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Abstract

Predictive modeling is arguably one of the most important tasks actuaries face in
their day-to-day work. In practice, actuaries may have a number of reasonable models
to consider, all of which will provide different predictions. The most common strategy
is to first use some kind of model selection tool to select a “best model,” and then
use that model to make predictions. However, there is reason to be concerned about
the use of the classical distribution theory to develop predictions because these ignore
the selection effect. Since accuracy of predictions is crucial to the insurer’s pricing
and solvency, care is needed to develop valid prediction methods. In this paper, we
undertake an investigation of the effects of model selection on the validity of classical
prediction tools and make some recommendations for practitioners.

Keywords and phrases: Bootstrap; post-selection inference; predictive distribution;
regression; variable selection.

1 Introduction

In the current property and casualty insurance practice, actuaries often need to predict the
value of a future claim based on data from previous claims. This is done by first specifying
a statistical model for claims depending on some unknown parameters, learning about the
parameters in some specified way based on the observed claim data, and then converting
this fitted model into a predictive distribution for the future claim. There are a variety of
ways this process of predicting a future claim can be carried out, and we discuss some of
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these below, but there is an issue of practical importance lurking behind the scenes. In
most applications, there will be many candidate models that could be fit to the observed
claim data, but the actuary will not be sure of which one to use. Standard practice is to
pick one of the candidate models, maybe by using one of the many model selection tools
available in the statistical literature, treat the selected model as if it were certain, and
proceed with model fitting and prediction as usual. Since the distribution theory used to
derive properties of the predictive distribution assume a fixed model, there is reason to be
concerned that these properties may fail if the data is used to select a model. Prediction
errors can adversely affect the insurer’s pricing, potentially hurting its profitability; they can
also lead to insufficient reserves and hence jeopardize the insurer’s solvency. Therefore, the
prediction risk is a serious concern to both the insurer and regulator. Motivated by this
fact, the goal of this paper is to assess the effects of model uncertainty and selection on the
quality of the predictive distribution. While we choose regression model as a main vehicle
for our presentation, the issue under consideration and our conclusion carry over to actuarial
model selection in general.

In the extant actuarial science literature, parameter and model uncertainty has received
some attention; see, e.g., Cairns (2000), Peters et al (2008), and Hartman and Groendyke
(2013), Bignozzi and Tsanakas (2016), Huang et al (2016) and Venter and Sahasrabuddhe
(2016). Our paper is different in that its focus is on the effect of model selection. Only
recently has the potentially devastating effects of selection on inference been noticed in
the statistical literature, so bringing these issues to the attention of actuaries is important
and of general interest. We will conduct our investigation in the context of prediction
because accurate prediction is a crucial task for all actuaries, and, even in the statistics
literature, there has virtually no work (except Kabaila 1995 and Leeb 2009) on the effect of
model selection on the validity of predictive distributions for future loss variables and their
corresponding prediction intervals.

There are a variety of model selection criteria available for actuaries such as AIC, BIC, Sp

and Mallows’ Cp, to name a few. Essentially, each model selection criterion can be classified
either as “consistent” or “conservative”. For a conservative model selection criterion, such
as AIC, Cp and Sp, the probability of selecting an incorrect model is asymptotically zero,
while for a consistent model selection critia, such as BIC and description length criterion, the
probability of selecting the most parsimonious correct model is asymptotically one. Kabaila
(1995) shows that if a consistent model selection criterion is used, then the resulting predic-
tive intervals will not get the correct coverage even asymptotically. No similar work has been
done to investigate the effect of selection on predictive interval. One exception is Leeb (2009)
where he develops a selection tool based on a version of cross validation, and rigorously proves
that the corresponding prediction intervals are approximately valid. However, his approxi-
mate validity result holds only when either the dimension p is large compared to n, or if p is
not large but n is unrealistically large; see his Proposition 4.3. Therefore, we conclude that
Leeb’s method is not satisfactory for the typical case where actuaries face relatively small
p and moderate n. In view of the above-mentioned result in Kabaila (1995), investigation
along this line should be made using conservative model selectors. Our investigation here
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focus primarily on selection based on the AIC criterion. But limited investigations using
lasso and stepwise selection procedures reveal similar conclusions.

