ANALYSIS OF p-LAPLACIAN REGULARIZATION IN SEMI-SUPERVISED LEARNING *
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Abstract. We investigate a family of regression problems in a semi-supervised setting. The task is to assign real-valued labels to a set of n
sample points provided a small training subset of /V labeled points. A goal of semi-supervised learning is to take advantage of the (geometric)
structure provided by the large number of unlabeled data when assigning labels. We consider random geometric graphs, with connection radius
e(n), to represent the geometry of the data set. Functionals which model the task reward the regularity of the estimator function and impose or
reward the agreement with the training data. Here we consider discrete p-Laplacian regularization.

We investigate asymptotic behavior when the number of unlabeled points increases while the number of training points remains fixed. A
delicate interplay between the regularizing nature of the functionals and the nonlocality inherent to the graph constructions is uncovered. Rigorous,
almost optimal, ranges on the scaling of £(n) for asymptotic consistency are obtained and in these admissible ranges it is shown that minimizers
of the discrete functionals converge uniformly to the desired continuum limit. Furthermore, we discover that, for the standard model, there is a
restrictive upper bound on how quickly (n) must converge to zero as n — co. A new model is introduced, which is as simple as the original
model, but overcomes this restriction.

Key words. semi-supervised learning, label propagation, regression, asymptotic consistency, Gamma-convergence, PDEs on graphs, nonlocal
variational problems

AMS subject classifications. 49J55, 49J45, 62G20, 35J20, 65N12

1. Introduction. Due to its applicability across a large spectrum of problems semi-supervised learning (SSL)
is an important tool in data analysis. It deals with situations where one has access to relatively few labeled data
points but potentially a large number of unlabeled data points. We assume that we are given N labeled points
{(zs,5) : i=1,...,N, 2; € R y; € R} and n — N unlabeled points {x; : i = N +1,...,n} drawn from a
fixed, but unknown, measure z supported in a compact subset of R?. The goal is to assign labels to the unlabeled
points by taking advantage of the information provided by the full data set 2,, = {x;}?_,. In particular, the unlabeled
points carry information on the structure of y, such as the geometry of its support, which can lead to better estimators.
To represent the geometry we build a graph whose vertices are €2,, and connect them if they are close enough, that is
if they are within some distance € > 0. More generally, the edge weights are prescribed by a decreasing function
7 :[0,00) — [0, 00) with lim,_, (1) = 0. For a fixed scale ¢ > 0 we set the weights to be

Wij = ne(|zi — x5)

where 1. = Zn(-/e).

The label propagation problem is to find an estimator u : 2, — R which agrees with preassigned labels. To
solve the regression problem one considers objective functionals which penalize the lack of smoothness of u and
take the structure of the graph into account. In particular, we consider the functionals which generalize the graph
Laplacian, namely the graph p-Laplacian. A particular objective functional we consider is

m EP() = 5y D Wyl () — S(ap)P.

ij=1
We consider minimizing e (f) under the constraint that
2) flxy) =y; forall i=1,...,N.

A numerically computed example of the minimizer of the functional is shown in Figure 1(a).

We investigate the asymptotic behavior in the limit when the number of unlabeled data points n goes to infinity
while the number of training data points N is fixed. This is consistent with the semi-supervised learning paradigm
of having few labeled points and an abundance of unlabeled data. As n — oo, £, — 0 to increase the resolution
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(a) A minimizer of (1) under constraint (2) for € = 0.058 and (b) Minimizer of the continuum functional (3) under con-
1 = 1o,1) and n = 1280. The grid is to aid visualization. straint (2).

Fig. 1: A 2D numerical experiment for measure ; with density one on [0, 1)?, training data 21 = (0.2,0.5) and 22 = (0.8,0.5)
and labels y1 = 0and y> = 1, and p = 4.

and limit the computational cost. Namely, as ¢, is the length scale over which the information on p is averaged,
taking €, to zero ensures that the finer scales of 1 are resolved as more data points become available. As regards
the computational cost, for small €,, and compactly supported 7, the matrix (W;;) of edge weights is sparse. More
precisely the number of edges, is proportional to 2. The cost of computing the gradient of the functional grows
linearly with the number of edges, as does the number of nonzero entries of the Hessian of the functional. This
directly affects the complexity of numerical methods used.

While in this paper we consider data distributed in a set of full dimension, we remark that there are no essential
difficulties to extend the results to the manifold setting, namely one where p is a measure supported on compact
manifold M of dimension d embedded in RP. Such extensions have already been done for related problems
concerning the graph Laplacian [32], where the modification of background results (such as optimal transportation
estimates) has been carried out.

The continuum limiting problem corresponds to minimizing

G D) =0 [ (V@ @)
where o is a constant that depends on 7, subject to the constraint that f(z;) = y; fori = 1,..., N. A numerically

computed minimizer of the functional is shown in Figure 1(b). Finiteness of &E? (f) implies that f lies in the Sobolev
space W1P(Q). For the constraints to make sense it is needed that pointwise evaluation of functions is well defined,
which is the case only if p > d when Sobolev embedding ensures that functions in W are continuous. When p < d
and d > 1, one cannot expect to be able to impose pointwise data. Indeed, spikes were observed in discrete models
with graph-Laplacian-based regularizations (that is for p = 2) by Nadler, Srebro and Zhou in [48] who also argued
that they arise since there exist functions with arbitrarily small energy &ﬁé’) (f), for p = 2, which agree with labels on
the training set. In [19] El Alaoui, Cheng, Ramdas, Wainwright and Jordan go a step further and suggest p = d as the
transition point between the regime where spikes appear and where solutions are “smooth”. They argue, based on
the Sobolev embedding theorem, that for p < d the minimizers of &(Lp ) (f) can develop spikes as n — oo, while for
p > d they should not develop spikes (the authors consider p > d + 1, but the same argument applies for p > d). The
authors also argue that for data purposes taking p > d and close to d is optimal since as p — oo the solution forgets
the information provided by the unlabeled points and only depends on the labeled ones.

Our initial goal was to verify the conclusions of [19]. More precisely, our aim was to show that constrained
minimizers of &(Lp )( f) converge as n — oo, in the appropriate topology, to minimizers of 5§§>( f), subject to
constraints when p > d, and without constraints when p < d. However we discovered an additional phenomenon,
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namely that the undesirable spikes in the minimizers to graph p-Laplacian can occur even when p > d. Namely, [19]
shows pointwise convergence of the form

lim lim 5(p (f) =5<§§)(f)7

e—0 n—oo

when f is smooth enough. However considering a fixed function f is not sufficient to conclude that the constrained
minimizers of &(Lp ) converge to constrained minimizers of Ség). In fact answering that question requires a set of
tools from applied analysis which we discuss below. We show, roughly speaking, that for d > 3 the convergence of
minimizers holds if and only if

1 b Inn i
4) Z) o >en> | — as n — oo.
n n

The lower bound above is related to the connectivity of the graph and is well understood, [37,38]. Our lower bounds
for d = 1, 2 contain additional correction terms and are not optimal. Our upper bound implies that the models are in
fact not consistent for a large family of scalings of € on n that were thus far thought to ensure consistency (namely
for 1 > &, > n~/P). Our work indicates that careful analytical approaches are needed and are in fact capable of
providing precise information on asymptotic consistency of algorithms.

In the “ill-posed” regime €2n — oo, under the usual connectivity requirement (which when d > 3 reads

d — 00), we are still able to establish the asymptotic behavior of algorithms. Namely, we show that minimizers

n ln n
of E,(Lp ) with constraints converge, along subsequences, as n — oo and &, — 0 to a minimizer of 55,2’) without

5§£> without constraints are constant functions. Hence, the labels are forgotten

€

constraints. Of course, minimizers of
in the limit as n — oo. This explains why, for large n, minimizers of 5}3’ ) are ‘spiky’. The need to consider
subsequences in the limit is due to the fact that minimizers of a&é’) without constraints are nonunique (any constant
function is a minimizer).

While the degeneracy of the problem when p < d was known, [19], we believe that degeneracy when p > d and
ePn — oo is a new and at first surprising result. The heuristic explanation for the appearance of spikes is that the
discrete p-Laplacian does not share the regularizing properties of the continuum p-Laplacian. Namely, the discrete
p-Laplacian still involves averaging over the length scale € and thus more closely resembles an integral operator (the
one in (16) to be precise). This allows high-frequency irregularities to form, without paying a high price in the energy.
In particular, if we consider one labeled point taking the value 1, say f,(z1) = 1, while f,,(z;) = 0 for all ¢ > 2 then

<x1IJ|> 2 ) 0

En

P (fn) =

n2 €d

as n — oo, when en — oo and where p,, = %22;1 0y, is the empirical distribution. Note that f,, exhibits
degeneracy while gp) (fn) — 0.

In addition to the constrained problem above we also consider the problem where the agreement with the labels
{y;}I¥, is imposed through a penalty term. Our results and analysis are analogous.

Using the insights of our analysis, we define a new model which is quite similar to the original one, but for which
the asymptotic consistency holds with the only upper bound requirement being that €,, — 0 as n — oc.

To prove our results we use tools from the calculus of variations and optimal transportation. In particular, we use
the setup for convergence of objective functionals defined on graphs to their continuum limits developed in [37]. This
includes the definition of the proper topology (7'LP) to compare functionals defined on finite discrete objects (graphs)
with their continuum limits. However the T'LP topology, which is an extension of the L? topology, is not strong
enough to ensure that the labels are preserved in the limit. For this reason we also need to consider a stronger topology,
namely the one of uniform convergence. Proving the needed local regularity results for the discrete p-Laplacian
(Lemma 4.1) and the compactness results needed to ensure the locally uniform convergence are the main technical
contributions of the paper. We note that to the best of our knowledge, our results are the first where one proves
(locally) uniform convergence of minimizers of nonlinear functionals in random discrete settings to the minimizers of
the corresponding continuum functional.

Our results on the asymptotic behavior of minimizers do not provide any error estimates for finite n and do not
provide precise guidance on what € would lead to the best approximation. In Section 6, we numerically investigate
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prototypical examples in one and two dimensions to shed some light on these issues. We numerically observe the
predicted critical scalings for ,, given in (4). We also numerically compare the results with our improved model (24).
In investigating how precisely the observed error depends on € we find that the error is smallest when ¢ is quite close
to the connectivity radius on the graph. Rigorously explaining the phenomenon is, in our opinion, a valuable open
problem.

