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Abstract

Photoacoustic tomography (PAT) is a hybrid imaging modality that intends to
construct high-resolution images of optical properties of heterogeneous media from
measured acoustic data generated by the photoacoustic effect. To date, most of the
model-based quantitative image reconstructions in PAT are performed with either
the radiative transport equation or its classical diffusion approximation as the model
of light propagation. In this work, we study quantitative image reconstructions in
PAT using the simplified P, equations as the light propagation model. We provide
numerical evidences on the feasibility of this approach and derive some stability results
as theoretical justifications.

Key words. Photoacoustic tomography, radiative transport equation, simplified P, approxi-
mation, diffusion approximation, hybrid inverse problems, hybrid imaging, image reconstruction,
numerical optimization.
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1 Introduction

Photoacoustic tomography (PAT) is a hybrid imaging method that couples ultrasound imag-
ing and optical tomography via the photoacoustic effect, enabling high-resolution imaging
of optical contrasts of heterogeneous media. In a typical way to induce the photoacoustic
effect, a short pulse of near infra-red (NIR) light is sent into an optically heterogeneous
medium, such as a piece of biological tissue, which we denote as € R3. In the light propa-
gation process, a portion of the photons are absorbed by the medium. The absorbed energy
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causes the medium to heat up slightly, and then cool down after the rest of the photons
exit. The heating and cooling of the medium forces the medium to expand and then con-
tract. This expansion and contraction generates a pressure field inside the medium which
then propagates outwards in the form of ultrasound. The objective of PAT is to measure
the ultrasound signals on the surface of the medium and use the measured data to recover
information on the interior optical properties of the underlying medium. Interested readers
are referred to [8, 14, 21, 43, 45, 50, 56, 67, 73, 74] for overviews of the physical principles
as well as the practical applications of PAT.

The radiation of the photons inside the medium is described accurately by the phase-
space radiative transport equation (RTE) [0, 7, 60]. Let us denote by u(x,v) the density of
photons at location x € 2, traveling in direction v € S? (S? being the unit sphere in R?),
integrated over the period of the pulse. Then u(x,v) solves:

v Vu(x, v) + ou(x)ulx,v) = o (x)K(u)(x,v) in X (1)
u(x,v) = f(x) on I'_

Here X = QxS? is the phase space of photon propagation, with T'_ = {(x,Vv) : (x,v) € 92 x
$? s.t. —n(x)-v > 0} denoting the incoming boundary of X (n(x) being the outer normal
vector at x € J€). The positive functions o,(x) and o4(x) are respectively the absorption
and the scattering coefficients of the medium. The function f(x) denotes the incoming
illumination photon source, again integrated over the period of the pulse. To simplify the
presentation, we have chosen the illumination source to be isotropic, i.e. independent of v.
This is by no means technically necessary.

The scattering operator K is defined as
K(u)(x,v) = / O(v, vu(x,v')dv' — u(x,v)
S2

where the kernel ©(v, v’) describes how photons traveling in direction v’ are scattered into di-
rection v, and also satisfies the normalization condition [, O(v,v')dv' = [, O(V/,v)dv' =
1, Vv € §2. In practical applications in biomedical optics, © is often taken to be the
Henyey-Greenstein phase function, which depends only on the product v - v/. That is,

@:@Hg(V~V/> [ s ]:
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where ¢ is the scattering anisotropy factor of the medium.

The pressure field generated at a position x € €2, due to the photoacoustic effect, is the

product of the Griineisen coefficient, denoted by =, and the absorbed energy density at x.
That is,
H = H"(x) = E(x)aa(x)/ u(x,v)dv. (2)
SQ
The Griineisen coefficient = is a parameter that measures the local photoacoustic efficiency
of the medium.



This initial pressure field then evolves following the acoustic wave equation in the form
of ultrasound. The equation for the evolution reads [3, 11, 13, 50]:

1 0% .
Cz(x)w—Ap = 0, mRy xQ
p(t,x) = H(x), %(t,x) = 0, in{0} xQ 3)

n-Vp(t,x) = 0, onR; x 0Q

where p(t,x) is the pressure field, and ¢(x) is the ultrasound wave speed. In the majority
of the literature for PAT, the ultrasound speed is assumed known.

