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Abstract. We investigate a family of regression problems in a semi-supervised setting. The task is to assign real-valued labels to a set of n

sample points provided a small training subset of N labeled points. A goal of semi-supervised learning is to take advantage of the (geometric)

structure provided by the large number of unlabeled data when assigning labels. We consider random geometric graphs, with connection radius

ε(n), to represent the geometry of the data set. Functionals which model the task reward the regularity of the estimator function and impose or

reward the agreement with the training data. Here we consider discrete p-Laplacian regularization.

We investigate asymptotic behavior when the number of unlabeled points increases while the number of training points remains fixed. A

delicate interplay between the regularizing nature of the functionals and the nonlocality inherent to the graph constructions is uncovered. Rigorous,

almost optimal, ranges on the scaling of ε(n) for asymptotic consistency are obtained and in these admissible ranges it is shown that minimizers

of the discrete functionals converge uniformly to the desired continuum limit. Furthermore, we discover that, for the standard model, there is a

restrictive upper bound on how quickly ε(n) must converge to zero as n → ∞. A new model is introduced, which is as simple as the original

model, but overcomes this restriction.
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1. Introduction. Due to its applicability across a large spectrum of problems semi-supervised learning (SSL)

is an important tool in data analysis. It deals with situations where one has access to relatively few labeled data

points but potentially a large number of unlabeled data points. We assume that we are given N labeled points

{(xi, yi) : i = 1, . . . , N, xi ∈ R
d, yi ∈ R} and n−N unlabeled points {xi : i = N + 1, . . . , n} drawn from a

fixed, but unknown, measure µ supported in a compact subset of Rd. The goal is to assign labels to the unlabeled

points by taking advantage of the information provided by the full data set Ωn = {xi}
n
i=1. In particular, the unlabeled

points carry information on the structure of µ, such as the geometry of its support, which can lead to better estimators.

To represent the geometry we build a graph whose vertices are Ωn and connect them if they are close enough, that is

if they are within some distance ε > 0. More generally, the edge weights are prescribed by a decreasing function

η : [0,∞) → [0,∞) with limr→∞ η(r) = 0. For a fixed scale ε > 0 we set the weights to be

Wij = ηε(|xi − xj |)

where ηε =
1
εd
η(·/ε).

The label propagation problem is to find an estimator u : Ωn → R which agrees with preassigned labels. To

solve the regression problem one considers objective functionals which penalize the lack of smoothness of u and

take the structure of the graph into account. In particular, we consider the functionals which generalize the graph

Laplacian, namely the graph p-Laplacian. A particular objective functional we consider is

(1) E(p)
n (f) =

1

εpnn2

n
∑

i,j=1

Wij |f(xi)− f(xj)|
p.

We consider minimizing E
(p)
n (f) under the constraint that

(2) f(xi) = yi for all i = 1, . . . , N.

A numerically computed example of the minimizer of the functional is shown in Figure 1(a).

We investigate the asymptotic behavior in the limit when the number of unlabeled data points n goes to infinity

while the number of training data points N is fixed. This is consistent with the semi-supervised learning paradigm

of having few labeled points and an abundance of unlabeled data. As n → ∞, εn → 0 to increase the resolution
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(a) A minimizer of (1) under constraint (2) for ε = 0.058 and

η = 1[0,1] and n = 1280. The grid is to aid visualization.
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(b) Minimizer of the continuum functional (3) under con-

straint (2).

Fig. 1: A 2D numerical experiment for measure µ with density one on [0, 1]2, training data x1 = (0.2, 0.5) and x2 = (0.8, 0.5)
and labels y1 = 0 and y2 = 1, and p = 4.

and limit the computational cost. Namely, as εn is the length scale over which the information on µ is averaged,

taking εn to zero ensures that the finer scales of µ are resolved as more data points become available. As regards

the computational cost, for small εn and compactly supported η, the matrix (Wij) of edge weights is sparse. More

precisely the number of edges, is proportional to εdn. The cost of computing the gradient of the functional grows

linearly with the number of edges, as does the number of nonzero entries of the Hessian of the functional. This

directly affects the complexity of numerical methods used.

While in this paper we consider data distributed in a set of full dimension, we remark that there are no essential

difficulties to extend the results to the manifold setting, namely one where µ is a measure supported on compact

manifold M of dimension d embedded in R
D. Such extensions have already been done for related problems

concerning the graph Laplacian [32], where the modification of background results (such as optimal transportation

estimates) has been carried out.

The continuum limiting problem corresponds to minimizing

(3) E(p)
∞ (f) = σ

∫

Ω

|∇f(x)|
p
ρ2(x) dx,

where σ is a constant that depends on η, subject to the constraint that f(xi) = yi for i = 1, . . . , N . A numerically

computed minimizer of the functional is shown in Figure 1(b). Finiteness of E
(p)
∞ (f) implies that f lies in the Sobolev

space W 1,p(Ω). For the constraints to make sense it is needed that pointwise evaluation of functions is well defined,

which is the case only if p > d when Sobolev embedding ensures that functions in W 1,p are continuous. When p ≤ d
and d > 1, one cannot expect to be able to impose pointwise data. Indeed, spikes were observed in discrete models

with graph-Laplacian-based regularizations (that is for p = 2) by Nadler, Srebro and Zhou in [48] who also argued

that they arise since there exist functions with arbitrarily small energy E
(p)
∞ (f), for p = 2, which agree with labels on

the training set. In [19] El Alaoui, Cheng, Ramdas, Wainwright and Jordan go a step further and suggest p = d as the

transition point between the regime where spikes appear and where solutions are “smooth”. They argue, based on

the Sobolev embedding theorem, that for p ≤ d the minimizers of E
(p)
n (f) can develop spikes as n → ∞, while for

p > d they should not develop spikes (the authors consider p ≥ d+ 1, but the same argument applies for p > d). The

authors also argue that for data purposes taking p > d and close to d is optimal since as p → ∞ the solution forgets

the information provided by the unlabeled points and only depends on the labeled ones.

Our initial goal was to verify the conclusions of [19]. More precisely, our aim was to show that constrained

minimizers of E
(p)
n (f) converge as n → ∞, in the appropriate topology, to minimizers of E

(p)
∞ (f), subject to

constraints when p > d, and without constraints when p ≤ d. However we discovered an additional phenomenon,
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namely that the undesirable spikes in the minimizers to graph p-Laplacian can occur even when p > d. Namely, [19]

shows pointwise convergence of the form

lim
ε→0

lim
n→∞

E(p)
n (f) = E(p)

∞ (f),

when f is smooth enough. However considering a fixed function f is not sufficient to conclude that the constrained

minimizers of E
(p)
n converge to constrained minimizers of E

(p)
∞ . In fact answering that question requires a set of

tools from applied analysis which we discuss below. We show, roughly speaking, that for d ≥ 3 the convergence of

minimizers holds if and only if

(4)

(

1

n

)
1
p

≫ εn ≫

(

lnn

n

)
1
d

as n → ∞.

The lower bound above is related to the connectivity of the graph and is well understood, [37, 38]. Our lower bounds

for d = 1, 2 contain additional correction terms and are not optimal. Our upper bound implies that the models are in

fact not consistent for a large family of scalings of ε on n that were thus far thought to ensure consistency (namely

for 1 ≫ εn ≫ n−1/p). Our work indicates that careful analytical approaches are needed and are in fact capable of

providing precise information on asymptotic consistency of algorithms.

In the “ill-posed” regime εpnn → ∞, under the usual connectivity requirement (which when d ≥ 3 reads

εdn
n

lnn → ∞), we are still able to establish the asymptotic behavior of algorithms. Namely, we show that minimizers

of E
(p)
n with constraints converge, along subsequences, as n → ∞ and εn → 0 to a minimizer of E

(p)
∞ without

constraints. Of course, minimizers of E
(p)
∞ without constraints are constant functions. Hence, the labels are forgotten

in the limit as n → ∞. This explains why, for large n, minimizers of E
(p)
n are ‘spiky’. The need to consider

subsequences in the limit is due to the fact that minimizers of E
(p)
∞ without constraints are nonunique (any constant

function is a minimizer).

While the degeneracy of the problem when p ≤ d was known, [19], we believe that degeneracy when p > d and

εpnn → ∞ is a new and at first surprising result. The heuristic explanation for the appearance of spikes is that the

discrete p-Laplacian does not share the regularizing properties of the continuum p-Laplacian. Namely, the discrete

p-Laplacian still involves averaging over the length scale ε and thus more closely resembles an integral operator (the

one in (16) to be precise). This allows high-frequency irregularities to form, without paying a high price in the energy.

In particular, if we consider one labeled point taking the value 1, say fn(x1) = 1, while fn(xi) = 0 for all i ≥ 2 then

E(p)
n (fn) =

2

εpnn2

n
∑

j=2

1

εdn
η

(

|x1 − xj |

εn

)

=
2

εpnn
ηεn ∗ µn(x1) → 0

as n → ∞, when εpnn → ∞ and where µn = 1
n

∑n
i=1 δxi

is the empirical distribution. Note that fn exhibits

degeneracy while E
(p)
n (fn) → 0.

In addition to the constrained problem above we also consider the problem where the agreement with the labels

{yi}
N
i=1 is imposed through a penalty term. Our results and analysis are analogous.

Using the insights of our analysis, we define a new model which is quite similar to the original one, but for which

the asymptotic consistency holds with the only upper bound requirement being that εn → 0 as n → ∞.

To prove our results we use tools from the calculus of variations and optimal transportation. In particular, we use

the setup for convergence of objective functionals defined on graphs to their continuum limits developed in [37]. This

includes the definition of the proper topology (TLp) to compare functionals defined on finite discrete objects (graphs)

with their continuum limits. However the TLp topology, which is an extension of the Lp topology, is not strong

enough to ensure that the labels are preserved in the limit. For this reason we also need to consider a stronger topology,

namely the one of uniform convergence. Proving the needed local regularity results for the discrete p-Laplacian

(Lemma 4.1) and the compactness results needed to ensure the locally uniform convergence are the main technical

contributions of the paper. We note that to the best of our knowledge, our results are the first where one proves

(locally) uniform convergence of minimizers of nonlinear functionals in random discrete settings to the minimizers of

the corresponding continuum functional.

Our results on the asymptotic behavior of minimizers do not provide any error estimates for finite n and do not

provide precise guidance on what ε would lead to the best approximation. In Section 6, we numerically investigate
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prototypical examples in one and two dimensions to shed some light on these issues. We numerically observe the

predicted critical scalings for εn given in (4). We also numerically compare the results with our improved model (24).

In investigating how precisely the observed error depends on ε we find that the error is smallest when ε is quite close

to the connectivity radius on the graph. Rigorously explaining the phenomenon is, in our opinion, a valuable open

problem.

The paper is organized as follows. We complete the introduction with a review on related works. In Section 2

we give a precise description of the problem with assumptions and state the main results. Section 3 contains a

brief overview of background results we use. This includes a description of the TLp topology, which we use for

discrete-to-continuum convergence, and a short overview of Γ-convergence and optimal transportation. Section 4

contains the proofs of the main results given in Section 2. In Section 5 we present an improved model that, while

similar to the constrained problem for E
(p)
n (f), is asymptotically consistent with the desired limiting problem even

when εn → 0 slowly as n → ∞. We conclude the paper with 1D and 2D numerical experiments in Section 6.

1.1. Discussion of Related Works. The approach to semi-supervised learning using a weighted graph to

represent the geometry of the unlabeled data and Laplacian based regularization was proposed by Zhu, Ghahramani

and Lafferty in [70]. It fits in the general theme of graph-Laplacian based approaches to machine learning tasks such

as clustering, which are reviewed in [65]. See also [7] for a recent application to semi-supervised learning. Zhou and

Schölkopf [68] generalized the regularizers of [70] to include a version of the graph p-Laplacian. The p-Laplacian

regularization has also been used by Bühler and Hein in clustering problems [9], where values of p close to 1 are

of particular interest due to connections with graph cuts. Graph based p-Laplacian regularization has found further

applications in semi-supervised learning and image processing [20–22]. These papers also make the connection to the

∞-Laplacian, which is closely related to minimal Lipschitz extensions [15].

