
Robust Molecular Communications: DFE-SPRTs
and Synchronisation

Tze-Yang Tung and Urbashi Mitra
Ming Hsieh Department of Electrical Engineering, University of Southern California, USA

Email: {tzeyangt,ubli}@usc.edu

Abstract—Precise synchronisation of transmitters and re-
ceivers is particularly challenging in diffusive molecular com-
munication environments. To this end, a point-to-point molecu-
lar communication system is examined wherein the design of
the transceiver offers resilience to synchronisation errors. In
particular, the development of a sequential probability ratio
test-based detector, which allows for additional observations in
the presence of uncertainty due to mis-synchronisation at the
receiver, and a modulation design which is optimised for this
receiver strategy, is considered. The structure of the probability
of molecules hitting a receiver within a particular time slot is
exploited. An approximate maximum log-likelihood estimator
for the synchronisation error is derived and the Cramér-Rao
bound (CRB) computed, to show that the performance of the
proposed estimator is close to the CRB at low transmission rates.
The proposed receiver and modulation designs achieve strongly
improved asynchronous detection performance for the same data
rate as a decision feedback based receiver by a factor of 3 to 5
on average.

Index Terms—molecular communication, diffusion, sequential
probability ratio test, sequence optimisation, synchronisation
errors.

I. INTRODUCTION

Nano-machines have been proposed to enable future medi-
cal and biological applications such as precision drug delivery
and immune system support [1]. To facilitate the operation
of such systems, point-to-point molecular communication is
necessary. Due to the size of the nano-machines and in
vivo applications, communication via electromagnetic wave
is infeasible, thus molecular diffusion is considered. In such
schemes, a nano-machine transmitter is assumed to contain
a storage of molecules that are released into the medium.
Diffusion carries the molecules across the communication
channel, which are then detected by the receiver nano-
machine. Different modulation schemes have been proposed
for diffusive molecular communication [2], [3]. However,
extensive inter-symbol interference (ISI) due to the nature of
diffusion is a major bottleneck. The effect of ISI on molecular
communication is discussed in [4], [5].

Prior molecular communication works have presumed per-
fect time synchronisation between the transmitter and receiver
[6]–[8]. To achieve synchronicity, a variety of synchronisation
schemes have been proposed [9]–[13]. However, the abso-
lute performances of these methods are limited in diffusive
channels and are often high in complexity, making them
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prohibitive for nano-machines. To remedy this issue, a simple
asynchronous detection scheme is introduced in [14] that
does not require perfect synchronisation. However, as will be
shown, the performance is not strong due to its simplistic
approach. We will show that with a moderate increase in
complexity, performance can be improved dramatically.

Herein, we presume the linear time-invariant (LTI) Poisson
channel of [3], based on the additive inverse Gaussian channel
model of [15], to develop the Synchronised Memory Aided
Sequential Probability Ratio Test (SMASPRT). SMASPRT is
an augmented version of the sequential probability ratio test
(SPRT) [16]. In [17], a SPRT based transceiver, called Memory
Aided Sequential Probability Ratio Test (MASPRT), where
ISI is mitigated with decision feedback, was proposed and
shown to offer strong improvement of asynchronous detection
performance over [6] and [14]. Here, we adopt the design
and analyses in [17] and offer an approximate maximum log-
likelihood estimator for the synchronisation error to further
improve the detection performance, hence the SMASPRT. The
estimator allows SMASPRT to offer further resilience to syn-
chronisation errors by limiting the effect of likelihood function
mismatch. Additionally, we further optimise the modulating
sequence to minimise the error probability. The proposed
scheme is compared to that in [6] and [14]. In [6], it was shown
that their approach was near-optimal for the LTI Poisson
channel under the assumption of perfect synchronisation. In
our testing, SMASPRT offers superior performance to both
schemes in the presence of mis-synchronisation.

The main contributions of this paper are as follows; (i)
we improve upon the MASPRT scheme in [17] by proposing
an approximate maximum log-likelihood estimator for the
synchronisation error to further improve detection perfor-
mance; (ii) the Cramér-Rao bound (CRB) of the estimator is
calculated and the estimator is shown to be nearly optimal for
low transmission rates; (iii) our results show that SMASPRT
improves asynchronous detection performance under the same
data rate as the schemes proposed in [6] and [14] with a
reduction in bit error ratio (BER) by a factor of 3 and 5 on
average, respectively.