The data measured in PAT are the ultrasound signals on the surface of the medium for
a long enough time period T, that is, p(t, x)|0,r)xo0. From the measured data, we attempt
to infer information on the optical properties of the underlying medium, for instance, the
coefficients o,, o, and =. This inverse problem has been extensively investigated in the
past decade, from mathematical, computational as well as practical perspectives; see for
instance [2, 3, 4, 5, 13, 15, 17, 18, 19, 20, 29, 35, 36, 37, 39, 44, 46, 49, 54, 55, 56, 58, ?, 65,
, 09, 72,76, 77, 78] and references therein.

In most of the past research in PAT, simplified mathematical models have been used
as the model for light propagation, mainly due to the fact that the radiative transport
model (1) is a phase-space model and is therefore computationally expensive to solve. The
diffusion approximation to RTE, see (12), is the most commonly-used replacement model [12,

]. While the diffusion approximation is much simpler for mathematical analysis and
computational solution, it often suffers in terms of accuracy, especially in regions close to
the source locations, a phenomenon that has been addressed extensively in the literature
of optical tomography [0, 34, 71], as well as PAT [70]. In this work, we study the PAT
inverse problem with the simplified P, equations [, 48], a more sophisticated approximation
than the classical diffusion model to the radiative transport equation, as the model of light
propagation. We show numerically that image reconstructions based on the simplified P,
model, while computationally less expensive than RTE-based reconstructions, can be more
accurate than those based on the classical diffusion model under right circumstances.

We make the following general assumptions in the rest of the paper:

(A-1) the domain €2 is simply-connected with smooth boundary 0; (A-ii) the physical
coefficients (c, =, 0,,0,) are positive and bounded in the sense that 0 < a < ¢, Z,0,,05 <
@ < oo for some positive constants a and @; (\A-iii) the ultrasound speed function ¢(x) and
the Griineisen coefficient Z(x) are smooth in ; and (A-iv) the values of the coefficients are
known on the boundary 0f).

The rest of the paper is structured as follows. We first review briefly in Section 2
the simplified P, approximation to the radiative transport equation. We then present in
Section 3 the main computational reconstruction algorithm we use for our numerical studies.
In Section 4 we study the quantitative step of the inverse problems based on the simplified
P equations. Detailed numerical simulation results based on synthetic data are presented
in Section 5 to demonstrate the feasibility of our approach. Concluding remarks are offered
in Section 6.



2 The simplified P, approximation

The radiative transport equation (1), although often regarded as an accurate mathematical
model for light propagation in tissue-like optical media, is mathematically challenging to
analyze and computationally expensive to solve. Macroscopic approximations to the RTE
are often sought as alternative light propagation models.

A classic approach approximates the transport solution u(x, v) using its first N moments
in the direction variable v [0, 27, 53]. This can be done, for example, via the spherical
harmonics expansion. The Py approximation is the system of derived equations for the
coefficients of the expansion, i.e., the spherical harmonic moments. The standard diffusion
approximation, i.e. the P; approximation, to the RTE is obtained when only the zeroth
moment is kept in the spherical harmonic expansion.

A major drawback of the classical Py approximation is that the number of equations in
the system grows as (N + 1)2, due to the rapid growth of the number of spherical harmonic
modes as the order N increases. This problem is avoided in the simplified Py approximation
where the number of equations involved only grows linearly with respect to N. In the rest
of this work, we will only focus on the simplified P, equations. We refer interested readers
to [31, 12, 48, 75] and the references therein for details on the derivation and numerical
validation of the general simplified Py (N > 1) equations.

To introduce the simplified P, approximation, we first define the following sequence of
total absorption coefficients:

Oan(X) = 04(%) + (1 — g")os(x), n = 0. (4)
We also define the diffusion coefficients:

D(x) = m, and D(x) = ﬁ(x)' (5)

Then the simplified P, equations, together with its boundary conditions, take the following
form [12, 48, 75]:

=V DVéi(x) + ga1(x) — 20402(x) 0, in Q2
—V - DV¢a(x) + (2042 + 504)h2(x) — 20,¢1(x) = 0, in Q (6)
n 'PV¢1 + %¢1 — %% = %f(x), on 02
n- DV¢2 + i(ﬁg - %(ﬁl = —%f(X), on 0f)
where ¢, and ¢9 are the first two composites, i.e. linear combinations of, Legendre moments
of the transport solution u(x,v); see [31, 42, 48, 75] for more details.

