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ABSTRACT 
To illuminate understanding of how social media can be 
leveraged to glean insights into public health issues such as 
e-cigarette use, we use a social media analytics and research 
testbed (SMART) dashboard to observe Twitter messages 
and follow content about e-cigarettes in different cities 
across the U.S. Our case studies indicate that the majority of 
e-cigarette tweets are positive (68%), which represents a 
potential problem for public health. Stigma plays the most 
important roles in both confirmed and rejected messages for 
e-cigarettes. We also noticed that some advocates of e-
cigarettes might be hybrid human-bot accounts (or multiple 
users using one account). Our key findings demonstrate the 
use of the SMART dashboard as a means of public health-
related belief surveillance, and identification of campaign 
targets and informational needs of different communities in 
real-time. Future uses of this tool include monitoring social 
messages about e-cigarettes for combating the spread of 
tobacco-related misinformation and disinformation, and 
detecting and targeting informational needs of communities 
for intervention. 

CCS CONCEPTS 
• Human-centered computing → Visualization; Visual 
application domains; Visual analytics • Social and 
professional topics → User characteristics; Geographic 
characteristics • Social and professional topics → 
Computing/technology policy; Surveillance; Government 
surveillance 
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1 INTRODUCTION 

Social media technology has ushered an era enabling 
unprecedented opportunities for individuals to connect with 
one another. This interconnection, however, has arrived with 
exigencies related to the misuse and abuse of user data 
gathered through social media platforms [1, 2], and the 
emergence of social media platforms as avenues for 
spreading misinformation (e.g., inaccurate information) and 
disinformation (e.g., deception information) [3-6]. This is 
particularly problematic when such content becomes 
memetic and virally spreads across social networks [7-9]. 
Bots, in particular, present a challenge to reversing trends of 
the sense of privacy and public trust in social media content. 
From a privacy perspective, bots are designed to mimic 
authentic human activity, and may use online user data to be 

 
 
 
 
 
 
 
 
 
 



SMSociety’19, July 19-21, 2019, Toronto, Canada Martinez, Tsou, & Spitzberg 
 

 

effectively engaging [10-12]. There are various reasons why 
users may not wish their data to be used to guide activity of 
bots in this manner. From a trust perceptive, while not all 
bots are designed with veiled intent or for nefarious purposes 
[13], public health experts and scholars are expressing 
increasing concerns regarding the potential for bots to 
disseminate misinformation and disinformation related to 
public health issues [10]. Trust in health information suffers 
when misinformation and disinformation proliferate to a 
point where significant correction is required [1], and 
possibly fuels perceptions that online health information is 
neither reliable nor accurate [14, 15].  

Recent theorizing in the communication discipline suggests 
that in order to understand when and how public health-
related online information (including misinformation and 
disinformation) is likely to virally spread online across a 
social network, researchers need to consider human 
processes and how they employ unique properties of social 
media in realspace [7, 16]. The multilevel model of meme 
diffusion (M3D) is distinctively positioned for this purpose.  

Answering the question of what drives the diffusion of 
information is an ongoing objective of various fields and 
theories. Distinct models emphasize different variables: 
aspects of the message or meme itself; the influential sources 
from which such messages derive; the structural features or 
human dynamics of the social networks to which such 
messages are sent; the societal and cultural dynamics that 
contextualize such messages; and the geotechnical context 
surrounding such dynamics. Given that research identifies 
features at each of these levels of analysis, it follows that a 
multi-level approach is likely needed to fully model such 
phenomena. The multilevel model of meme diffusion (M3D) 
aims to provide such a framework. The M3D proposes that 
sets of variables influence the diffusion of a message or 
meme. Following Dawkins’ [17] proposal that memes are 
comparable to genes in that they transfer information from 
one person to another, Spitzberg [18-20] further conjectured 
several conditions in which memes are likely to spread. 
Memes that are more novel and affect-laden travel farther 
and faster. Their spread is further facilitated when they are 
shared by users who are considered more credible, 
trustworthy, and competent. Network characteristics can 
also help or hinder spread of memes. For example, social 
networks that are internally homophilous but externally 
diverse (e.g., many bridgers) help spread memes faster and 
further. Additionally, the lack of counterarguments in the 
larger information environment as well as access to 

technology among a range of proximal users also promotes 
the diffusion of memes.  