While the approach of [70] has found many applications it was pointed out by Nadler, Srebro and Zhou [48]

that the estimator degenerates and becomes uninformative in d ≥ 2, when the number of unlabeled data points

n → ∞. Almagir and von Luxburg [2] explored the p-resistances, the resulting distance on graphs, and connections

to p-Laplacian regularization. Based on their analysis they suggested that p = d should be a good choice to prevent

degeneracy in the n → ∞ limit. El Alaoui, Cheng, Ramdas, Wainwright and Jordan [19] show that for p ≤ d the

problem degenerates as n → ∞ and spikes can occur. They argue that regularizations with high p ≥ d + 1 are

sufficient to prevent the appearance of spikes as n → ∞, and lead to a well-posed problem in the limit. Here, we

make part of their claims rigorous, namely that if p > d then the asymptotic consistency holds only if εn converges to

zero sufficiently fast (εpnn → 0 as n → ∞). If p > d and εpnn → ∞ as n → ∞ we prove that the problem is still

degenerate as n → ∞ and that spikes occur. We also introduce a modification to the discrete problem (by modifying

how the agreement with the assigned labels is imposed) which is well posed when p > d without the need for εn to

converge to 0 quickly.

There are other ways to regularize the SSL regression problems which ensure that no spikes occur. Namely,

Belkin and Niyogi [4, 5] consider estimators which are required to lie in the space spanned by a fixed number of

eigenvectors of the graph Laplacian. Due to the smoothness of low eigenvectors of the Laplacian this prevents the

formation of spikes. One can think of this approach in energy based setting where infinite penalty has been imposed

on high frequencies. A softer, but still linear, way to do this is to consider (fractional) powers of the graph Laplacian,

namely the regularity term Jn(u) = 〈cLα
nf, f〉 where Ln is the graph Laplacian, and α > 0. This regularization

was studied by Belkin and Zhou [69] who argue, again via regularity obtained by Sobolev embedding theorems,

that taking α > d
2 prevents spikes. However Dunlop, Stuart, and the authors of this paper have discovered a similar

phenomenon whereby the limit may be degenerate, and spikes can occur, if εn converges to zero too slowly, namely if

nε2αn → ∞ as n → ∞ [18].

García Trillos and Sanz-Alonso [35] have studied a problem in semi-supervised learning quite similar to the

one in [18]. There they impose information on the data (via the observation operator) on the set of positive measure,

instead of points, and obtain the convergence of posteriors in a Bayesian inverse problem on graphs with prior

proportional to exp(−Jn(u)), which is a richer structure than the minimizers we study. It is interesting to observe

that they also require nε2αn → 0 to show the convergence. Somewhat similarly, the upper bound on εn is used to

control high frequencies. There it controls the contribution of high frequency modes of the graph Laplacian, while

here we use the upper bound to establish the regularity of minimizers. For the same model as [35], García Trillos,

Kaplan, Samakhoana and Sanz-Alonso [33], remove the upper bound by considering a continuum posterior defined

by interpolating from the discrete space.
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Our results fall in the class of asymptotic consistency results in machine learning. In general one is interested in

the asymptotic behavior of an objective functional, say En,ε(fn), posed on a random sample of n points, and which

also depends on a parameter ε, where fn is a real valued function defined at sample points. The limit is considered

as n → ∞ while εn → 0 at appropriate rate. The limiting problem is described by a continuum functional E∞(f)
which acts on real valued functions supported on domains or manifolds. Also relevant is the (nonlocal) continuum

problem, E∞,ε(f) which describes the limit n → ∞ while ε > 0 is kept fixed.

The type of consistency that is needed for the conclusions, and the one we consider, is variational consistency,

namely that minimizers of En,εn(fn) converge to minimizers of E∞(f) as n → ∞ while εn → 0 at an appropriate

rate. Proving such results includes choosing the right topology to compare the functions on discrete domains

fn : Ωn → R with those on the continuum domain f : Ω → R.

Many works in the literature are interested in a simpler notion of convergence, namely that for a fixed, sufficiently

smooth, continuum function f it holds that En,εn(f) → E∞(f) as n → ∞ while εn → 0 at an appropriate rate, where

by En,εn(f) we mean that the discrete functional is evaluated at the restriction of f to the data points. We call this

notion of convergence pointwise convergence. A somewhat weaker notion of convergence is what we here call iterated

pointwise convergence, namely considering limε→0 limn→∞ En,ε(f). Note that neither pointwise convergence or

iterated pointwise convergence implies the convergence of minima/minimizers (as opposed to variational convergence).

Also relevant for problems based on linear operators (which in the setting of this paper is when p = 2) is spectral

convergence which asks for the eigenvalues and eigenvectors of the discrete operator to converge to eigenvalues and

eigenfunctions of the continuum one. Spectral convergence is typically sufficient in linear problems for the kind

of conclusions we are investigating, i.e. convergence of minima/minimizers. However for p 6= 2 the problems we

consider here are nonlinear.

Pointwise (and similar notions of) convergence of graph Laplacians was studied by Belkin and Niyogi [6],

Coifman and Lafon [14], Giné and Koltchinskii [40], Hein, Audibert and von Luxburg [42], Hein [41], Singer [55],

and Ting, Huang and Jordan [62]. Spectral convergence was studied in the works of Belkin and Niyogi [6] on the

convergence of Laplacian eigenmaps, von Luxburg, Belkin and Bousquet [66] and Pelletier and Pudlo [50] on graph

Laplacians, and of Singer and Wu [56] on the connection graph Laplacian. In these works on spectral convergence

either ε remains fixed as n → ∞ or εn → 0 at an unspecified rate (i.e. it is shown that there exists a sequence

εn → 0 such that the conclusions hold as n → ∞, but no bound on ǫn that guarantees convergence is provided).

The precise and almost optimal rates were obtained in [38] using variational methods. Further problems involve

obtaining error estimates between discrete and continuum objects. Laplacians on discretized manifolds was studied

by Burago, Ivanov and Kurylev [10] who obtain precise error estimates for eigenvalues and eigenvectors. Related

results on approximating elliptic equations on point clouds have been obtained by Li and Shi [45], and Li, Shi and

Sun [46]. Error bounds for the spectral convergence of graph Laplacians have been considered by Wang [67] and

García Trillos, Gerlach, Hein and one of the authors [32]. Regarding graph p-Laplacians, the authors of [19] obtain

iterated pointwise convergence of graph p-Laplacians to the continuum p-Laplacian. Finally we mention that for a

different type of problems, namely for nondominated sorting, Calder, Esedoḡlu and Hero [13] have obtained uniform

convergence of discrete solutions to the solution of a continuum Hamilton-Jacobi equation.

To obtain the results on variational convergence of E
(p)
n to E

(p)
∞ needed to fully explain the asymptotics of

discrete regression problems we combine tools of calculus of variations (in particular Γ-convergence) and optimal

transportation. This approach to asymptotics of problems posed on discrete random samples was developed by

García-Trillos and one of the authors [37, 38]. In [37] they introduce the TLp topology for comparing the functions

defined on the discrete sets to the ones defined in the continuum, and apply the approach to asymptotics of graph-cut

based objective functionals. We refer to this paper for a description of the rich background of the works that underpin

the approach. In [38] the authors apply the approach to convergence of graph Laplacian based functionals. Consistency

of k-means clustering for paths with regularization was recently studied by Theil, Johansen and Cade, and one of

the authors [61], using a similar viewpoint. This technical setup has recently been used and extended to studies

on modularity based clustering [17], Dirichlet partitions [49], Cheeger and ratio cuts [39], neighborhood graph

constructions for graph cut based clustering [31], and classification problems [34, 60].

An alternative approach related to regression problems was developed by Fefferman and collaborators, Israel,

Klartag and Luli, who look for a function of sufficient regularity, that extends a function f† : E → R to the whole of

R
d in such a way as to minimize the norm of the extension. They show that appropriate extensions exist and find

efficient constructions for Cm regularity [24, 28, 29], and for Sobolev regularity [25–27]. In the context of machine

learning this is a supervised learning problem and only makes use of the labeled data. In particular, the methods of
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Fefferman, Israel, Klartag and Luli do not use the unlabeled data {xi}
n
i=N+1.

Soon after the preprint of this paper was posted, Calder posted two preprints on closely related problems. In [11]

he studied the case p = ∞ (also known as Lipschitz learning) and obtained consistency results which recover the

problem with pointwise constraints in the large data limit. In [12] he considered semi-supervised learning with p-

Laplacian regularization. He considered the game theoretic p-Laplacian which was introduced to problems on graphs

in the paper by Manfredi, Oberman and Sviridov [47]. It is interesting to observe that the variational p-Laplacian (the

one studied in our paper) and the game-theoretic p-Laplacian coincide in the continuum setting, but differ on graphs.

While the results obtained are similar to ours, the techniques are quite different. For his results Calder used PDE

based techniques, while we rely on variational techniques. He shows that the game-theoretic p-Laplacian solution of

the problem has global Hölder regularity (with n independent bounds) and uses this to prove the consistency of the

learning problem without an upper bound on εn as n → ∞. He does require a more restrictive lower bound on εn,

namely εn ≫
(

lnn
n

)1/max{d+4,3d/2}
, for the convergence to hold.

2. Setting and Main Results. Let Ω be an open and bounded domain in R
d. Let {(xi, yi) : i = 1, . . . , N}

with xi ∈ Ω and yi ∈ R be a collection of distinct labeled points. Throughout the paper we consider N to be fixed.

Considering a model where N grows is an interesting problem, which we do not address here. We consider µ to be

the measure representing the distribution of data. We assume that suppµ = Ω and that µ has density ρ with respect to

the Lebesgue measure. We assume that ρ is continuous and is bounded above and below by positive constants on Ω.

We assume that unlabeled data, {xi}i=N+1,... are given by a sequence of iid samples from the measure µ. The

empirical measure induced by data points is given by µn = 1
n

∑n
i=1 δxi

. Let Gn = (Ωn, En,Wn) be a graph with

vertices Ωn = {xi}
n
i=1, edges En = {eij}

n
i,j=1 and edge weights Wn = {Wij}

n
i,j=1. For notational simplicity we

will set Wij = 0 if there is no edge between xi and xj .

We assume the following structure on edge weights

(5) Wij = ηε(|xi − xj |)

where ηε(|x|) = 1
εd
η
(

|x|
ε

)

, η : [0,∞) → [0,∞) is a nonincreasing kernel and ε = εn is a scaling parameter

depending on n. For example, if η(|x|) = I|x|≤1 then ηε(|x|) is 1
εd

if |x| ≤ ε and 0 otherwise. In this case vertices

are only connected if they are closer than ε.

We consider two models: one where the agreement of the response with the training variables is imposed as a

constraint and the other where it is imposed via a penalty. We call these models constrained and penalized.

In the constrained model we construct our estimator as the minimizer of

(6) E(p)
n (f) =

1

εpn

1

n2

n
∑

i,j=1

Wij |f(xi)− f(xj)|
p

among {f : Ωn → R} which satisfy the constraint f(xi) = yi for all i = 1, . . . , N .

For technical reasons it is convenient to include the constraints in the functional E
(p)
n and hence we define

(7) E(p)
n,con(f) =

{

1
εpn

1
n2

∑n
i,j=1 Wij |f(xi)− f(xj)|

p if f(xi) = yi for i = 1, 2, . . . , N

∞ else.

We now turn to the penalized formulation. For q > 0 let

(8) R(q)(f) =

N
∑

i=1

|yi − f(xi)|
q.

We define the penalized estimator as the minimizer of

(9) S(p)
n (f) = E(p)

n (f) + λR(q)(f)

over all functions f : Ωn → R, where λ > 0 is a tunable parameter.
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We now introduce the continuum functionals that describe the limiting problems as n → ∞. Let

(10) E(p)
∞ (f) =

{

ση

∫

Ω
|∇f(x)|

p
ρ2(x) dx if f ∈ W 1,p(Ω),

∞ else.

For p > d, Sobolev functions f ∈ W 1,p are continuous and we can define

(11) E(p)
∞,con(f) =

{

E
(p)
∞ (f) if f ∈ W 1,p(Ω) and f(xi) = yi for i = 1, . . . , N

∞ else.

The constant ση above is defined, using e1 = [1, 0, . . . , 0]T , by

ση =

∫

Rd

η(|x|) |x · e1|
p dx.