The paper is organized as follows. We complete the introduction with a review on related works. In Section 2
we give a precise description of the problem with assumptions and state the main results. Section 3 contains a
brief overview of background results we use. This includes a description of the T'LP topology, which we use for
discrete-to-continuum convergence, and a short overview of I'-convergence and optimal transportation. Section 4
contains the proofs of the main results given in Section 2. In Section 5 we present an improved model that, while
similar to the constrained problem for &(Lp ) (f), is asymptotically consistent with the desired limiting problem even
when ¢, — 0 slowly as n — co. We conclude the paper with 1D and 2D numerical experiments in Section 6.

1.1. Discussion of Related Works. The approach to semi-supervised learning using a weighted graph to
represent the geometry of the unlabeled data and Laplacian based regularization was proposed by Zhu, Ghahramani
and Lafferty in [70]. It fits in the general theme of graph-Laplacian based approaches to machine learning tasks such
as clustering, which are reviewed in [65]. See also [7] for a recent application to semi-supervised learning. Zhou and
Scholkopf [68] generalized the regularizers of [70] to include a version of the graph p-Laplacian. The p-Laplacian
regularization has also been used by Biihler and Hein in clustering problems [9], where values of p close to 1 are
of particular interest due to connections with graph cuts. Graph based p-Laplacian regularization has found further
applications in semi-supervised learning and image processing [20-22]. These papers also make the connection to the
oo-Laplacian, which is closely related to minimal Lipschitz extensions [15].

While the approach of [70] has found many applications it was pointed out by Nadler, Srebro and Zhou [48]
that the estimator degenerates and becomes uninformative in d > 2, when the number of unlabeled data points
n — oo. Almagir and von Luxburg [2] explored the p-resistances, the resulting distance on graphs, and connections
to p-Laplacian regularization. Based on their analysis they suggested that p = d should be a good choice to prevent
degeneracy in the n — oo limit. El Alaoui, Cheng, Ramdas, Wainwright and Jordan [19] show that for p < d the
problem degenerates as n — oo and spikes can occur. They argue that regularizations with high p > d + 1 are
sufficient to prevent the appearance of spikes as n — oo, and lead to a well-posed problem in the limit. Here, we
make part of their claims rigorous, namely that if p > d then the asymptotic consistency holds only if €,, converges to
zero sufficiently fast (€2n — 0 asn — o0). If p > d and e2n — oo as n — oo we prove that the problem is still
degenerate as n — oo and that spikes occur. We also introduce a modification to the discrete problem (by modifying
how the agreement with the assigned labels is imposed) which is well posed when p > d without the need for ,, to
converge to 0 quickly.

There are other ways to regularize the SSL regression problems which ensure that no spikes occur. Namely,
Belkin and Niyogi [4, 5] consider estimators which are required to lie in the space spanned by a fixed number of
eigenvectors of the graph Laplacian. Due to the smoothness of low eigenvectors of the Laplacian this prevents the
formation of spikes. One can think of this approach in energy based setting where infinite penalty has been imposed
on high frequencies. A softer, but still linear, way to do this is to consider (fractional) powers of the graph Laplacian,
namely the regularity term J,,(u) = (cL% f, f) where L,, is the graph Laplacian, and o > 0. This regularization
was studied by Belkin and Zhou [69] who argue, again via regularity obtained by Sobolev embedding theorems,
that taking o > g prevents spikes. However Dunlop, Stuart, and the authors of this paper have discovered a similar
phenomenon whereby the limit may be degenerate, and spikes can occur, if &,, converges to zero too slowly, namely if
ns%a —oo0asn — oo [18].

Garcia Trillos and Sanz-Alonso [35] have studied a problem in semi-supervised learning quite similar to the
one in [18]. There they impose information on the data (via the observation operator) on the set of positive measure,
instead of points, and obtain the convergence of posteriors in a Bayesian inverse problem on graphs with prior
proportional to exp(—.Jy, (1)), which is a richer structure than the minimizers we study. It is interesting to observe
that they also require ne2® — 0 to show the convergence. Somewhat similarly, the upper bound on &,, is used to
control high frequencies. There it controls the contribution of high frequency modes of the graph Laplacian, while
here we use the upper bound to establish the regularity of minimizers. For the same model as [35], Garcia Trillos,
Kaplan, Samakhoana and Sanz-Alonso [33], remove the upper bound by considering a continuum posterior defined
by interpolating from the discrete space.



Our results fall in the class of asymptotic consistency results in machine learning. In general one is interested in
the asymptotic behavior of an objective functional, say E,, . (f,,), posed on a random sample of n points, and which
also depends on a parameter €, where f, is a real valued function defined at sample points. The limit is considered
as n — oo while €,, — 0 at appropriate rate. The limiting problem is described by a continuum functional E.,(f)
which acts on real valued functions supported on domains or manifolds. Also relevant is the (nonlocal) continuum
problem, E«, -(f) which describes the limit n — oo while € > 0 is kept fixed.

The type of consistency that is needed for the conclusions, and the one we consider, is variational consistency,
namely that minimizers of F,, . (f,,) converge to minimizers of E(f) as n — oo while &, — 0 at an appropriate
rate. Proving such results includes choosing the right topology to compare the functions on discrete domains
fn @ Q, — R with those on the continuum domain f : 2 — R.

Many works in the literature are interested in a simpler notion of convergence, namely that for a fixed, sufficiently
smooth, continuum function f it holds that £, ., (f) — E(f) asn — oo while g,, — 0 at an appropriate rate, where
by E, ., (f) we mean that the discrete functional is evaluated at the restriction of f to the data points. We call this
notion of convergence pointwise convergence. A somewhat weaker notion of convergence is what we here call iterated
pointwise convergence, namely considering lim._,o lim,, .o, E,, -(f). Note that neither pointwise convergence or
iterated pointwise convergence implies the convergence of minima/minimizers (as opposed to variational convergence).
Also relevant for problems based on linear operators (which in the setting of this paper is when p = 2) is spectral
convergence which asks for the eigenvalues and eigenvectors of the discrete operator to converge to eigenvalues and
eigenfunctions of the continuum one. Spectral convergence is typically sufficient in linear problems for the kind
of conclusions we are investigating, i.e. convergence of minima/minimizers. However for p # 2 the problems we
consider here are nonlinear.

Pointwise (and similar notions of) convergence of graph Laplacians was studied by Belkin and Niyogi [6],
Coifman and Lafon [14], Giné and Koltchinskii [40], Hein, Audibert and von Luxburg [42], Hein [41], Singer [55],
and Ting, Huang and Jordan [62]. Spectral convergence was studied in the works of Belkin and Niyogi [6] on the
convergence of Laplacian eigenmaps, von Luxburg, Belkin and Bousquet [66] and Pelletier and Pudlo [50] on graph
Laplacians, and of Singer and Wu [56] on the connection graph Laplacian. In these works on spectral convergence
either € remains fixed as n — oo or €, — 0 at an unspecified rate (i.e. it is shown that there exists a sequence
€n — 0 such that the conclusions hold as n — oo, but no bound on ¢, that guarantees convergence is provided).
The precise and almost optimal rates were obtained in [38] using variational methods. Further problems involve
obtaining error estimates between discrete and continuum objects. Laplacians on discretized manifolds was studied
by Burago, Ivanov and Kurylev [10] who obtain precise error estimates for eigenvalues and eigenvectors. Related
results on approximating elliptic equations on point clouds have been obtained by Li and Shi [45], and Li, Shi and
Sun [46]. Error bounds for the spectral convergence of graph Laplacians have been considered by Wang [67] and
Garcia Trillos, Gerlach, Hein and one of the authors [32]. Regarding graph p-Laplacians, the authors of [19] obtain
iterated pointwise convergence of graph p-Laplacians to the continuum p-Laplacian. Finally we mention that for a
different type of problems, namely for nondominated sorting, Calder, Esedoglu and Hero [13] have obtained uniform
convergence of discrete solutions to the solution of a continuum Hamilton-Jacobi equation.

To obtain the results on variational convergence of &Sp ) to géé’) needed to fully explain the asymptotics of
discrete regression problems we combine tools of calculus of variations (in particular I'-convergence) and optimal
transportation. This approach to asymptotics of problems posed on discrete random samples was developed by
Garcia-Trillos and one of the authors [37,38]. In [37] they introduce the T'LP topology for comparing the functions
defined on the discrete sets to the ones defined in the continuum, and apply the approach to asymptotics of graph-cut
based objective functionals. We refer to this paper for a description of the rich background of the works that underpin
the approach. In [38] the authors apply the approach to convergence of graph Laplacian based functionals. Consistency
of k-means clustering for paths with regularization was recently studied by Theil, Johansen and Cade, and one of
the authors [61], using a similar viewpoint. This technical setup has recently been used and extended to studies
on modularity based clustering [17], Dirichlet partitions [49], Cheeger and ratio cuts [39], neighborhood graph
constructions for graph cut based clustering [31], and classification problems [34, 60].

An alternative approach related to regression problems was developed by Fefferman and collaborators, Israel,
Klartag and Luli, who look for a function of sufficient regularity, that extends a function fT : E — R to the whole of
R? in such a way as to minimize the norm of the extension. They show that appropriate extensions exist and find
efficient constructions for C™ regularity [24,28,29], and for Sobolev regularity [25-27]. In the context of machine
learning this is a supervised learning problem and only makes use of the labeled data. In particular, the methods of
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Fefferman, Israel, Klartag and Luli do not use the unlabeled data {z;}} n ;-

Soon after the preprint of this paper was posted, Calder posted two preprints on closely related problems. In [11]
he studied the case p = oo (also known as Lipschitz learning) and obtained consistency results which recover the
problem with pointwise constraints in the large data limit. In [12] he considered semi-supervised learning with p-
Laplacian regularization. He considered the game theoretic p-Laplacian which was introduced to problems on graphs
in the paper by Manfredi, Oberman and Sviridov [47]. It is interesting to observe that the variational p-Laplacian (the
one studied in our paper) and the game-theoretic p-Laplacian coincide in the continuum setting, but differ on graphs.
While the results obtained are similar to ours, the techniques are quite different. For his results Calder used PDE
based techniques, while we rely on variational techniques. He shows that the game-theoretic p-Laplacian solution of
the problem has global Holder regularity (with n independent bounds) and uses this to prove the consistency of the
learning problem without an upper bound on €,, as n — oo. He does require a more restrictive lower bound on ¢,

namely &, > (II:—L”) Y max{d+4’3d/2}, for the convergence to hold.

2. Setting and Main Results. Let 2 be an open and bounded domain in R%. Let {(z;, ;) : i =1,...,N}
with z; € Q and y; € R be a collection of distinct labeled points. Throughout the paper we consider IV to be fixed.
Considering a model where N grows is an interesting problem, which we do not address here. We consider u to be
the measure representing the distribution of data. We assume that suppy = 2 and that 1 has density p with respect to
the Lebesgue measure. We assume that p is continuous and is bounded above and below by positive constants on 2.