The remainder of the paper is organized as follows. Section 2 gives a brief review of the
classical theory of prediction in regression. Section 3 is devoted to reviewing some of the
investigations in the statistical literature on the effect of model selection on inference. Next,
in Section 4, we shift our focus to the effect of model selection on prediction. There, based
on our numerical investigations of the available statistical tools for the cases of practical
relevance to actuaries and on the real life dangers of prediction errors, we conclude that the
best strategy for making valid predictions is to use the full model, i.e., not to carry out a
variable selection step using a model selector. Finally, we conclude the paper in Section 5
with several remarks and open questions. R code for implementing the simulation study in
this paper can be found at http://www4.stat.ncsu.edu/~rmartin.

2 Prediction in regression

Property and casualty actuaries often need to model the relationship between the loss (re-
sponse) variable, Y , and a set of rating (predictor) variables, X1, . . . , Xp. For example, in
personal auto insurance, Y might be the claim amount (or a transformation thereof) and
X1, . . . , Xp might include driver age, educational level, gender, income, marital status, vehi-
cle model, territory, etc (e.g., Werner and Modlin 2010). Once the model is fully specified
and the relationship between the X and Y variables is known, then actuaries can use this
model to predict the value of a new loss, Ỹ , corresponding to a new set of values x̃1, . . . , x̃p of
the rating variables. For an introduction to these regression models, see Frees (2010), Frees
et al (2014), and the references therein. For concreteness, and because it is the most widely
used, we will focus our attention on the standard linear regression model

Y = Xβ + σε, (1)

where Y is the n-vector of loss variables, X is the n × p matrix of rating variables, ε is a
n-vector of iid standard normal errors, β is the p-vector of regression coefficients, and σ > 0
is the scale parameter; if the model includes an intercept term, then the first column of X
consists of a n-vector of 1s. The points we make in this paper, however, are not unique
to this simple linear model. Indeed, the same conclusions would apply to, say, generalized
linear models (McCullagh and Nelder 1989; de Jong and Heller 2008) among others, but the
arguments and calculations would be less transparent for the more complex models.

In the remainder of this section, we review the classical theory of prediction in the linear
regression model, but with a slight twist. According to Equation (4.6) in Frees (2010), if the
goal is to predict a future claim Ỹ , corresponding to a vector of rating variables x̃, possibly
different from those in (1), a 100(1− α)% prediction interval is

x̃⊤β̂ ± tn−p(α/2) σ̂ {1 + x̃⊤(X⊤X)−1x̃}1/2, (2)

where tν(α) denotes the upper αth quantile of the Student-t distribution with ν degrees of
freedom. If we denote this prediction interval as Cα(Y ), omitting the dependence on X and
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x̃, then we say that the prediction interval is valid in the sense that

P{Cα(Y ) ∋ Ỹ } = 1− α,

where the probability is with respect to the joint distribution of (Y, Ỹ ) under the model
(1). In other words, validity means that the actual prediction coverage of Cα(Y ) equals the
nominal level 1 − α. To summarize this result over all values of α, simultaneously, we can
construct a predictive distribution for Ỹ , given Y , which has a density function given by

πY (ỹ) = {1 + x̃⊤(X⊤X)−1x̃}−1/2fn−p

( ỹ − x̃⊤β̂

{1 + x̃⊤(X⊤X)−1x̃}1/2

)

, (3)

where fν is the density function corresponding to a Student-t distribution with ν degrees
of freedom and, again, we suppress the dependence on X and x̃ in the notation. Then
that 100(1− α)% prediction interval described above is exactly the 1− α highest predictive
density interval corresponding to πY (ỹ). We will use this predictive density primarily for
visualization purposes in what follows.