This paper is organised as follows: Section II and III
describe the channel and transceiver models, respectively;
Section IV calculates the CRB of the proposed synchronisation
error estimator; Section V proposes the optimal transceiver
design and Section VI discusses the numerical results based
on bounding key performance metrics in the proposed design.
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Fig. 1. Illustration of synchronisation error on sample distribution.

II. RECEIVED SIGNAL

Diffusion-based molecular communication, whereby
molecules experience Brownian motion without drift, is
considered and inter-molecular collisions are assumed to
have negligible effects on the diffusion of molecules. Without
loss of generality, we consider only one-dimensional motion.
A storage device releases molecules into the channel and
the number of released molecules is described by a Poisson
random variable with rate x. This distribution is indicated
by Poi(x). To convey a message, the transmitter releases
a predefined sequence of rates. Without loss of generality,
the received signal is described by the one-dimensional
linear-time invariant Poisson model proposed in [3]. We
assume a constant release and sampling duration denoted by
ts and the rate xt denotes the rate associated with time slot t.
Assuming that the molecules are released at the beginning of
each time slot, the probability that a molecule is detected by
the receiver at the tth time slot is denoted by πt(τ), where τ
denotes the synchronisation error between the transmitter and
receiver clocks as illustrated in Figure 1. πt(τ) is defined as
[3]

πt(τ) = 2Q

(
ρ√

t · ts + τ

)
− 2Q

(
ρ√

(t− 1)ts + τ

)
, (1)

where the constant ρ , d√
2D

summarises the relationship
between the diffusion constant (D) and the distance between
the transmitter and receiver (d). The standard Q function is
given by Q(a) =

∫∞
a

1√
2π
e
−x2
2 dx. The noise within the

system is described by a homogeneous Poisson process, with
rate function λ(u) = λ0u. As such, the number of molecules
detected within the tth time slot is a Poisson random variable
with the following distribution

Yt ∼ Poi(πππt(τ)⊗ xxxt + λ0ts), ∀t ≥ 1, (2)

where πππt(τ) = [π1(τ), π2(τ), . . . , πt(τ)], xxxt = [x1, x2, . . . , xt]
and ⊗ denotes the convolution operation. The samples are
independent and it is assumed that the synchronisation error
τ ≥ 0 for simplicity.

For simplicity, we consider binary signalling where a source
symbol, sj , maps to a modulation signal denoted by xj =
[x1|j , x2|j , . . . , xN |j ] ∈ RN , j = {0, 1}, where N is the
modulation signal length. The transmission rate is defined
as R = 1

ts·N . It is assumed that ||xj ||2 ≤ P , where P is
the power constraint, and that the receiver is unaware of the
true value of τ , leading to likelihood mismatch. Due to the

the complexity of the channel model with respect to τ , joint
optimisation of the detection performance and estimator is
intractable. Therefore, in the sequel, we shall focus on the
optimisation of xj for detection performance and data rate
assuming τ = 0 and provide an approximate maximum log-
likelihood estimator for τ .

III. SYNCHRONISED MEMORY AIDED SPRT

We consider the sequential probability ratio test (SPRT)
[16] as the basis for our detection strategy. SPRT samples
the signal and calculates the likelihood ratio. When confident,
it terminates with a decision, otherwise another sample is
taken. We provide three key modifications to the original SPRT
formulation for our context: (i) a memory of B bits is used
to compensate for ISI; (ii) an approximate maximum log-
likelihood estimator for the synchronisation error τ is proposed
to obtain a more accurate estimate of the likelihood ratio; (iii) a
trunction rule is introduced to avoid sampling into subsequent
channel symbols; hence the SMASPRT.

Let sn ∈ {s0, s1} be the nth source symbol being conveyed
and ynm = [yn1 , y

n
2 , . . . , y

n
m] be the vector of samples observed

for that symbol, the likelihood ratio function is given by

Lm(ynm, τ̄n−1) =
pynm|s1(τ̄n−1)

pynm|s0(τ̄n−1)
,

where pynm|sj (τ̄n−1) is the joint Poisson probability mass
function for symbol sj as implied by Equation (2) and τ̄n−1 is
the synchronisation error estimate obtained from the previous
symbol sn−1.