We assume that unlabeled data, {z; };— N+1,... are given by a sequence of iid samples from the measure yi. The
empirical measure induced by data points is given by p,, = % S 04, Let G, = (Qn, By, W,,) be a graph with
vertices €2, = {z;}]_,, edges E,, = {e;;}]';,_; and edge weights W,, = {W;;}}',_,. For notational simplicity we
will set W;; = 0 if there is no edge between x; and ;.

We assume the following structure on edge weights

) Wij = ne(lzi — z;))

where n.(|z|) = 2 (lx‘> : [0,00) — [0,00) is a nonincreasing kernel and £ = ¢, is a scaling parameter

depending on n. For example, if (|z|) = Ij;<; then n-(|z|) is 2 if || < & and 0 otherwise. In this case vertices
are only connected if they are closer than ¢.

We consider two models: one where the agreement of the response with the training variables is imposed as a
constraint and the other where it is imposed via a penalty. We call these models constrained and penalized.

In the constrained model we construct our estimator as the minimizer of

11 &
6) ED(f =7—QZ i) = flxy)]

among {f : 2,, — R} which satisfy the constraint f(x;) = y; foralli =1,..., N.

For technical reasons it is convenient to include the constraints in the functional &, (P)

and hence we define

(7 g

n,con

(f):{s B 0 Wil f () = F(ay)Pif fwi) =y fori=1,2,...,N

00 else.

We now turn to the penalized formulation. For ¢ > 0 let

N
®) RO(f) ="y — flai)|".
i=1
We define the penalized estimator as the minimizer of
©) S (f) = EP(F) + AR (f)

over all functions f : 2,, — R, where A > 0 is a tunable parameter.
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We now introduce the continuum functionals that describe the limiting problems as n — co. Let

(10) EW(f) = {Un Jo IVf@)|F p*(z)dz  if f € WIP(Q),

00 else.

For p > d, Sobolev functions f € W are continuous and we can define

(P) . 1, N -
(11) gg%wﬁﬂ{gm(f) if f € W'(Q)and f(z;) = yifori=1,....N
7 00 else.
The constant o, above is defined, using e; = [1,0,..., O]T’ by

7= [ e le- el da.
Rd
To describe the limit of the penalized model in the large data limit we introduce
(12) SL(f) = EL(f) + AR (f).

The functional Ség) is well defined whenever p > d.

We note that functionals (11) and (12) are lower semi-continuous with respect to the L” norm. In addition,
coercivity of both functionals follows from Sobolev embeddings. Coercivity and lower semi-continuity imply
existence of minimizers, e.g. [30, Theorem 3.6]. Strict convexity implies that the minimizers are unique.

We are interested in asymptotic behavior of minimizers f,, of the discrete models, say &(L’f C)OH. We say that &(L’f C)on
is asymptotically consistent with géé’?con if the minimizers f,, of &(f,’ gon converge as n — oo to a minimizer of 5£?COH.
One should note the topology of the convergence f,, — foo is not at this stage clear.

We observe that since f,, : 2, — R, while f : Q@ — R this issue is nontrivial. We use the T'LP topology
introduced in [37] precisely to compare functions defined on different domains in a topology consistent with LP
convergence. We define the convergence rigorously in Section 3.

Another issue is the rate at which ¢,, is allowed to converge to zero. If €,, — 0 too quickly then the graph

becomes disconnected and hence it does not capture the geometry of €2 properly. The connectivity threshold [51]
1

1 1
is g, ~ (). We require (when d > 3) &, > (%) which means that our lower bound is almost optimal.
We have discovered that if €,, — 0 too slowly then the discrete functional 57(11,) 20n lacks sufficient regularity for the
constraints to be preserved in the limit. The optimal upper bound on ¢,, is discussed after Theorem 2.1.

We now state our assumptions needed for the main results.
(A1) Q c R%is open, connected, bounded and with Lipschitz boundary;
(A2) The probability measure p € P(€2) has continuous density p which is bounded above and below by strictly
positive constants in €2;
(A3) There exists N labeled points: (z;,y;) € 2 x Rfori =1,...,N;
(A4) For i > N the data points x;, are iid samples of p and u,, = % > i, 0z, is the empirical measure;
(A5) &, is a sequence converging to 0 satisfying the lower bound

VR ifd =1

ifd=2

1
(o)t ifa>s
(A6) The kernel profile i : [0, 00) — [0, 00) is non-increasing;
(A7) 7 is positive and continuous at z = 0;
(A8) The integral [;° n(t)[t[PT dt is finite (equivalently o) = [o. n(jw|)|w - e1]? dw < o0).
We note that Assumption (A2) implies that p is equivalent to the Lebesgue measure on €2 (denoted £ | ;). Hence,
€ LP(Q) if and only if f € LP(u), where with an abuse of notation we write L?(Q2) := LP(L|q).
y Iz
The first main result of the paper is the following theorem. The proof is presented in Section 4.
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THEOREM 2.1 (Consistency of the constrained model). Let p > 1. Assume §, u, n, and x; satisfy Assump-
tions (Al) - (A8). Let f,, be a sequence of minimizers Ofé'?g]jc)on defined in (7) with graph weights W;; given by (5).
Then, almost surely, the sequence (L, fr) is precompact in the TLP metric. The TLP limit of any convergent
subsequence, (fin,,, fn,, ), is of the form (u, f) where f € WP (Q). Furthermore,

(i) if nel — 0 asn — oo then f is continuous and
(a) the whole sequence f,, converges to f both in T L? and locally uniformly, meaning that for any Q' with
cQ
A ey (@) = fu(@i)] =0,
(b) [ is a minimizer ofgéop?con defined in (11);

(ii) if nel — oo asn — oo then f is a minimizer of&gg) defined in (10).

We note that in case (i) Assumption (A5) and ne?, — 0 as n — oo imply that n="/? > £ > n~/? which is
only possible if p > d. Therefore in case (i) we always have that functions f for which &E? is finite are continuous,
and thus it is possible to impose pointwise values of f, as needed to define 5£?Con in (11).

The result (i) establishes the asymptotic consistency of the discrete constrained model with the constrained
continuum weighted p-Laplacian model.

While the result (ii) looks similar its interpretation is different. It shows that the model “forgets” the constraints in
the limit. Namely, &Eé’) only has the gradient term and no constraints! In particular, its minimizers are constants over
€. This is due to f,, developing narrow spikes near labeled points {z;}}¥ ; and becoming nearly constant everywhere
else. In the T'L? limit the spikes disappear.

This motivates referring to the scaling nel — oo as n — oo as the degenerate regime. On the other hand, we
refer to the scaling of case (i) as the well-posed regime.

The other main result is the convergence in the penalized model. The proof is a straightforward extension of
Theorem 2.1 in the special case N = 0 (so that the constraint is not present). We include the proof in Section 4.2.
PROPOSITION 2.2. Letp > 1 and q > 0. Assume €1, u, n, and x; satisfy Assumptions (Al) - (A8). Let f,, be a
sequence of minimizers of&(lp) defined in (9) where X\ > 0, R\9 is given by (8), and &(zp) is given by (6) with graph
weights Wi; given by (5). Then, almost surely, the sequence (fir,, fr) is precompact in the T LP metric. The T LP limit
of any convergent subsequence, (fin, , fn,.), is of the form (u, f) where f € WYP(Q). Furthermore,
(i) if ne? — 0 asn — oo then f is continuous and
(a) the whole sequence f,, converges to f both in T L? and locally uniformly, meaning that for any Q' with
QL CQ
li —Jn =0,
A ety T 0o0) ~ S
(b) [ is a minimizer of&(ﬁ) defined in (12);
(ii) if nel — oo asn — oo then f is a minimizer of&gg) defined in (10).

Again the result of (i) is a consistency result, while (ii) shows that the penalization of the labels is lost in the limit.

Remark 2.3. The above results (Theorem 2.1 and Proposition 2.2) could also be extended to p = 1, in which
case the limiting functional éﬁé) would be a weighted 7'V semi-norm 5&1)) = 0,TV (-; p) where

TV (f;p) =sup {/QfdiV(bdx D o(x)] < pP(x) Vo e Q¢ € C?(Q;Rd)}.

A modification of the proofs contained here would prove the result, see also [37].

In Theorem 2.1 we proved that the model 5,(1{’ C)on, defined in (7), is consistent as n — oo and lower bounds (AS)
hold, only if

1
E>>€£"

This upper bound is undesirable as it restricts the range of € that can be used. In our numerical experiments (see
Figures 2(a) and 3(a)) we observe that the range of ¢ for which the limiting problem is well approximated can be
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quite narrow. This problem is particularly pronounced if p > d is close to d, which is the regime identified in [19] as
the most relevant for semi-supervised learning.

This motivated us to explore changing the model in such a way that it remains asymptotically consistent with
&E@?wn, but does not require an upper bound on ¢,, (other than £,, — 0 as n — 00). In Section 5 we introduce a new,
related, model which has the desired properties. Furthermore its minimizers can be computed with almost identical
algorithms as those for Er(f C)OH. More precisely, the minimization procedure remains unchanged, and one only has to
increase the size of the constraint set. The new model is asymptotically consistent as n — oo, and €,, — 0, whenever
(AS) holds.

While in the original model the minimizers of the objective functional for a fixed, large n have a desired behavior
in a sometimes narrow band of admissible ¢,,, we observe in numerical experiments (see for example Figure 5) that
for the improved model the error grows gradually with €,,, as opposed to becoming catastrophic as ¢,, reaches a
certain threshold.

3. Background Material. In an effort to make this paper more self-contained we briefly review three key ideas
our work relies on. The first is I'-convergence which is a notion of convergence of functionals developed for the
analysis of sequences of variational problems. The second is optimal transportation, and the third is the T'LP space
which we use to define the convergence of discrete functions to continuum functions.

3.1. I'-Convergence. I'-convergence was introduced by De Giorgi in 1970’s to study limits of variational
problems. We refer to [8, 16] for an in depth introduction to I'-convergence. Our application of I'-convergence will be
in a random setting.

DEFINITION 3.1 (I'-convergence). Let (Z,d) be a metric space, L°(Z; R U {40} be the set of measurable
functions from Z to RU{xo0}, and (X, P) be a probability space. The function X > w — EW € LY(Z;RU{*o0})
is a random variable. We say E,Sw T-converge almost surely on the domain Z to E, : Z — R U {zxo0} with respect
to d, and write E = I'-lim,,_, o Ey(,,w), if there exists a set X' C X with P(X') = 1, such that for all w € X' and
all f € Z:

(i) (liminf inequality) for every sequence { f,,

')
n=1

converging to f

Eoo(f) <liminf E“)(f,), and
n—oo

(ii) (recovery sequence) there exists a sequence { f, }5°_, converging to f such that

E(f) > limsup E,(L“’)(fn).

n—oo

For ease of notation we will suppress the dependence of w on on our functionals, that is we apply the above
definition to £, = Er(Lp ). The almost sure statement in the above definition does not play a significant role in the proofs.
Essentially it is enough to consider the set of realizations of {x;}5°, such that the empirical measure converges weak™.
More precisely, we consider the set of realizations of {x;}$2, such that the conclusions of Theorem 3.3 hold.