To describe the limit of the penalized model in the large data limit we introduce

(12) S(p)
∞ (f) = E(p)

∞ (f) + λR(q)(f).

The functional S
(p)
∞ is well defined whenever p > d.

We note that functionals (11) and (12) are lower semi-continuous with respect to the Lp norm. In addition,

coercivity of both functionals follows from Sobolev embeddings. Coercivity and lower semi-continuity imply

existence of minimizers, e.g. [30, Theorem 3.6]. Strict convexity implies that the minimizers are unique.

We are interested in asymptotic behavior of minimizers fn of the discrete models, say E
(p)
n,con. We say that E

(p)
n,con

is asymptotically consistent with E
(p)
∞,con if the minimizers fn of E

(p)
n,con converge as n → ∞ to a minimizer of E

(p)
∞,con.

One should note the topology of the convergence fn → f∞ is not at this stage clear.

We observe that since fn : Ωn → R, while f : Ω → R this issue is nontrivial. We use the TLp topology

introduced in [37] precisely to compare functions defined on different domains in a topology consistent with Lp

convergence. We define the convergence rigorously in Section 3.

Another issue is the rate at which εn is allowed to converge to zero. If εn → 0 too quickly then the graph

becomes disconnected and hence it does not capture the geometry of Ω properly. The connectivity threshold [51]

is εn ∼
(

lnn
n

)
1
d . We require (when d ≥ 3) εn ≫

(

lnn
n

)
1
d which means that our lower bound is almost optimal.

We have discovered that if εn → 0 too slowly then the discrete functional E
(p)
n,con lacks sufficient regularity for the

constraints to be preserved in the limit. The optimal upper bound on εn is discussed after Theorem 2.1.

We now state our assumptions needed for the main results.

(A1) Ω ⊂ R
d is open, connected, bounded and with Lipschitz boundary;

(A2) The probability measure µ ∈ P(Ω) has continuous density ρ which is bounded above and below by strictly

positive constants in Ω;

(A3) There exists N labeled points: (xi, yi) ∈ Ω× R for i = 1, . . . , N ;

(A4) For i > N the data points xi, are iid samples of µ and µn = 1
n

∑n
i=1 δxi

is the empirical measure;

(A5) εn is a sequence converging to 0 satisfying the lower bound

εn ≫



























√

ln lnn
n if d = 1

(lnn)
3
4√

n
if d = 2

(

lnn
n

)
1
d if d ≥ 3;

(A6) The kernel profile η : [0,∞) → [0,∞) is non-increasing;

(A7) η is positive and continuous at x = 0;

(A8) The integral
∫∞
0

η(t)|t|p+d dt is finite (equivalently ση =
∫

Rd η(|w|)|w · e1|
p dw < ∞).

We note that Assumption (A2) implies that µ is equivalent to the Lebesgue measure on Ω (denoted L⌊Ω). Hence,

f ∈ Lp(Ω) if and only if f ∈ Lp(µ), where with an abuse of notation we write Lp(Ω) := Lp(L⌊Ω).

The first main result of the paper is the following theorem. The proof is presented in Section 4.
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THEOREM 2.1 (Consistency of the constrained model). Let p > 1. Assume Ω, µ, η, and xi satisfy Assump-

tions (A1) - (A8). Let fn be a sequence of minimizers of E
(p)
n,con defined in (7) with graph weights Wij given by (5).

Then, almost surely, the sequence (µn, fn) is precompact in the TLp metric. The TLp limit of any convergent

subsequence, (µnm
, fnm

), is of the form (µ, f) where f ∈ W 1,p(Ω). Furthermore,

(i) if nεpn → 0 as n → ∞ then f is continuous and

(a) the whole sequence fn converges to f both in TLp and locally uniformly, meaning that for any Ω′ with

Ω′ ⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f(xk)− fn(xk)| = 0,

(b) f is a minimizer of E
(p)
∞,con defined in (11);

(ii) if nεpn → ∞ as n → ∞ then f is a minimizer of E
(p)
∞ defined in (10).

We note that in case (i) Assumption (A5) and nεpn → 0 as n → ∞ imply that n−1/p ≫ ε ≫ n−1/d which is

only possible if p > d. Therefore in case (i) we always have that functions f for which E
(p)
∞ is finite are continuous,

and thus it is possible to impose pointwise values of f , as needed to define E
(p)
∞,con in (11).

The result (i) establishes the asymptotic consistency of the discrete constrained model with the constrained

continuum weighted p-Laplacian model.

While the result (ii) looks similar its interpretation is different. It shows that the model “forgets” the constraints in

the limit. Namely, E
(p)
∞ only has the gradient term and no constraints! In particular, its minimizers are constants over

Ω. This is due to fn developing narrow spikes near labeled points {xi}
N
i=1 and becoming nearly constant everywhere

else. In the TLp limit the spikes disappear.

This motivates referring to the scaling nεpn → ∞ as n → ∞ as the degenerate regime. On the other hand, we

refer to the scaling of case (i) as the well-posed regime.

The other main result is the convergence in the penalized model. The proof is a straightforward extension of

Theorem 2.1 in the special case N = 0 (so that the constraint is not present). We include the proof in Section 4.2.

PROPOSITION 2.2. Let p > 1 and q > 0. Assume Ω, µ, η, and xi satisfy Assumptions (A1) - (A8). Let fn be a

sequence of minimizers of S
(p)
n defined in (9) where λ > 0, R(q) is given by (8), and E

(p)
n is given by (6) with graph

weights Wij given by (5). Then, almost surely, the sequence (µn, fn) is precompact in the TLp metric. The TLp limit

of any convergent subsequence, (µnm
, fnm

), is of the form (µ, f) where f ∈ W 1,p(Ω). Furthermore,

(i) if nεpn → 0 as n → ∞ then f is continuous and

(a) the whole sequence fn converges to f both in TLp and locally uniformly, meaning that for any Ω′ with

Ω′ ⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f(xk)− fn(xk)| = 0,

(b) f is a minimizer of S
(p)
∞ defined in (12);

(ii) if nεpn → ∞ as n → ∞ then f is a minimizer of E
(p)
∞ defined in (10).

Again the result of (i) is a consistency result, while (ii) shows that the penalization of the labels is lost in the limit.

Remark 2.3. The above results (Theorem 2.1 and Proposition 2.2) could also be extended to p = 1, in which

case the limiting functional E
(1)
∞ would be a weighted TV semi-norm E

(1)
∞ = σηTV (·; ρ) where

TV (f ; ρ) = sup

{
∫

Ω

fdivφ dx : |φ(x)| ≤ ρ2(x) ∀x ∈ Ω, φ ∈ C∞
c (Ω;Rd)

}

.

A modification of the proofs contained here would prove the result, see also [37].

In Theorem 2.1 we proved that the model E
(p)
n,con, defined in (7), is consistent as n → ∞ and lower bounds (A5)

hold, only if
1

n
≫ εpn.

This upper bound is undesirable as it restricts the range of ε that can be used. In our numerical experiments (see

Figures 2(a) and 3(a)) we observe that the range of ε for which the limiting problem is well approximated can be
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quite narrow. This problem is particularly pronounced if p > d is close to d, which is the regime identified in [19] as

the most relevant for semi-supervised learning.

This motivated us to explore changing the model in such a way that it remains asymptotically consistent with

E
(p)
∞,con, but does not require an upper bound on εn (other than εn → 0 as n → ∞). In Section 5 we introduce a new,

related, model which has the desired properties. Furthermore its minimizers can be computed with almost identical

algorithms as those for E
(p)
n,con. More precisely, the minimization procedure remains unchanged, and one only has to

increase the size of the constraint set. The new model is asymptotically consistent as n → ∞, and εn → 0, whenever

(A5) holds.

While in the original model the minimizers of the objective functional for a fixed, large n have a desired behavior

in a sometimes narrow band of admissible εn, we observe in numerical experiments (see for example Figure 5) that

for the improved model the error grows gradually with εn, as opposed to becoming catastrophic as εn reaches a

certain threshold.

3. Background Material. In an effort to make this paper more self-contained we briefly review three key ideas

our work relies on. The first is Γ-convergence which is a notion of convergence of functionals developed for the

analysis of sequences of variational problems. The second is optimal transportation, and the third is the TLp space

which we use to define the convergence of discrete functions to continuum functions.

3.1. Γ–Convergence. Γ-convergence was introduced by De Giorgi in 1970’s to study limits of variational

problems. We refer to [8, 16] for an in depth introduction to Γ-convergence. Our application of Γ-convergence will be

in a random setting.

DEFINITION 3.1 (Γ-convergence). Let (Z, d) be a metric space, L0(Z;R ∪ {±∞}) be the set of measurable

functions from Z to R∪{±∞}, and (X ,P) be a probability space. The function X ∋ ω 7→ E
(ω)
n ∈ L0(Z;R∪{±∞})

is a random variable. We say E
(ω)
n Γ-converge almost surely on the domain Z to E∞ : Z → R ∪ {±∞} with respect

to d, and write E∞ = Γ- limn→∞ E
(ω)
n , if there exists a set X ′ ⊂ X with P(X ′) = 1, such that for all ω ∈ X ′ and

all f ∈ Z:

(i) (liminf inequality) for every sequence {fn}
∞
n=1 converging to f

E∞(f) ≤ lim inf
n→∞

E(ω)
n (fn), and

(ii) (recovery sequence) there exists a sequence {fn}
∞
n=1 converging to f such that

E∞(f) ≥ lim sup
n→∞

E(ω)
n (fn).

For ease of notation we will suppress the dependence of ω on on our functionals, that is we apply the above

definition to En = E
(p)
n . The almost sure statement in the above definition does not play a significant role in the proofs.

Essentially it is enough to consider the set of realizations of {xi}
∞
i=1 such that the empirical measure converges weak∗.

More precisely, we consider the set of realizations of {xi}
∞
i=1 such that the conclusions of Theorem 3.3 hold.

The fundamental result concerning Γ-convergence is it implies the convergence of minimizers. The proof can be

found in [8, Theorem 1.21] or [16, Theorem 7.23].

THEOREM 3.2 (Convergence of Minimizers). Let (Z, d) be a metric space and En : Z → [0,∞] be a sequence

of functionals. Let fn be a minimizing sequence for En. If the set {fn}
∞
n=1 is precompact and E∞ = Γ- limn En

where E∞ : Z → [0,∞] is not identically ∞ then

min
Z

E∞ = lim
n→∞

inf
Z

En.

Furthermore any cluster point of {fn}
∞
n=1 is a minimizer of E∞.

The theorem is also true if we replace minimizers with almost minimizers.

We note that Γ-convergence is defined for functionals on a common metric space. Section 3.3 overviews the

metric space we use to analyze the asymptotics of our semi-supervised learning models, in particular it allows us to

go from discrete to continuum.
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3.2. Optimal Transportation and Approximation of Measures. Here we recall the notion of optimal trans-

portation between measures and the metric it introduces. Comprehensive treatment of the topic can be found in books

of Villani [64] and Santambrogio [53].

Given Ω ⊂ R
d is open and bounded, and probability measures µ and ν in P(Ω) we define the set Π(µ, ν)

of transportation plans, or couplings, between µ and ν to be the set of probability measures on the product space

π ∈ P(Ω × Ω) whose first marginal is µ and second marginal is ν. We then define the p-optimal transportation

distance (a.k.a. p-Wasserstein distance) by

dp(µ, ν) =















inf
π∈Π(µ,ν)

(
∫

Ω×Ω

|x− y|p dπ(x, y)

)
1
p

if 1 ≤ p < ∞

inf
π∈Π(µ,ν)

π- ess sup
(x,y)

|x− y| if p = ∞.

If µ has a density with respect to Lebesgue measure on Ω, then the distance can be rewritten using transportation

maps, T : Ω → Ω, instead of transportation plans,

dp(µ, ν) =















inf
T#µ=ν

(
∫

Ω

|x− T (x)|p dµ(x)

)
1
p

if 1 ≤ p < ∞

inf
T#µ=ν

µ- ess sup
x

|x− T (x)| if p = ∞.

where T#µ = ν means that the push forward of the measure µ by T is the measure ν, namely that T is Borel

measurable and such that for all U ⊂ Ω, open, µ(T−1(U)) = ν(U).
When p < ∞ the metric dp metrizes the weak∗ convergence of measures.