Let E[Y nm|sj ] = λ̄nm|j(xj , τ), for each sample ynm. If
Lm(ynm) ≥ 1, then an estimate of the synchronisation error
τ̂nm is calculated using λ̄nm|1(x1, τ) and stored; otherwise,
λ̄nm|0(x0, τ) is used. Consider the maximum log-likelihood
estimator

τ̃nm(ynm)

= arg max
τ

log pY nm|sj (y
n
m;xj , τ)

= arg max
τ

ynm log(λ̄nm|j(xj , τ))− λ̄nm|j(xj , τ)− log(ynm!).

The solution to τ̃nm(ynm) is derived by

∂

∂τ

[
ynm log(λ̄nm|j(xj , τ))− λ̄nm|j(xj , τ)− log(ynm!)

]
= ynm

∂
∂τ λ̄

n
m|j(xj , τ)

λ̄nm|j(xj , τ)
− ∂

∂τ
λ̄nm|j(xj , τ) = 0

⇒ λ̄nm|j(xj , τ)− ynm = 0.

Hence, the estimate is such that λ̄nm|j(xj , τ̃
n
m(ynm))− ynm = 0.

To reduce the complexity of solving this equation, we fit the
function λ̄nm|j(xj , τ) to an exponential function due to the
convex non-increasing nature of λ̄nm|j(xj , τ) with respect to
τ ≥ 0. Let λ̄nm|j(xj , τ) ≈ anme

rnmτ , we minimise the least-
squares objective function of the log-likelihood function

arg min
log anm,r

n
m

l∑
k=1

[log λ̄nm|j(xj , τk)− log anm − rnmτk]2,



where τk, k = 1, 2, . . . , l are sampling points on the function
λ̄nm|j(xj , τ). The solutions to the coefficients [log anm, r

n
m] are

rnm =

∑l
k=1 τk log λ̄nm|j(xj , τk)∑l
k=1 τ

2
k −

1
l (
∑l
k=1 τk)2

−
1
l (
∑l
k=1 τk)(

∑l
k=1 log λ̄nm|j(xj , τk))∑l

k=1 τ
2
k −

1
l (
∑l
k=1 τk)2

log anm =
1

l

l∑
k=1

log λ̄nm|j(xj , τk)− rnm
l

l∑
k=1

τk.

Hence, the approximate maximum log-likelihood estimator is

τ̂nm(ynm) =
log ynm − log anm

rnm
. (3)

We observe that the function λ̄nm|j(xj , τ) is different for each
sample ynm, due to rnm and anm being dependent on n and m.
Therefore, we average over all past estimates to obtain τ̄n =
1
i ((i −m)τ̄n−1 +

∑m
k=1 τ̂

n
k (ynk )) if the algorithm terminates

at the ith global sample (i.e. the ith sample it takes since the
beginning of time) and use this in the next symbol detection
to calculate its likelihood ratio more accurately.

When confident, if m < N , where N is the modulation
signal length, the decision rule is given by

δ(Lm(ynm, τ̄n−1)) =


s0, Lm(ynm, τ̄n−1) ≤ A
s1, Lm(ynm, τ̄n−1) ≥ B
sample, else.

(4)

The constants A and B are given by A = β
1−α , B = 1−β

α
(as in [16]), where α is the false alarm rate and β is the miss
probability. If the SMASPRT does not terminate by m = N , a
truncation rule based on the minimum distance rule is applied
to prevent sampling into the subsequent channel symbol:

δ(LN (ynN , τ̄n−1))

=

{
s0, |LN (ynN , τ̄n−1)−A| < |LN (ynN , τ̄n−1)−B|
s1, |LN (ynN , τ̄n−1)−A| ≥ |LN (ynN , τ̄n−1)−B|.

