poles to work independently and
cleanly integrate their labelings afterward.

LEMMA 3.12. Let H = Extend(Label(H)) for some partially labeled bipolar tree H.
If G’ = Duplicate-Cut(G, H) admits a legal labeling L., then G admits a legal labeling
Lo such that Lo(v) = LL(V') for each vertex v € V(G) — V(H) and a particular
corresponding vertex v’ in G'.

Proof. Let G’ = (G',L). We write H = (T1,...,Tz). Let (v1,...,v;) be the core
path of H, where s = vy and t = v, are the two poles of H. Let {u, s} and {v,t} be

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

52 YI-JUN CHANG AND SETH PETTIE

the two edges that connect H two the rest of G. Let e = {v;,v;41} be the edge in
the core path of H such that the output labels of vertices in N"~!(e) in H were fixed
by Label.1® We write #H.,, (resp., H,) to denote the copy of H in G’ that attaches to
u (resp., v). Define a mapping ¢ from V(G) to V(G’) as follows:

e For z € V(G) — V(H), ¢(z) is the corresponding vertex in G'.

e For z € |JI_, Ti, ¢(z) is the corresponding vertex in H,.

e For z € Uf:j—s—l T:, ¢(z) is the corresponding vertex in H,.
We set Lo(2) = LL(¢(z)) for each z € V(G). It is straightforward to verify that
the distance-r neighborhood view (with output labeling £,) of each vertex z € V(G)
is the same as the distance-r neighborhood view (with output labeling £}) of its
corresponding vertex ¢(z) in G'. Thus, L, is a legal labeling. d

Notice that in the proof of Lemma 3.12, the only property of H that we use is
that N"~!(e) was assigned output labels in the application of Label(H).

3.11. A hierarchy of partially labeled trees. In this section we construct
several sets of partially labeled unipolar and bipolar trees—{.Z;}, {#}, and {1},
i € ZT—using the operations Extend and Label. If each member of 7* = |J; .7; admits
a legal labeling, then we can use these trees to design an O(logn)-time DetLOCAL
algorithm for P. Each T € .77* is partially labeled in the following restricted manner.
The tree T = (T, L) has a set of designated edges such that L(v) # L is defined if and
only if v € N""!(e) for some designated edge e; these vertices were issued labels by
some invocation of Label.

The sets of bipolar trees {7 };cz+ and {5 };cz+ and unipolar trees {7; }icz+
are defined inductively. In the base case we have 7 = {7}, where T is the unique
unlabeled, single-vertex, unipolar tree.

T Sets: For each i > 1, ; consists of all partially labeled rooted trees 7 formed
in the following manner. The root z of 7 has degree 0 < deg(z) < A. Each
child of z is either (i) the root of a partially labeled rooted tree T’ from 7;_;
(having degree at most A — 1 in 7”) or (ii) one of the two poles of a bipolar
tree H from %’ﬁl

J Sets: Foreachi > 1, 7 contains all partially labeled bipolar trees H = (7;) jela]
such that « € [¢,2{], and for each j € [z], T; € J;, where the root of T}
has degree at most A — 2 in 7;. For example, since 77 contains only the
single-vertex unlabeled tree, 7] is the set of all bipolar, unlabeled paths
with between ¢ and 2¢ vertices.

ST Sets: For each i > 1, J“i”ﬁ is constructed by the following procedure. If s = 1,
initialize 74 < 0); otherwise initialize /" < 2 . Consider each H € 7
in some canonical order. If there does not already exist a partially labeled
bipolar tree H such that Type(H) = Type(H) and Extend(Label(H)) € .+,
then update " + 5" U {Extend(Label(H))}.

Observe that whereas {.7;} and {7#} grow without end, and contain arbitrarily large
trees, the cardinality of z%”ﬁ is at most the total number of types, which is constant.'*
This is due to the observation that whenever we add a new partially labeled bipolar
tree Extend(Label(#)) to %?Jﬂ it is guaranteed that there is no other partially labeled

bipolar tree Extend(Label(H)) € s#T such that Type(H) = Type(H). The property

13Since Pump usually does not extend X and Z by precisely the same amount, the edge e is

generally not ezactly in the middle.

MHowever, it is not necessarily true that jf;"' contains at most one bipolar tree of each type.
The Extend operation is type-preserving, but this is not true of Label: Type(Label(H)) may not equal
Type(H), so it is possible that JffL contains two members of the same type.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 53

that || is constant is crucial in the proof of Lemma 3.20. Lemmas 3.13-3.16 reveal
some useful properties of these sets.

LEMMA 3.13. We have (1) 74 € Z C ---, (il) 4 C 56 C ---, and (iii) 24T C
Ay T

Proof. By construction, we already have <%”1+ C %”;’ C ---. Due to the construc-
tion of /7 from the set .7, it is guaranteed that if ; C ;1 holds, then J¢ C 1
holds as well. Thus, it suffices to show that 93 C Z C ---. This is proved by
induction.

For the base case, we have 77 C Z because 9 also contains 7 € 97, the
unlabeled, single-vertex, unipolar tree.

For the inductive step, suppose that we already have 73 C 9% C --- C F;, 1 > 2.
Then we show that .7; C .7;11. Observe that the set .71 contains all partially labeled
rooted trees constructed by attaching partially labeled trees from the sets " and
7; to the root vertex. We already know that 1, C 2", and by the inductive
hypothesis we have 7;_; C ;. Thus, each T € .7, must also appear in the set
Tit1- a

If 7 and S are arbitrary sets of unipolar and bipolar trees, we define Class(7) =
{Class(T) | T € 7} and Type(.5) = {Type(H) | H € S} to be the set of classes and
types appearing among them.

LEMMA 3.14. Define k* = |€|, where € is the set of all classes. Then we have
Class(T*) = Class(Fy+).

Proof. For each i > 1, Class(.;) depends only on Type(#',) and Class(.Z;_1),
due to Lemmas 3.4 and 3.5. Let i* be the smallest index such that Class(.7;+) =
Class(Z;+41). Then we have Type(-) = Type(#-11) and as a consequence, S =
%i;:_l. This implies that Class(Z;«11) = Class(Z;+12). By repeating the same argu-
ment, we conclude that for each j > i*, we have Class(.7;) = Class(.7;-) = Class(.7*).
Since 7 € % C --+ (Lemma 3.13), we have i* < |%). 0

LEMMA 3.15. For each i, Class(.7;) does not depend on the parameter w used in
the operation Extend.

Proof. Let H = (T1,...,Tz) be any partially labeled bipolar tree with = > 2r +
20pump- The type of H' = Extend(#) is invariant over all choices of the parameter w.
Thus, by induction, the sets Class(.7;), Type(%), and Type(s# 1) are also invariant
over the choice of w. O

LEMMA 3.16. The mazimum number of vertices of a tree in J;, over all choices
of labeling function f, is at most Xe=1, where A = 2A(r + w + Lpump)-

Proof. For any ¢, we write t; (resp., h;) to denote the maximum number of vertices
of a tree in .7 (resp., #1). By the definition of these sets, we have the following
formulas, which together imply that ¢; < A*=1, where A = 2A(r + w + Lpump):

(3.1) tho=1,
(32) t; < Amax{ti_l, hi—l} for i > 1,
(3.3) hs < (20w + Lyump) + 20)ts for i > 1.

We explain the numbers in the upper bound on h;. The operation Extend takes
H = X o)YoZ as an input and returns H' = Pump(X,w) o Y o Pump(Z,w); the
length of the core path of) is 2r; the length of the core path of both Pump(X, w)
and Pump(Z,w) is at most w + £pump.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

54 YI-JUN CHANG AND SETH PETTIE

Notice that Formula 3.3 is not tight in the sense that we actually have 1 =
H =, e, the sequence (h;) stops growing as i > i*. However, even for i > 7",
the sequence (¢;) still grows exponentially in view of Formula 3.2.]

Feasible labeling function. In view of Lemma 3.15, Class(.7*) depends only on
the choice of the labeling function f used by Label. We call a function f feasible if
implementing Label with f makes each tree in Class(.7*) good, i.e., its partial labeling
can be extended to a complete and legal labeling. In section 3.12 we show that given
a feasible function, we can generate a DetLOCAL algorithm to solve P in O(logn)-
time. In section 3.13, we show that (i) a feasible function can be derived from any
n°M-time RandLOCAL algorithm for P, and (ii) the existence of a feasible function
is decidable. These results together imply the w(logn)—n°™!) gap. Moreover, given
an LCL problem P on bounded degree trees, it is decidable whether the RandLOCAL
complexity of P is n®*1) or the DetLOCAL complexity of P is O(logn).