3 Effects of model selection on inference

Inference and prediction based on the model (1) and the least-squares distribution theory is
standard, but the actuary often will not know which of the rating variables X1, . . . , Xp are
relevant to explaining the variation in the loss Y ; in other words, the actuary may want to
consider which of the coefficients βj, j = 1, . . . , p, are zero. To facilitate this discussion, it
will help to expand a bit on the usual notation. Rewrite the parameter β as a pair (S, βS),
where S ⊆ S := {1, 2, . . . , p} is the model, i.e., the set of indexes, j, corresponding to non-
zero βj, and βS is the corresponding |S|-vector of non-zero values. This expanded notation
helps to make clear that S might also be uncertain, which is not easily reflected in (1).

Established approaches for dealing with an uncertain model, such as the Akaike infor-
mation criterion (AIC, Akaike 1973) and the Bayesian information criterion (BIC, Schwartz
1978), first use the data to select a suitable model, Ŝ, say, and then estimate the corre-
sponding parameter βŜ via least-squares as usual (e.g., Frees 2010, Ch. 5). An alternative to
AIC and BIC is the least absolute shrinkage and selection operator (lasso, Tibshirani 1996),
which attempts to simultaneously estimate the pair (S, βS); a recent reference on lasso in
the actuarial science literature is Duncan et al (2016), and a detailed summary of its many
variants is given in Hastie et al (2009). While AIC, BIC, lasso, forward stepwise, etc, are
simple and widely used, there are some often-overlooked concerns.

Our focus here is on the so-called selection effect, i.e., using the data first to select a
model Ŝ and will affect the distribution theory for the least-squares estimators, which may
invalidate inference and/or prediction. Here we give an example to illustrate the potentially
serious problems that may arise; a different example, with a similar message, can be found
in Lockhart et al (2014). As a first step in a regression analysis, one often will carry out a
full F-test to determine if any of the coefficients βj, j ∈ S, for a fixed S ⊆ S, are statistically
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Figure 1: Plot of the distribution function of the F-test p-values, after model selection via
AIC, compared to that of Unif(0, 1), diagonal line.

significant (e.g., Frees 2010, Ch. 4 and De Jong and Heller, Ch. 4). Under the null hypothesis
that all the coefficients are zero, the p-value for the F-test will have a Unif(0, 1) distribution.
But, as discussed above, standard practice is to use data to help select a candidate model,
say Ŝ. Here we consider a choice of Ŝ based on the AIC criterion; this is easy to implement
using the R function regsubsets provided in the leaps package (Lumley 2009). What
happens when the F-test is applied after model selection via AIC? Is the distribution of the
p-value still Unif(0, 1)?

To investigate this, we carry out a simulation study. Let the rating variables X1, . . . , Xp

be iid N(0, 1), and β1 = · · · = βp = 0, so that the null hypothesis is true no matter what
model is selected; here we take p = 10 and n = 50. For each data set, we select a model
based on the AIC criterion, carry out the F-test as usual on the selected model, and evaluate
the p-value. This process is repeated for 250 data sets, and Figure 1 plots the empirical
distribution function of the F-test p-value. While different repetitions may not yield selected
models with the same number of predictors, and this means that the reference F distribution
under the null hypothesis may be different for different repetitions, the p-values are uniformly
distributed under any of the null distributions, and therefore transforming the test statistic
at each repetition into a p-value allows for comparing the distribution of the classical F -test
null p-values with their actual distribution post-selection. The classical theory suggests that
this empirical distribution function should match that of Unif(0, 1), the diagonal line in the
plot, but clearly it does not. The p-values after selection are stochastically considerably
larger than Unif(0, 1), so the the classical F-test, applied post selection, is not valid.