The exact likelihood ratio Lm(ynm, τ) and λ̄nm|j(xj , τ) re-
quires the knowledge of the joint likelihood function of the
samples pynm|sj (τ) for j ∈ {0, 1}. However, since the channel
exhibits memory of all past transmissions, knowledge of all
past diffusion rates would be needed to calculate the exact
likelihood function, which is infeasible. To remedy this issue,
a memory of B bits is embedded in the receiver, such that
the receiver can store B past decoded source symbols at
the nth symbol, denoted by Mn = {ŝn−1, ŝn−2, . . . , ŝn−B}.
The receiver is then able to estimate the likelihood function,
denoted by p̂ynm|sj (τ̄n−1), up to B ·N + m time slots in the
past by appropriately using the mapping sj → xj . Assuming
the source symbols in the memory were decoded correctly,
the more memory the receiver possesses, the more accurate
the likelihood ratio and the lower the error probability for
SMASPRT. It should be noted here that the desired α and
β can only be achieved if the likelihood ratio is calculated

exactly. Since an estimate is used here, the probability of error
will be greater than those set by α and β, depending on how
much memory is used and the synchronisation error.

IV. CRAMÉR-RAO BOUND (CRB)

We consider the maximum log-likelihood estimator τ̃nm(ynm)
for the purpose of calculating the Cramér-Rao bound (CRB).
To verify that the CRB exists, we first check the regularity
condition. That is

E

[
∂

∂τ
log pY nm|sj (y

n
m;xj , τ)

]
=E

[
∂

∂τ
ynm log(λ̄nm|j(xj , τ))− λ̄nm|j(xj , τ)− log(ynm!)

]
=E

[
ynm

∂
∂τ λ̄

n
m|j(xj , τ)

λ̄nm|j(xj , τ)
− ∂

∂τ
λ̄nm|j(xj , τ)

]

=λ̄nm|j(xj , τ)

∂
∂τ λ̄

n
m|j(xj , τ)

λ̄nm|j(xj , τ)
− ∂

∂τ
λ̄nm|j(xj , τ) = 0.

Next, let Jynm(τ) be the Fisher information in ynm about τ ,
then the CRB of the estimate τ̃nm(ynm) is computed as follows

∂2

∂τ2
log pY nm|sj (y

n
m;xj , τ)

=
∂2

∂τ2

[
ynm log(λ̄nm|j(xj , τ))− λ̄nm|j(xj , τ)− log(ynm!)

]
=
∂

∂τ

[
ynm

∂
∂τ λ̄

n
m|j(xj , τ)

λ̄nm|j(xj , τ)
− ∂

∂τ
λ̄nm|j(xj , τ)

]

=ynm
λ̄nm|j(xj , τ) ∂2

∂τ2 λ̄
n
m|j(xj , τ)− ( ∂

∂τ λ̄
n
m|j(xj , τ))2

(λ̄nm|j(xj , τ))2

− ∂2

∂τ2
λ̄nm|j(xj , τ)

⇒Jynm(τ) = −E
[
∂2

∂τ2
log pY nm|sj (y

n
m;xj , τ)

]
=

( ∂
∂τ λ̄

n
m|j(xj , τ))2

λ̄nm|j(xj , τ)
.

Therefore, the CRB of the estimate τ̃nm(ynm) is

E[(τ̃nm(ynm)− τ)2] ≥ 1

Jynm(τ)
=

λ̄nm|j(xj , τ)

( ∂
∂τ λ̄

n
m|j(xj , τ))2

.

As the final estimate is the empirical mean of each sample
estimate, we have the following modified bound

1

m

m∑
k=1

E[(τ̃nk (ynk )− τ)2] ≥ 1

m

m∑
k=1

λ̄nk|j(xj , τ)

( ∂
∂τ λ̄

n
k|j(xj , τ))2

.

It should be noted here that this result only holds if the estima-
tor is unbiased, which the maximum log-likelihood estimator
τ̃nm(ynm) satisfies. However, since we are using the approximate
maximum log-likelihood estimator τ̂nm(ynm), which is a worse
estimator compared to τ̃nm(ynm), the mean squared error (MSE)
E[(τ̂nm(ynm)− τ)2] ≥ E[(τ̃nm(ynm)− τ)2], resulting in a looser
bound.