The initial pressure field generated due to the photoacoustic effect, corresponding to (2),
can be written as follows in the simplified P, approximation:

H = H"(x) = Z(x)0,(x) (61 ~ 22). (7)

To simplify the analysis, we assume in the following that the absorption coefficient o, is
very small compared to the effective scattering coefficient (1—g)oy, i.e. 0, < (1—g)os. Under
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this assumption, we can neglect the factor o, in the definitions of the diffusion coefficients
(D, D) and the absorption coefficients o, such that

1
0=t Tm=(l=gNosn=l D)= g
Bx) P D Lol :
X)= —— X, Oa2 =
T1+g+ 9% E)

We note that this assumption is not unfounded, as this is one of the assumptions under
which (simplified) Py-type approximations are shown to be valid. Moreover, in applications

of PAT for biological tissues, T45: is on the order of 1072 < 1 [41].

With the simplification in (8), the simplified P, system (6) reduces to the following form:

—V DV(bl -+ Ua¢1 O'a(bg = O, n Q
-V DV¢2 + ( O-a)(bQ 3,€0-a¢1 = 07 in (9)
n DV¢1 +301— 302 = 3f(x), on 0N
n-DVg¢y + ﬁ@ - 8%(%51 = —g%nf(x)a on 02
where
B 3 d , 3
_—7(1+g+92)’ an /<o—1+g/<o.

The corresponding initial pressure field H?? in (7) remains in the same form.

It is sometimes more convenient to rewrite the simplified P system (9) in a new pair of

variables (o1, p2): ©1 = ¢1 — —¢2 and oy = ¢. In this case, we have
-V DV, + (1 + 35 )Uagol 2#%, ll)cpg = 0, in O
-V DVSOQ + /-:’ D()OZ 3.0aP1 = Oa in 2 (10)
n- DV + 6{{;;1@5—% 15?%110902 = Gf;flf(x), on 0f)
n- DV + 500 — g-1 = —5-f(x), on 9N
The corresponding initial pressure field can now be written as
H = H"(x) = E(x)04(x)¢1(x). (11)

To recover the classical diffusion approximation to the radiative transport equation, we
drop the terms involve gradient of uy from the simplified P, system (10). This leads to the
simplified P; approximation:

-V - D(x)Ve(x) + o,(x)p(x) = 0, in Q2 (12)
n-DVe+3ip = 1f(x), ondQ
The corresponding initial pressure field generated in this case takes the form:
H = H" (x) = E(x)0,(x) (%) (13)

Note that o7 in (10) and ¢ in (12) are different approximations to the same physical quantity,
the photon density. We use different symbols here for the two to avoid unnecessary confusion.
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Moreover, the boundary condition in the diffusion approximation (12), i.e. simplified P,
approximation, is slightly different from the boundary condition one can obtain from a
detailed boundary layer analysis in the classical P; approximations [23]. For the sake of
consistency, we use the boundary condition in (12).

It is well-known that under reasonable regularity assumptions on the optical coefficients
(04,05) and the boundary illumination source f, the radiative transport equation (1) and its
diffusion approximation (12) are well-posed in appropriate function spaces [23]. Therefore
the initial pressure fields H™*® and H%/f are well-defined quantities. The simplified P, system
is less studied. It is straightforward to verify from standard theory of elliptic systems [32, 52]
that the simplified P, system (9) is also well-posed under similar assumptions. Therefore,
H?2 is also a well-defined quantity.

3 Numerical reconstruction algorithms

In this section, we implement a standard optimal control-based numerical image recon-
struction algorithm for PAT with the simplified P, equations (9) and the classical diffusion
equation (12) as the models of light propagation. Due to the fact that the data we have
is not enough to uniquely determine all three coefficients (Z, o,, 05) simultaneously [10, 51],
we consider here only the reconstruction of two coefficients. We provide the details for the
case of reconstructing (o,, o). Reconstructing other pairs, such as (£, 0,), can be done very
similarly.