3.12. An O(logn)-time DetLOCAL algorithm from a feasible labeling
function. In this section, we show that given a feasible function f for the LCL
problem P, it is possible to design an O(logn)-time DetLOCAL algorithm for P on
bounded degree trees.

Regardless of f, the algorithm begins by computing the graph decomposition
V(G) =ViU---U Vg with L = O(logn); see section 3.9. We let the three infinite
sequences { }icz+, { " Yiczt, and { T }icz+ be constructed with respect to a
feasible function f and a sufficiently large parameter w. We will choose w to be large
enough so that a feasible function exists. Notice that the operation Extend already
requires w > £ = 2(r + Lpump)-

A sequence of partially labeled graphs. We define below a sequence of partially
labeled graphs Ri,Ra,...,Rr, where R; is the unlabeled tree G (the underlying
communications network), and R;41 is constructed from R; using the graph opera-
tions Extend, Label, and Duplicate-Cut. An alternative and helpful way to visualize R;
is that it is obtained by stripping away some vertices of G, and then grafting on some
imaginary subtrees to its remaining vertices. Formally, the graph R; is formed by
taking G; (the subforest induced by Uf:i Vj, defined in section 3.9), and identifying
each vertex u € V(G;) with the root of a partially labeled imaginary tree 7T,; € 7
(defined within the proof of Lemma 3.17). Since G, consists solely of isolated vertices,
Rr is the disjoint union of trees drawn from J7.

Once each vertex v € V(G;) = UJL:l Vj in the communication network G knows
Tov.i, we are able to simulate the imaginary graph R; in the communication network
G. In particular, a legal labeling of R; is represented by storing the entire output
labeling of the (imaginary) tree 7,; at the (real) vertex v € V(G;).

The official, inductive construction of R; is described in the proof of Lemma 3.17.
We remark that the “precommitment” of output labeling specified by the function
f during the operation Label (in the construction of Ri,Rs,...,Ry) is used only in
the imaginary trees. This does not directly lead to any real vertices committing to
specific output labels.

LEMMA 3.17. Suppose that a feasible function f is given. The partially labeled
graphs Ra,..., Ry and partially labeled trees {T,; | v € V(G;),i € [L]} can be
constructed in O(logn) time meeting the following conditions:

1. For each i € [1, L], each vertex v € V(G;) = UJL:Z V; knows Ty ; € F;.
2. For each i € [2,L], given a legal labeling of R;, a legal labeling of R;—1 can
be computed in O(1) time.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 55

Proof. Part 1 of the lemma is proved by induction.

Base case. Define Rq = G. This satisfies the lemma since 7,1 € Z1 must be the
unlabeled single-vertex tree, for each v € V(G).

Inductive step. We can assume inductively that R;_1 and {7, ,—1 | v € V(G;_1)}
have been defined and satisfy the lemma. The set &; | was defined in section 3.9.
BEach P € #;_; is a path such that degg, ,(v) = 2 for each vertex v € V(P) and
[V(P)| € [¢,2(). Fix a path P = (v1,...,v,) € &;_1. The bipolar graphs Hp and
H) are defined as follows:

e Define Hp to be the partially labeled bipolar tree (7y, i—1,---, Tv,,i—1)- No-
tice that H p is a subgraph of R;_1. Since 7, ;1 € Z; 1, for each j € [x], it
follows that Hp € 4 _.

e Construct ’H; as follows. Select the unique member H € #_; such that
(i) Type(H) = Type(Hp) and (i) Extend(Label(#)) € #F,, and then set
H = Extend(Label(H)) € #F,. Due to the way we define /", such a
graph H € H#_, must exist, as Hp € H_1.

The partially labeled graph R; is constructed from R;_; with the following three-step

procedure. See Figure 9 for a schematic example of how these steps work.

Step 1. Define R;_, as the result of applying the following operations on R;_;. For
each v € V;_; such that 7,,_1 is a connected component of R;_;, remove
Ts,i—1. Notice that a tree 7, ;—1 is a connected component of R;_; if and only
if v’s neighborhood in G contains only vertices at lower levels: V..., V;_5.

Step 2. Define R;" , by the following procedure: (i) Initialize G <— R}_,. (ii) For each
P& P, 1, do G <« Replace(G,Hp, Hp). (iii) Set R, + G.

Step 3. Define R; by the following procedure: (i) Initialize G + R; ;. (i) For each
P € P 1, do G < Duplicate-Cut(G, H}). (iii) Set R; < G.

After Steps 1-3, for v € V(G;), Ty,; is now defined to be the tree in R; — (V(G;) —
{v}) rooted at v. Notice that the two copies of H}5 generated during Step 3(ii) become
subtrees of 7,,; and T, ;, where u and v are the two vertices in V(G;) adjacent to the
two endpoints of P in the graph G. See Figure 9.

We now need to verify that R; satisfies all the claims of the lemma. Given
the partially labeled graph R;, the partially labeled trees 7, ; for all v € V(G;) are
uniquely determined. According to the construction of R;, each connected component
of R; — V(G;) must be an imaginary tree that is either (i) some 7, ;, where v € V;
and j € {1,...,i—1}, or (ii) a copy of H},, where P € &; and j € {1,...,i—1}. By
induction (and Lemma 3.13), for v € ViU---UVj and j € {1,...,1—1}, we have T, ; €
T; C Fi_q; for each P € &2, where j € {1,...,i— 1}, we have H}, € 3@* C T
According to the inductive definition of .7, for each v € V(G;) we have T, ; € 7.
This concludes the induction of part 1.

We now turn to the proof of part 2 of the lemma. Suppose that we have a legal
labeling of R;, where the labeling of 7, ; is stored in v € V(G;). We show how to
compute a legal labeling of R;_; in O(1) time as follows. Starting with any legal
labeling £; of R;, we compute a legal labeling Lo of R;Ql, a legal labeling L3 of
R!_;, and finally a legal labeling £4 of R;_1. Throughout the process, the labels
of all vertices in U]L:i V; are stable under £y, Ly, L3, and L£4. Recall that R, R;l,
R!_q,, and R;_1 are all imaginary. “Time” refers to communications rounds in the
actual network G, not any imaginary graph.

From £ to L£5. Let s,t be the poles of HJIS and u, v be the vertices outside of HJIS in
R;tl adjacent to s, t, respectively. At this point v and v have legal labelings

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

56 YI-JUN CHANG AND SETH PETTIE

T

Fic. 9. Top: In this example v was a vertex in a long degree-2 path tagged (i — 1)c by the
decomposition procedure and subsequently promoted to V;. Black vertices are in V; (or above);
white vertices are in V;_1; gray vertices are in Vi_a or below. The paths Py = (so,...,t0) and
Py = (s1,...,t1) adjacent to v have constant length, between £ and 2¢. The colored subtrees grafted
onto white and gray vertices are imaginary subtrees formed in the construction of R;—1. Middle:
The graph is transformed by finding the graph H; € Jfﬁl, b € {0,1} that has the same type as
Hp,, and replacing Hp, with ’H;Sb = Extend(Labe/(’}:lb)). The vertices receiving precommitted labels
are indicated in pink (r = 1). Bottom: We duplicate ’H;b, b € {0,1}, and attach one of the copies
of each duplicate to v. (The copies of H;b attached to v',v"" are not shown.) The tree Ty ; is the
resulting tree rooted at v. Since each subtree of v is in T;_1 or jff:l, it follows that Ty € F5. In
this case v had no neighbors at higher levels (i + 1 and above), so T, ; is a connected component of
Ri. Thus, v can locally compute a legal labeling of Ty ;.

of 7y,; and T, ;, both trees of which contain a copy of H;S. Using Lemma 3.12
we integrate the labelings of 7, ; and 7, ; to fix a single legal labeling Lo of
H} in RF 1P

151t is not necessary to physically store the entire £ on ’H; To implement the following steps,

it suffices that s,¢ both know what Lo is on the subgraph induced by the (2r — 1)-neighborhood of
{s,t} in 7-[;;.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 57

From Ly to L3. A legal labeling £3 of R)_; is obtained by applying Lemma 3.11. For
each P € &;_4, the labeling L35 on Hp in R,_; can be determined from the
labeling Lo of ”H,F in ’R;tl. In greater detail, suppose s and t are the poles
of Hp/H}, and s and t know L3 on the (2r — 1)-neighborhood of s and ¢ in
'HJ}S. By Lemma 3.11, there exists a legal labeling £3 on Hp, which can be
succinetly encoded by fixing £3 on the (2r — 1)-neighborhoods of the roots of

each unipolar tree on the core path (s = vy,...,v, = t) of Hp. Thus, once
s,t calculate L3, they can transmit the relevant information with constant-
length messages to the roots vq,...,v,. At this point each v; € V;_; can

locally compute an extension of its labeling to all of 7, ;1.