Our web-based social media analytics research testbed 
(SMART) dashboard includes geotargeted social media 
(specifically Twitter) application programming interfaces 
(APIs) that allows for real-time tracking of various topics 
(URL: http://vision.sdsu.edu/hdma/smart), and has been 
previously used to monitor a range of topics using keywords 
to gather data on disease outbreaks, drug abuse, and 
emergencies related to natural disasters [21]. The SMART 
dashboard is also well-suited to investigate many of the 
variables hypothesized by the M3D. The purpose of the 
current article is to demonstrate the utility of the SMART 
dashboard for examining and tracking social media 
messages in a previously unexplored context: e-cigarettes. 

 

2 BACKGROUND 

E-cigarettes (or “electronic cigarettes”) represent a type of 
electronic nicotine delivery systems (ENDS), which have 
experienced increasing use by adolescents [22] and 
emerging adults [23, 24]. E-cigarette use is a growing public 
health concern because these devices may contain 
potentially toxic chemicals [25] and their long-term effects 
on health remain unestablished [26]. For young people, e-
cigarettes may act as a gateway into use of combustible 
tobacco products [27]. Young people are also heavily 
engaged users of social networking sites such as Twitter 
[28], which are often viewed as important information 
sources [29, 30] and settings for socialization [31]. In 
addition, a lack of distinction between online and offline life 
among young individuals is likely to increase impact of 
messages shared over social media [32]. However, more 
research is needed to examine the types of messages about 
e-cigarettes that are shared over social media, who is sharing 
these messages (e.g., bots versus authentic humans), and the 
role of e-cigarettes advocates [33] and their promotion of 
these devices. We introduce two case studies using the 
SMART dashboard to examine content about e-cigarettes 
and sources of these messages on Twitter, as well as how 
they operate in real-time. 

3 CASE STUDIES IN E-CIGARETTES 

The SMART dashboard is constructed with several data 
mining programs, GIS methods, and geo-targeted social 
media APIs in order to monitor topics of interest through 
space and across time. Capabilities of this tool permit 
researchers to generate visualizations, and perform 
descriptive and predictive analyses of these topics in various 
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U.S. cities across time. Stakeholders, such as government 
officials and those involved in healthcare delivery and first 
response, can easily access this tool. We note the following 
features of the SMART dashboard to further emphasize its 
unique and important capabilities: 

1. Collect and update social media messages daily, along 
with their spatial attributes and geographic patterns of 
diffusion in different cities. 

2. Present evolution of social media trends (daily, weekly, 
monthly) over time as they occur in real-time. 

3. Filter data to extract noise and errors to improve 
accuracy of analyses and tracking of social media 
messages. 

4. Display temporal trends of social media messages by 
individual cities or by aggregation of data across all 
listed cities. 

5. Provide insight into social media messages and how 
they differ between cities, which may be used by local 
health agencies and organizations to map geographical 
hot spots or areas in need of intervention. 

Prior research has already demonstrated the utility of the 
SMART dashboard for collecting and analyzing social 
media messages in other contexts (e.g., Flu, Whooping 
Cough, Wildfire, Drugs, and Aztecs) [18, 34-47], and details 
of the SMART dashboard’s original development are 
available elsewhere [48, 49]. In the present study, we expand 
on this prior work by examining the use of the SMART 
dashboard to examine social media messages in the context 
of e-cigarettes. By entering the following list of keywords 
[50, 51] into the SMART dashboard, we were able to collect 
a total of 193,051 tweets between October 2015 and 
February 2016 across all regions in the U.S.: Vaping, Vape, 
Vaper, Vapers, Vapin, Vaped, Evape, Vaporing, e-cig*, 
ecig*, e-pen, epen, e-juice, ejuice, e-liquid, or eliquid.  The 
SMART dashboard retained only tweets that included at 
least one of these listed keywords. The filtering and data 
cleaning functions of the SMART dashboard are based on 
past work [21], and are summarized in Fig. 1 and adapted for 
the current study.  

Figs. 2-3 further detail these and additional functions of the 
SMART dashboard. The following sections introduce two 
case studies in the context of e-cigarettes to illustrate how 
the SMART dashboard can be used to study public health 
topics. These examples focus on public perceptions and 
beliefs of e-cigarettes guided by concepts of infodemiology 
and infoveillance [52]. Infodemiology refers to scientific 

approaches in the study of online content (collected and 
analyzed in real-time) used to draw insights in order to 
advise public health and public policy. Infoveillance uses 
infodemiological methods with the objective of surveillance. 

 

 
Figure 1: Data Filter and Cleaning Procedures in 
SMART Dashboard (adapted [21]). 

 
 

 
Figure 2:  The Screen Shot of SMART Dashboard for E-
cigarettes. 