Let us assume that we have data collected from J > 2 different illuminations {f;}7_;.
We denote by {p} 3]:1 the measured ultrasound data. We solve the reconstruction problem
by searching for the coefficient pair (o,, o) that minimize the mismatch between ultrasound
data predicted by the mathematical models and the measurements. More precisely, we solve
the minimization problem

min O(0,,05), subject to, [, <o, <uy, [ <oy <ug (14)
where the linear bounds {l,,u,, [, 1} are selected in a case by case manner, as discussed
further in the numerical simulations in Section 5. The data mismatch functional is defined
as

O(00, 7)) = %Zl /O /6 = )PS9 + aR(3) + AR, (15)

where ij is the ultrasound signal predicted using the light propagation model M €
{ Py, diff} with the coefficient (0,,05). The parameters o and § are used to control the
strengths of the regularization mechanism encoded in the functional R. The regularization
functional we select here is of Tikhonov type, based on the L? norm of the gradients,

1 1
R(02) = 5IVoullays = 5 /Q Voo Pdx. (16)



While we choose the same regularization functional for both ¢, and o, for convenience, it is
not required. Other types of regularization can also be considered, but will not be discussed
in this paper.

To solve the minimization problem (14), we use the SNOPT algorithm developed in [33].
In a nutshell, this is a sparse sequential quadratic programming (SQP) algorithm where
the Hessian of the Lagrangian is approximated by a limited-memory BFGS strategy. This
is a mature optimization technique, therefore we will not describe it in detail here. Our
main objective is to supply the optimization algorithm with a subroutine to evaluate the
mismatch functional O and its derivatives with respect to the optical properties o, and o.
The derivatives can be computed in a standard manner using the adjoint state method. We
summarize the calculations of the derivatives in the following lemma.

Lemma 3.1. Let Q, ¢ and = satisfy the assumptions in (A-i)-(A-iv) and assume that the
assumptions in (8) hold as well. For each 1 < j < J, let f;(x) be the restriction of a C*
function to 0N2. Then the predicted ultrasound data for illumination source f; using specified

optical model M, pj\/ll(O,T]xE)Q’ viewed as the map:

M
oy : E 0s) =D Jo11x00 (17)
Jl0Tx00 " cL(Q) x CL(Q) — HY2((0,T] x 6Q)

is Fréchet differentiable at any (04,0,) € CH(Q) x CH(Q) that satisfies the assumptions in
(A-ii). Moreover, the mismatch functional O(o4,0,) : CH(Q) x CH(Q) — R, given by (15)
is Fréchet differentiable and its derivatives at (0,,0,) in the directions do, € C}(Q) and
dos € Cy(Q) (such that o, + do, and oy + do, satisfy (A-ii)) are given as follows. Let
q;(t,x), 1 < j < J, be the solution to the adjoint wave equation:

1 02q]~

(%) ot —Ag; = 0, in (0,7) x Q
4 (t,%) = 0, %(t,x) _— in {T} x 0 (18)
n-Vg(t,x) = pt—p;, on(0,T)x 00
(i) If the optical model M is the simplified P, model (9), then
, d 2 =0
O'(04,04)[00.] = ;/Q(%,j—g%,j){ > aqtj( X) + (15 — ﬁwz,j)}%a(x)dx
+aR/(0,)[604], (19)
_ 2
O'(04,0,)[00,] = Z/ {V%J V%l]::;izj Vb 5(19/;] )¢27j¢27j}5gs(x)dx
+BR (o5)[00s], (20)

where (15, ¢25) solves (9) with source f;, 1 < j < J, while (Y1 ,12;) solves the adjoint



diffusion system:

2 = .
_v . Dku —|— Ua(wlj — g_ﬂ;wzj) = —Eaaﬁtqj((),x), m Q
5 1 2= )
=V - DVipy; + (Q_D )fffzg 361(11/11,]' = 3§O—aatQj(07X)7 in S (21)
n- Dle,j + g@bl,j — 8—?/12,]' = 0, on Of)
n- DVQXJQ’]' =+ %@Z)Q,j — g?ﬂl’j = 0, on 09
(i1) If the optical model M s the classical diffusion model (12), then
O'(04,04)[004 = Z/ { 5 0t (0,%) + 77]} do,(x)dx
+ aR/(04)[004), (22)
Olonalio] = 3 [ TEr Vs i+ R0 i), 2
j=1
where @; solves (12) with source f;, 1 < j <.J, and n; solves
—V - D(x)Vn;(x) + o.(x)n;(x) = —éaaﬁtqj(o,x), in (24)
1
n- DVU] + 57’]]‘ = 0, on 0f)
Proof. The result on the classical diffusion model (12) is proved in [25]. We focus here
on the simplified P, model. Under the assumptions stated in the lemma, standard elliptic
theory in [32, 52] implies that (9) admits a unique solution pair (¢y ;, 2 ;) € H2(Q) x H*(Q)

for source f;. This, together with the assumption on o,, gives that the initial pressure field
HM e H'(Q), which then ensures that the wave equation (3) admits a unique solution p’"
H((0,T) x Q) [24, 10, 59]. Differentiability of pj\”‘ (0.7)xo0 With respect to the initial pressure

field HM then follows from the linearity of the map: H'(€2) — HY2((0,T] x 9) [24, 10].
It remams following the chain rule, to show that HM : C'(Q) x C1(Q) — H'(Q) is Fréchet
differentiable with respect to o, and os. We now prove this for the derivative with respect
to o,. The other derivative follows from similar calculations.

(¢(U“+6J“ 72) qu (00+000,05 ) and (gb(U“ US), gb 7 ) be the solution to the sunphﬁed P

model (9) with coefﬁ(nents (044004, 05) and (aa, as) res.pectlvely7 for source f;. Let (¢ s b )

O'a 0’& (Ua, U.s)
be the solution to, with the notation A¢ = (;5 — 5 507

-V DV¢1] + aa(qbl j (22,]-) = —Ad¢do,, in

-V DV<Z52J o D¢2] 2% (¢1 g ¢2 ) ZApdo,, in
n- D~V¢LJ ngzﬁlj ngQ] 0, on 02
n- DquQJ + ﬁqﬁg] - igbl’] = 0, on 0f2

(25)



We define gzﬁ” ¢ (0a+d0a,00) _ gzﬁf‘;“ ) and qﬁ” = 5” - 251.,)-, i =1,2. It is straightforward to
check that (QSL], s j) solves

-V le] (aa +00,)(p1 — 3025) = —Addo,, inQ
—V Dv¢2j Ok /D¢2,j Ua+6a-a <¢1] %qb/\, ) = %A(b(saa? ln Q (26)
n- DnglJ 2¢1] %Qb 24 = 07 on 0f2
n- Dvgbgd' 24;-;¢2J SLHQSLj == 0, on 89
and (g:bl’j,zzj) solves
~V DV, + aa@ —30s,) = (01— 302,)000, in©
—V DV, + by, — £ 0a(Pr; = 3025) = 3:(015 = 3025)00a, in Q) (27)
n- DV¢1] 2¢1] — é?&j = 0, on 0N
n- DquQJ + 24n¢2,] é%,j = U, on 0f)

Note that in the above derivations, we have used the assumption that the boundary value of
the coefficient o, is known, i.e. do490 = 0; see the assumption in (A-iv) and do, € Cj(€2).

We first observe from the simplified P, model (9), following standard elliptic theory [28,
, A7, 52], that for 0 < k < 2,

(@15, P2 i)l per ez < el fillz2a0)-

In the same way, equation (26) admits a unique solution with

(P15 P2 )l per e < €2ll00a(Prgs P2.5) L2z < e2lldoalleyoy l(@15: d2.9) 2@z, (28)

while (27) admits a unique solution satisfying

1(61.4> o)) lper 2 < €sl160a(Dr, b2 i)z < Cllooalleroll(@1; d2i)lip2@p-  (29)
We then deduce that

1(&1.5, Do ez < c4||5f7a||35(9)||fj||L2(aQ)> (30)
which then leads to,
(@155 P2 ) e _ i (b1 — 01 b2 — Pj)llperpe _ 31)
l197allct ) =0 ||5Ua||c3(9) 167allc ) =0 ||5Ua||c3(sz)

This shows that (¢, , ¢ ) is Fréchet differentiable with respect to o, as a map: C*(Q)
HE(Q) x HE(Q), 0 < k < 2, with Fréchet derivative in direction do, € C}(f) given by
((ELJ-, 527j). Differentiability of H* with respect to o, then follows from this fact and the
chain rule.