The fundamental result concerning I'-convergence is it implies the convergence of minimizers. The proof can be
found in [8, Theorem 1.21] or [16, Theorem 7.23].

THEOREM 3.2 (Convergence of Minimizers). Let (Z,d) be a metric space and E,, : Z — [0, 00| be a sequence
of functionals. Let f, be a minimizing sequence for E,,. If the set { f,}22, is precompact and E+, = T'-lim,, E,,
where E, : Z — [0, 0] is not identically oo then

min F, = lim inf E,,.
A n—oo Z

Furthermore any cluster point of { f }52 4 is a minimizer of E.
The theorem is also true if we replace minimizers with almost minimizers.
We note that I'-convergence is defined for functionals on a common metric space. Section 3.3 overviews the

metric space we use to analyze the asymptotics of our semi-supervised learning models, in particular it allows us to
go from discrete to continuum.



3.2. Optimal Transportation and Approximation of Measures. Here we recall the notion of optimal trans-
portation between measures and the metric it introduces. Comprehensive treatment of the topic can be found in books
of Villani [64] and Santambrogio [53].

Given Q C R? is open and bounded, and probability measures y and v in P(Q) we define the set II(j, v)
of transportation plans, or couplings, between p and v to be the set of probability measures on the product space
7 € P(2 x Q) whose first marginal is 1 and second marginal is . We then define the p-optimal transportation
distance (a.k.a. p-Wasserstein distance) by

inf / x—ypdﬂx,y>p ifl<p<oo
dp(p,v) = ’”EH(#J’)<Q><Q| [ dn(,9)

inf 7w-esssup |z — y| if p = oc.
m€M(p,v) (z,y)

If © has a density with respect to Lebesgue measure on {2, then the distance can be rewritten using transportation
maps, 1" : 2 — (), instead of transportation plans,

1
P
inf /x— )P d ) ifl<p<oo
e = 4t ([ = TP ante) »
inf p-esssup |z — T(x)] if p=o0.
Typ=v T

where T’y = v means that the push forward of the measure ;. by T is the measure v, namely that T' is Borel
measurable and such that for all U C Q, open, u(T-*(U)) = v(U).

When p < oo the metric d,, metrizes the weak™ convergence of measures.

Optimal transportation plays an important role in comparing the discrete and continuum objects we study. In
particular, we use sharp estimates on the co-optimal transportation distance between a measure and the empirical
measure of its sample. In the form below, for d > 2, they were established in [36], which extended the related results
in [1,43,54,57]. For d = 1 the estimates are simpler, and follow from the law of iterated logarithms. More precisely

the map T}, (x) = x;, where = € (2'1@17 zf")] and p((—oo0, zfn)}) = i/n, is the optimal transport map (assuming x;

cumulative distribution functions for y, p,,. The empirical cumulative distribution function converges in L> with rate
|/ nlnn 1“" , see [63, Section 19.1] by the law of iterated logarithms.

are ordered: x; < x;41), and one can show inf,cq p(z)||T, — Id||p~(q) < ||F — FnHLoc(Q) where F, F}, are the

THEOREM 3.3. Let Q C RY be open, connected and bounded with Lipschitz boundary. Let i be a probability
measure on ) with density (with respect to Lebesgue) p which is bounded above and below by positive constants. Let
T1,Ts, ... be a sequence of independent random variables with distribution p and let |1, be the empirical measure.
Then, there exists constants C > ¢ > 0 such that almost surely there exists a sequence of transportation maps
{T,}22, from i to u,, with the property

T, — 1d|[ e~ T, —Id|| oo
n—roo On n—so0 On
where
Inln(n) ifd=1
3
_ (Inn)4 1
Op = v ifd=2
(Inn)d lfd >3

|

n

3.3. The T'L? Space. The discrete functionals we consider (e.g. 5,(37 )) are defined for functions f, : Q,, —» R
where Q,, = {x;}7_,, while the limit functional &) acts on functions f+ Q —= R, where ) is an open set. We
can view f,, as elements of L?(y,,) where ., is the empirical measure of the sample u,, = % St 0z, Likewise
f € LP(u) where p is the measure with density p from which the data points are sampled. One would like to compare
f and f,, in a way that is consistent with the L? topology. To do so we use the T'LP space that was introduced in [37],
where it was used to study the continuum limit of the graph total variation (that is, 87(11)). Subsequent development of
the T'LP space has been carried out in [38, 58, 59].

10



To compare the functions f,, and f above we need to take into account their domains, or more precisely to
account for p and p.,. For that purpose the space of configurations is defined to be

TLP(Q) = {(1 f) : peP(Q), f € LP(u)} .

The metric on the space is

iy (1, £), (v,9)) = inf { /

Qx

o~y + 1f(@) — g) P dr(e,y) 7 € T(n, u>}
Q

where I1(u, 1) the set of transportation plans defined in Section 3.2. We note that the minimizing 7 exists and that
T LP space is a metric space, [37].

As shown in [37], when p has a density with respect to Lebesgue measure on §2, then the distance can be rewritten
using transportation maps 7', instead of transportation plans,

dpp ((n, f), (v, ) = inf {/Q |z =T ()" + |f(z) — g(T(x))[" dpu(z) : Typ = V}

where the push forward of the measure 1.4 1 is defined in Section 3.2. This formula provides an a-¢lear interpretation
of the distance in our setting. Namely, to compare functions f,, : €2, — R we define a mapping T, : Q — ,, and
compare the functions f,, = f, o7}, and f in L? (1), while also accounting for the transport, namely the |z — T}, (z)|?
term.

We remark that the T'LP () space is not complete, and that its completion was discussed in [37]. In the setting
of this paper, since the corresponding measure is clear from context, we often say that f,, converges in T'LP to f as a
short way to say that (u.,, f,) converges in T'LP to (i, f).

4. Regularity and Asymptotics of Discrete and Nonlocal Functionals. Here we present some of the key
properties of the functionals involved that allow us to show the asymptotic consistency of Theorem 2.1. A fundamental
new issue (compared to say [38]) is that constraints in Eég) are imposed pointwise on a set of ;, measure zero. [The
reason that these constraints make sense is that for p > d the finiteness of 5&;)( f) implies that f is continuous.]
We note that the T'LP convergence used in [38] is not sufficient to imply that constraints are preserved. One needs
a stronger convergence, like the uniform one. This raises the question on how to obtain the needed compactness
of sequences f,, that is how to show that uniform boundedness of 5,(1{3 C)OH( fn) implies the existence of a (locally)
uniformly converging subsequence. Our approach combines discrete and continuum regularity results. Namely,
we obtain in Lemma 4.1 a local control of oscillations of f;,, over distances of order £,,. In Lemma 4.2 we show
that discrete functionals &(Lp ) (fn) control the values of the associated nonlocal continuum functionals 55(5 L.p) ( fn)
(defined in (16) below) applied to an appropriate extrapolation frn Of fn. A simple but important point is that the
discrete functionals at fixed n are always closer to a nonlocal functional with nonlocality at scale €,,, than to the
limiting functional, namely for a fixed f € C1(Q), ) (f) is the Monte Carlo integral approximation of EE(iVL’p ) (f)
which approximates Ség ) (f) only as €,, — 0. In particular, the issue is that the nonlocal functionals do not share the
regularizing properties of the limiting functional. Only a weaker form of regularity holds. Ta-particutar; We show in
Lemma 4.3 that control of the nonlocal energy is sufficient to provide regularity at scales larger than ¢,,. Combining
these estimates is enough to imply the compactness with respect to (locally) uniform convergence in Lemma 4.5.

We state the discrete regularity results in a deterministic setting for finite, fixed n, under the assumption on the
smallness of do, (1, £t ). When applying the lemma in the random setting this condition will hold due to Theorem 3.3.

LEMMA 4.1 (discrete regularity). Let p > 1. Suppose that Q0 and p satisfy Assumptions (Al) - (A2) and n
satisfies Assumptions (A6) - (A8). Lete, > 0and x; € Qfori=1,...,n. Let S,Sp) be defined by (6), with graph
weights W;; given by (5), and Q,, = {x;}]—,. For fn : Q, — R, we define oscgn)(fn) :Q, = Rby

oscgn)(fn)(xi) = zeBgcl-ang fu(z) — zeB(rxn-i?)mQ fn(2).

Then, for all ag > 0, there exists b > 0 (depending only on n and ) and C > 0 such that whenever do (1, fin) <
1

sbey:

8 n

(osc2, (fu)(an))" < Canshe® (£,),

SJoralla > g, all fr, : Q, = R, and all k € {1,2,... ,n}
11



Proof. Let7) : [0,00) — [0, 00) be defined by 7(¢t) = a if 0 < ¢ < b and 7j(t) = 0 otherwise, where a and b are

chosen such that 77 < 7. We can furthermore choose b so that b < ag. Forall k € {1,...,n} let
fn(zy) = max fn(2), Ty € argmax  fn(2),
z€B(zk, 5% )Ny, zeB(wk,bZ”)ﬂQn
in(ac;g) = mli?n fn(2), x € argmin fn(2).
z€B(zk, 5% )Ny 2€B(zy, bZ" )Ny,

Note that osc'”) (f,)(zx) = () — £, (xx) and forall z € B (z, %52) NQ,
2

i) falzr) = fa(z) >
or (i)  falz) = [ (zx)>

OSCl)ETn(fn>(l‘k)7

05Cusy (Fa) (1)

Without a loss of generality we assume that (i) holds for at least half the points in B (x ks b€2" ) N Q,. Then,

n

() 2 <y 3 1 () i) - o

En

Y

1,j=1

H% ‘ Z 1 <|a_7k8$]|> |fn($j) — fu(@)|P

2
En M e~z | <ben n
. 7 . _ be
4 = prd 2 Z |[fn(zj) — fn(Zk)P,  since |z — Ty < 7"
" Jilaj—wn| <P
. P ; ben
= prightdp2 (o5 (F)@n))” # {J gy — ] < 5 }

bey,
= gy (o Gn)en)) (8 (20,5 )

where p, = % > 04,. Now, for a transport map T}, : Q@ — €, from f to fu,,, satisfying the conclusions of
Theorem 3.3, we have