From L3 to £4. Notice that R;_; is simply the disjoint union of R}_,—for which
we already have a legal labeling £3—and each 7,;_; that is a connected
component of R;_;. A legal labeling £4 of 7, ;—1 is computed locally at v,
which is guaranteed to exist since 7y ;-1 € F_1.

This concludes the proof of the lemma. 0

LEMMA 3.18. Let P be any LCL problem on trees with A = O(1). Given a feasible
function f, the LCL problem P can be solved in O(logn) time in DetLOCAL.

Proof. First compute a graph decomposition in O(logn) time. Given the graph
decomposition, for each i € [L], each vertex v € V; computes the partially labeled
rooted trees 7, ; for all j € [1,4]; this can be done in O(logn) rounds. Since f is
feasible, each partially labeled tree in * admits a legal labeling. Therefore, Ry,
admits a legal labeling, and such a legal labeling can be computed without com-
munication by the vertices in V. Starting with any legal labeling of R, legal la-
belings of Ry_1,...,R1 = G can be computed in O(logn) additional time, using
Lemma 3.17(2). o

3.13. Existence of feasible labeling function. In Lemmas 3.19 and 3.20 we
show two distinct ways to arrive at a feasible labeling function. In Lemma 3.19 we
assume that we are given the code of a RandLOCAL algorithm A that solves P in
n°(M) time with at most 1/n probability of failure. Using A we can extract a feasible
labeling function f.'® Lemma 3.19 suffices to prove our n°) — O(logn) speedup
theorem but, because it needs the code of A, it is insufficient to answer a more basic
question. Given the description of an LCL P, is P solvable in O(logn) time on trees
or not? Lemma 3.20 proves that this question is, in fact, decidable, which serves to
highlight the delicate boundary between decidable and undecidable problems in LCL
complexity [7, 42].

We briefly discuss some ideas behind the way we construct f. One natural at-
tempt to assigning the output labels during Label is by simulating the given n°"-time
RandLOCAL algorithm A. If we choose w to be sufficiently large (depending on n),
then we can still force the runtime of the simulation to be less than w. This gives us a
feasible function f that is randomized, which is enough for the purpose of establishing
the w(logn)—n°M) gap in RandLOCAL.

In Lemma 3.19, we derandomize the above process with a choice of w independent
of the size of the underlying graph n, thereby establishing the w(log n)—no(l) gap in
DetLOCAL. In Lemma 3.20, we show that our construction of f leads to a decidability
result.

16The precise running time of A influences the w parameter used by Extend. For example, if A
runs in O(log? n) time, then w will be smaller than if A runs in n!/legloglogn time,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

58 YI-JUN CHANG AND SETH PETTIE

LEMMA 3.19. Suppose that there exists a RandLOCAL algorithm A that solves P
in n°Y time on n-vertex bounded degree trees, with local probability of failure at most
1/n. Then there exists a feasible function f.

Proof. Define g = |Eout|Ar to be an upper bound on the number of distinct
output labelings of N"~!(e), where e is any edge in any graph of maximum degree
A. Define N as the maximum number of vertices of a tree in .7« over all choices of
labeling function f. As A,r, {pump, and k* are all constants, we have N = wO®); see
Lemma 3.16. Define ¢ to be the running time of A on a (BN + 1)-vertex tree. Notice
that ¢ depends on N, which depends on w.

Choices of w and f. We select w to be sufficiently large such that w > 4(r + ¢).
Such a w exists since A runs in n°®) time on an n-vertex graph, and in our case n
is polynomial in w. By our choice of w, the labeled parts of T = (T,£) € i are
spread far apart. In particular, (i) the sets N("=D+t(¢) for all designated edges e in
T are disjoint, (ii) for each vertex v € V(T'), there is at most one designated edge e
such that the set N"*t(v) intersects N" =1+t (e).

Let the function f be defined as follows. Take any bipolar tree H = (H, L") with
middle edge e on its core path. The output labels of N"~1(e) are assigned by selecting
the most probable labeling that occurs when running A on the tree H' = Extend(H),
while pretending that the underlying graph has SN 4 1 vertices. Notice that even
though A is a randomized algorithm, there is no randomness involved in the definition
of the labeling function f; that is, given the description of A, the function f is defined
deterministically. In the subsequent discussion, we will use the fact that the most
probable labeling occurs with probability at least |Soue| ™2 = 1/8.

Proof idea. To show that f is good, all we need is to show that each member of
Ty« admits a legal labeling. In what follows, consider any partially labeled rooted
tree T = (T,L) € Fj+, where the set Fj« is constructed with the parameter w and
function f. We prove that 7 admits a legal labeling L.

Suppose that we execute A on T' while pretending that the total number of vertices
is BN + 1. Let v be any vertex in 1. According to A’s specs, the probability that
the output labeling of N"(v) is inconsistent with P is at most 1/(8N + 1). However,
it is not guaranteed that the output labeling resulting from A is also consistent with
T, since T is partially labeled. To handle the partial labeling of 7, our strategy is to
consider a modified distribution of random bits generated by vertices in T" that forces
any execution of A4 to agree with £, wherever it is defined. We will later see that
with an appropriately chosen distribution of random bits, the outcome of A is a legal
labeling of T with positive probability.

Modified distribution of random bits. Suppose that an execution of A on a (BN +
1)-vertex graph needs a b-bit random string for each vertex. For each designated edge
e, let U, be the set of all assignments of b-bit strings to vertices in N(T’l)“(e). Define
S. as the subset of U, such that p € S, if and only if the following is true. Suppose
that the b-bit string of each u € N"="D+t(¢) is p(u). Using the b-bit string p(u) for
each u € N"=D+t(e), the output labeling of the vertices in N"~!(e) resulting from
executing A is the same as the output labeling specified by £. According to our choice
of f, we must have |S.|/|Ue| > 1/5.

Define the modified distribution D of b-bit random strings to the vertices in T as
follows. For each designated edge e, the b-bit strings of the vertices in N(T_1)+t(e)
are chosen uniformly at random from the set S.. For the remaining vertices, their
b-bit strings are chosen uniformly at random.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 59

Legal labeling L, exists. Suppose that A is executed on T with the modified
distribution of random bits D. Then it is guaranteed that A outputs a complete
labeling that is consistent with 7. Of course, the probability that A outputs an
illegal labeling under D may be larger than under uniform randomness. We need to
show that A nonetheless succeeds with non-zero probability.

Consider any vertex v € V(T'). The probability that N"(v) is inconsistent with P
is at most 8/(BN + 1) under distribution D, as explained below. Due to our choice of
w, the set N"*(v) intersects at most one set N" =1+ (e), where e is a designated edge.
Let U, be the set of all assignments of b-bit strings to vertices in N"™*(v). For each
p € Uy, the probability that p occurs in an execution of A is 1/|U,| if all random bits
are chosen uniformly at random and is at most 3/|U,| under D. Thus, the probability
that A (using distribution D) labels N"(v) incorrectly is at most 5/(SN + 1). The
total number of vertices in T is at most V. Thus, by the union bound, the probability
that the output labeling of A (using D) is not a legal labeling is SN/(BN + 1) < 1.
Thus, 7 = (T, £) admits a legal labeling L. |

LEMMA 3.20. Given an LCL problem P on bounded degree graphs, it is decidable
whether there exists a feasible function f.

Proof. Throughout the construction of the three infinite sequences {5 };cz+,
{H#" Y iezr, and { T }iez+, the number of distinct applications of the operation Label
is constant, as || is at most the total number of types.