V. TRANSCEIVER OPTIMISATION

In [17], the error probability Pe = P [s0]P [s1|s0] +
P [s1]P [s0|s1] and the expected stopping time of SMASPRT
were bounded to provide the framework for transceiver op-
timisation. In particular, the result that the optimal value for
x0 is x0 = 0 (vector of zeros) was adopted from [6] and
it was assumed that P [s1|s0]>>P [s0|s1] due to the ISI of
past s1 transmissions. Therefore, only x1 has to be optimised.
We provide Proposition 1 and 2 from [17] to formulate our
optimisation problem:
Proposition 1: Assuming an LTI Poisson channel as de-
scribed in Equation (2) and that x0 = 0. Let E[Y nk |sj ] =
λ̄nk|j(x1, τ) = λ̄Ck|j + λ̄ISIk + n0, where λ̄Ck|j denotes the
diffusion rates transmitted for the current source symbol, λ̄ISIk

denotes the ISI terms, and n0 = λ0ts. Then P [s1|s0] can be
bounded as follows:

P [s1|s0] ≤ λ̄C1|1 + µ
N∑
k=2

λ̄Ck|1

=

(
π1(τ) + µ

N∑
i=2

πi(τ)

)
x1|1+µ

N−1∑
k=1

xk+1|1

N−k∑
i=1

πi(τ),

where µ = P

[
log(A)+2π1(τ)x1|1

log
(
x1|1+λISI1 +n0

n0+λISI1

) < y1 <
log(B)+2π1(τ)x1|1

log
(
x1|1+λISI1 +n0

n0+λISI1

)]
and [A,B] are thresholds described in Equation 4.
Proposition 2: Let E[Y nk |sj ] = λ̄nk|j(xj , τ). There exists ε > 0
and Tj(ε) for j ∈ {0, 1}, such that:
∞∑

k=T1(ε)+1

1

k

{̄
λnk|1(x1, τ)

[
log

(
λ̄nk|1(x1, τ)

λ̄nk|0(x1, τ)

)
− 1

]
+λ̄nk|0(x1, τ)

}
≤ ε

∞∑
k=T0(ε)+1

1

k

{̄
λnk|0(x1, τ)

[
log

(
λ̄nk|0(x1, τ)

λ̄nk|1(x1, τ)

)
− 1

]
+λ̄nk|1(x1, τ)

}
≤ ε,

and

logB

T1(ε)
≤
T1(ε)∑
k=1

1

k

{̄
λnk|1(x1,τ)

[
log

(
λ̄nk|1(x1,τ)

λ̄nk|0(x1,τ)

)
− 1

]
+λ̄nk|0(x1,τ)

}
logA−1

T0(ε)
≤
T0(ε)∑
k=1

1

k

{̄
λnk|0(x1,τ)

[
log

(
λ̄nk|0(x1,τ)

λ̄nk|1(x1,τ)

)
− 1

]
+λ̄nk|1(x1,τ)

}
.

Combining Propositions 1 and 2, we assume that all past
transmitted source symbols are s1 leading to maximal ISI. The
optimisation problem is formulated by P1:

x̂1=arg min
x1

(
π1(τ)+µ

N∑
i=2

πi(τ)

)
x1|1+µ

N−1∑
k=1

xk+1|1

N−k∑
i=1

πi(τ)

s.t.
T1(ε)∑
k=1

1

k

{̄
λnk|1(x1,τ)

[
log

(
λ̄nk|1(x1,τ)

λ̄nk|0(x1,τ)

)
− 1

]
+λ̄nk|0(x1,τ)

}
≥ logB

T1(ε)

T0(ε)∑
k=1

1

k

{̄
λnk|0(x1,τ)

[
log

(
λ̄nk|0(x1,τ)

λ̄nk|1(x1,τ)

)
− 1

]
+λ̄nk|1(x1,τ)

}
≥−logA

T0(ε)

||x1||2 ≤ P,

where λ̄nk|1(x1, τ) = πππk+N ·B(τ) ⊗ [x1; . . . ;x1;x1(1 : k)] +

λ0ts and λ̄nk|0(x1, τ) = πππk+N ·B(τ)⊗ [x1; . . . ;x1;0(1 : k)] +

λ0ts. Here, [x1; . . . ;x1] ∈ RN ·B is the concatenated vector
of B x1’s, and the notation (1 : k) denotes taking the first
k elements of a vector. This can be solved using traditional
optimisation algorithms such as the interior-point method. We
emphasise that this optimisation process only needs to be done
once offline; it does not contribute to transmitter complexity.