The effects of model selection on inference is a serious concern, and it has become some-
thing of a “hot topic” in the statistics literature in recent years; important references include
Benjamini et al (2005), Leeb and Pötscher (2005, 2006, 2008), Berk et al (2013), Efron
(2014), Fithian (2015), and Taylor and Tibshirani (2015, 2017). Aside from identifying is-
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sues that arise as a result of model selection, there are important questions about what even
is the inferential target post-selection. The aforementioned papers address some of these
issues, and propose various corrections for the selection effect. It is beyond the scope of this
paper to review the various proposals; besides, this is still a very active area of research so
new developments are to be expected. However, we should mention briefly one of the general
strategies that can be used to correct for the selection effect, one that we will consider in the
next section. As was made clear in Figure 1, the act of selecting a model first changes the
classical distribution theory. To correct for the selection effect, one only needs to understand
how the classical distribution theory changes. Only in rare cases can this selection-adjusted
distribution theory be worked out analytically, but numerical approximations may be possi-
ble. In Section 4 we will consider an approach to adjust for the selection effect based on the
bootstrap (Efron 1979; Klugman et al 2012).

4 Effects of model selection on prediction?

4.1 Setup and first observations

Given the apparently damaging effects that model selection can have on the validity of
statistical inference, it is imperative to ask if these effects carry over to the insurer’s prediction
problem. That is, are actuaries safe to base their predictions on (3) when the data are used
to first select a model? Despite the surge of interest in statistics on post-selection inference,
as discussed above, the effect of selection on prediction has not received much attention; the
only work along these lines that we are aware of is Leeb (2009), but see Section 5.

When only a subset S of the predictor variables are to be considered, then the prediction
methodology described above can be modified in an obvious way. Indeed, the 100(1 − α)%
prediction interval becomes

x̃⊤
S β̂S ± tn−|S|(α/2) σ̂S {1 + x̃⊤

S (X
⊤
S XS)

−1x̃S}
1/2,

and we can proceed to define a corresponding predictive distribution, as in (3), which we will
denote by πY (ỹ | S) to highlight the dependence on the model S. If S⋆ is the “true” model,
i.e., βj = 0 for all j 6∈ S⋆, then all the distributional properties of the prediction interval,

etc, carry over to this case. But what happens if data is used to select a model Ŝ? We will
investigate the effect of selection on prediction by looking at the corresponding predictive
density πY (ỹ | Ŝ), which depends on data in two different ways—one is direct, just like in
(3), and the other is indirect, through Ŝ. For the discussion that follows, again we will focus
on Ŝ chosen via AIC because this is the preferred method in prediction applications, and
convenient R functions are available for doing best subset selection via AIC, e.g., regsubsets.
In some limited experiments using other selection methods, such as BIC and lasso, we found
similar results to those presented here.

To see the effect of selection on prediction, we consider three alternative predictive distri-
butions besides the AIC predictive distribution. The first is the oracle predictive distribution,
πY (ỹ | S⋆), based on knowledge of the true model S⋆. This is the “gold standard” predictive,
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Figure 2: Displays of the four predictive distributions in two simulation experiments.

ideal for comparison purposes, but, unfortunately, it is not available to the actuary in prac-
tice because he/she typically will not know S⋆. The second is the predictive distribution,
πY (ỹ | S), based on the full model that includes all the rating variables. This is a simple
conservative choice that may be inefficient, for a variety of reasons, compared to the other
more sophisticated methods. Finally, following our discussion above, we consider a predictive
distribution that accounts for the possible departure from the usual least-squares distribu-
tion theory caused by selection. The exact distribution theory, accounting for selection, is
not available in closed-form, but we can easily get a bootstrap approximation via resam-
pling (e.g., Davison and Hinkley book, Sec. 6.3.3), which we denote by π̂Y (ỹ | Ŝ). Here and
throughout this paper, we take the bootstrap sample size to be B = 500. Of course, among
these four methods (oracle, full, AIC and boostrap-AIC), the oracle predictive distribution
is the best. Prediction based on the full model should also be reasonable but its inefficiency
will manifest in having a wider predictive density than the oracle. It is not clear, however,
what to expect from the two AIC-based predictive distributions.