Optimal transportation plays an important role in comparing the discrete and continuum objects we study. In

particular, we use sharp estimates on the ∞-optimal transportation distance between a measure and the empirical

measure of its sample. In the form below, for d ≥ 2, they were established in [36], which extended the related results

in [1, 43, 54, 57]. For d = 1 the estimates are simpler, and follow from the law of iterated logarithms. More precisely

the map Tn(x) = xi, where x ∈
(

z
(n)
i−1, z

(n)
i

]

and µ((−∞, z
(n)
i ]) = i/n, is the optimal transport map (assuming xi

are ordered: xi ≤ xi+1), and one can show infx∈Ω ρ(x)‖Tn − Id‖L∞(Ω) ≤ ‖F − F̂n‖L∞(Ω) where F, F̂n are the

cumulative distribution functions for µ, µn. The empirical cumulative distribution function converges in L∞ with rate
√

ln lnn
n , see [63, Section 19.1] by the law of iterated logarithms.

THEOREM 3.3. Let Ω ⊂ R
d be open, connected and bounded with Lipschitz boundary. Let µ be a probability

measure on Ω with density (with respect to Lebesgue) ρ which is bounded above and below by positive constants. Let

x1, x2, . . . be a sequence of independent random variables with distribution µ and let µn be the empirical measure.

Then, there exists constants C ≥ c > 0 such that almost surely there exists a sequence of transportation maps

{Tn}
∞
n=1 from µ to µn with the property

c ≤ lim inf
n→∞

‖Tn − Id‖L∞(Ω)

δn
≤ lim sup

n→∞

‖Tn − Id‖L∞(Ω)

δn
≤ C

where

δn =



















√

ln ln(n)
n if d = 1

(lnn)
3
4√

n
if d = 2

(lnn)
1
d

n
1
d

if d ≥ 3.

3.3. The TLp Space. The discrete functionals we consider (e.g. E
(p)
n ) are defined for functions fn : Ωn → R

where Ωn = {xi}
n
i=1, while the limit functional E

(p)
∞ acts on functions f : Ω → R, where Ω is an open set. We

can view fn as elements of Lp(µn) where µn is the empirical measure of the sample µn = 1
n

∑n
i=1 δxi

. Likewise

f ∈ Lp(µ) where µ is the measure with density ρ from which the data points are sampled. One would like to compare

f and fn in a way that is consistent with the Lp topology. To do so we use the TLp space that was introduced in [37],

where it was used to study the continuum limit of the graph total variation (that is, E
(1)
n ). Subsequent development of

the TLp space has been carried out in [38, 58, 59].
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To compare the functions fn and f above we need to take into account their domains, or more precisely to

account for µ and µn. For that purpose the space of configurations is defined to be

TLp(Ω) =
{

(µ, f) : µ ∈ P(Ω), f ∈ Lp(µ)
}

.

The metric on the space is

dpTLp((µ, f), (ν, g)) = inf

{
∫

Ω×Ω

|x− y|p + |f(x)− g(y)|p dπ(x, y) : π ∈ Π(µ, ν)

}

where Π(µ, ν) the set of transportation plans defined in Section 3.2. We note that the minimizing π exists and that

TLp space is a metric space, [37].

As shown in [37], when µ has a density with respect to Lebesgue measure on Ω, then the distance can be rewritten

using transportation maps T , instead of transportation plans,

dpTLp((µ, f), (ν, g)) = inf

{
∫

Ω

|x− T (x)|p + |f(x)− g(T (x))|p dµ(x) : T#µ = ν

}

where the push forward of the measure T#µ is defined in Section 3.2. This formula provides an a clear interpretation

of the distance in our setting. Namely, to compare functions fn : Ωn → R we define a mapping Tn : Ω → Ωn and

compare the functions f̃n = fn ◦Tn and f in Lp(µ), while also accounting for the transport, namely the |x−Tn(x)|
p

term.

We remark that the TLp(Ω) space is not complete, and that its completion was discussed in [37]. In the setting

of this paper, since the corresponding measure is clear from context, we often say that fn converges in TLp to f as a

short way to say that (µn, fn) converges in TLp to (µ, f).

4. Regularity and Asymptotics of Discrete and Nonlocal Functionals. Here we present some of the key

properties of the functionals involved that allow us to show the asymptotic consistency of Theorem 2.1. A fundamental

new issue (compared to say [38]) is that constraints in E
(p)
∞ are imposed pointwise on a set of µ measure zero. [The

reason that these constraints make sense is that for p > d the finiteness of E
(p)
∞ (f) implies that f is continuous.]

We note that the TLp convergence used in [38] is not sufficient to imply that constraints are preserved. One needs

a stronger convergence, like the uniform one. This raises the question on how to obtain the needed compactness

of sequences fn, that is how to show that uniform boundedness of E
(p)
n,con(fn) implies the existence of a (locally)

uniformly converging subsequence. Our approach combines discrete and continuum regularity results. Namely,

we obtain in Lemma 4.1 a local control of oscillations of fn over distances of order εn. In Lemma 4.2 we show

that discrete functionals E
(p)
n (fn) control the values of the associated nonlocal continuum functionals E

(NL,p)
εn (f̃n)

(defined in (16) below) applied to an appropriate extrapolation f̃n of fn. A simple but important point is that the

discrete functionals at fixed n are always closer to a nonlocal functional with nonlocality at scale εn, than to the

limiting functional, namely for a fixed f ∈ C1(Ω), E
(p)
n (f) is the Monte Carlo integral approximation of E

(NL,p)
εn (f)

which approximates E
(p)
∞ (f) only as εn → 0. In particular, the issue is that the nonlocal functionals do not share the

regularizing properties of the limiting functional. Only a weaker form of regularity holds. In particular, We show in

Lemma 4.3 that control of the nonlocal energy is sufficient to provide regularity at scales larger than εn. Combining

these estimates is enough to imply the compactness with respect to (locally) uniform convergence in Lemma 4.5.

We state the discrete regularity results in a deterministic setting for finite, fixed n, under the assumption on the

smallness of d∞(µ, µn). When applying the lemma in the random setting this condition will hold due to Theorem 3.3.

LEMMA 4.1 (discrete regularity). Let p > 1. Suppose that Ω and µ satisfy Assumptions (A1) - (A2) and η

satisfies Assumptions (A6) - (A8). Let εn > 0 and xi ∈ Ω for i = 1, . . . , n. Let E
(p)
n be defined by (6), with graph

weights Wij given by (5), and Ωn = {xi}
n
i=1. For fn : Ωn → R, we define osc

(n)
ε (fn) : Ωn → R by

osc(n)ε (fn)(xi) = max
z∈B(xi,ε)∩Ωn

fn(z)− min
z∈B(xi,ε)∩Ωn

fn(z).

Then, for all α0 > 0, there exists b > 0 (depending only on η and α0) and C > 0 such that whenever d∞(µ, µn) ≤
1
8bεn:

(

osc(n)αεn(fn)(xk)
)p

≤ CαnεpnE
(p)
n (fn),

for all α ≥ α0, all fn : Ωn → R, and all k ∈ {1, 2, . . . , n}
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Proof. Let η̃ : [0,∞) → [0,∞) be defined by η̃(t) = a if 0 ≤ t < b and η̃(t) = 0 otherwise, where a and b are

chosen such that η̃ ≤ η. We can furthermore choose b so that b ≤ α0. For all k ∈ {1, . . . , n} let

f̄n(xk) = max
z∈B(xk,

bεn
2 )∩Ωn

fn(z), x̄k ∈ argmax
z∈B(xk,

bεn
2 )∩Ωn

fn(z),

f
n
(xk) = min

z∈B(xk,
bεn
2 )∩Ωn

fn(z), xk ∈ argmin
z∈B(xk,

bεn
2 )∩Ωn

fn(z).

Note that osc
(n)
bεn
2

(fn)(xk) = f̄n(xk)− f
n
(xk) and for all x ∈ B

(

xk,
bεn
2

)

∩ Ωn

(i) f̄n(xk)− fn(x) ≥
1

2
osc bεn

2
(fn)(xk),

or (ii) fn(x)− f
n
(xk) ≥

1

2
osc bεn

2
(fn)(xk).

Without a loss of generality we assume that (i) holds for at least half the points in B
(

xk,
bεn
2

)

∩ Ωn. Then,

E(p)
n (fn) ≥

1

εp+d
n n2

n
∑

i,j=1

η̃

(

|xi − xj |

εn

)

|fn(xi)− fn(xj)|
p

≥
1

εp+d
n n2

∑

j:|xj−x̄k|≤bεn

η̃

(

|x̄k − xj |

εn

)

|fn(xj)− fn(x̄k)|
p

≥
a

εp+d
n n2

∑

j:|xj−xk|≤ bεn
2

|fn(xj)− fn(x̄k)|
p, since |xk − x̄k| ≤

bεn
2

≥
a

2p+1εp+d
n n2

(

osc bεn
2
(fn)(xk)

)p

#

{

j : |xj − xk| ≤
bεn
2

}

=
a

2p+1εp+d
n n

(

osc bεn
2
(fn)(xk)

)p

µn

(

B

(

xk,
bεn
2

))

.

(13)

where µn = 1
n

∑n
i=1 δxi

. Now, for a transport map Tn : Ω → Ωn from µ to µn, satisfying the conclusions of

Theorem 3.3, we have

1

εdn
µn

(

B

(

xk,
bεn
2

))

=
1

εdn

∫

Ω

I{|Tn(x)−xk|≤ bεn
2 }ρ(x) dx

≥
infx∈Ω ρ(x)

εdn

∫

Ω

I{|x−xk|≤ bεn
2 −‖Tn−Id‖L∞(Ω)} dx

=
(

inf
x∈Ω

ρ(x)
)

Vol

(

B

(

0,
b

2
−

‖Tn − Id‖L∞(Ω)

εn

))

.

(14)

Since d∞(µ, µn) ≤
1
8bεn, combining (13) and (14) gives

(15)
(

osc bεn
2
(fn)(xk)

)p

≤
2p+1εpnnE

(p)
n (fn)

a
(

infx∈Ω ρ(x)
)

Vol
(

B
(

0, 3b
8

)) =: C1ε
p
nnE

(p)
n (fn).

Note that the constant C1 does not depend on n, εn or xk.

Let γ = bεn
2 and let m =

⌈

8α
b

⌉

. Let

x∗ ∈ argmax
z∈B(xk,αεn)∩Ωn

fn(z) and x∗ ∈ argmin
z∈B(xk,αεn)∩Ωn

fn(z).

For j = 0, . . . ,m let zj =
m−j
m x∗ +

j
mx∗. Note that |zj+1 − zj | < 2εnα/m ≤ γ/2. Since d∞(µ, µn) ≤

1
4bεn, for

all j = 0, . . . ,m there exists xij ∈ Ωn ∩B(zj ,
γ
2 ). We observe that |xij−1 − zj | ≤ |xij−1 − zj−1|+ |zj−1 − zj | < γ.
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Therefore,

oscαεn(fn)(xk) = |f(x∗)− f(x∗)|

≤

m
∑

j=1

|f(xij )− f(xij−1)|

≤

m
∑

j=1

oscγ(fn)(zj)

≤

⌈

8α

b

⌉

sup
xi∈Ωn

oscγ(fn)(xi).

Using that α0 ≥ b, for α > α0 from (15) it follows that

(oscαεn(fn)(xk))
p
≤

(

9α

b

)p (

sup
xi

osc bεn
2
(fn)(xi)

)p

≤ CαpεpnnE
(p)
n (fn)

where C = C1

(

9
b

)p
.

LEMMA 4.2 (discrete to nonlocal control). Let p ≥ 1. Assume Ω, µ, η, and xi satisfy Assumptions (A1) - (A8).

Let constants a, b > 0 be such that η̃(|x|) = a for |x| < b and η̃(|x|) = 0 otherwise, and so that η̃ ≤ η. Let Tn be

a sequence of transport maps satisfying the conclusions of Theorem 3.3 and let ε̃n = εn −
2‖Tn−Id‖L∞(Ω)

b . Define

E
(p)
n (·; η) by (6), with graph weights Wij given by (5), and where we explicitly denote the dependence of η. Then,

there exists constants n0 > 0 and C > 0 (independent of n and fn) such that for all n ≥ n0

E
(NL,p)
ε̃n

(fn ◦ Tn; η̃) ≤ CE(p)
n (fn; η)

where E
(NL,p)
ε̃n

is defined by

(16) E(NL,p)
ε (f ; η) =

1

εp

∫

Ω

∫

Ω

ηε(|x− z|)|f(x)− f(z)|pρ(x)ρ(z) dx dz.