1 bey, 1

ed o ook <85 || Tn=1d] Lo @)}

. b T, —1d||p~ ()
= (mlIelg p(z)) Vol (B <O, Ch— R

(14)

Since doo (ft, i) < gben, combining (13) and (14) gives

P 2w+ PP (f,)
(15) (oscﬁ(fn)(xk)) < — n =: Clsﬁn&(lp)(fn).
2 a(infzeq p(z)) Vol (B (0, %b))
Note that the constant C; does not depend on n, €,, or xj.
Lety = %= and let m = [52]. Let
z* e argmax  fu(2) and xz.€  argmin  f,(2).
2€B(xk,aen)Ny, 2EB(z,0e, )Ny,

Forj=0,...,mletz;, = %x* + %x* Note that |21 — 25| < 2ep0/m < /2. Since doo (1, pin) < §bn, for
all j =0,...,m there exists x;; € 2, N B(z;, ). We observe that |z;, |, — 2| < |z, , — 21|+ |21 — 2] <.
12



Therefore,

08Cac,, (fn)(Tr)

|
=
—~

8
*

I
~
—~

8

*
=

Using that aig > b, for o > g from (15) it follows that

(oo ()" < (5 (swposcuss ()w0) < Caretmeld (1)

Zi

where C' = C4 (%)p. a

LEMMA 4.2 (discrete to nonlocal control). Letp > 1. Assume S, u, 1, and x; satisfy Assumptions (A1) - (AS).
Let constants a,b > 0 be such that j(|x|) = a for |x| < b and 7)(|z|) = 0 otherwise, and so that i} < 0. Let T,, be
a sequence of transport maps satisfying the conclusions of Theorem 3.3 and let €, = €,, — w. Define
57(3) ) (;m) by (6), with graph weights W;; given by (5), and where we explicitly denote the dependence of 1. Then,
there exists constants ng > 0 and C' > 0 (independent of n and f,) such that for all n > ngy

ENEP)(f, 0 Tsif) < CEP) (fuim)

where EéfL’p ) is defined by

(16) e (i) = 5 [ [ nale = 2DIf@) = FF p@p(z) do .

r—z
En

Proof. Assume < bthen

1T, () = To(2)] < 2Ty — 1d|| ey + |2 — 2| < 2| T — 1d|| oo () + b = b

So,

and therefore

totlh o () s on g (@B
n en ETI
Hence,
_ [ |z — 2| _ (| Tn(z) — To(2)] Tn(z) — Tn(2)|
< <
" ( En =1 En =1 €n
Now,
_ gd
ENTT (o Tus) < / 12 (1T (@) = Ta(D)) | fulTa (@) = Fu(Ta(@)” pla)p(z) da dz
517114-17
< ég_;,_p gép)(fm 77)'
Since g—z — 1 we are done. O
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In the next lemma we show that boundedness of non-local energies implies regularity at scales greater than
€. This allows us to relate non local bounds to local bounds after mollification. We say that J is a mollifier if
J € C2(RY,[0,00)), [paJ(x)dz =1,and J.(z) = & J(z/e).

LEMMA 4.3 (nonlocal to averaged local). Let p > 1 and assume that Q) and p satisfy Assumptions (Al) - (A2),
and n satisfies Assumptions (A6) - (A8). Then, there exists a constant C > 1 and a radially symmetric mollifier J
with supp(J) C B(0, 1) such that for all e > 0, f € LP(Q2), and any ' CC ) (i.e. for every Q' that is compactly
contained in Q) with dist (€Y', 0Q) > € it holds that

EL(Jo x [; ) < CENED(f;.2).

(NL,p) .

where &ﬁé’) is defined by (10) and &z is defined by (16), and for both functionals we explicitly denote the
dependence on the domain (rather than the kernel n).

Proof. By the continuity of 7 at zero we can find some b € (0, 1] such that n(|x|) > 7(0)/2 > 0 for all
|x| < b. Let J be a radially symmetric mollifier whose support is contained in B(0, b). There exists 5 > 0 such that
J < Bn(]-])and |VJ| < Bn(] -|). Without loss of generality we can assume supp(n) C [0, 1]. Let g. = J. * f. For
arbitrary « € Q with dist(x, Q) > & we have

Vge(z)] = \ JRZACEENOLE

/VJ (x—2) (f(z) — f(x)) dz — Ve (v —2) f(z)d=

RI\Q

= Qn('“ ')|f<> F@)l dz iy /M\w(x

where the second line follows from [, V.J(w) dw = 0. For the second term we have

1 T
— vJ
gdtl /Rd\ﬂ <

since for all z € R?\ Q and = € Q with dist(z,09) > ¢ it follows that [z — z| > ¢ and thus V.J (%) = 0.
Therefore, for ~,, = fB(o 1y 1(w]) dw,

)\ F@) da.

) @z =o

|Vge(x)[P < BP (/Q %na(m —2) If(2) = f(=)] dz)p

_5;7%;; ne(|z — 2|) — f(r) dz b
=2 (= - s az)
<o [ o - LTI g,

by Jensen’s inequality (since % Jgane(lz — z]) dz = 1). Hence,
n

/Q/ |Vge(x)|? p*(x) da < 75_15p/52/§27]5(|3:—z|) ’f(z);f(x) P

'75)7_16]7 Sup,cq P(2) (NL.p)
. EP(f:9)
inf,eq p(x)
which completes the proof. a

p*(x)dzdx

‘We now establish the compactness property for sequences bounded in L°°. The result follows by combining
Lemma 4.2, known results in the literature and a simple interpolation argument.

PROPOSITION 4.4 (compactness). Let p > 1. Assume ), u, n, and x; satisfy Assumptions (Al) - (A8). Let
En ) pe defined by (6), with graph welghts W,; given by (5), and Q,, = {x;}}_,. Then, with probability one, any

sequence fy, : 0, — Rwith sup,,cy ) (fn) < o0oandsup,, ey || fullLoo(u,) < 00 has a subsequence f,,, such that
(tn,, s [, ), converges in TLP to (u, f) for some f € LP ().
14



Restricting the space to the set of functions bounded in L°° is needed since the functionals &(,,p ) are invariant under
adding a constant. When applying this proposition to prove Theorem 2.1, this restriction is not an issue since both
discrete and continuum minimizers of the constrained functionals satisfy an L°° bound. Nevertheless let us briefly
discuss the compactness of the functionals with constraints, &(L’f C)on( fn). If lim,_, o neP = oo (i.e. in the degenerate
case) assuming an L°° bound is essential since the limiting functional aﬁﬁ? is invariant under adding a constant and
thus the loss of constraints in the limit which occurs when lim,,_,., ne? = oo would lead to loss of compactness.
When lim,,_,~, nel = 0 then the constraints are present in the limit and in particular there is enough regularity to
infer a bound on sup,, ¢y || fn |l Lo (.,,) Whenever sup,, ¢y 5,(1{’ ();OH( fn) < 0o. Hence, when lim,,_, o ne?, = 0 one could

remove the assumption on L* bounds in a compactness result for &(f C)OH.

Proof of Proposition 4.4. As in Lemma 4.2, let T,, be a sequence of transport maps satisfying the conclusions
of Theorem 3.3 and let &,, = ¢,, — w. Consider also 7 of Lemma 4.2. Then Eéfl“’p)(fn oTy;n) <

P
C&(lp)(fn; 7). By Jensen’s inequality, 5gyL’p)(fn oTy;n) >c (EéivL’l) (frn 0 T 77)) for some ¢ > 0 and all n. By

the proof of Theorem 1.2 in [37], f,, o T}, is precompact in Lt (1) and thus (g, fr) is precompact in TL'.
We note that from the proof of Theorem 1.2 in [37] it follows that there in fact exists a subsequence f,, , and a
sequence of transportation maps (T5,,, )4/t = fin,, such that

m

Jim [ f = fo,, 0 Tl (u) + [T, = 1d]| oo (uy = 0.
Since || f — fu,, ©Tn, oo () < 1l zoe (u) +5uPnen | frll 2o (un) < 00, the convergence of i, to fin T'LP follows
by interpolation. a

LEMMA 4.5 (uniform convergence). Consider the assumptions and the graph construction of Proposition 4.4.
Assume that e2n — 0 as n — oo (which, due to (AS5) implies that p > d), (fin, frn) = (i, f) in the T LP metric as
n — 00, and sup,,cy Eﬁp)(fn) < o0. Then f € C97(Q), withy =1 — % > 0, and for all Q) compactly supported
in Q

— Jfn —0 — 00.
" }gggﬂ,}\f(xk) fa(zr)| asmn — 0o
Moreover, ifforallk =1, ..., N, fo(xr) = y for all n, it follows that f(xy) = yx.

Proof. Consider constants a,b > 0 such that 7j(t) := a if [t| < band 7j(t) := 0if [t| > b satisfies 7 < 7.
We define f,, = f, o T,, where T,, is the transportation map satisfying the conclusions of Theorem 3.3 and set
&, =¢,— ML{)HL“M Then, for n sufficiently large &, > 0, and & — 1. Let gEEiV L.p)

energy defined in (16). Then, by Lemma 4.2

be the non-local Dirichlet

géiVL’p)(fMﬁ) < Cgfzp) (fm "7)'

Hence, EéivL’p ) (fn;7) is bounded. Therefore, by Lemma 4.3, we have that ep) (Jz, * fn; V) (where J is a mollifier
with the properties given in Lemma 4.3) is bounded for every Q' CC €2 (i.e. forevery ' that is compactly contained
in Q). Furthermore [|.Jz, * fo|l zr) < || fnllLr (o) (see for example [44, Theorem C.19(ii)]). From this L” bound
and

O (J. % i Q) > inf p? .+ ],
goo (JEn * f’I’L7777Q ) = Un (;('IIEle]p ($)> HV(JEn * fTL) Lp(Q/)

it follows that J; * f is locally bounded in W7, i.e. sup,en || /e, * anWLp(QI) < 0o. We also note that since
fn o T, converges to f in LP(u),

[z, % fr = fllory < |1Jep * fo — Je, % f+ Jz, % f = fllon
< ||fn = fllzey + 1 Je, % f = fllzr@y =0 asn — oc.