 

Although surveillance represents an important public health 
activity, traditional approaches of disease detection are 
typically expensive and can be labor intensive. In contrast, 
social media content offers data that can be collected and 
analyzed in real-time, and may provide public health 
practitioners and researchers with an alternative way to 
monitor and survey disease outbreaks. We elected to discuss 
these two case studies to emphasize the advantages and 
opportunities for disease surveillance offered by tools 

Filter

•Remove retweets, tweets containing only URL addresses, 
and users with any keyword in their username.

Machine
Learning

•Collect training sample, identify relevant keywords, and 
use machine learning.

Statistics
•Display top retweet, URL, hashtag, and mention.

Spatial 
Analysis

•Conduct hot spot analysis and overlay with layers of 
other data. 
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employing social media analytics, including the SMART 
dashboard. 

 
Figure 3: Key Features for Interactive Query and 
Visualizations in SMART dashboard [21]. 

3.1 Belief Surveillance 

Figs. 4-5 show results of a sentiment analysis for a random 
sample of tweets (N=973) collected between October 2015 
and February 2016 across the U.S. We performed a general 
sentiment analysis (Fig. 4) and an analysis specifically 
examining whether tweets confirmed or rejected commonly 
held beliefs about e-cigarettes (e.g., stigma associated with 
e-cigarettes, perceived harmfulness, capacity for generating 
second-hand smoke, helpfulness as a cessation tool, 
versatility, and potential for addiction) (Fig. 5). The general 
sentiment analysis examined whether the tweet conveyed 
content that struck a tone that was positive (approval of e-
cigarettes), negative (disapproval of e-cigarettes), neutral 
(neither approving or disapproving e-cigarettes), ambiguous 
(both approving and disapproving of e-cigarettes), or other 
(nonsensical or incomprehensible) [40]. The categories for a 
more specific analysis of sentiment included: a) the 
effectiveness or ineffectiveness of e-cigarette use as a 
cessation tool; (b) increased or reduced addictiveness of e-
cigarettes compared to traditional cigarettes; (c) presence or 
lack of stigma regarding e-cigarettes; (d) whether e-
cigarettes cause or reduce 2nd-hand smoke; (e) if e-cigarettes 
produce beneficial or harmful effects on health; (f) freedom 
or restrictions on users and when or where they can vape; 
and (g) the general satisfaction or dissatisfaction from using 
e-cigarettes instead of traditional e-cigarettes. We can use a 
graph similar to this to compare sentiment related to e-
cigarettes from official regional health census data, as well 
as data from Monitoring the Future, a National Institute on 

Drug Abuse and NIH ongoing study of young adult attitudes, 
values and behaviors [53], capturing perceptions of e-
cigarettes as a cessation tool, along with personal 
disapproval of and perceived risk from regularly using e-
cigarettes.  

 

 
Figure 4: Sentiment Analysis (N=973) [40] 

 

 
Figure 5: Sentiment Analysis: Confirmation and 
Rejection of Common Beliefs About E-Cigarettes 
(N=973) [40] 

Fig. 4 indicated that the majority of e-cigarettes tweets are 
positive (68%), indicating support for the use of e-cigarettes. 
Such pro-vaping content could have a very negative impact 
for public health. Fig. 5 illustrated that “Stigma” and 
“Second-Hand Smoke” are the major reasons in the sampled 
tweets that support the use of e-cigarettes. On the other hand, 
“Harmfulness” and “Stigma” are the primarily expressed 
reasons to reject e-cigarettes. “Stigma” plays the most 
important roles in both confirmed and rejected messages for 
e-cigarettes. Our interactive SMART dashboard can provide 
practitioners with a way to collect social media messages in 

•Displays number of tweets collected per day, week, or 
month.

Top Index Numbers

•Queries actual tweeting texts, displayed in daily, weekly, or 
monthly views.

Trend Function

•Presents most prominent keywords tweeted per day, 
week, month, or aggregate.

Word Cloud Function

•Displays normalized tweeting rates per city.

Tweets in Cities Function

•Shows top 10 list of top URLs, hashtags, retweets, 
mentions, and images.