Therefore, the number of distinct candidate functions f that need to be examined
is finite. For each candidate labeling function f (with any parameter w > ¢), in
bounded amount of time we can construct the set 7+, as k* = |%| is a constant. By
examining the classes of the partially labeled rooted trees in Z+« we can infer whether
the function f is feasible (Lemma 3.14). Thus, deciding whether there exists a feasible
function f can be done in bounded amount of time.]

Combining Lemmas 3.18, 3.19, and 3.20, we obtain the following theorem.

THEOREM 3.21. Let P be any LCL problem on trees with A = O(1). If there exists
a RandLOCAL algorithm A that solves P in n°V) rounds, then there exists a DetLOCAL
algorithm A’ that solves P in O(logn) rounds. Moreover, given a description of P,
it is decidable whether the RandLOCAL complezity of P is n®*1) or the DetLOCAL
complezity of P is O(logn).

Discussion. To better understand Theorem 3.21, we consider some concrete ex-
amples. What would happen if we tried to apply the speedup theorem to the hierar-
chical 23-coloring P, defined in section 27 Since the complexity of Py is ©(y/n), there
does not exist a feasible function f for Ps. In principle, one can write a program to
test whether a feasible function f exists for a given LCL, but it is not hard to see that
there is no feasible function for Ps. Recall that 77 is the set of all bipolar, unlabeled
paths with between ¢ and 2¢ vertices. The partial labeling in %" must not involve a
and b, since the usage of these colors will make some members in .75 to have no legal
labeling, due to the two-coloring rule. For example, consider a path H = Hio0Ho0H3,
where both #; and H3 are colored by a and b, and Hs is unlabeled. Let H5 be the
path resulting from contracting one edge in Ho, and let H' = H; o Hy o Hs. If H
admits a legal labeling, then H’ must not have a legal labeling. Therefore, if there
is a feasible function f for P, then it must color all level 1 vertices D, since no V;
vertex can be labeled X by the exemption rule. This coloring strategy clearly does
not work (i.e., this does not give us an O(logn) time algorithm), since this requires
each level 2 path (whose length can be ©(n)) to solve a 2-coloring problem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

60 YI-JUN CHANG AND SETH PETTIE

Let us consider another problem. The problem of 3-coloring a 3-regular tree can
be solved in O(logn) time, and so it admits a feasible function f. It is not hard
to see that any function f that does a proper 3-coloring is feasible, i.e., the partial
proper 3-coloring of any trees in 7* can be completed to a full proper 3-coloring.
For example, consider the above paths H and #H', but here H; and H3 are properly
3-colored. Aslong as Hs contain at least two vertices, both H and H’ admits a proper
3-coloring.

4. A gap in the RandLOCAL complexity hierarchy. Consider a set V of
independent random variables and a set X’ of bad events, where A € X depends only
on some subset vbl(A) C V of variables. Each variable V' € V may have a different
distribution and range, so long as the range is some finite set. The dependency graph
Gx = (X,{(A,B) | vbl(A) Nvbl(B) # 0}) joins events by an edge if they depend
on at least one common variable. The LLL and its variants give criteria under which
Pr(Nsex A) > 0, ie., it is possible that none of the bad events occurs. We will
narrow our discussion to symmetric criteria, expressed in terms of p and d, where
p = maxcx Pr(A4) and d > 2 is the maximum degree in Gx. A standard version of
the LLL states that if ep(d + 1) < 1, then Pr(() A) > 0. Given that all bad events
can be avoided, it is often desirable to constructively find a point in the probability
space (i.e., an assignment to variables in V) that avoids them. This problem has been
investigated in the sequential context [40, 29, 28, 33, 34, 31, 1] and from the point of
the view of parallel and distributed computation [11, 18, 6, 9, 26, 15, 8, 19].

The distributed constructive LLL problem is the following. The communications
network is precisely Gx. Each vertex (event) A knows the number of bad events
in Gy and the distribution of those variables appearing in vbl(A) C V. Vertices
communicate for some number of rounds and collectively reach a consensus on an
assignment to V in which no bad event occurs. Moser and Tardos’s [40] parallel
resampling algorithm implies an O(log2 n) time RandLOCAL algorithm under the LLL
criterion ep(d + 1) < 1. Chung, Pettie, and Su [11] gave an O(log; /.pq2 1) time
algorithm under the LLL criterion epd® < 1 and an O(logn/loglogn) time algorithm
under criterion p - poly(d)2¢ < 1. They observed that under any criterion of the
form p- f(d) < 1, Q(log" n) time is necessary. Ghaffari’s [18] weak MIS algorithm,
together with [11], implies an O(logd - log; p,(q41) n) algorithm under LLL criterion
ep(d+1) < 1. Brandt et al. [6] proved that ©(logog(y /) logn) time in RandLOCAL is
necessary, even under the permissive LLL criterion p2¢ < 1. Chang, Kopelowitz, and
Pettie’s [9] results imply that (log,n) time is necessary in DetLOCAL, again, under
the LLL criterion p2d <1.

We define Tr,r1(n,d,c) to be the RandLOCAL time to compute a point in the
probability space avoiding all bad events (w.h.p.), under a “polynomial” LLL criterion
of the form

(4.1) pd® < 1.

It is conceivable that the distributed complexity of the LLL is sensitive to the criterion
used and depends on c¢. However, for our purpose (Theorem 4.1), any constant ¢
is enough. In the subsequent discussion, we slightly abuse the notation to denote
Trrr(n,d) as the distributed complexity of the LLL, where ¢ is allowed to be an
arbitrary constant. Earlier results [11, 6] imply that T7r1.(n, d) is Q(logiog(1 /) log 1),
Q(log* n), and O(logy /¢pg2 1)

In this section we prove an automatic speedup theorem for RandLOCAL subloga-
rithmic algorithms. We do not assume that A = O(1) in this section. Theorem 4.1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 61

considers algorithms that run in “sublogarithmic” time in RandLOCAL. The term
sublogarithmic is insufficiently detailed, for two reasons. First, asymptotic notation is
not always well defined when there are multiple free parameters (e.g., n and A). Sec-
ond, and more importantly, the proof of Theorem 4.1 considers what happens when n
gets very small, rather than n — oco. It is for these reasons that Theorem 4.1 assumes
the running time can be written in a specific form.

THEOREM 4.1. Suppose that A is a RandLOCAL algorithm that solves some LCL
problem P (w.h.p.) in Ta(n) time. For any sufficiently small constant ¢ > 0 and
some function C, suppose Ta(n) is upper bounded by C(A) + eloga n. It is possible
to transform A into a new RandLOCAL algorithm A’ that solves P (w.h.p.) in O(C(A)-
TLLL(”, AO(C(A)))) time.

Proof. Suppose that A has a local probability of failure 1/n, that is, for any v €
V(G), the probability that N"(v) is inconsistent with P is 1/n, where r is the radius
of P. Once we settle on the LLL criterion exponent c in (4.1), we fix e = O((2¢)™1).
Define n* as the minimum value for which

t* =Ta(n*) < (1/2c) - loga n* — .

It follows that t* = O(C(A)) and n* = ACC(A),

The algorithm A" applied to an n-vertex graph G works as follows. Imagine an
experiment where we run A but lie to the vertices, telling them that “n” = n*. Any
v € V(G) will see a t*-neighborhood N*" (v) that is consistent with some n*-vertex
graph. However, the probability of the bad event that N”(v) is incorrectly labeled is
1/n*, not 1/poly(n), as desired. We now show that this system of bad events satisfies
the LLL criterion (4.1). Define the following events, graph, and quantities:

&y : the event that N (v) is incorrectly labeled
according to P,
X ={& |veV(G)} the set of bad events,
Gx = (X, {(£4,&) | NTH (u) N N"TH (v) # 0}) the dependency graph,
d< A2(r+t7),
p=1/n".
The event &, is determined by the labeling of N"(v) and the label of each v € N (v)
is determined by N*"(v'), hence &, is determined by (the data stored in, and random
bits generated by) vertices in N"+*" (v). Clearly &, is independent of any &, for which
N™" (u) 0N N+ (v) = @), which justifies the definition of the edge set of Gx. Since
the maximum degree in G is A, the maximum degree d in Gy is less than A2("+t7),

By definition of A, Pr(&€,) < 1/n* = p. This system satisfies LLL criterion (4.1) since,
by definition of t*,

pdc :pA2c(r+t*) < (1/?1*) =1

The algorithm A’ now simulates a constructive LLL algorithm on Gy in order to
find a labeling such that no bad event occurs. Since a virtual edge (&,,&,) exists if

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

62 YI-JUN CHANG AND SETH PETTIE

and only if v and v are at distance at most 2(r 4+ t*) = O(C(A)), any RandLOCAL
algorithm in Gy can be simulated in G with O(C(A)) slowdown. Thus, A’ runs in
O(C(A) . TLLL(n, AO(C(A)))) time. 0

Theorem 4.1 shows that when A = O(1), o(logn)-time RandLOCAL algorithms
can be sped up to run in O(T'pr(n,O(1))) time. Another consequence of this same
technique is that sublogarithmic RandLOCAL algorithms with large messages can be
converted to (possibly slightly slower) algorithms with small messages. The statement
of Theorem 4.2 reflects the use of a particular distributed LLL algorithm, namely,
[11, Corollary 1 and Algorithm 2]. It may be improvable using future distributed LLL
technology.