To build some intuition about the performance of the various predictive distributions, we
revisit that example from Section 3. Suppose the loss variables X1, . . . , Xp, with p = 10, are
iid N(0, 1), and all the β coefficients are zero. We then fit the various models and evaluate
the corresponding predictive distributions based on another set x̃ of iid N(0, 1) values of the
ten rating variables. This process was carried out for a number of simulated data sets and
there were two distinct cases that emerged: one where the AIC-based predictive distributions
were similar to that of the oracle, and one where they were different. Panels (a) and (b) of
Figure 2, respectively, are representative of these two cases. Note that, in each panel, both
AIC-based predictive densities have slightly smaller spread than the oracle, and the main
difference between the two panels is an apparently not-so-substantial location shift of the
AIC-based predictive densities away from the oracle in Panel (b).
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4.2 Further investigations

A number of interesting and important questions arise from the limited results described
above. In particular:

1. Do the prediction intervals derived from the AIC selection-based predictive distribution
have adequate prediction coverage?

2. If so, then how does its length compare to the oracle?

3. If not, then why, and does the bootstrap adjustment do better somehow?

In this section we carry out some further simulation studies to address these questions and,
ultimately, to make a recommendation for what method practitioners ought to use based on
the currently available statistical tools.

The experiments carried out above is somewhat unrealistic in the sense that the rating
variables were independent and, in fact, none of them contributed to the loss variable dis-
tribution because the β coefficients were all zero. Here we consider a more realistic scenario
in which there is some dependence between rating variables and there are some non-zero
coefficients, with varying magnitudes.

• We consider X1, . . . , Xp to be multivariate normal, with standard normal marginals,
and with first-order autoregressive correlation structure, i.e., the correlation between
Xj and Xk is 0.5|j−k|, for j, k = 1, . . . , p.

• In an effort to reach some conclusions independent of a fixed choice of the non-zero
values of β, we consider three classes—weak, moderate, and strong—and then randomly
sample from these classes. In particular, we first sample 3 of the 10 rating variables
to include and, for each of those three, the corresponding βj’s are sampled iid from
N(µ, 1); the other 7 all have βj = 0. The weak, moderate, and strong classes correspond
to µ = 1, µ = 3, and µ = 5, respectively.

For each of the weak, moderate, and strong cases, and for each “true” β sampled from the
class, we simulate 200 data sets according to the model for rating variables above and (1),
and evaluate 95% prediction intervals based on the various methods above. The average
lengths and prediction coverage proportion of these predictive intervals can be computed
for each β, and Figure 3 gives a summary of these results over 20 β’s sampled from the
respective classes. Throughout, we keep n = 50, p = 10, and σ = 1 fixed.

The first observation is that both the oracle and the full model produce prediction inter-
vals with the right coverage, but the full model intervals tend to be longer, by up to 10%,
confirming the claims we made previously. Second, we see that the AIC selection-based in-
tervals are both a bit shorter than the oracle, on average, and therefore, tend to under-cover,
especially the bootstrap version.

Any explanation for AIC’s less-than-fully-satisfactory performance? First, it is known
that AIC tends to overfit; that is, if Ŝ is the set of rating variables selected by AIC, then
AIC tends to overfit in the sense that, typically, Ŝ ⊃ S⋆ (Hurvich and Tsai 1989; Zheng
and Loh 1995). It follows from Theorem 1 in Hong et al (2018) that AIC overfitting implies
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Figure 3: Summary of coverage proportion and average length of the various prediction
intervals over 20 samples from each of the weak, moderate, and strong classes of signals.
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variance underestimation, i.e., Ŝ ⊃ S⋆ implies σ̂2

Ŝ
< σ̂2

S⋆ . And for relatively large n, the
width of the prediction intervals is chiefly determined by these variance estimates. Indeed,
for n appreciably larger than p:

• The critical value tn−|S| in (2) will not differ much for S = S⋆ or S = Ŝ.

• Since n is large, X⊤
S XS ≈ nΣS, where ΣS is the corresponding sub-matrix of Σ, when

the rows of X are N(0,Σ). Therefore,

x̃⊤
S (X

⊤
S XS)

−1x̃S ≈
x̃⊤
SΣ

−1

S x̃S

n
.