Additional Functions
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real-time to monitor and visualize trends in e-cigarettes 
sentiment. The daily, weekly, and monthly monitoring 
functions of the SMART dashboard offer public health 
authorities at state and local levels a tool for collecting data 
on beliefs about e-cigarettes. Sentiment analysis of these 
data can indicate how beliefs are changing over time, point 
toward opportunities for intervention, and present an 
additional way to evaluate existing intervention efforts. 
Using the M3D’s meme-level concepts to distinguish which 
types of tweets are likely to spread, we can also examine the 
content of tweets for these characteristics before they 
become viral. For example, the finding that stigma was 
central to both confirmatory and disconfirmatory messages 
related to e-cigarettes suggests it may help fuel a larger 
debate, which is likely to garner attention among users and 
increase the likelihood of spreading across social networks. 
In this way, the identification of tweets before they 
potentially become viral can help thwart the spread of health 
misinformation, or even suggest message designs that could 
effectively counter-argue such viral trends. This would also 
allow public health practitioners to get ahead of the 
conversation online with argumentation that can potentially 
slow or stop tweets that endorse e-cigarettes and that exhibit 
memetic potential from becoming viral. 
3.2 Promotion and Advocates 

A second case study uses the SMART dashboard to identify 
proponents of behaviors that may undermine public health 
goals. In the context of e-cigarettes, advocates [33] on social 
media may voice positions promoting the use of e-cigarettes 
that could shape views and risk perceptions of vulnerable 
populations, including younger populations. Fig. 6 shows a 
summary of activity rates for authentic human accounts 
acting as advocates of e-cigarettes generated by the SMART 
dashboard, including network size and daily, weekly, and 
monthly activity. The daily rates are calculated using the 
whole lifespan of user accounts. The weekly rates are based 
on the last seven days (most recently). The monthly rates are 
based on the last 30 days. We found that most advocates’ 
daily post numbers are between 3 and 53. Their daily, last 
seven days, and last 30 days rates are very consistent except 
the #4 account, which might be a hybrid human-bot account 
(or multiple users using one account) with 355 average daily 
posts. Also, the #4 account was created within 30 days of our 
collection period (missing the last 30 days activity rates). 
The SMART dashboard also provides data for word clouds, 
which can offer insight into the most prominently featured 
words used by advocates. Figs. 7-8 illustrate two sample 
profiles for advocates, including the five most recent tweets 

posted by the user, and a word cloud generated using the last 
3,200 tweets shared. Fig. 7 illustrates the activities from a 
human advocate (#1) and Fig. 8 illustrates the activities from 
a potential cyborg account (#4).   

 

Figure 6: Activity Rate for Advocates Twitter Accounts 
(ranked by the numbers of followers). 

 

 
Figure 7: Activity Rate for a Normal Advocates Twitter 
Account (#1). 
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Figure 8: Activity Rate for a Cyborg Advocates Twitter 
Account (#4). 

4  CONCLUSION 

Social media analytics provide opportunities for collecting 
data that can be used in disease surveillance and improving 
understanding of behavioral determinants of diseases. The 
SMART dashboard provides one tool to advance some of 
these opportunities by serving as a means of public health-
related belief surveillance, bot detection, and identification 
of campaign targets and informational needs of different 
communities in real-time. This project extends research in 
the area of e-cigarettes and social media analytics by 
gathering geo-tagged tweets, and offering spatiotemporal 
insight into social media messages posted about e-cigarettes. 
Specifically, we are able to track beliefs and risk perceptions 
about e-cigarettes, bot activity, and campaign targets with a 
spatiotemporal view. Linking time and place together using 
the M3D model in this manner allows discovery of important 
patterns that illuminate understanding of disease 
transmission and social media activities. We have 
demonstrated the use of the SMART dashboard in this 
capacity within the context of e-cigarettes as an example for 
how public health practitioners and researchers may 
consider using this tool in the future for other public health 
issues. The individual level of M3D model can be used to 
study the motivation and skills of the e-cigarette advocates.   

The use of the SMART dashboard for these purposes, 
however, does present certain challenges that merit 
discussion. The first challenge relates to the issue of privacy 
and its protection, which remains a significant concern for 
all social media analytic tools. Throughout the process of 
developing the SMART dashboard, our team has strived to 
protect the privacy of individuals using social media. 
Specifically, we only gather public tweets made available 
through the public Twitter APIs. We also provide a Privacy 
Policy inviting concerned users to reach out: “If you have 
any concerns about the privacy issues in our web 
applications, please Email us. After verify your information, 
we will remove specific social media contents based on your 
requests.” One option for enhancing privacy protection is to 
assign anonymous IDs to all users. This approach, however, 
could undermine research seeking to understand social 
networks and the attributes that contribute to the creation and 
diffusion of social media messages. Such challenges will 
require future researchers to weigh the suitability of social 
media messages as a data source with the need to protect user 
privacy.  
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