The LLL algorithm of [11] works under the assumption that epd® < 1 and that
each bad event A € X is associated with a unique ID. The algorithm starts with a
random assignment to the variables V. In each iteration, let F be the set of bad
events that occur under the current variable assignment; let Z be the subset of F
such that A € 7 if and only if ID(A) < ID(B) for each B € F such that vbl(A4) N
vbl(B) # 0. The next variable assignment is obtained by resampling all variables in
Uaez vbI(A). After O(log; /.,q2 n) iterations, no bad event occurs with probability

1 —1/poly(n).

THEOREM 4.2. Let A be a (C(A) + eloga n)-time RandLOCAL algorithm that
solves some LCL problem P w.h.p., where € > 0 is a sufficiently small constant.
Each vertex locally generates ra(n) random bits and sends ma(n)-bit messages. It is
possible to transform A into a new RandLOCAL algorithm A’ that solves P (w.h.p.)
in O(loga n) time, where each vertex generates O(logn + 7 () - log, n) random bits,
and sends O(min{log(|Zout]) - A°D +ma(C) + ¢, ra(C) - (})-bit messages, where
¢ = A9CR) depends on A.

Proof. We continue to use the notation and definitions from Theorem 4.1 and fix
¢ = 3 in the LLL criterion (4.1). Since d = Q(ACC(A)) = Q(¢) and we selected
t* wat. ¢ = 3 (ie, LLL criterion pd®> < 1), we have 1/epd®> = Q(¢). If A’ uses
the LLL algorithm of [11], each vertex v € V(G) will first generate an O(logn)-bit
unique identifier ID(&,) (which costs O(logn) random bits) and generate ra(n*) -
O(logy jepaz n) = O(ra(() - loge n) random bits throughout the computation. Thus,
the total number of random bits per vertex is O(logn + ra(() - log. n).

In each resampling step of A’, in order for v to tell whether &, € Z, it needs the
following information: (i) ID(&,) for all u € N2"+)(v), and (ii) whether &, occurs
under the current variable assignment, for all u € N2("+*")(y). We now present two
methods to execute one resampling step of A’; they both take O(C(A)) time using a
message size that depends on A but is independent of n. There are O(log; /¢pq2) =

O(log; n) = O(lgg(zgl) resampling steps, so the total time is O(log n), independent
of the function C.

Method 1. Before the LLL algorithm proper begins, we do the following prepro-
cessing step. Each vertex v gathers up all IDs and random bits in its 3(t* + r)-
neighborhood. This takes O((logn + ra(() - log,n) - {/b) time with b-bit messages
(recall that AP +7) = AO(C(A) — (). In particular, the runtime can be made
O(loga n) if we set b= O(ra(¢) - ¢).

During the LLL algorithm, each vertex u owns one random variable: an ra(n*)-
bit string V. In order for v to tell whether &, occurs for each u € N2"+1") () under
the current variable assignment, it only needs to know how many times each V,,, u €

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 63

N3(+) (), has been resampled. Whether the output labeling of v € N2+ (v) is
locally consistent depends on the output labeling of vertices in N"(u), which depends
on the random bits and the graph topology within N™**" (u) € N3("+t")(y). Given
the graph topology, IDs, and the random bits within N?’(T""t*)(v)7 the vertex v can
locally simulate A and decides whether &, € Z.

Thus, in each iteration of the LLL algorithm, each vertex v simply needs to alert
its 3(r + t*)-neighborhood whether V,, is resampled or not. This can be accomplished
in O(r+t*) = O(C(A)) time with ¢-bit messages.

Method 2. In the second method, vertices keep their random bits private. Similar
to the first method, we do a preprocessing step to let each vertex gather up all IDs in
its 2(t* 4 r)-neighborhood. This can be done in O(log, n) time using ¢-bit messages.

During the LLL algorithm, in order to tell which subset of bad events {&,},cv (a)
occur under the current variable assignment, all vertices simulate A for t* rounds,
sending ma (n*)-bit messages. After the simulation, for a vertex v to tell whether &,
occurs, it needs to gather the output labeling of the vertices in N"(v). This can be
done in 7 = O(1) rounds, sending log(|Zous|) - A?™M-bit messages.'” Next, for a vertex
v to tell whether &£, € Z, it needs to know whether &, occurs for all u € N2+t (y).
This information can be gathered in O(C(A)) time using messages of size O(¢). To
summarize, the required message size is O(log(|Zout|) - AN + ma(¢) + ¢). O

An interesting corollary of Theorem 4.2 is that when A = O(1), randomized
algorithms with unbounded length messages can be simulated with 1-bit messages.

COROLLARY 4.3. Let P be any LCL problem. When A = O(1), any o(logn)
algorithm solving P w.h.p. using unbounded length messages can be made to run in
O(logn) time with 1-bit messages.

5. Conclusion. We now have a very good understanding of the LOCAL com-
plexity landscape for paths/cycles, grids/tori, and, to a lesser extent, bounded degree
trees and bounded degree general graphs. After the preliminary publication of this
paper [10], an impressive body of work [15, 19, 3, 8, 2] has improved our understand-
ing of the complexity hierarchy on bounded degree graphs and the complexity of the
distributed LLL. We restate a more detailed version of Conjecture 1 from [10].

CONJECTURE b5.1. There exists a sufficiently large constant ¢ such that the com-
plexity of the distributed LLL problem under criterion pd® < 1 is O(loglogn) in
RandLOCAL and O(logn) in DetLOCAL.

According to [9, Theorem 3|, proving the DetLOCAL complexity of the LLL is
O(logn) is a necessary (but not sufficient) precondition for showing its RandLOCAL
complexity is O(loglogn). To prove Conjecture 5.1 we also need to show that LLL
instances can be shattered in O(loglogn) time. Conjecture 5.1 has been confirmed
for tree-structured dependency graphs (of any degree d); see [8, 15].

The results of Balliu et al. [3] imply that the complexity hierarchies for bounded
degree trees and general graphs are definitely different. Whereas trees have no natural
complexities between w(logn) and n°(") (Theorem 3.21), there are an infinite number
of such complexities on general graphs [3]. It is an open question whether the other
parts of the complexity spectrum addressed in [3] are the same for trees and general
graphs. In particular, are there any LCL problems whose complexity on bounded

17 An output label can be encoded as a log(|Zous|)-bit string. We do not assume that A is constant

S0 |Xout|, which may depend on A but not directly on n, is also not constant. For example, consider
the O(A) vertex coloring problem.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

64 YI-JUN CHANG AND SETH PETTIE

degree trees is in the range Q(log(log™ n))—o(log" n)? Can complexities of the form
O(n") be achieved for LCL problems on bounded degree trees, where r is not of the
form 1/k? Balliu et al. [2] demonstrated an w(y/n)—o(n) gap for bounded degree
trees.

Given a description of any LCL problem P, Theorem 3.21 shows that it is decid-
able whether the RandLOCAL complexity of P is n®*(1) or the DetLOCAL complexity
of P is O(logn). For other gaps on bounded degree trees (e.g., w(log™ n)—o(logn)),
the decidability problem is still open.