Since Jz, * f,, — f in LP(€'), by the compactness of the embedding of W?(€) into C* for y = 1 — % (Morrey’s
inequality, for example see Theorem 4 in Section 5.6.2 of [23]), we have that

Jz, % fn — f uniformly on €' asn — oco.
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Therefore, for each k € {1,...,n}, Jz, * f, converges uniformly to f on B(z}, &) for any & such that B(zy,,8) CC Q.
Condition (A5) and Theorem 3.3 imply that with probability one, for all n large enough the requirement deo (14, fr,) <
ében of Lemma 4.1 is satisfied. Thus, for all n sufficiently large, for all x € B(xy, 2€,,) N, we have

=

[Far) = fa(@)] < 0562z, (f) () < 0scse, (fa) (2) < (CEW (fu)neh)
where C' > 0 is independent of n. It follows that

ma;
{k: xkEQ’}xEB(ak,Qan)ﬂQ
To complete the proof we notice that for any Q' CC Q
max xg) — fn(Tk
a1 @) = fu(a)

max | f(zr) — Jz, * fulzr)| + | Tz, * fu(zn) — fo(z)]

= {kizpeq)

< = Je % Fallimay +  max / Jo, (@5 — 2) | fu(Ta(@)) — fu(es)] da
{k:2eQ'} JB(0,6,)

< —J= % Fllyeorer ma u n(x) — T

SIS e Bl 4 max s f(e) (o)

and the above converges to zero.
Clearly, if f, (x;) = y; for all n then, choosing " sufficiently large such that z; € ', we have

|f (i) —yi| = |f(zi) = falzs)| < max |f(zk) — fu(zk)| — 0.

{k:xre}

Hence, f(z;) = yi. o

4.1. Asymptotic Consistency via I'-Convergence. We approach proving Theorem 2.1 using I'-convergence.
Namely, as pointed out in Section 3.1, convergence of minimizers follows from I'-convergence and compactness.

We use the general setup of [37]. In particular, we first establish in Lemma 4.6 that nonlocal functionals EE(fLVL’p )

T"-converge to Exo (?) We then state and prove the I'-convergence of 57(, “¢on towards &%) or 5§£?wn depending on how

quickly ,, — 0 as n — oo. Steps in the proof of this claim rely on Lemma 4.6.

LEMMA 4.6 (continuum nonlocal to local). Let p > 1. Suppose that Q) and u satisfy Assumptions (Al) - (A2)
and n satisfies Assumptions (A6) - (A8). Then Es(NL’p) , defined in (16), T-converges as n — oo in LP(QY) to the
functional &Eé’) defined in (10).

If p is constant and {2 is convex this result is contained in the appendix to [3]. For general (2 it follows from
Theorem 8 in [52]. We remark that while the functional in [52] appears different the term |z — y|? which arises can

be absorbed in the kernel. The results can be extended to general p in a straightforward manner as has been done for
p = 1in Section 4 of [37] and has been remarked in Proposition 1.10 in [38].

We now state the I'-convergence result. Its proof is divided into two lemmas below. The corresponding
compactness property has already been established in Proposition 4.4.

THEOREM 4.7 (discrete to local I'-convergence). Let p > 1. Suppose that ), u, n, €,, and x; satisfy
Assumptions (AI) - (A8). Let M > max;—1,.. n |yi|- Then, with probability one, 57(1{’ Qon , defined in (7) with graph
weights W;; given by (5), I'-converges as n — oo in the T LP metric on the set { (v, g) : v € P(Q), |9l L) < M}
to the functional

{gég?COﬂ lf lim,, 00 TLE‘Z =0

Eéé’) if lim,, o0 nel = 00

where EL) is defined by (10) and EL.on is defined by (11).
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We prove the liminf inequalities and the existence of a recovery sequence separately. Since 5§£> < aﬁé’?con the
liminf inequalities needed can be stated in the following way.

LEMMA 4.8. Under the same conditions as Theorem 4.7, with probability one, for any f € LP(u) with
| fllos () < M and any sequence f, — f in TLP with || fu| 1o (u,) < M we have

17) ED(f) <liminf EP)(f,) < hmmf5<P> (fn).

n—oo

Furthermore if lim,,_,o ne? = 0 then

(18) EDon (£) < liminf EX), (f2).
n—oo
Proof. Let f,, — fin T LP. The first inequality of (17) follows from Lemma 4.6 in the same way the analogous

result is shown for p = 1 in Section 5 of [37]. The second inequality follows from the definition of &y, () and Sn con-
When lim,, ;. nef = 0 the inequality (18) is a consequence of Lemma 4.5. a

We now prove the existence of a recovery sequence. Since &Eﬁ ) < &EZ ,)Con we state it in the following way.

LEMMA 4.9. Under the same conditions as Theorem 4.7, with probability one, for any function f € LP(u), with
| fll oy < M there exists a sequence f,, satisfying fn, — f in TLP with || fy| o (u,) < M and

(19) gg)) con(f) Z hm Sup n, COI](fn)

n—oo

Furthermore if lim,,_,o nel = oo then

(20) EB(f) > limsup £F), (fn)-

n,con
n—oo

Proof. The proof of the first inequality is a straightforward adaptation of the analogous result for p = 1 in
Section 5 of [37]. The recovery sequence used is defined as a restriction of f to Q,,: f.(x;) = f(x;) for all
i =1,...,n, and thus satisfies the constraints and || f;, || .o (,,,) < M.

The same argument and recovery sequence construction can be used to show that with probability one, for any
function f € LP(u), with || f|| oo (n) < M there exists a sequence f;, satisfying f,, — f in TLP with || f,,|| Lo (1) <
M and

Q1) EP)(f) > limsup EP)(f,.).

n—oo

Let us now consider the case that ne? — 0o as n — oo and show the second inequality. Suppose &Sé” (f) <0
else the lemma is trivial. Let f,, be the recovery sequence for (21).
We define f, : Q,, = Rby

A Yi fort=1,...,N,
folz;)) fori=N+1,....n

We note that f,, — f in T'L? with || f,,|| Lo (un) < M. To show (20) it suffices to show that

@2) lim_ (£0(£) = E7n(fa)) = 0

n—oo

We may write,

N n
A 1 2
EP ()~ ERLon )| < g S0 D el — ) 117 ) — 1) P — Iy — F )]
n i —
23) B e
2P MP 1
< —— . ZE Ne, (|70 — x5

—

1= j=1
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Step 1. Let us consider first the case that for some a,b > 0, n(t) = a if |[¢t| < band n(t) = 0 otherwise. Since,
tin(B(zi,enb)) = p({z : |Th(z) —ai| <enb}) <p({z ¢ |z — ] <enb+ Id— Tl r=() })
then, using Theorem 3.3,

1 & a
= e, (l2i — 25]) = — pin(B(zi,€0))
n j:1 En

IN

a
E—du(B(xi, enb + [|1d — T L ()

nb Id — T, || e
<a (5 + || | o< ()

En

d
) Vol(BO. ) ooy < C.

Combining this inequality with (23) implies (22).
Step 2. Now consider general n satisfying (A6) - (A8). Let

n(t) otherwise.

(t) = {n(O) if e <1

Note that 7 is radially nonincreasing, 77 > 7, and that 7j((|z| — 1)4.) < 7(|x|/2). Theorem 3.3 implies that for n large
I1d — Ty o< () < €n. Consequently,

n

1 & 1 _
EZnsn(\xi —j|) < EZnan(lxi — )
j=1

= 51;{_/9" ('xi _;:"(y)> du(y)

1 |z — vy

— —d <C

= /Qn < o uly) <
where the penultimate inequality follows from

|zi — Tn(y)] > (|~T yl =l Il (sz)) - (Ix y 1) _
+ +

IN

En En En

Again combining this estimate with (23) implies (22). a

We now state the I'-convergence result relevant for the penalized model Sflp ).

LEMMA 4.10. Under the conditions of Proposition 2.2 we have:
o (compactness) Any sequence fp, : £, — R with sup,,cy S,(Lp)(fn) + || fullLos (u,) < 00 has, with probability
one, a subsequence f,, such that there exists f € WLP with f, — fin TLP.
o (T-convergence, well-posed regime) If ebn — 0 then, with probability one, on the set (i, frn) with
Il frllos () < M,

I-lim (5797) + AR(‘”) = £ 4 AR@

n—oo

where the I'-convergence is considered in the T LP topology.
o (T-convergence, degenerate regime) If ebn — oo then, with probability one, on the set (fin, frn) with
an”Lw(N") <M,

I-lim (553’> + /\R(q)) =)

n—oo o0
where the I'-convergence is considered in the T LP topology.
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Proof. The compactness follows directly from Proposition 4.4.

When e2n — 0, for the liminf inequality assume f, — f in T'L? and liminf,,_, &(f )( fn) < co. Then, by
Lemma 4.5, f,(xx) — f(xg) forall k € {1,..., N} and hence AR (f,) — AR@(f). By (17) of Lemma 4.8

we have liminf,,_, (&(f) (fn) + /\R(‘I)(fn)> > Ség)(f) + AR (f). The limsup inequality follows in a similar
manner from equation (21) and Lemma 4.5.
If ePn — oo, then the liminf inequality follows from (17) of Lemma 4.8, while, the limsup inequality follows
directly from
limsup P (f,) + AR (f) < limsup EP),,,(f) < EL(F)

n,con
n— oo n—00

and Lemma 4.9. a

4.2. Proofs of Theorem 2.1 and Proposition 2.2. The I'-convergence and compactness results above allow us
to prove Theorem 2.1. It is a general result that I'-convergence and compactness imply the convergence of minimizers
(as well as of almost minimizers) to a minimizer of the limiting problem, see [8, Theorem 1.21] or Theorem 3.2.

Proof of Theorem 2.1. Note that, by [51, Theorem 13.2], with probability one the graph is eventually connected.
For the remainder of the proof we assume 7 is chosen large enough so that the graph is connected. Let f,, be a mini-

,,,,, N il I || fullLoe (u,) > M then fn defined by fn = max{min{ f,,, M}, —M}

satisfies 57(11,73011( fn) < Er(f C)OH( fn) hence f,, is not a minimizer. Thus, for n sufficiently large, || f, || Lo (un) < M, and
we can restrict the minimization to the set of (f,, ut,,) such that || f,,[| o (,.,,) < M. This allows us to consider the
setting of Theorem 4.7.
By the compactness result of Proposition 4.4 there exists a subsequence f,,, converging in TLP to f € LP(u).
To prove (i) assume that ne?2 — 0 as n — oo. The uniform convergence of statement (a) then follows from

Lemma 4.5. The I'-convergence result of Theorem 4.7 implies that f minimizes &Eé’?con. Since the minimizer of
Eég?con is unique the convergence holds along the whole sequence.
To prove (ii) assume that ne? — 0 as n — oco. Again, Theorem 4.7 implies that f minimizes aﬁ’o’). a

Note that, in the above proof, if the graph is disconnected then any minimizer f,, of &(Lp ) can be redefined on

any connected component that does not contain labeled data without changing the value of &(Lp 20n. In particular,
say {x;}icz, where Z, C {1,...,n} is a connected component, and assume there is no labeled data in Z,, i.e.

min{i € Z,} > N. Then, for a minimizer f,, of 57(,’,’3011 one can define f,,(2;) = Q fori € Z, and f,,(2;) = fn(x;)
otherwise. It follows that 5,(,’,’ gon( fn) < S,(f C)on( fn) and hence fn is also a minimizer. Taking () — oo asn — oo
leads to a lack of compactness.