Since the numerator on the right-hand side, as a function of x̃S ∼ N(0,ΣS), is a chi-
square random variable with |S| degrees of freedom, it should be small compared to
the n in the denominator. Therefore, the the AIC and oracle prediction intervals will
not be affected by the {1 + x̃⊤

S (X
⊤
S XS)

−1x̃S}
1/2 term either.

Therefore, any noticeable difference in the prediction intervals for AIC versus the oracle
must be due to the variances σ̂2

S⋆ and σ̂2

Ŝ
. Since AIC tends to overfit, and overfitting implies

variance underestimation, the shorter length and under-coverage of the AIC-based predic-
tion intervals is to be expected. And given the under-coverage of the AIC selection-based
prediction interval, a possible explanation for the bootstrap’s slightly worse coverage is the
dilation phenomenon described in Efron (2003).

Based on the results presented here, and keeping in mind that incorrect predictions can
jeopardize an insurer’s solvency, we have to recommend that practitioners use the full model
to derive their predictions. This is, indeed, a conservative recommendation, but solvency is an
important concern and none of the other methods seem to provide valid prediction intervals
in general. Our recommendation would surely change if the problems being considered by
actuarial scientists where “high-dimensional,” i.e., where p is large compared to n, or if new
statistical methodology for valid post-selection prediction were developed.

5 Conclusions and further questions

In this paper, we considered the effect of model selection on both inference and prediction.
The material in Section 3 is mostly a review of some recent work in the statistics literature,
but bringing the concerns about inference after model selection to the attention of practicing
actuaries is important and one of our main goals. On the other hand, so the observations
made in Section 4 are, to the best of our knowledge, new. Our conclusion is that post-
selection prediction—based on either a naive application of the usual least-squares theory
or a bootstrap adjustment—is unsatisfactory in the sense that the corresponding prediction
intervals tend to under-cover. Therefore, we make the following recommendation:

Actuaries should not carry out a selection step if valid prediction is the goal, that
is, they should construct their predictive distribution, intervals, etc based on the
full model and the usual least-squares distribution theory.
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This is indeed a conservative recommendation since the full model might not be the most
efficient one. But since prediction errors may jeopardize the insurer’s solvency, we argue that
conservatism is a prudent position to take. Naturally, our recommendation could potentially
change if the problem setting were different, if something other than prediction were the
goal, or if new statistical methodology were developed.

The high-dimensional regression problem, where p ≫ n, has received considerable at-
tention in the statistics literature, but this situation is still rare in actuarial science ap-
plications. However, as new technology develops, one would expect that, eventually, the
high-dimensional problem would be one that actuarial scientists would be interested in and,
naturally, the question of how to make valid predictions in such cases would be relevant.
When p ≫ n, our recommendation to use the full model for prediction is no longer feasible,
so some entirely new considerations would be needed.

One important question, for future research, is how to correct for the selection effect when
the goal is valid prediction? To really answer the question, we would need to derive the form
of an optimal prediction interval correction which makes the intervals asymptotically honest.
This is a substantial endeavor, a focus of our ongoing work.
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Peters, G. W., Shevchenko, P. V., and Wüthrich, M. V. (2008). Model uncertainty in claims
reserving within Tweedie’s compound Poission models, ASTIN Bulletin, 39, 1–33.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Taylor J. and Tibshirani, R.J. (2015). Statistical learning and selective inference, PNAS,
112, 7629–7634.

Taylor J. and Tibshirani, R.J. (2017). Post-selection inference for l1-penalized likelihood
models, Canadian Journal of Statistics, doi/10.1002/cjs.11313.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso, Journal of the
Royal Statistical Society, Ser. B, 58, 267–288.

Venter, G. and Sahasrabuddhe, R. (2016). A note on parameter risk, Variance, 9, 54–63.

Werner, G. and Modlin, C. (2010). Basic Ratemaking, Arlington: Casualty Actuarial
Society.

Zheng, X. and Loh, W.-Y. (1995). Consistent variable selection in linear models. Journal
of the American Statistical Association 90(429), 151–156.

13