Appendix A. Speedup implications of Naor and Stockmeyer. Let A be
any T'(n)-round DetLOCAL algorithm. Let n and 7’ be any two order-indistinguishable
assignments of distinct IDs to N7 (v), i.e., for u,w € N7 (v), n(u) > n(w) if and
only if 7/ (u) > n/(w). If, for every possible input graph fragment induced by N7 (v),
the output label of v is identical under every pair of order-indistinguishable 7, 7', then
A is order-invariant.

Suppose that there exists a number n’ = O(1) such that AT+ o/ If A s
order-invariant, then it can be turned into an O(1)-round DetLOCAL algorithm A’,
since we can pretend that the total number of vertices is n’ instead of n.

Naor and Stockmeyer [42] proved that any DetLOCAL algorithm that takes 7 =
O(1) rounds on a bounded degree graph can be turned into an order-invariant 7-round
DetLOCAL algorithm. A more careful analysis shows that the proof still works when
7 is a slowly growing function of n.

A.1. Requirements for automatic speedup. The multicolor hypergraph
Ramsey number R(p,m,c) is the minimum number such that the following holds.
Let H be a complete p-uniform hypergraph of at least R(p, m,c) vertices. Then any
c-edge-coloring of H contains a monochromatic clique of size m.

Given the number 7 > 2, the three parameters p, m, and c are selected as follows.
(See the proof of [42, Lemma 3.2] for more details.)

e The number p is the maximum number of vertices in N7 (v), over all vertices
v € V(G) and all graphs G under consideration. For paths/cycles, p = 27+1.
For grids/tori, p < 2(7 + 1)2. For trees or general graphs, p < A7.

e The number m is the maximum number of vertices in N777(v), over all
vertices v € V(@) and all graphs G under consideration. For example, for
paths/cycles, p = 27 + 2r + 1, and for general graphs, p < AT*".

e The number z counts the distinguishable radius-7 centered subgraphs, dis-
regarding IDs. For example, for LCLs on the n-cycle without input labels
or port numbering, z = 1, whereas with input labels and port numbering
it is (2|in])?7 ! since each vertex has one of |¥i,| input labels and 2 port

numberings. In general z is less than 2(%) . (AlZin|)?.

e The number c is defined as |Xou|P*?. Intuitively, we can use a number in [c]
to encode a function that maps a radius-7 centered subgraph, whose vertices
are equipped with distinct vertex IDs drawn from some set S with cardinality
p, to an output label in ¥gu.

Recall that vertices in DetLOCAL have O(logn)-bit IDs, i.e., they can be viewed
as elements of [n*] for some k = O(1). Naor and Stockmeyer’s proof implies that,
as long as n* > R(p,m,c), any DetLOCAL 7-round algorithm on a bounded degree
graph can be turned into an order-invariant 7-round DetLOCAL algorithm, which then
implies an O(1)-round DetLOCAL algorithm.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 65

A.2. Automatic speedup theorems. According to the proof of [25, section
1, Theorem 2], we have

forp=1, R(p,m,c)=c(m—1)+1,
forp>1, R(p,m,c) <2,

1+1
p—1

where x =

R(p—1,m,c)—1
(> < R(p—1,m,c)P.

i=p—1

Therefore, log™(R(p, m,c)) < p +log™ m + log™ ¢ + O(1).

Observe that in all scenarios described in section A.1, if the running time 7 satisfies
7 = 7(n) = w(1l), we have log" m + log* ¢ = o(p). Therefore, having p < elog* n for
some small enough constant e suffices to meet the condition n* > R(p,m,c). We
conclude that the complexity of any LCL problem (with or without input labels and
port numbering) in the LOCAL model never falls in the following gaps:

w(1)—o(log" n) for n-paths/cycles,

w(l)—o(\/log* n) for (v/n x v/n)-grids/tori,

w(1)—o(log(log*n)) for bounded degree trees or bounded degree general graphs.

By [9, Corollary 1], the DetLOCAL and RandLOCAL complexities of any LCL problem
are asymptotically the same if they are at most 208" ™) Therefore, the above gaps
apply not only to DetLOCAL but also to RandLOCAL.

Due to the “stepping-up lemma” (see [25, section 4, Lemma 17]), we have a lower
bound log*(R(p,m,2)) = Q(p) (for any p,m). Therefore, Naor and Stockmeyer’s
approach alone cannot give an w(1)—o(log" n) gap for bounded degree trees. However,
for a certain class of LCL problems on (y/n X y/n)-grids/tori, the gap can be widened
to w(l)—o(log™ n) [7, p. 2]. The following proof is due to Suomela [46].

THEOREM A.l (Suomela). Let P be any LCL problem on (\/n X \/n)-grids/tori
that does not refer to input labels or port numbering. The DetLOCAL and RandLOCAL
complexity of P is either O(1) or Q(log™ n).

Proof. Given a (yv/n X \/n)-torus G, we associate each vertex v € V(G) with a
coordinate (a, 3), where o, 8 € {0,...,4/n — 1}. We consider the following special
way to generate unique 2klogn-bit IDs. Let ¢, and ¢, be two functions mapping
integers in {0, ...,v/n—1} to integers in {0, ...,n* —1}. We additionally require that
$2(0) < -+ < Pp(v/n—1) < ¢y(0) < -+ < ¢y(y/n —1). If v is at position (a, 3), it
has ID ¢, (a)-n* +¢,(8). Notice that the IDs of all vertices in N7 (v) can be deduced
from just 47 + 2 numbers: ¢, (i), i € [0 — T, + 7], and ¢y (j), j € [6 — 7,8+ 7].

Suppose that the complexity of P is o(log™ n). Let A be any 7-round DetLOCAL
algorithm for solving P, where 7 = o(log* n). Notice that the algorithm A works
correctly even when we restrict ourselves to the above special ID assignment. Our
goal is to show that P is actually trivial in the sense that there exists an element o €
Yout such that labeling all vertices by o gives a legal labeling, assuming w.l.o.g. that
v/n > 2r 4+ 1. Thus, P can be solved in O(1) rounds.

In subsequent discussion, we let v be any vertex whose position is («, 8), where
T+r<a<(yn—-1)—(r+r)and 7+7r <8< (yn—1)— (7 +r). That is, v is
sufficiently far from the places where the coordinates wrap around.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

66 YI-JUN CHANG AND SETH PETTIE

Given A, we construct a function f as follows. Let S = (s1,..., S4r+2) be a vector
of 47 4+ 2 numbers in {0,...,n* — 1} such that s; < s;41 for each [€ [47 + 2]. Then
f(S) € Eout is defined as the output labeling of v resulting from executing A with the
following ID assignment of vertices in N7 (v). We set ¢ (v — 7 — 1 +14) = s; for each
i€ 2r+1] and set ¢y (8 — T — 1+ j) = Sj42-41 for each j € [27 + 1]. Recall that P
does not use port numbering and input labeling, so the output labeling of v depends
only on IDs of vertices in N7 (v).

We set p =47 + 2, m =47 + 4r + 2, and ¢ = |Xout|. Notice that the calculation
of the parameter ¢ here is different from the original proof of Naor and Stockmeyer.
Since we already force that ¢,(0) < --- < ¢z(v/n —1) < ¢y(0) < -+ < ¢y (v/n — 1),
we do not need to consider all p! permutations of the set S.

We have R(p,m,c) < n* (since p = o(log* n)). Thus, there exists a set S’ of
m distinct numbers in {0,...,n*} such that the following is true. We label these m
numbers ¢, (i), ¢ € [—T—r,a+7+7], and ¢y(j), j € [—7—r, B+7+7] by the set
S" such that ¢y(a—7—71) < < pp(a+T7+7) < Py(B—T—1) < -+ < Py(B+T+T).
Then the output labels of all vertices in N"(v) assigned by A are identical.

Therefore, there exists an element o € ¥, such that labeling all vertices by o
yields a legal labeling of G. Thus, P can be solved in O(1) rounds.

On grids, the proof above shows that the LCL P admits a labeling where all
interior vertices (those at distance greater than r from the boundary) can be labeled
uniformly by some o € ¥, and every other vertex can be labeled according to an
O(1)-round order-invariant algorithm.

Similarly, by [9, Corollary 1], the w(1)—o(log™ n) gap given in this proof applies
to both DetLOCAL and RandLOCAL. O

A.3. Discussion. It still remains an outstanding open problem whether the gap
for other cases can also be widened to w(1)—o(log™ n).