Proof. Assume

∣

∣

∣

x−z
ε̃n

∣

∣

∣
< b then

|Tn(x)− Tn(z)| ≤ 2‖Tn − Id‖L∞(Ω) + |x− z| ≤ 2‖Tn − Id‖L∞(Ω) + bε̃n = bεn.

So,
∣

∣

∣

∣

x− z

ε̃n

∣

∣

∣

∣

< b ⇒

∣

∣

∣

∣

Tn(x)− Tn(z)

εn

∣

∣

∣

∣

≤ b

and therefore
∣

∣

∣

∣

x− z

ε̃n

∣

∣

∣

∣

< b ⇒ η̃

(

|x− z|

ε̃n

)

= a = η̃

(

|Tn(x)− Tn(z)|

εn

)

.

Hence,

η̃

(

|x− z|

ε̃n

)

≤ η̃

(

|Tn(x)− Tn(z)|

εn

)

≤ η

(

|Tn(x)− Tn(z)|

εn

)

.

Now,

E
(NL,p)
ε̃n

(fn ◦ Tn; η̃) ≤
εdn

ε̃d+p
n

∫

Ω2

ηεn(|Tn(x)− Tn(z)|) |fn(Tn(x))− fn(Tn(z))|
p
ρ(x)ρ(z) dx dz

≤
εd+p
n

ε̃d+p
n

E(p)
n (fn; η).

Since εn
ε̃n

→ 1 we are done.
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In the next lemma we show that boundedness of non-local energies implies regularity at scales greater than

ε. This allows us to relate non-local bounds to local bounds after mollification. We say that J is a mollifier if

J ∈ C∞
c (Rd, [0,∞)),

∫

Rd J(x) dx = 1, and Jε(x) =
1
εd
J(x/ε).

LEMMA 4.3 (nonlocal to averaged local). Let p ≥ 1 and assume that Ω and µ satisfy Assumptions (A1) - (A2),

and η satisfies Assumptions (A6) - (A8). Then, there exists a constant C ≥ 1 and a radially symmetric mollifier J
with supp(J) ⊆ B(0, 1) such that for all ε > 0, f ∈ Lp(Ω), and any Ω′ ⊂⊂ Ω (i.e. for every Ω′ that is compactly

contained in Ω) with dist(Ω′, ∂Ω) > ε it holds that

E(p)
∞ (Jε ∗ f ; Ω

′) ≤ CE(NL,p)
ε (f ; Ω).

where E
(p)
∞ is defined by (10) and E

(NL,p)
ε is defined by (16), and for both functionals we explicitly denote the

dependence on the domain (rather than the kernel η).

Proof. By the continuity of η at zero we can find some b ∈ (0, 1] such that η(|x|) > η(0)/2 > 0 for all

|x| ≤ b. Let J be a radially symmetric mollifier whose support is contained in B(0, b). There exists β > 0 such that

J ≤ βη(| · |) and |∇J | ≤ βη(| · |). Without loss of generality we can assume supp(η) ⊂ [0, 1]. Let gε = Jε ∗ f . For

arbitrary x ∈ Ω with dist(x, ∂Ω) > ε we have

|∇gε(x)| =

∣

∣

∣

∣

∫

Ω

∇Jε (x− z) f(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Ω

∇Jε (x− z) (f(z)− f(x)) dz −

∫

Rd\Ω
∇Jε (x− z) f(x) dz

∣

∣

∣

∣

∣

≤
β

εd+1

∫

Ω

η

(

|x− z|

ε

)

|f(z)− f(x)| dz +
1

εd+1

∫

Rd\Ω

∣

∣

∣

∣

∇J

(

x− z

ε

)
∣

∣

∣

∣

|f(x)| dz.

where the second line follows from
∫

Rd ∇J(w) dw = 0. For the second term we have

1

εd+1

∫

Rd\Ω

∣

∣

∣

∣

∇J

(

x− z

ε

)∣

∣

∣

∣

|f(x)| dz = 0

since for all z ∈ R
d \ Ω and x ∈ Ω with dist(x, ∂Ω) > ε it follows that |x − z| > ε and thus ∇J

(

x−z
ε

)

= 0.

Therefore, for γη =
∫

B(0,1)
η(|w|) dw,

|∇gε(x)|
p ≤ βp

(
∫

Ω

1

ε
ηε(|x− z|) |f(z)− f(x)| dz

)p

=
βpγp

η

εp

(
∫

Ω

ηε(|x− z|)

γη
|f(z)− f(x)| dz

)p

≤ γp−1
η βp

∫

Ω

ηε(|x− z|)
|f(z)− f(x)|

p

εp
dz

by Jensen’s inequality (since 1
γη

∫

Rd ηε(|x− z|) dz = 1). Hence,

∫

Ω′

|∇gε(x)|
p
ρ2(x) dx ≤ γp−1

η βp

∫

Ω

∫

Ω

ηε(|x− z|)

∣

∣

∣

∣

f(z)− f(x)

ε

∣

∣

∣

∣

p

ρ2(x) dz dx

≤
γp−1
η βp supx∈Ω ρ(x)

infx∈Ω ρ(x)
E(NL,p)
ε (f ; Ω)

which completes the proof.

We now establish the compactness property for sequences bounded in L∞. The result follows by combining

Lemma 4.2, known results in the literature and a simple interpolation argument.

PROPOSITION 4.4 (compactness). Let p > 1. Assume Ω, µ, η, and xi satisfy Assumptions (A1) - (A8). Let

E
(p)
n be defined by (6), with graph weights Wij given by (5), and Ωn = {xi}

n
i=1. Then, with probability one, any

sequence fn : Ωn → R with supn∈N E
(p)
n (fn) < ∞ and supn∈N ‖fn‖L∞(µn) < ∞ has a subsequence fnm

such that

(µnm
, fnm

), converges in TLp to (µ, f) for some f ∈ Lp(µ).
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Restricting the space to the set of functions bounded in L∞ is needed since the functionals E
(p)
n are invariant under

adding a constant. When applying this proposition to prove Theorem 2.1, this restriction is not an issue since both

discrete and continuum minimizers of the constrained functionals satisfy an L∞ bound. Nevertheless let us briefly

discuss the compactness of the functionals with constraints, E
(p)
n,con(fn). If limn→∞ nεpn = ∞ (i.e. in the degenerate

case) assuming an L∞ bound is essential since the limiting functional E
(p)
∞ is invariant under adding a constant and

thus the loss of constraints in the limit which occurs when limn→∞ nεpn = ∞ would lead to loss of compactness.

When limn→∞ nεpn = 0 then the constraints are present in the limit and in particular there is enough regularity to

infer a bound on supn∈N ‖fn‖L∞(µn) whenever supn∈N E
(p)
n,con(fn) < ∞. Hence, when limn→∞ nεpn = 0 one could

remove the assumption on L∞ bounds in a compactness result for E
(p)
n,con.

Proof of Proposition 4.4. As in Lemma 4.2, let Tn be a sequence of transport maps satisfying the conclusions

of Theorem 3.3 and let ε̃n = εn −
2‖Tn−Id‖L∞(Ω)

b . Consider also η̃ of Lemma 4.2. Then E
(NL,p)
ε̃n

(fn ◦ Tn; η̃) ≤

CE
(p)
n (fn; η). By Jensen’s inequality, E

(NL,p)
ε̃n

(fn ◦ Tn; η̃) ≥ c
(

E
(NL,1)
ε̃n

(fn ◦ Tn; η̃)
)p

for some c > 0 and all n. By

the proof of Theorem 1.2 in [37], fn ◦ Tn is precompact in L1(µ) and thus (µn, fn) is precompact in TL1.

We note that from the proof of Theorem 1.2 in [37] it follows that there in fact exists a subsequence fnm
, and a

sequence of transportation maps (Tnm
)#µ = µnm

such that

lim
m→∞

‖f − fnm
◦ Tnm

‖L1(µ) + ‖Tnm
− Id‖L∞(µ) = 0.

Since ‖f−fnm
◦Tnm

‖L∞(µ) ≤ ‖f‖L∞(µ)+supn∈N ‖fn‖L∞(µn) < ∞, the convergence of fnm
to f in TLp follows

by interpolation.

LEMMA 4.5 (uniform convergence). Consider the assumptions and the graph construction of Proposition 4.4.

Assume that εpnn → 0 as n → ∞ (which, due to (A5) implies that p > d), (µn, fn) → (µ, f) in the TLp metric as

n → ∞, and supn∈N E
(p)
n (fn) < ∞. Then f ∈ C0,γ(Ω), with γ = 1− d

p > 0, and for all Ω′ compactly supported

in Ω
max

{k : xk∈Ω′}
|f(xk)− fn(xk)| → 0 as n → ∞.

Moreover, if for all k = 1, . . . , N , fn(xk) = yk for all n, it follows that f(xk) = yk.

Proof. Consider constants a, b > 0 such that η̃(t) := a if |t| ≤ b and η̃(t) := 0 if |t| > b satisfies η̃ ≤ η.

We define f̃n = fn ◦ Tn where Tn is the transportation map satisfying the conclusions of Theorem 3.3 and set

ε̃n = εn −
2‖Tn−Id‖L∞(Ω)

b . Then, for n sufficiently large ε̃n > 0, and εn
ε̃n

→ 1. Let E
(NL,p)
ε̃n

be the non-local Dirichlet

energy defined in (16). Then, by Lemma 4.2

E
(NL,p)
ε̃n

(f̃n; η̃) ≤ CE(p)
n (fn; η).

Hence, E
(NL,p)
ε̃n

(f̃n; η̃) is bounded. Therefore, by Lemma 4.3, we have that E
(p)
∞ (Jε̃n ∗ f̃n; Ω

′) (where J is a mollifier

with the properties given in Lemma 4.3) is bounded for every Ω′ ⊂⊂ Ω (i.e. for every Ω′ that is compactly contained

in Ω). Furthermore ‖Jε̃n ∗ f̃n‖Lp(Ω′) ≤ ‖f̃n‖Lp(Ω) (see for example [44, Theorem C.19(iii)]). From this Lp bound

and

E(p)
∞ (Jε̃n ∗ f̃n; η̃,Ω

′) ≥ ση

(

inf
x∈Ω

ρ2(x)

)

∥

∥

∥
∇(Jε̃n ∗ f̃n)

∥

∥

∥

Lp(Ω′)

it follows that Jε̃n ∗ f̃n is locally bounded in W 1,p, i.e. supn∈N ‖Jε̃n ∗ f̃n‖W 1,p(Ω′) < ∞. We also note that since

fn ◦ Tn converges to f in Lp(µ),

‖Jε̃n ∗ f̃n − f‖Lp(Ω′) ≤ ‖Jε̃n ∗ f̃n − Jε̃n ∗ f + Jε̃n ∗ f − f‖Lp(Ω′)

≤ ‖f̃n − f‖Lp(Ω) + ‖Jε̃n ∗ f − f‖Lp(Ω′) → 0 as n → ∞.

Since Jε̃n ∗ f̃n → f in Lp(Ω′), by the compactness of the embedding of W 1,p(Ω′) into C0,γ for γ = 1− d
p (Morrey’s

inequality, for example see Theorem 4 in Section 5.6.2 of [23]), we have that

Jε̃n ∗ f̃n → f uniformly on Ω′ as n → ∞.
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Therefore, for each k ∈ {1, . . . , n}, Jε̃n ∗f̃n converges uniformly to f on B(xk, δ) for any δ such that B(xk, δ) ⊂⊂ Ω.

Condition (A5) and Theorem 3.3 imply that with probability one, for all n large enough the requirement d∞(µ, µn) ≤
1
8bεn of Lemma 4.1 is satisfied. Thus, for all n sufficiently large, for all x ∈ B(xk, 2ε̃n) ∩ Ωn we have

|fn(xk)− fn(x)| ≤ osc2ε̃n(fn)(xk) ≤ osc3εn(fn)(xk) ≤
(

CE(p)
n (fn)nε

p
n

)
1
p

where C > 0 is independent of n. It follows that

max
{k : xk∈Ω′}

max
x∈B(xk,2ε̃n)∩Ωn

|fn(x)− fn(xk)| → 0.