Note also that the connectivity of the graph is necessary in multiple places, for example Proposition 4.4. Indeed,
Assumption (A5) implies that &,, > ||T;, — Id|| ., since the connectivity radius of the graph can be bounded from
above by 2||T;, — Id|| - then, with probability one, we eventually have that ¢,, is greater than the connectivity radius.

The results of the Proposition 2.2 are proved by the same arguments; using Lemma 4.10 instead of Theorem 4.7.

5. Improved Model. Let us restrict ourselves to when p > d. We recall that our main results thus far have been
to show that constrained minimizers of &(Lp ), and the related penalized formulation Sy(lp ), given by (9), are consistent
as n — oo only if the lower bound (AS) holds and % > eP. As remarked earlier (in Section 2), and demonstrated by
our numerical experiments, this results in a narrow band of admissible ¢,, for which the discrete models, &ng C)on and

S,(lp ) , are good approximations of the continuum models, 5§£?COH and ng). In order to remove the upper bound, and
hence widen the range of admissible €,,, we propose a new model that is consistent for any €,, — 0 satisfying the
lower bound (A5).

We define the set of functions which are constant near the labeled points:

Cff):{fzﬂn%R . f(zr) =y; whenever |z —x;| <dfori=1,..., N}

Let L = min{|z; — ;| : ¢ # j, and4,j € {1,...,N}}/2 and R,, = min{(1 + a)e,,, L} for @ > 0. The new
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functional is defined by

(24) FP)

n,con

else.

8

() = {” S Wil () — flay)lP it f € O

Since, for n sufficiently large, R, = (1 + «)e, in the sequel we will just define R,, = (1 + «)e,,. We note that
7(L;,Dc20n(f) > gfz@on(f) and for f S Cr(LRn)» T(Lpgon(f) = g’flpgon(f)

For asymptotic consistency we still need to require p > d, since only then is the limiting model Eéé’?con well
defined. In Theorem 2.1 this followed from the assumption ne? — 0 as n — oo. Since we no longer require the
upper bound on €,, we need to require p > d explicitly.

THEOREM 5.1 (consistency of the improved model). Letp > d. Assume ), u, 1, and x; satisfy Assumptions (Al)
- (A8). Let f,, be a sequence of minimizers off,(fgon defined in (24) with R,, = (1 + )&, a > 0, and graph weights
W,; given by (5). Then, almost surely, the sequence (fin, fr) is precompact in the T L? metric. The T LP limit of any
convergent subsequence, (ji,, , fn, ), is of the form (u, f) where f € WYP(Q) is a minimizer of&g?con defined in
(11) (with EL defined in (10)).

Proof of the theorem is a straightforward modification of the proof of Theorem 2.1. It relies on the following
I"-convergence result.

THEOREM 5.2 (discrete to local I'-convergence). Let M > max;—1 . n |yi|. Under the conditions of The-

orem 5.1, with probability one, fy(fgon T-converges as n — oo in the TLP metric on the set {(v,g) : v €
P(Q), |g9llLe@) < M} to the functional 5£?Con.

We note that inequalities (17) of Lemma 4.8, and Proposition 4.4 hold for ]-',(f ) . since &(f ) n < .7-",97’ ) . We now

turn to proving the liminf property and the existence of recovery sequence needed to show that .F,(f 20,] I"-converges in
the T'LP topology to 5£§?mn.

LEMMA 5.3. Under the conditions of Theorem 5.1, with probability one, for any f € L>(u) with || f|| o () <
M and any sequence f, — f in TLP with || fu|| o (u,) < M we have

05 E®) o (f) < liminf FE) (fa)-

o0, con
’ n—00

Proof. Let (pun, fn) be a convergent sequence in T'LP, such that f,, are uniformly bounded in L*(u,,), and

liminf,, o0 ]—',(f C)OH( fn) < oo. Note that in contrast to Lemma 4.8 we no longer require ne? — 0 as n — oo.
Therefore we can no longer use the uniform convergence of Lemma 4.5.

Nevertheless, since for n large f, = y; on B(xz;, (1 + a)ey,) and [[Id — T, ||z~ () < ae, we have that
T (z) — 23] < (1+ «)e, for z € B(x;,e,), hence fn := fnoT, = y; on B(z;,&,) and consequently for
Gn = J=, % fp itholds that g, (x;) = ;. Furthermore, note that lgn |l (o) < M. By the bounds of Lemma 4.2 and
Lemma 4.3, g,, is uniformly bounded in W17 (€)’) for any ' CC Q (€' compactly supported in §2). Arguing as in
the proof of Lemma 4.5 we conclude that g,, — f in LP(Q). Since p > d, W' is compactly embedded in the space
of continuous functions. This implies that g,, uniformly converges to f on sets compactly contained in 2. Therefore
flx;) =y; foralli = 1,..., N. Combining this with statement (17) of Lemma 4.8 yields (25). a

LEMMA 5.4. Under the conditions of Theorem 5.1, with probability one, for any f € L () with || f|| e () <
M there exists a sequence f, — f in TLP with || fu| oo () < M such that

(26) EP)on(f) = limsup FP) (fn)-

c0,con
n—oo

Proof. Assume || f| o,y < M and &()g,)con(f) < oo. Then f € W1P(Q) and since p > d, f is continuous.
Furthermore f(z;) = y; foralli =1,..., N.

If there exists > 0 such that f € W1P(Q) satisfies f(z) = y; forallz € B(z;,6) andi = 1,..., N then the
proof of (26) is the same as the proof of (19). In particular, one can use the restriction of f to data points to construct
arecovery sequence.
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To treat general f in W1P(Q) it suffices to find a sequence g, € W1P(Q) satisfying the conditions above,
namely such that ||g, ||~ < M, gn(z) = y; for all z € B(x;,9,) for a sequence é,, > R, converging to zero,
which satisfies
(27) hm gzgg)con(gn) = Ecgg)con(f)‘

n—oo ’ ’
We construct the sequence in the following way. Let 6 be a cut-off function supported in B(0, 1 + «). That is assume
6 : RY — [0,1] is smooth, radially symmetric and nonincreasing such that § = 1 on B(0,1), § = 0 outside of
B(0,1+ «), and |V8| < C. Define 05(z) = 0(z/9).
We first consider the case N = 1. Let

gn (@) = (1 =05, (x — 1)) f(2) + 05, (x — x1)y1.

Then,
ELan(:) = ELean(N] < 0 [ [IVan@)l? = V5@ |5(2) e
<o, | (IVgn(@)l” + [V f(@)]") p*() da.
B(z1,(14a)dy,)

We estimate

/ [Vgn|Pp® dz < 2p/ (I(f(z1) = F(@)) Vs, (& — 21) [P + |V f(2)[?) p*(z) dz.
B(z1,(14a)8,) B(z1,(14a)dn)

Using that f € C01-4/P and furthermore, by the remark following Theorem 4 in Section 5.6.2 of [23] (where
Theorem 4 is Morrey’s inequality) we obtain

/ |(f (@) = f(21)) Vb5, (z = 20)[Pp?(x) dz < C108 "IV FIIT0 (par. (15006, V05 1o et
B(w17(1+a)5n)
< Ol||Vf||€p(3(x1,(1+a)5n))HVGHZEP(R‘Z)'

Since lim,, o B(zr,(14+0)5n) |V f(z)[P dx = 0, by combining the inequalities above we conclude that (27) holds.
Generalizing to N > 1 is straightforward. a

6. Numerical Experiments. The results of Theorem 2.1 show that when £ n — 0 then the solutions to the SSL
problem (7) converge to a solution of the continuum constrained problem (11), while when P n — oo they degenerate
as n — oo. However, in practice, for finite n, this does not provide precise guidance on what ¢ are appropriate. We
investigate, via numerical experiments in 1D and 2D, the affect of € on solutions to (7) in elementary examples. We
also numerically compare the results with our improved model (24).

6.1. 1D Numerical Experiments. Let y be the uniform measure on [0, 1] and consider 7 defined by 7(t) = 1
if t < 1and n(t) = 0 otherwise. We consider two different values of p: p = 1.5 and p = 2. The training set is
{(0,0), (1, 1)}, that is we condition on functions f;, taking the value 0 at 1 = 0 and taking the value 1 at x5 = 1 (so
N = 2). We avoid using p = 1 since any increasing function f with f(0) = 0 and f(1) = 1 is a minimizer to the
limiting problem Séé?con. For p > 1 the solution to the constrained limiting problem is fT(z) = z (note that this is
independent of p). Since fT is continuous we can consider the following simple-to-compute notion of error:

(28) ert (fu) = 1 — T Lo ()

To find minimizers of (7) we use coordinate gradient descent. We enforce the constraints by choosing an
initialisation that agrees with the training data and only updating coordinates that are not part of the training data
set thereafter. The number of data points varies from n = 80 to n = 5120. For each n, € and p we consider 100
different realizations of the random sample {x;}?_, and plot the average results. When ¢ is too small the graph is
disconnected and we should not expect informative solutions, when ¢ is large we expect discontinuities to arise and
cause degeneracy. In Figure 2(a) and Figure 3(a) we plot the error as a function of ¢ for fixed n = 1280. We see clear
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(c) The output of the algorithm, f,,, for nine realizations of
the data forn = 1280 and ¢ = 69'5).

Fig. 2: 1D numerical experiments averaged over 100 realizations for (7) with p = 1.5.

regions where ¢ is too small and where ¢ is too large, with the intermediate range producing good estimators. Plots of
minimizers for a particular ¢ in the “large-¢" region, see Figure 2(b), show that minimizers converge to a constant
outside of the training data.
To measure how the transition points in €, where minimizers change behavior, scale with n, we define the
following:
(i) Given arealization {z¢'}?_; let e¢onn(n; w) be the connectivity radius for the particular realization, w, that is
Econn (12;w) is the smallest & such that the graph with weights W;; = ne(|zf" — x4|) is connected. The value

M . .. . . ..
Econn(n) = ﬁ > i1 Econn(n; w;) is the average connectivity radius. We considered M = 100 realizations.

(i1) sip ) (n) is the empirically best choice for &, namely the & that minimizes err%p ) (fn) where f,, is the minimizer
of (7) with €,, = ¢; again averaged over M = 100 realizations.
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the connectivity bound €conn, the red square is the optimal
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The blue line is the observed percentage of connected graphs
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Fig. 3: 1D numerical experiments averaged over 100 realizations for (7) with p = 2.
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(a) Error (28) for n = 1280 and p = 1.5. The solid line is the (b) Error (28) for n = 1280 and p = 2. The solid line is the
mean error, the dashed lines are the 10% and 90% quantiles. mean error, the dashed lines are the 10% and 90% quantiles.