The proof of Theorem A.1 extends easily to d-dimensional tori but does not extend
to bounded degree trees, since there is a nontrivial problem that can be solved in O(1)
rounds on a subset of bounded degree trees (see the proof of Theorem A.1l for the
definition of a trivial problem). A weak coloring is a coloring in which every vertex
is colored differently than at least one neighbor. Naor and Stockmeyer [42] showed
that on any graph class in which all vertex degrees are odd, weak 292108 2) _coloring
can be solved in two rounds and weak 2-coloring can be solved in O(log™ A) rounds
in DetLOCAL. This problem is nontrivial in the sense that coloring all vertices by the
same color is not a legal solution. Since the d-dimensional torus is A-regular, A = 2d,
we infer that the complexity of weak O(1)-coloring on A-regular graphs is ©(log* n)
for every fixed even number A > 2.

Theorem A.1 also does not extend to LCL problems that use input labels or
port numbering. If either input labels or port numbering is allowed, then one can
construct a nontrivial LCL problem that can be solved in O(1) rounds even on cycle
graphs. An orientation of a vertex v € V(G) is defined as a port number in [deg(v)],
indicating a vertex in N(v) that v is pointed toward. An £-orientation of a cycle G
is an orientation of all vertices in G meeting the following conditions. If |V (G)| < ¢,
then all vertices in G are oriented to the same direction, i.e., no two vertices point
toward each other. If |V(G)| > ¢, then each vertex v € V(G) belongs to a path P
such that (i) all vertices in P are oriented to the same direction (no two point to each
other) and (ii) the number of vertices in P is at least ¢. Notice that f-orientation,
¢ = 0(1), is an LCL that refers to port numbering. We show that in O(1) rounds we
can compute an {-orientation of G for any constant £.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 67

THEOREM A.2. Let G be a cycle graph and ¢ be a constant. There is a DetLOCAL
algorithm that computes an £-orientation of G in O(1) rounds.

Proof. This is a known result. See [27, Fact 5.2] or [14, Lemma 14 (Rounding
Lemma), Case B] for a sketch of the proof. For the sake of completeness, we present a
full proof. We first show how to compute a 2-orientation of a cycle G in O(1) rounds,
and then we extend it to any constant £.

Computing a 2-orientation. We assume |V (G)| > 3. A DetLOCAL O(1)-round
algorithm to compute a 2-orientation is described as follows: First, each vertex v €
V(G) computes an arbitrary orientation. With respect to this orientation of G, define
sets V1, Vs, V3 as follows.

e v € V; if and only if there exists u € N(v) such that u and v are oriented to
the same direction.
e v € V5 if and only if there exists uw € N(v) \ V; such that u and v are oriented
toward each other.
e V3 =V(G)\(V1UVz). Observe that for each v € V3, there exists u € N(v)NV;.
A 2-orientation is obtained by reorienting the vertices in Vo and V3. The vertices in
V5 are partitioned into unordered pairs such that u,v € V5 are paired up if and only
it (i) {u,v} € E(G) and (ii) v and v are oriented toward each other. For each pair
{u, v}, reverse the orientation of any one of {u,v}. For each vertex v € Vs, let u be
any neighbor of v such that u € Vi, and reorient v to the orientation of w.

Computing an (-orientation. We define an O(1)-round DetLOCAL algorithm A,
that computes an /(-orientation. It makes recursive calls to A 7. In what follows,
we assume £ > 3 and |V(G)| > 3.

First, execute Af/27 to obtain an [£/2]-orientation of G. With respect to this
orientation of G, define the following terminologies. Let & be the set of all maximal-
size connected subgraphs in G such that all constituent vertices are oriented to the
same direction. Notice that if &2 contains a cycle, then & = {G}. Otherwise &
contains only paths. Define & as the subset of & such that P € &2, if and only if
the number of vertices in P is at least £. Define &5 as the subset of &2\ &7; such that
P € P, if and only if there exists another path P’ € &2\ &7, meeting the following
condition. There exist an endpoint v of P and an endpoint v of P’ such that {u,v} €
E(G), and u and v are oriented toward each other. Define 925 = &2\ (% U).
Observe that each P € &3 is adjacent to a path in &2;.

The paths in &5 are partitioned into unordered pairs such that P, P’ € %5 are
paired up if and only if there exist an endpoint u of P and an endpoint v of P’
such that {u,v} € F(G), and u and v are oriented toward each other. For each pair
{P, P'}, reverse the orientation of all the vertices in any one of { P, P'}. For each path
P e P53, let P’ € 221 be any path adjacent to P, and re-orient P to the orientation
of P'.

The round complexity of A, satisfies the recurrence T'(¢) = T'([£/2])+O(£), which
is O(¢). 0

Notice that even though orienting all vertices in the cycle to the same direction
gives a legal labeling, f-orientation is still a nontrivial LCL problem. Consider a
subpath (v1,ve,vs,v4) in the cycle. Suppose that the port number of (vq,vs) stored
at vy is 1, but the port number of (vs, v4) stored at vs is 2. Then we need to label vy and
v differently (1 and 2, respectively) in order to orient them in the same direction “—”.

Last, we remark that for the case the given (y/n x y/n)-torus is oriented in the
sense that the input port numberings all agree with a fixed N/S/E/W orientation [7];
then there is no nontrivial LCL problem solvable in O(1) time.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

68

[20]

21]

22]

YI-JUN CHANG AND SETH PETTIE

REFERENCES

D. AcHLiopTAS AND F. ILIOPOULOS, Random walks that find perfect objects and the Lovdsz local
lemma, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2014, pp. 494-503, https://doi.org/10.1109/FOCS.2014.59.

A. BaLriu, S. BRANDT, D. OLIVETTI, AND J. SUOMELA, Almost global problems in the LOCAL
model, in Proceedings of the 32nd International Symposium on Distributed Computing,
2018.

A. Barriu, J. HIRVONEN, J. H. KORHONEN, T. LEMPIAINEN, D. OLIVETTI, AND J. SUOMELA,
New classes of distributed time complezity, in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), New York, 2018, pp. 1307-1318,
https://doi.org/10.1145/3188745.3188860.

R. BAR-YEHUDA, K. CENSOR-HILLEL, AND G. SCHWARTZMAN, A distributed (2 + ¢)-
approzimation for vertex cover in O(log A/eloglog A) rounds, J. ACM, 64 (2017), 23.

L. BARENBOIM, M. ELKIN, S. PETTIE, AND J. SCHNEIDER, The locality of distributed symmetry
breaking, J. ACM, 63 (2016), 20.

S. BRANDT, O. FISCHER, J. HIRVONEN, B. KELLER, T. LEMPIAINEN, J. RYBICKI, J. SUOMELA,
AND J. Urrto, A lower bound for the distributed Lovdsz local lemma, in Proceedings of the
48th ACM Symposium on the Theory of Computing (STOC), 2016, pp. 479-488.

S. BRANDT, J. HIRVONEN, J. H. KORHONEN, T. LEMPIAINEN, P. R. J. OSTERGARD, C. PURCELL,
J. RYBICKI, J. SUOMELA, AND P. UzNANSKI, LCL problems on grids, in Proceedings of the
36th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2017,
pp. 101-110.

Y.-J. CHANG, Q. HE, W. L1, S. PETTIE, AND J. UIrrTO, The complexity of distributed edge
coloring with small palettes, in Proceedings of the 29th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2018, pp. 2633-2652.

Y.-J. Cuang, T. KOPELOWITZ, AND S. PETTIE, An exponential separation between randomized
and deterministic complexity in the LOCAL model, in Proceedings of the 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 615-624, https:
//doi.org/10.1109/FOCS.2016.72.

Y.-J. CHANG AND S. PETTIE, A time hierarchy theorem for the LOCAL model, in Proceedings
of the 58th IEEE Symposium on Foundations of Computer Science (FOCS), 2017, pp. 156—
167.

K.-M. CHUNG, S. PETTIE, AND H.-H. Su, Distributed algorithms for the Lovdsz local lemma
and graph coloring, Distrib. Comput., 30 (2017), pp. 261-280.

R. CoLE AND U. VISHKIN, Deterministic coin tossing with applications to optimal parallel list
ranking, Inform. Control, 70 (1986), pp. 32-53.