To complete the proof we notice that for any Ω′ ⊂⊂ Ω

max
{k : xk∈Ω′}

|f(xk)− fn(xk)|

≤ max
{k : xk∈Ω′}

|f(xk)− Jε̃n ∗ f̃n(xk)|+ |Jε̃n ∗ f̃n(xk)− fn(xk)|

≤ ‖f − Jε̃n ∗ f̃n‖L∞(Ω′) + max
{k : xk∈Ω′}

∫

B(0,ε̃n)

Jε̃n(xk − x) |fn(Tn(x))− fn(xk)| dx

≤ ‖f − Jε̃n ∗ f̃n‖L∞(Ω′) + max
{k : xk∈Ω′}

sup
x∈B(xk,2ε̃n)∩Ωn

|fn(x)− fn(xk)|

and the above converges to zero.

Clearly, if fn(xi) = yi for all n then, choosing Ω′ sufficiently large such that xi ∈ Ω′, we have

|f(xi)− yi| = |f(xi)− fn(xi)| ≤ max
{k : xk∈Ω′}

|f(xk)− fn(xk)| → 0.

Hence, f(xi) = yi.

4.1. Asymptotic Consistency via Γ–Convergence. We approach proving Theorem 2.1 using Γ-convergence.

Namely, as pointed out in Section 3.1, convergence of minimizers follows from Γ-convergence and compactness.

We use the general setup of [37]. In particular, we first establish in Lemma 4.6 that nonlocal functionals E
(NL,p)
εn

Γ-converge to E
(p)
∞ . We then state and prove the Γ-convergence of E

(p)
n,con towards E

(p)
∞ or E

(p)
∞,con depending on how

quickly εn → 0 as n → ∞. Steps in the proof of this claim rely on Lemma 4.6.

LEMMA 4.6 (continuum nonlocal to local). Let p > 1. Suppose that Ω and µ satisfy Assumptions (A1) - (A2)

and η satisfies Assumptions (A6) - (A8). Then E
(NL,p)
ε , defined in (16), Γ-converges as n → ∞ in Lp(Ω) to the

functional E
(p)
∞ defined in (10).

If ρ is constant and Ω is convex this result is contained in the appendix to [3]. For general Ω it follows from

Theorem 8 in [52]. We remark that while the functional in [52] appears different the term |x− y|p which arises can

be absorbed in the kernel. The results can be extended to general ρ in a straightforward manner as has been done for

p = 1 in Section 4 of [37] and has been remarked in Proposition 1.10 in [38].

We now state the Γ-convergence result. Its proof is divided into two lemmas below. The corresponding

compactness property has already been established in Proposition 4.4.

THEOREM 4.7 (discrete to local Γ-convergence). Let p > 1. Suppose that Ω, µ, η, εn, and xi satisfy

Assumptions (A1) - (A8). Let M ≥ maxi=1,...,N |yi|. Then, with probability one, E
(p)
n,con , defined in (7) with graph

weights Wij given by (5), Γ-converges as n → ∞ in the TLp metric on the set {(ν, g) : ν ∈ P(Ω), ‖g‖L∞(ν) ≤ M}
to the functional

{

E
(p)
∞,con if limn→∞ nεpn = 0

E
(p)
∞ if limn→∞ nεpn = ∞

where E
(p)
∞ is defined by (10) and E

(p)
∞,con is defined by (11).
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We prove the liminf inequalities and the existence of a recovery sequence separately. Since E
(p)
∞ ≤ E

(p)
∞,con the

liminf inequalities needed can be stated in the following way.

LEMMA 4.8. Under the same conditions as Theorem 4.7, with probability one, for any f ∈ Lp(µ) with

‖f‖L∞(µ) ≤ M and any sequence fn → f in TLp with ‖fn‖L∞(µn) ≤ M we have

(17) E(p)
∞ (f) ≤ lim inf

n→∞
E(p)
n (fn) ≤ lim inf

n→∞
E(p)
n,con(fn).

Furthermore if limn→∞ nεpn = 0 then

(18) E(p)
∞,con(f) ≤ lim inf

n→∞
E(p)
n,con(fn).

Proof. Let fn → f in TLp. The first inequality of (17) follows from Lemma 4.6 in the same way the analogous

result is shown for p = 1 in Section 5 of [37]. The second inequality follows from the definition of E
(p)
n and E

(p)
n,con.

When limn→∞ nεpn = 0 the inequality (18) is a consequence of Lemma 4.5.

We now prove the existence of a recovery sequence. Since E
(p)
∞ ≤ E

(p)
∞,con we state it in the following way.

LEMMA 4.9. Under the same conditions as Theorem 4.7, with probability one, for any function f ∈ Lp(µ), with

‖f‖L∞(µ) ≤ M there exists a sequence fn satisfying fn → f in TLp with ‖fn‖L∞(µn) ≤ M and

(19) E(p)
∞,con(f) ≥ lim sup

n→∞
E(p)
n,con(fn).

Furthermore if limn→∞ nεpn = ∞ then

(20) E(p)
∞ (f) ≥ lim sup

n→∞
E(p)
n,con(fn).

Proof. The proof of the first inequality is a straightforward adaptation of the analogous result for p = 1 in

Section 5 of [37]. The recovery sequence used is defined as a restriction of f to Ωn: fn(xi) = f(xi) for all

i = 1, . . . , n, and thus satisfies the constraints and ‖fn‖L∞(µn) ≤ M .

The same argument and recovery sequence construction can be used to show that with probability one, for any

function f ∈ Lp(µ), with ‖f‖L∞(µ) ≤ M there exists a sequence fn satisfying fn → f in TLp with ‖fn‖L∞(µn) ≤
M and

(21) E(p)
∞ (f) ≥ lim sup

n→∞
E(p)
n (fn).

Let us now consider the case that nεpn → ∞ as n → ∞ and show the second inequality. Suppose E
(p)
∞ (f) < ∞

else the lemma is trivial. Let fn be the recovery sequence for (21).

We define f̂n : Ωn → R by

f̂n(xi) =

{

yi for i = 1, . . . , N,

fn(xi) for i = N + 1, . . . , n.

We note that f̂n → f in TLp with ‖f̂n‖L∞(µn) ≤ M . To show (20) it suffices to show that

(22) lim
n→∞

(

E(p)
n (fn)− E(p)

n,con(f̂n)
)

= 0.

We may write,

∣

∣

∣
E(p)
n (fn)− E(p)

n,con(f̂n)
∣

∣

∣
≤

1

εpn

2

n2

N
∑

i=1

n
∑

j=1

ηεn(|xi − xj |) | |f(xi)− f(xj)|
p − |yi − f(xj)|

p|

≤
2p+1Mp

εpnn

N
∑

i=1

1

n

n
∑

j=1

ηεn(|xi − xj |)

(23)
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Step 1. Let us consider first the case that for some a, b > 0, η(t) = a if |t| < b and η(t) = 0 otherwise. Since,

µn(B(xi, εnb)) = µ ({x : |Tn(x)− xi| < εnb}) ≤ µ
({

x : |x− xi| < εnb+ ‖Id− Tn‖L∞(Ω)

})

,

then, using Theorem 3.3,

1

n

n
∑

j=1

ηεn(|xi − xj |) =
a

εdn
µn(B(xi, εnb))

≤
a

εdn
µ(B(xi, εnb+ ‖Id− Tn‖L∞(Ω)))

≤ a

(

εnb+ ‖Id− Tn‖L∞(Ω)

εn

)d

Vol(B(0, 1))‖ρ‖L∞(Ω) ≤ C.

Combining this inequality with (23) implies (22).

Step 2. Now consider general η satisfying (A6) - (A8). Let

η̃(t) =

{

η(0) if |t| ≤ 1

η(t) otherwise.

Note that η̃ is radially nonincreasing, η̃ ≥ η, and that η̃((|x| − 1)+) ≤ η̃(|x|/2). Theorem 3.3 implies that for n large

‖Id− Tn‖L∞(Ω) ≤ εn. Consequently,

1

n

n
∑

j=1

ηεn(|xi − xj |) ≤
1

n

n
∑

j=1

η̃εn(|xi − xj |)

=
1

εdn

∫

Ω

η̃

(

|xi − Tn(y)|

εn

)

dµ(y)

≤
1

εdn

∫

Ω

η̃

(

|xi − y|

2εn

)

dµ(y) ≤ C

where the penultimate inequality follows from

|xi − Tn(y)|

εn
≥

(

|xi − y| − ‖Tn − Id‖L∞(Ω)

εn

)

+

≥

(

|xi − y|

εn
− 1

)

+

.

Again combining this estimate with (23) implies (22).

We now state the Γ-convergence result relevant for the penalized model S
(p)
n .

LEMMA 4.10. Under the conditions of Proposition 2.2 we have:

• (compactness) Any sequence fn : Ωn → R with supn∈N S
(p)
n (fn)+ ‖fn‖L∞(µn) < ∞ has, with probability

one, a subsequence fnm
such that there exists f ∈ W 1,p with fnm

→ f in TLp.

• (Γ-convergence, well-posed regime) If εpnn → 0 then, with probability one, on the set (µn, fn) with

‖fn‖L∞(µn) ≤ M ,

Γ- lim
n→∞

(

E(p)
n + λR(q)

)

= E(p)
∞ + λR(q)

where the Γ-convergence is considered in the TLp topology.

• (Γ-convergence, degenerate regime) If εpnn → ∞ then, with probability one, on the set (µn, fn) with

‖fn‖L∞(µn) ≤ M ,

Γ- lim
n→∞

(

E(p)
n + λR(q)

)

= E(p)
∞ ,

where the Γ-convergence is considered in the TLp topology.
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Proof. The compactness follows directly from Proposition 4.4.

When εpnn → 0, for the liminf inequality assume fn → f in TLp and lim infn→∞ E
(p)
n (fn) < ∞. Then, by

Lemma 4.5, fn(xk) → f(xk) for all k ∈ {1, . . . , N} and hence λR(q)(fn) → λR(q)(f). By (17) of Lemma 4.8

we have lim infn→∞
(

E
(p)
n (fn) + λR(q)(fn)

)

≥ E
(p)
∞ (f) + λR(q)(f). The limsup inequality follows in a similar

manner from equation (21) and Lemma 4.5.

If εpnn → ∞, then the liminf inequality follows from (17) of Lemma 4.8, while, the limsup inequality follows

directly from

lim sup
n→∞

E(p)
n (fn) + λR(q)(fn) ≤ lim sup

n→∞
E(p)
n,con(fn) ≤ E(p)

∞ (f)

and Lemma 4.9.

4.2. Proofs of Theorem 2.1 and Proposition 2.2. The Γ-convergence and compactness results above allow us

to prove Theorem 2.1. It is a general result that Γ-convergence and compactness imply the convergence of minimizers

(as well as of almost minimizers) to a minimizer of the limiting problem, see [8, Theorem 1.21] or Theorem 3.2.

Proof of Theorem 2.1. Note that, by [51, Theorem 13.2], with probability one the graph is eventually connected.

For the remainder of the proof we assume n is chosen large enough so that the graph is connected. Let fn be a mini-

mizer of E
(p)
n,con and M ≥ maxi=1,...,N |yi|. If ‖fn‖L∞(µn) > M then f̂n defined by f̂n = max{min{fn,M},−M}

satisfies E
(p)
n,con(f̂n) < E

(p)
n,con(fn) hence fn is not a minimizer. Thus, for n sufficiently large, ‖fn‖L∞(µn) ≤ M , and

we can restrict the minimization to the set of (fn, µn) such that ‖fn‖L∞(µn) ≤ M . This allows us to consider the

setting of Theorem 4.7.

By the compactness result of Proposition 4.4 there exists a subsequence fnm
converging in TLp to f ∈ Lp(µ).

To prove (i) assume that nεpn → 0 as n → ∞. The uniform convergence of statement (a) then follows from

Lemma 4.5. The Γ-convergence result of Theorem 4.7 implies that f minimizes E
(p)
∞,con. Since the minimizer of

E
(p)
∞,con is unique the convergence holds along the whole sequence.