Fig. 4: Error shifted by connectivity radius using the same results as in Figures 2 and 3.

(iii) 6511;,)per (n) is the upper bound on ¢ for which the algorithm behaves well, which we identify as the maximizer

of the second derivative of —err'”’ (frn) with respect to €, among € > e (n). While computing sl(ff))per(n)

we smooth the error slightly so that the method is robust to small perturbations. As above the value is
averaged over 100 realizations.

All of these points are highlighted in Figure 2(a) and Figure 3(a). In Figure 2(d) and Figure 3(b) we plot how

these values of € scale with n. The best linear fit (based on five largest values of n) in the log-log domain gives the

23



0.6+ 100 1t
{
1
05y 180 08t
! =
[ 3
04 g
& 160 £ 0.6F
=~ ] 2
e 03F Z o8
5 g
G & 041
X
02}
%
€ Q
(a) Error (28) for n = 1280. The black line is the mean error, (b) We plot the functions output from the algorithm corre-
dashed lines are the 10% and 90% quantiles. The blue dot is sponding to multiple realizations of the data for n = 1280
the connectivity bound €conn. The blue line is the observed and € = 0.045 (marked in yellow in Figure (a)).

percentage of connected graphs for a given €.

Fig. 5: 1D numerical experiments averaged over 100 realizations for model (24) with p = 2 and o = 1.

following scalings

y 0710 1.905

)~ e () % 5

) 3.472 Lo07

e (n) ~ ~5515 “Ubper () ¥ 551
3.342

€C0nn(n) ~ W

We observe that asymptotic scaling established in Theorem 2.1 for al(ﬁ,)per is ﬁ forp =2 and ﬁ for p = 1.5,

In(n)

n

which is very close to our numerical results. The true scaling in the connectivity of the graph is , our numerical

results behave approximately as no—lm We note that if we instead fit €.onn (1) & ¢ (IHT")& we obtain ¢ = 1.266 and
a = 1.024.

We observe that optimal choice 59 ) is quite close to the connectivity radius conn (7). Choosing ¢ smaller than
Econn (1) results in a large error due to trivial solutions, i.e. when the graph is disconnected minimizers are piecewise
constant. To further investigate the proximity of the connectivity radius and the optimal choice of € we plot in
Figure 4 the error as the function of the size of ¢ relative to the connectivity radius. More precisely, we consider
errglp ) (fn;€,w), where f,, is the minimizer of (7) for given ¢ and realization w, as a function of &€ — £¢onn (n; w) and
then average over M = 100 realizations. We observe that, for both p = 1.5 and p = 2, the error is smallest when ¢ is
quite close to the connectivity radius. The slight difference is that for p = 1.5 there is a short interval beyond the
connectivity radius where the error is still decreasing.

Remark 6.1. Numerical experiments indicate the close proximity of the optimal epsilon to the connectivity radius,
both for the original model and the improved model and both in 1D and 2D. This is not obvious since for € small (i.e.
close to the connectivity radius) the discrete p-Laplacian (i.e. the Euler—Lagrange equation of Eflp ) (f)) evaluated for
a fixed smooth function f may fail to converge pointwise to the continuum p-Laplacian (the Euler-Lagrange equation
of W (f)) as n — co. Namely as is shown in [55] for p = 2, if &,, is small the variance can be large. Explaining
the observed behavior of the error is an interesting open problem that we believe should be approached from the
viewpoint of stochastic homogenization.

The improved model (24), for which we show results in Figure 5, is far more robust to the choice of . We plot
the error as a function of ¢ for n = 1280 and we see a much larger range in the admissible choices of €. Note that
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percentage of connected graphs for given €.

Fig. 6: 2D numerical experiments averaged over 100 realizations for (7) with p = 2.
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(a) Error (29) for n = 1280. The black line is the mean error,
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the observed percentage of connected graphs for a given €.

(b) Orange triangles are E.(;;)per, red squares are sgfl), and blue
dots are £conn. Lines show the linear fit over the last 5 points.

Fig. 7: 2D numerical experiments averaged over 100 realizations for (7) with p = 4.

the horizontal axis covers a much larger range on Figure 5(a) compared to Figure 3(a). The comparison shows that
model (7) does not produce a reasonable output when & 2 0.04, while all outputs of (24) (when ¢ is larger than the
connectivity radius) are close to the solution of the continuum model with constraints, i.e. 5£§?wn.

6.2. 2D Numerical Experiments. Let u be the uniform measure on Q = [0, 1] x [0, 1], and n(¢) = 1if [¢| < 1,
n(t) = 0 otherwise. In 2D the critical value of p is p = 2, and we therefore choose to investigate p = 2 and p = 4.
The training set is 1 = (0.2,0.5), x5 = (0.8,0.5), with labels y; = 0, yo = 1. In contrast to the 1D example the
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Fig. 8: Realizations of (7) with p = 4 and n = 1280 for a select choices of €. Only the part of the domain near labeled point 2 is
shown. The grids are to aid visualization.

solution to the continuum problem (11) (in the well-posed regime) depends on p and furthermore cannot be solved
analytically. To estimate the solution we discretized (11) on a uniform grid and ran a gradient descent algorithm to
approximate the minimizer. In the case when p = 4 we plot our numerical approximation of the continuum minimizer
to (11) in Figure 1(b). For p > 2 we define the error by

(29) ert® () = |1 fa — PN 1o ()

where P> minimizes (11). In the ill-posed case (p < 2) any constant function is a minimizer to the continuum
problem, in which case we define the error as

(30) err(f)(fu) = inf [|fn = ellogu-

To find minimizers of (7) for p = 4 we use coordinate gradient descent with constraints enforced similarly to
when d = 1. For p = 2 we use the method of [70] that exactly solves the Euler Lagrange equation ((L,, f); = 0,
where L,, is the graph Laplacian, for i > 2 and f; = 0, fo = 1). The number of data points varies from 80 to 5120.
We use 100 different realizations of the data {z; }?_; for each choice of n, & and p.

Figure 6 shows the results in the ill-posed regime, for p = 2 and n = 1280. We observe that the solutions form
spikes in order to satisfy the constraints. Spikes are present for all € beyond the connectivity threshold, and grow as €
increases (recall that the solution to the continuum problem is a constant and therefore the error decreasing indicates
convergence to a constant solution with spikes around the two training data points).

Figures 1 and 7 show the results for p = 4 which is in the well-posed range. Figure 1(a) presents the numerically
computed discrete minimizer for the optimal radius € = a(f). We observe in Figure 7(a) that, similarly to 1D, for €
below the average connectivity radius, or when ¢ is large, the error is high, and is smallest for € slightly larger than
the connectivity threshold. In contrast to the 1D results we do notice that the transitions between the well-posed and

ill-posed regime is gradual.

We find that the numerical scaling for z—:&p ), sfﬁ,)per, and e.ony (With the same definitions of quantities as in the 1D

experiments in the previous subsection) are

_0.654 _ 1.368

1.394 4
~ 139 elper (M) ¥ —5575 Econn(R) ~ 1o

7 p0.452 upper

M (n)

The connectivity radius should scale according to 4/ lnfl"), which is close to our observed rate of 72452 (in fact

. . . 0.526
when linear fitting In € to Inn one obtains €eonn ~ 0.829 ( ) 7

n
—0.25

Inn

- ). Our theoretical predictions give the scaling of

4 . .
the upper bound as 5511))per =n , close to our numerical rate of n 0270,

In Figure 8 we show instances of numerically computed minimizers of (7) for increasing values of €. They show
that the breakdown of the numerical approximation of the continuum solution happens via development of spikes.

As in the 1D examples we investigate the proximity of the optimal radius 65}’ ) (n;w) to the connectivity radius

E€conn (1; w), where w is the sample considered. In Figure 9(a) we plot the error, errgp ) (fn;w), against € — £conn (N; W)
26



0.4

err(D (fn)

0 0.05 0.1 0.15 0.2 0.25

€ — Econn

(a) Error (29) using the same results as in Figure 7. The solid
line is the mean error, the dashed lines are the 10% and 90%

quantiles.

(b) Example graph in 2D for ¢ = eW (n) and n = 1280.

Fig. 9: Error dependency on the connectivity radius and the graph for optimal ¢, for n = 1280 and p = 4.
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(b) We plot an example of a function output from the al-
gorithm corresponding to n = 1280 and ¢ = 0.1 for the
constraint set of size € (marked in yellow in Figure (a)). The
grid is to aid visualisation.

Fig. 10: Experiments for improved model (24) with n = 1280 and p = 4 averaged over 100 realizations.

for n = 1280 and p = 4, averaged over 100 samples. The phenomenon we observe is similar to the 1D case; the error
is large and highly variable for £ below the connectivity radius. There is a sharp transition to the well-posed regime,
as soon as the graph is connected with the error increasing with €. As we explain in Remark 6.1 it is an intriguing and
important open problem to explain why the error is the smallest for rather coarse graphs (Figure 9(b)).

Our theoretical result in Section 5 showed that minimizers of the improved model, (24), converge as n — co to
the correct solution if 1 > &,, > (Inn/n) 1 ¢ regardless of how slowly €, — 0. Here we numerically investigate two
issues. One is how the error of the improved model depends on ¢ for fixed n. The other is to compare the observed
error of the improved model to the original model. Recall that in the improved model we prove convergence when the
labels are extended around the training set to balls of radius (1 + «)e where o > 0. This is needed in our proof to



ensure that spikes do not form. Here we numerically investigate if extending the labels to smaller balls, in particular
choosing « € (—1, 0], is sufficient to prevent spike formation. In Figure 10(a) we display the error for fixed n = 1280
and constraint ball radii 2¢, € and £/2. The numerics show that even radius /2 is sufficient to prevent spike formation
and that it allows for better approximation of the continuum solution. We also observe that fixing the labels on larger
sets can significantly negatively impact the accuracy of approximation. This issue is less pronounced for larger values
of n, where the connectivity radius is small, and hence the constraint set can be chosen to be small. For example,
for n = 1280 the connectivity radius is approximately &conn(1280) &2 0.05, therefore a ball of radius 2 ¢,y (1280)
accounts for about 3% of the total domain. On the other hand the connectivity radius for n = 5120 is approximately
€conn (5120) = 0.03 and therefore a ball of radius 2e¢0,nn (5120) accounts for about 1% of the total domain. Clearly,
the larger n the smaller we can choose the constraint set and therefore the smaller the additional error.
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