VI. NUMERICAL RESULTS

TABLE I
EXAMPLE NUMERICAL RESULTS.

ts (s) τ (s) T̄0 T̄1 T0(ε) T1(ε) ||x̂1||2
0.1 0 4.5 3.2 5 5 56.1
0.1 0.5 5.0 10.3 5 5 56.1

0.025 0 4.5 7.2 5 5 99.6

The following parameters are used for simulation: α =
β = 10−3, ρ =

√
0.3, N = 20, λ0 = 4 molecules/s,

T0(ε) = T1(ε) = 5 and P = 100. The transmission rate
is controlled by changing the sampling rate ts. 100 packets
of length 100 bits are considered to obtain an average BER.
We solve the optimisation problem presented in Section V,
assuming τ = 0, using the interior-point method in MATLAB.
It is found that as the sampling rate increases, the magnitude
of the vector x̂1 increases. In the presence of synchronisation
error, let T̄0 and T̄1 denote the empirical mean of the stopping
times under s0 and s1, respectively, it is found that T̄0 stays
roughly the same while T̄1 increases. Examples of simulation
results are shown in Table I. This follows from the decay of
the hitting probabilities; as ts decreases or as τ increases, the
hitting probabilities decrease. Therefore, either the transmitter
compensates by increasing the number of molecules transmit-
ted in the case of increasing transmission rate, or the receiver
requires more samples to converge in the case of increasing
synchronisation error. Since x0 = 0, synchronisation errors
affect the expected stopping time of the algorithm under s0
only slightly.

The memory-limited decision aided (MLDA) decoder and
the asynchronous detector with decision feedback (ADDF),
proposed in [6] and [14], respectively, are used as compet-
ing schemes to show that SMASPRT can perform similarly
to MLDA under synchronous scenarios and improve asyn-
chronous detection performance over both schemes. As neither
MLDA nor ADDF attempt to estimate the synchronisation
error τ , the approximate maximum log-likelihood estimator
for τ is incorporated into MLDA and ADDF for a fair
comparison. MASPRT is also compared with SMASPRT to
show the improvement in asynchronous detection performance
using the approximate maximum log-likelihood estimator.

The MLDA transmitter modulates the signal by mapping
sj ∈ R → xj ∈ R, for j ∈ {0, 1}. For each sample yi,
MLDA makes a decision using an estimate of the ISI (λ̂ISIi )
from its memory and the maximum log-likelihood estimator
x̂(yi) = max

j
P [yi|xj , λ̂ISIi ]. A threshold can be derived by

equating P [yi|x1, λ̂ISIi ] = P [yi|x0, λ̂ISIi ], such that



γ =
π1(τ)(x1 − x0)

log
(π1(τ)x1+λ̂ISIi +n0

π1(τ)x0+λ̂ISIi +n0

) .
The detection rule is then formulated as:

δ(yi) =

{
s0, yi < γ
s1, yi ≥ γ.

In the paper, it is shown that this scheme is near optimal
under synchronous transceivers. This is found to be true as our
simulations showed MLDA to be best in terms of BER among
the schemes considered here over a range of transmission rates
for τ = 0s.

ADDF oversamples each source symbol and thresholds
the maximum sample within the window of observation to
determine if the transmitted source symbol is s0 or s1. The
transmitter modulation mapping is the same as MLDA. Con-
sider N samples within a particular source symbol duration,
[y1, y2, . . . , yN ], the receiver subtracts the estimated expected
ISI (λ̂ISIi ) using its memory, and finds the maximum sample
within the window of observation:

ymax = max
i∈{1,...,N}

yi − λ̂ISIi .

ymax is then thresholded to decide between s0 and s1

δ(ymax) =

{
s0, ymax < η
s1, ymax ≥ η.

If the synchronisation error is small, the maximum will exist
within the window of observation. The decision threshold η is
optimised by calculating the probability of error for a range
of η’s and choosing the value that gives the lowest error
probability.