To prove (ii) assume that nεpn → 0 as n → ∞. Again, Theorem 4.7 implies that f minimizes E
(p)
∞ .

Note that, in the above proof, if the graph is disconnected then any minimizer fn of E
(p)
n can be redefined on

any connected component that does not contain labeled data without changing the value of E
(p)
n,con. In particular,

say {xi}i∈Zn
where Zn ⊂ {1, . . . , n} is a connected component, and assume there is no labeled data in Zn, i.e.

min{i ∈ Zn} > N . Then, for a minimizer fn of E
(p)
n,con one can define f̂n(xi) = Q for i ∈ Zn and f̂n(xi) = fn(xi)

otherwise. It follows that E
(p)
n,con(f̂n) ≤ E

(p)
n,con(fn) and hence f̂n is also a minimizer. Taking Q → ∞ as n → ∞

leads to a lack of compactness.

Note also that the connectivity of the graph is necessary in multiple places, for example Proposition 4.4. Indeed,

Assumption (A5) implies that εn ≫ ‖Tn − Id‖L∞ , since the connectivity radius of the graph can be bounded from

above by 2‖Tn − Id‖L∞ then, with probability one, we eventually have that εn is greater than the connectivity radius.

The results of the Proposition 2.2 are proved by the same arguments; using Lemma 4.10 instead of Theorem 4.7.

5. Improved Model. Let us restrict ourselves to when p > d. We recall that our main results thus far have been

to show that constrained minimizers of E
(p)
n , and the related penalized formulation S

(p)
n , given by (9), are consistent

as n → ∞ only if the lower bound (A5) holds and 1
n ≫ εpn. As remarked earlier (in Section 2), and demonstrated by

our numerical experiments, this results in a narrow band of admissible εn for which the discrete models, E
(p)
n,con and

S
(p)
n , are good approximations of the continuum models, E

(p)
∞,con and S

(p)
∞ . In order to remove the upper bound, and

hence widen the range of admissible εn, we propose a new model that is consistent for any εn → 0 satisfying the

lower bound (A5).

We define the set of functions which are constant near the labeled points:

C(δ)
n = {f : Ωn → R : f(xk) = yi whenever |xk − xi| < δ for i = 1, . . . , N}

Let L = min{|xi − xj | : i 6= j, and i, j ∈ {1, . . . , N}}/2 and Rn = min{(1 + α)εn, L} for α > 0. The new
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functional is defined by

(24) F (p)
n,con(f) =

{

1
εpn

1
n2

∑n
i,j=1 Wij |f(xi)− f(xj)|

p if f ∈ C
(Rn)
n

∞ else.

Since, for n sufficiently large, Rn = (1 + α)εn in the sequel we will just define Rn = (1 + α)εn. We note that

F
(p)
n,con(f) ≥ E

(p)
n,con(f) and for f ∈ C

(Rn)
n , F

(p)
n,con(f) = E

(p)
n,con(f).

For asymptotic consistency we still need to require p > d, since only then is the limiting model E
(p)
∞,con well

defined. In Theorem 2.1 this followed from the assumption nεpn → 0 as n → ∞. Since we no longer require the

upper bound on εn we need to require p > d explicitly.

THEOREM 5.1 (consistency of the improved model). Let p > d. Assume Ω, µ, η, and xi satisfy Assumptions (A1)

- (A8). Let fn be a sequence of minimizers of F
(p)
n,con defined in (24) with Rn = (1 + α)εn, α > 0, and graph weights

Wij given by (5). Then, almost surely, the sequence (µn, fn) is precompact in the TLp metric. The TLp limit of any

convergent subsequence, (µnm
, fnm

), is of the form (µ, f) where f ∈ W 1,p(Ω) is a minimizer of E
(p)
∞,con defined in

(11) (with E
(p)
∞ defined in (10)).

Proof of the theorem is a straightforward modification of the proof of Theorem 2.1. It relies on the following

Γ-convergence result.

THEOREM 5.2 (discrete to local Γ-convergence). Let M ≥ maxi=1,...,N |yi|. Under the conditions of The-

orem 5.1, with probability one, F
(p)
n,con Γ-converges as n → ∞ in the TLp metric on the set {(ν, g) : ν ∈

P(Ω), ‖g‖L∞(ν) ≤ M} to the functional E
(p)
∞,con.

We note that inequalities (17) of Lemma 4.8, and Proposition 4.4 hold for F
(p)
n,con since E

(p)
n,con ≤ F

(p)
n,con. We now

turn to proving the liminf property and the existence of recovery sequence needed to show that F
(p)
n,con Γ-converges in

the TLp topology to E
(p)
∞,con.

LEMMA 5.3. Under the conditions of Theorem 5.1, with probability one, for any f ∈ L∞(µ) with ‖f‖L∞(µ) ≤
M and any sequence fn → f in TLp with ‖fn‖L∞(µn) ≤ M we have

(25) E(p)
∞,con(f) ≤ lim inf

n→∞
F (p)

n,con(fn).

Proof. Let (µn, fn) be a convergent sequence in TLp, such that fn are uniformly bounded in L∞(µn), and

lim infn→∞ F
(p)
n,con(fn) < ∞. Note that in contrast to Lemma 4.8 we no longer require nεpn → 0 as n → ∞.

Therefore we can no longer use the uniform convergence of Lemma 4.5.

Nevertheless, since for n large fn = yi on B(xi, (1 + α)εn) and ‖Id − Tn‖L∞(Ω) < αεn we have that

|Tn(x) − xi| < (1 + α)εn for x ∈ B(xi, εn), hence f̃n := fn ◦ Tn = yi on B(xi, εn) and consequently for

gn := Jε̃n ∗ f̃n it holds that gn(xi) = yi. Furthermore, note that ‖gn‖L∞(Ω) ≤ M . By the bounds of Lemma 4.2 and

Lemma 4.3, gn is uniformly bounded in W 1,p(Ω′) for any Ω′ ⊂⊂ Ω (Ω′ compactly supported in Ω). Arguing as in

the proof of Lemma 4.5 we conclude that gn → f in Lp(Ω). Since p > d, W 1,p is compactly embedded in the space

of continuous functions. This implies that gn uniformly converges to f on sets compactly contained in Ω. Therefore

f(xi) = yi for all i = 1, . . . , N . Combining this with statement (17) of Lemma 4.8 yields (25).

LEMMA 5.4. Under the conditions of Theorem 5.1, with probability one, for any f ∈ L∞(µ) with ‖f‖L∞(µ) ≤
M there exists a sequence fn → f in TLp with ‖fn‖L∞(µn) ≤ M such that

(26) E(p)
∞,con(f) ≥ lim sup

n→∞
F (p)

n,con(fn).

Proof. Assume ‖f‖L∞(µ) ≤ M and E
(p)
∞,con(f) < ∞. Then f ∈ W 1,p(Ω) and since p > d, f is continuous.

Furthermore f(xi) = yi for all i = 1, . . . , N .

If there exists δ > 0 such that f ∈ W 1,p(Ω) satisfies f(x) = yi for all x ∈ B(xi, δ) and i = 1, . . . , N then the

proof of (26) is the same as the proof of (19). In particular, one can use the restriction of f to data points to construct

a recovery sequence.
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To treat general f in W 1,p(Ω) it suffices to find a sequence gn ∈ W 1,p(Ω) satisfying the conditions above,

namely such that ‖gn‖L∞ ≤ M , gn(x) = yi for all x ∈ B(xi, δn) for a sequence δn ≥ Rn converging to zero,

which satisfies

(27) lim
n→∞

E(p)
∞,con(gn) = E(p)

∞,con(f).

We construct the sequence in the following way. Let θ be a cut-off function supported in B(0, 1 + α). That is assume

θ : Rd → [0, 1] is smooth, radially symmetric and nonincreasing such that θ = 1 on B(0, 1), θ = 0 outside of

B(0, 1 + α), and |∇θ| < C. Define θδ(z) = θ(z/δ).
We first consider the case N = 1. Let

gn(x) = (1− θδn(x− x1))f(x) + θδn(x− x1)y1.

Then,

∣

∣

∣
E(p)
∞,con(gn)− E(p)

∞,con(f)
∣

∣

∣
≤ ση

∫

Ω

∣

∣

∣
|∇gn(x)|

p − |∇f(x)|p
∣

∣

∣
ρ2(x) dx

≤ ση

∫

B(x1,(1+α)δn)

(|∇gn(x)|
p + |∇f(x)|p) ρ2(x) dx.

We estimate
∫

B(x1,(1+α)δn)

|∇gn|
pρ2 dx ≤ 2p

∫

B(x1,(1+α)δn)

(|(f(x1)− f(x))∇θδn(x− x1)|
p + |∇f(x)|p) ρ2(x) dx.

Using that f ∈ C0,1−d/p and furthermore, by the remark following Theorem 4 in Section 5.6.2 of [23] (where

Theorem 4 is Morrey’s inequality) we obtain

∫

B(x1,(1+α)δn)

|(f(x)− f(x1))∇θδn(x− x1)|
pρ2(x) dx ≤ C1δ

p−d
n ‖∇f‖pLp(B(x1,(1+α)δn))

‖∇θδn‖
p
Lp(Rd)

≤ C1‖∇f‖pLp(B(x1,(1+α)δn))
‖∇θ‖p

Lp(Rd)
.

Since limn→∞
∫

B(x1,(1+α)δn)
|∇f(x)|p dx = 0, by combining the inequalities above we conclude that (27) holds.

Generalizing to N > 1 is straightforward.

6. Numerical Experiments. The results of Theorem 2.1 show that when εpnn → 0 then the solutions to the SSL

problem (7) converge to a solution of the continuum constrained problem (11), while when εpnn → ∞ they degenerate

as n → ∞. However, in practice, for finite n, this does not provide precise guidance on what ε are appropriate. We

investigate, via numerical experiments in 1D and 2D, the affect of ε on solutions to (7) in elementary examples. We

also numerically compare the results with our improved model (24).

6.1. 1D Numerical Experiments. Let µ be the uniform measure on [0, 1] and consider η defined by η(t) = 1
if t ≤ 1 and η(t) = 0 otherwise. We consider two different values of p: p = 1.5 and p = 2. The training set is

{(0, 0), (1, 1)}, that is we condition on functions fn taking the value 0 at x1 = 0 and taking the value 1 at x2 = 1 (so

N = 2). We avoid using p = 1 since any increasing function f with f(0) = 0 and f(1) = 1 is a minimizer to the

limiting problem E
(1)
∞,con. For p > 1 the solution to the constrained limiting problem is f†(x) = x (note that this is

independent of p). Since f† is continuous we can consider the following simple-to-compute notion of error:

(28) err(p)n (fn) = ‖fn − f†‖Lp(µn).

To find minimizers of (7) we use coordinate gradient descent. We enforce the constraints by choosing an

initialisation that agrees with the training data and only updating coordinates that are not part of the training data

set thereafter. The number of data points varies from n = 80 to n = 5120. For each n, ε and p we consider 100

different realizations of the random sample {xi}
n
i=1 and plot the average results. When ε is too small the graph is

disconnected and we should not expect informative solutions, when ε is large we expect discontinuities to arise and

cause degeneracy. In Figure 2(a) and Figure 3(a) we plot the error as a function of ε for fixed n = 1280. We see clear
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(a) Error (28) for n = 1280. The black line is the mean

error, dashed lines are the 10% and 90% quantiles. The blue

dot is the connectivity bound εconn, the red square is the

optimal choice ε
(1.5)
∗ , and the orange triangle is the upper

bound ε
(1.5)
upper. The blue line is the observed percentage of

connected graphs for a given ε.
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(b) We plot the functions output by the algorithm corre-

sponding to nine realizations of the data for n = 1280 and

ε = 0.022 (marked in yellow in Figure (a)).
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(c) The output of the algorithm, fn, for nine realizations of

the data for n = 1280 and ε = ε
(1.5)
∗ .
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(d) Orange triangles are ε
(1.5)
upper, red squares are ε

(1.5)
∗ , and

blue dots are εconn. Lines show the linear fit over the last 5

points.