L. FEUILLOLEY AND P. FRAIGNIAUD, Survey of distributed decision, Bull. Eur. Assoc. Theor.
Comput. Sci. EATCS, 119 (2016), pp. 41-65.

M. FISCHER, Improved deterministic distributed matching via rounding, in Proceedings of the
31st International Symposium on Distributed Computing (DISC), 2017, pp. 17:1-17:15.

M. FISCHER AND M. GHAFFARI, Sublogarithmic distributed algorithms for Lovdsz local lemma,
and the complezity hierarchy, in Proceedings of the 31st International Symposium on Dis-
tributed Computing (DISC), 2017, 18.

P. FrRAIGNIAUD, A. KORMAN, AND D. PELEG, Towards a complexity theory for local distributed
computing, J. ACM, 60 (2013), 35, https://doi.org/10.1145/2499228.

M. FURER, Data structures for distributed counting, J. Comput. System Sci., 28 (1984), pp. 231—
243, https://doi.org/10.1016 /0022-0000(84)90067-9.

M. GHAFFARI, An improved distributed algorithm for mazimal independent set, in Proceed-
ings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016,
pp. 270-277, https://doi.org/10.1137/1.9781611974331.ch20.

M. GHAFFARI, D. G. HARRIS, AND F. KUHN, On Derandomizing Local Distributed Algorithms,
in Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS),
2018.

M. GHAFFARI, F. KUHN, AND Y. MAUS, On the complezity of local distributed graph problems,
in Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), 2017,
pp. 784-797.

M. GHAFFARI AND H.-H. Su, Distributed degree splitting, edge coloring, and orientations, in
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2017, pp. 2505-2523, https://doi.org/10.1137/1.9781611974782.166.

M. GO0Os, J. HIRVONEN, AND J. SUOMELA, Linear-in-A lower bounds in the LOCAL model,
Distrib. Comput., 30 (2015), pp. 325-338, https://doi.org/10.1007 /s00446-015-0245-8.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1109/FOCS.2014.59
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1145/2499228
https://doi.org/10.1016/0022-0000(84)90067-9
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1007/s00446-015-0245-8

Downloaded 08/08/19 to 141.211.4.224. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

27]
(28]

29]

(30]

(31]

32]

[40]
[41]
[42]
[43]
[44]
[45]

[46]

A TIME HIERARCHY THEOREM FOR THE LOCAL MODEL 69

M. GOOS AND J. SUOMELA, Locally checkable proofs in distributed computing, Theory Comput.,
12 (2016), pp. 1-33, https://doi.org/10.4086 /toc.2016.v012a019.

M. GOOs AND J. SUOMELA, No sublogarithmic-time approzimation scheme for bipar-
tite vertexr cover, Distrib. Comput., 27 (2014), pp. 435—443, https://doi.org/10.1007/
500446-013-0194-z.

R. L. GRAHAM, B. L. ROTHSCHILD, AND J. H. SPENCER, Ramsey Theory, 2nd ed., John Wiley
and Sons, New York, 1990.

B. HAEUPLER AND D. G. HARRIS, Parallel algorithms and concentration bounds for the Lovdsz
local lemma via witness-DAGSs, in Proceedings of the 28th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2017, pp. 1170-1187, https://doi.org/10.1137/1.
9781611974782.76.

M. HANCKOWIAK, M. KARONSKI, AND A. PANCONESI, On the distributed complezity of comput-
ing mazimal matchings, SIAM J. Discrete Math., 15 (2001), pp. 41-57.

D. G. HARRIS, Lopsidependency in the Moser-Tardos framework: Beyond the lopsided Lovdsz
local lemma, ACM Trans. Algorithms, 13 (2016), 17, https://doi.org/10.1145/3015762.

D. G. HARRIS AND A. SRINIVASAN, A constructive algorithm for the Lovdsz local lemma on
permutations, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2014, pp. 907-925, https://doi.org/10.1137/1.9781611973402.68.

J. HARTMANIS AND R. E. STEARNS, On the computational complexity of algorithms, Trans.
Amer. Math. Soc., 117 (1965), pp. 285-306.

N. J. A. HARVEY AND J. VONDRAK, An algorithmic proof of the Lovdsz local lemma via re-
sampling oracles, in Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2015, pp. 1327-1346, https://doi.org/10.1109/FOCS.2015.85.

D. HeFETZ, F. KUHN, Y. MAUS, AND A. STEGER, Polynomial lower bound for distributed
graph coloring in a weak LOCAL model, in Proceedings of the 30th International Sym-
posium on Distributed Computing (DISC), 2016, pp. 99-113, https://doi.org/10.1007/
978-3-662-53426-7_8.

K. B. R. KoLIPAKA AND M. SZEGEDY, Moser and Tardos meet Lovdsz, in Proceedings of
the 43rd ACM Symposium on Theory of Computing (STOC), 2011, pp. 235-244, https:
//doi.org/10.1145/1993636.1993669.

V. KOLMOGOROV, Commutativity in the algorithmic Lovdsz local lemma, in Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016,
pp. 780-787, https://doi.org/10.1109/FOCS.2016.88.

A. KORMAN, J.-S. SERENI, AND L. VIENNOT, Toward more localized local algorithms: removing
assumptions concerning global knowledge., Distrib. Comput., 26 (2013), pp. 289-308.

F. KunN, T. MoOSCIBRODA, AND R. WATTENHOFER, Local computation: Lower and upper
bounds, J. ACM, 63 (2016), 17, https://doi.org/10.1145/2742012.

F. KUHN AND R. WATTENHOFER, On the complexity of distributed graph coloring, in Proceedings
of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC),
2006, pp. 7-15.

N. LINIAL, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193-201.

G. L. MiLLER AND J. H. REIF, Parallel tree contraction—Part I: Fundamentals, Adv. Comput.
Res., 5 (1989), pp. 47-72.

R. A. MOSER AND G. TARDOS, A constructive proof of the general Lovdsz local lemma, J. ACM,
57 (2010), 11, https://doi.org/10.1145/1667053.1667060.

M. NAOR, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J. Dis-
crete Math., 4 (1991), pp. 409-412, https://doi.org/10.1137/0404036.

M. NAOR AND L. J. STOCKMEYER, What can be computed locally?, SIAM J. Comput., 24 (1995),
pp. 1259-1277, https://doi.org/10.1137/S0097539793254571.

D. PELEG, Distributed Computing: A Locality-Sensitive Approach, Discrete Math. Appl. 5,
SIAM, Philadelphia, 2000.

S. PETTIE AND H.-H. Su, Distributed algorithms for coloring triangle-free graphs, Inform. and
Comput., 243 (2015), pp. 263-280.

J. SUOMELA, Survey of local algorithms, ACM Comput. Surv., 45 (2013), 24, https://doi.org/
10.1145/2431211.2431223.

J. SUOMELA, private communication, 2017.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.1007/s00446-013-0194-z
https://doi.org/10.1007/s00446-013-0194-z
https://doi.org/10.1137/1.9781611974782.76
https://doi.org/10.1137/1.9781611974782.76
https://doi.org/10.1145/3015762
https://doi.org/10.1137/1.9781611973402.68
https://doi.org/10.1109/FOCS.2015.85
https://doi.org/10.1007/978-3-662-53426-7_8
https://doi.org/10.1007/978-3-662-53426-7_8
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1109/FOCS.2016.88
https://doi.org/10.1145/2742012
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/2431211.2431223
https://doi.org/10.1145/2431211.2431223

	Introduction
	The complexity landscape of LOCAL
	Related results
	Recent developments
	Organization

	An infinitude of complexities: Hierarchical 212-coloring
	A complexity gap on bounded degree trees
	A tour of the proof
	Partially labeled graphs
	Graph surgery
	A tripartition of the vertices
	An equivalence relation on graphs
	Properties of the equivalence relation
	The number of equivalence classes
	A pumping lemma for trees
	Rake and compress graph decomposition
	Extend and Label operations
	A hierarchy of partially labeled trees
	An O(logn)-time DetLOCAL algorithm from a feasible labeling function
	Existence of feasible labeling function

	A gap in the RandLOCAL complexity hierarchy
	Conclusion
	Appendix A. Speedup implications of Naor and Stockmeyer
	Requirements for automatic speedup
	Automatic speedup theorems
	Discussion

	References