Figure 2 shows the CRB and the MSE of the mean estimator
τ̄n (as described in Section IV) for different transmission
rates. 5 evenly spaced sampling points between [0, 2]s on
the function λ̄nm|j(xj , τ) is considered, (i.e. l = 5). As we
observe that in Proposition 1, the upper bound for the error
probability P [s1|s0] is essentially a linear combination of the
diffusion rates x1 for a given transmission rate R. Therefore,
comparing the CRB and MSE for different transmission rates
offers an insight to the performance of the estimator. It can be
observed from Figure 2 that as the transmission rate increases,
the CRB increases slightly but the MSE increases much more
significantly, resulting in a looser bound at high transmission
rates. This is reflected in Figure 4, as the BER increases with
transmission rate, indicating that the synchronisation estimates
are worse in this regime. The increase in MSE is due to both
the increase in ISI as a function of rate and the approximate
nature of the estimator which results in larger bias for larger
rate. As a result, the estimates τ̂nm(ynm) are worse at high
transmission rates. However, as Figure 4 shows, despite the
large MSE, SMASPRT yields superior performance results at
high transmission rates, compared to MLDA and ADDF using
the same estimator.

Figure 3 shows the improvement of MLDA and MASPRT
when incoporated with the estimator τ̂nm(ynm). Here, “MLDA
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Fig. 2. Plot of transmission rate (R) against CRB and MSE of the estimator
τ̄n for τ = 0.1s. Each transmission rate is simulated with the optimal x̂1.
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Fig. 3. Numerical results of plotting normalised synchronisation error (τ ·R)
against BER for synchronised and unsynchronised schemes. Here, “MLDA
Unsync” refers to MLDA without estimating the synchronisation error τ .
Transmission rate is set at 0.5 bps. All schemes here are simulated with the
optimised x̂1 sequence for R = 0.5 bps.

Unsync” refers to MLDA without estimating the synchroni-
sation error τ . As can be seen by the results, the use of the
estimator improves the ISI mitigation capabilities of both algo-
rithms. SMASPRT performs noticeably better than MASPRT
as the likelihood ratio is calculated more accurately. MLDA
can also be seen to improve, but less so than SMASPRT.

Figure 4 shows the BER at different transmission rates. The
diffusion rate sequence x1 is optimised for each transmission
rate. The synchronisation error is set at τ = 0.1s. In all sce-
narios, SMASPRT performs better than MLDA and ADDF in
the presence of synchronisation error. On average, SMASPRT
reduces the BER by a factor of 3 and 14 compared to MLDA
and ADDF, respectively, in this test. SMASPRT also improves
significantly with increasing memory, whereas MLDA and
ADDF improve only marginally. The ADDF scheme performs
significantly worse than both MLDA and SMASPRT due to
the fact that it only considers the first moment of the ISI
distribution.

Figure 5 shows the resilience of each scheme to synchroni-
sation error τ . Here, R = 0.5 bps and x1 is optimised for
this transmission rate. The results show that SMASPRT is
able to maintain a roughly constant BER up to approximately
τ = 0.2s, whereas the MLDA scheme does not have this
resilience. On average, SMASPRT reduces the BER by a factor
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Fig. 4. Plotting transmission rate (R) against BER for τ = 0.1s. All schemes
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Fig. 5. Numerical results of plotting normalised synchronisation error (τ ·
R) against BER. Transmission rate is set at 0.5 bps. All schemes here are
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of 3 and 5 compared to MLDA and ADDF, respectively, in this
test. The performance improvement comes from the fact that
SMASPRT is designed to stop before the sampling limit. Thus,
when a synchronisation error is present, the accumulation of
errors in the calculation of LLR is lower compared to MLDA,
resulting in a lower error probability. ADDF can also be seen
to tolerate some synchronisation errors, but it’s overall higher
BER means it cannot perform as well as MLDA or SMASPRT.

VII. CONCLUSIONS

A transceiver design for molecular communication, called
Synchronised Memory Aided Sequential Probability Ratio Test
(SMASPRT), based on SPRT has been proposed in this paper.
Bounds on the error probability and expected stopping times
were adopted from prior work and used to optimise the
modulation signal design. A synchronisation scheme based
on an approximate maximum log-likelihood estimator was
proposed. The mean squared error of the estimator was com-
pared with the Cramér-Rao bound for different transmission

rates and the estimator was shown to be nearly optimal for
low transmission rates. SMASPRT improves asynchronous
detection performance under the same data rate as MLDA
and ADDF with a reduction in BER by a factor of 3 and
5 on average, respectively.
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