Fig. 2: 1D numerical experiments averaged over 100 realizations for (7) with p = 1.5.

regions where ε is too small and where ε is too large, with the intermediate range producing good estimators. Plots of

minimizers for a particular ε in the “large-ε" region, see Figure 2(b), show that minimizers converge to a constant

outside of the training data.

To measure how the transition points in ε, where minimizers change behavior, scale with n, we define the

following:

(i) Given a realization {xω
i }

n
i=1 let εconn(n;ω) be the connectivity radius for the particular realization, ω, that is

εconn(n;ω) is the smallest ε such that the graph with weights Wij = ηε(|x
ω
i − xω

j |) is connected. The value

εconn(n) =
1
M

∑M
i=1 εconn(n;ωi) is the average connectivity radius. We considered M = 100 realizations.

(ii) ε
(p)
∗ (n) is the empirically best choice for ε, namely the ε that minimizes err

(p)
n (fn) where fn is the minimizer

of (7) with εn = ε; again averaged over M = 100 realizations.
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(2)
upper, red squares are ε

(2)
∗ , and blue

dots are εconn. Lines show the linear fit over the last 5 points.

Fig. 3: 1D numerical experiments averaged over 100 realizations for (7) with p = 2.
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mean error, the dashed lines are the 10% and 90% quantiles.

Fig. 4: Error shifted by connectivity radius using the same results as in Figures 2 and 3.

(iii) ε
(p)
upper(n) is the upper bound on ε for which the algorithm behaves well, which we identify as the maximizer

of the second derivative of −err
(p)
n (fn) with respect to ε, among ε ≥ ε

(p)
∗ (n). While computing ε

(p)
upper(n)

we smooth the error slightly so that the method is robust to small perturbations. As above the value is

averaged over 100 realizations.

All of these points are highlighted in Figure 2(a) and Figure 3(a). In Figure 2(d) and Figure 3(b) we plot how

these values of ε scale with n. The best linear fit (based on five largest values of n) in the log-log domain gives the
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(b) We plot the functions output from the algorithm corre-

sponding to multiple realizations of the data for n = 1280
and ε = 0.045 (marked in yellow in Figure (a)).

Fig. 5: 1D numerical experiments averaged over 100 realizations for model (24) with p = 2 and α = 1.

following scalings

ε
(1.5)
∗ (n) ≈

2.719

n0.781
ε(1.5)upper(n) ≈

1.905

n0.683

ε
(2)
∗ (n) ≈

3.472

n0.810
ε(2)upper(n) ≈

1.507

n0.513

εconn(n) ≈
3.342

n0.879
.

We observe that asymptotic scaling established in Theorem 2.1 for ε
(p)
upper is 1

n0.5 for p = 2 and 1
n0.667 for p = 1.5,

which is very close to our numerical results. The true scaling in the connectivity of the graph is
ln(n)
n , our numerical

results behave approximately as 1
n0.879 . We note that if we instead fit εconn(n) ≈ c

(

lnn
n

)α
we obtain c = 1.266 and

α = 1.024.

We observe that optimal choice ε
(p)
∗ is quite close to the connectivity radius εconn(n). Choosing ε smaller than

εconn(n) results in a large error due to trivial solutions, i.e. when the graph is disconnected minimizers are piecewise

constant. To further investigate the proximity of the connectivity radius and the optimal choice of ε we plot in

Figure 4 the error as the function of the size of ε relative to the connectivity radius. More precisely, we consider

err
(p)
n (fn; ε, ω), where fn is the minimizer of (7) for given ε and realization ω, as a function of ε− εconn(n;ω) and

then average over M = 100 realizations. We observe that, for both p = 1.5 and p = 2, the error is smallest when ε is

quite close to the connectivity radius. The slight difference is that for p = 1.5 there is a short interval beyond the

connectivity radius where the error is still decreasing.

Remark 6.1. Numerical experiments indicate the close proximity of the optimal epsilon to the connectivity radius,

both for the original model and the improved model and both in 1D and 2D. This is not obvious since for ε small (i.e.

close to the connectivity radius) the discrete p-Laplacian (i.e. the Euler–Lagrange equation of E
(p)
n (f)) evaluated for

a fixed smooth function f may fail to converge pointwise to the continuum p-Laplacian (the Euler–Lagrange equation

of E
(p)
∞ (f)) as n → ∞. Namely as is shown in [55] for p = 2, if εn is small the variance can be large. Explaining

the observed behavior of the error is an interesting open problem that we believe should be approached from the

viewpoint of stochastic homogenization.

The improved model (24), for which we show results in Figure 5, is far more robust to the choice of ε. We plot

the error as a function of ε for n = 1280 and we see a much larger range in the admissible choices of ε. Note that
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(b) We plot an example of a function output from the algo-

rithm corresponding to n = 1280 and ε = 0.06 (marked in

yellow in Figure (a)). The grid is to aid visualisation.

Fig. 6: 2D numerical experiments averaged over 100 realizations for (7) with p = 2.
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Fig. 7: 2D numerical experiments averaged over 100 realizations for (7) with p = 4.

the horizontal axis covers a much larger range on Figure 5(a) compared to Figure 3(a). The comparison shows that

model (7) does not produce a reasonable output when ε & 0.04, while all outputs of (24) (when ε is larger than the

connectivity radius) are close to the solution of the continuum model with constraints, i.e. E
(p)
∞,con.

6.2. 2D Numerical Experiments. Let µ be the uniform measure on Ω = [0, 1]× [0, 1], and η(t) = 1 if |t| ≤ 1,

η(t) = 0 otherwise. In 2D the critical value of p is p = 2, and we therefore choose to investigate p = 2 and p = 4.

The training set is x1 = (0.2, 0.5), x2 = (0.8, 0.5), with labels y1 = 0, y2 = 1. In contrast to the 1D example the

25



(a) ε = ε
(4)
∗ (n) ≈ 0.0576. (b) ε = ε

(4)
upper(n) ≈ 0.0906. (c) ε = 0.2.

Fig. 8: Realizations of (7) with p = 4 and n = 1280 for a select choices of ε. Only the part of the domain near labeled point x2 is

shown. The grids are to aid visualization.

solution to the continuum problem (11) (in the well-posed regime) depends on p and furthermore cannot be solved

analytically. To estimate the solution we discretized (11) on a uniform grid and ran a gradient descent algorithm to

approximate the minimizer. In the case when p = 4 we plot our numerical approximation of the continuum minimizer

to (11) in Figure 1(b). For p > 2 we define the error by

(29) err(p)n (fn) = ‖fn − fp,†‖Lp(µn)

where fp,† minimizes (11). In the ill-posed case (p ≤ 2) any constant function is a minimizer to the continuum

problem, in which case we define the error as

(30) err(p)n (fn) = inf
c∈R

‖fn − c‖Lp(µn).

To find minimizers of (7) for p = 4 we use coordinate gradient descent with constraints enforced similarly to

when d = 1. For p = 2 we use the method of [70] that exactly solves the Euler Lagrange equation ((Lnf)i = 0,

where Ln is the graph Laplacian, for i > 2 and f1 = 0, f2 = 1). The number of data points varies from 80 to 5120.

We use 100 different realizations of the data {xi}
n
i=1 for each choice of n, ε and p.

Figure 6 shows the results in the ill-posed regime, for p = 2 and n = 1280. We observe that the solutions form

spikes in order to satisfy the constraints. Spikes are present for all ε beyond the connectivity threshold, and grow as ε
increases (recall that the solution to the continuum problem is a constant and therefore the error decreasing indicates

convergence to a constant solution with spikes around the two training data points).

Figures 1 and 7 show the results for p = 4 which is in the well-posed range. Figure 1(a) presents the numerically

computed discrete minimizer for the optimal radius ε = ε
(4)
∗ . We observe in Figure 7(a) that, similarly to 1D, for ε

below the average connectivity radius, or when ε is large, the error is high, and is smallest for ε slightly larger than

the connectivity threshold. In contrast to the 1D results we do notice that the transitions between the well-posed and

ill-posed regime is gradual.

We find that the numerical scaling for ε
(p)
∗ , ε

(p)
upper, and εconn (with the same definitions of quantities as in the 1D

experiments in the previous subsection) are

ε
(4)
∗ (n) ≈

1.394

n0.452
ε(4)upper(n) ≈

0.654

n0.270
εconn(n) ≈

1.368

n0.452
.

The connectivity radius should scale according to

√

ln(n)
n , which is close to our observed rate of n−0.452 (in fact

when linear fitting ln ε to lnn
n one obtains εconn ≈ 0.829

(

lnn
n

)0.526
). Our theoretical predictions give the scaling of

the upper bound as ε
(4)
upper ≍ n−0.25, close to our numerical rate of n−0.270.

In Figure 8 we show instances of numerically computed minimizers of (7) for increasing values of ε. They show

that the breakdown of the numerical approximation of the continuum solution happens via development of spikes.

As in the 1D examples we investigate the proximity of the optimal radius ε
(p)
∗ (n;ω) to the connectivity radius

εconn(n;ω), where ω is the sample considered. In Figure 9(a) we plot the error, err
(p)
n (fn;ω), against ε− εconn(n;ω)
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(b) Example graph in 2D for ε = ε
(4)
∗ (n) and n = 1280.

Fig. 9: Error dependency on the connectivity radius and the graph for optimal ε, for n = 1280 and p = 4.
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Fig. 10: Experiments for improved model (24) with n = 1280 and p = 4 averaged over 100 realizations.

for n = 1280 and p = 4, averaged over 100 samples. The phenomenon we observe is similar to the 1D case; the error

is large and highly variable for ε below the connectivity radius. There is a sharp transition to the well-posed regime,

as soon as the graph is connected with the error increasing with ε. As we explain in Remark 6.1 it is an intriguing and

important open problem to explain why the error is the smallest for rather coarse graphs (Figure 9(b)).

Our theoretical result in Section 5 showed that minimizers of the improved model, (24), converge as n → ∞ to

the correct solution if 1 ≫ εn ≫ (lnn/n)
1/d

, regardless of how slowly εn → 0. Here we numerically investigate two

issues. One is how the error of the improved model depends on ε for fixed n. The other is to compare the observed

error of the improved model to the original model. Recall that in the improved model we prove convergence when the

labels are extended around the training set to balls of radius (1 + α)ε where α > 0. This is needed in our proof to
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ensure that spikes do not form. Here we numerically investigate if extending the labels to smaller balls, in particular

choosing α ∈ (−1, 0], is sufficient to prevent spike formation. In Figure 10(a) we display the error for fixed n = 1280
and constraint ball radii 2ε, ε and ε/2. The numerics show that even radius ε/2 is sufficient to prevent spike formation

and that it allows for better approximation of the continuum solution. We also observe that fixing the labels on larger

sets can significantly negatively impact the accuracy of approximation. This issue is less pronounced for larger values

of n, where the connectivity radius is small, and hence the constraint set can be chosen to be small. For example,

for n = 1280 the connectivity radius is approximately εconn(1280) ≈ 0.05, therefore a ball of radius 2εconn(1280)
accounts for about 3% of the total domain. On the other hand the connectivity radius for n = 5120 is approximately

εconn(5120) ≈ 0.03 and therefore a ball of radius 2εconn(5120) accounts for about 1% of the total domain. Clearly,

the larger n the smaller we can choose the constraint set and therefore the smaller the additional error.
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[32] N. García Trillos, M. Gerlach, M. Hein, and D. Slepčev. Error estimates for spectral convergence of the graph Laplacian on random

geometric graphs towards the Laplace-Beltrami operator. arXiv preprint arXiv:1801.10108, 2018.

28



[33] N. García Trillos, Z. Kaplan, T. Samakhoana, and D. Sanz-Alonso. On the consistency of graph-based Bayesian learning and the scalability

of sampling algorithms. arXiv preprint arXiv:1710.07702, 2017.

[34] N. García Trillos and R. Murray. A new analytical approach to consistency and overfitting in regularized empirical risk minimization.

European J. Appl. Math., 28(6):886–921, 2017.

[35] N. García Trillos and D. Sanz-Alonso. Continuum limits of posteriors in graph Bayesian inverse problems. SIAM J. Math. Anal.,

50(4):4020–4040, 2018.
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[38] N. García Trillos and D. Slepčev. A variational approach to the consistency of spectral clustering. Applied and Computational Harmonic

Analysis, 2016.
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