To compute the Fréchet derivative of O(o,, 0s) with respect to o,, we first compute

/ _ 2 _ 2 ,
HJM (04, 04)[004] = :(¢1,j - §¢2,j)50a + E0a(p1; — §¢2,j) (0a;05)[004],



and

O/ (04, 0,)[604] = Z /0 /8 Q(pJM = )M (0, 04)[00,]dS(x)dt + aR (0,)[60a). (32)

Let us denote w, := pj‘/‘/(aa, o5)[00,). We verify that w; solves

1 82’Ujj .
%W—AMJ = O, m R+ x £
w;(t,x) = HM (04, 0,)[004] et} (t,x) = 0, in {0} xQ (33)
VASS - i arvs al 615 7X - I lIl{ }X

n-Vw;, = 0, onR; x9N

Multiplying the equation for g;, (18), by w;, the equation for w;, (33), by ¢;, and integrating
the difference over (0,7") x 2, we arrive at

g . = 2 Jq;
/0 /gm(p?/l — p;)w;dS(x)dt = /Q g(ﬁbl,j - §¢2,j)8—;(0,x)(50adx
= 2 ) dq;
+ ) 20a(d1 — §¢2,j) (Oas Us)[5aa]a(0,x)dx, (34)

thanks to Green’s theorem.
Multiplying the equation for (¢4 ;,19;), i.e. (21), by (%J,gﬁ?,j) (which is nothing but

(0),;(0a; 05)[004], ¢ ;(0a, 75)[004])), the equation for (¢ 5, ¢a ), i-e. (25), by (15, 2,;), and
integrating the difference over €2, we obtain

E 2 Oa.
/Q 6_20-a(¢11j - §¢27j)/(0a7 05)[600,]%(0, X)dX
2 2
= /Q(¢l,j - §¢2,j)(¢1,j - @@DQJ)(SUadX. (35)

We now combine (32), (34) and (35) to get the final result in (19). Similar calculations for
o, yield the result in (20). This completes the proof. O

Let us emphasize here that the simplified P, diffusion system (9) is not self-adjoint.
Therefore, the diffusion operators and the boundary conditions in (21) are different from
those in (9).

The calculations in Lemma 3.1 allow us to develop a subroutine for the SNOPT algorithm
to evaluate the mismatch functional O and its derivatives with respect to o, and o,. For the
convenience of presentation, let us denote by O;(0,,0,) the contributions to the mismatch

1
functional O from source f;, that is, O;(0,,05) = §fOT Joo (X' — p3)?dS(x)dt. We use

O’ to denote the derivative of O; at (04,0,). The algorithm for calculating O and O’ is
summarized in Subroutine 1.
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Subroutine 1 Evaluating O and Its Derivatives at (o, 05) for Model M

1. Initialize O =0 and O’ =0

2: for j =1to J do

3: Solve the forward model M (i.e., (9) or (12)), with illumination source f;
Evaluate initial pressure field H for model M (following (7) or (13))
Solve the wave equation (3) with initial condition H* for p
Evaluate the residual 2 = pM — p? and O; = § fOT Joq(z)2dS (x)dt
O+ 0+0,;
Solve the adjoint wave equation (18), and evaluate 0,q;(0,x)
Solve the adjoint diffusion equation for model M (i.e., (21) or (24))
10: Evaluate the derivative O} (following (19) and (20), or (22) and (23) )
1: O« 0 +0;
12: end for
13: O < O+ aR(o,) + R(0s)
14: O« O+ aR/(0,)[00,.) + PR (05)[d04]

4 Quantitative inversion with simplified P,

The reconstruction algorithm we implemented in the previous section is based on the one-
step approach: we reconstruct the optical coefficients directly from the measured ultrasound
signal. This is the same approach that has been recently used in [25, 57, 63]. An alterna-
tive, in fact more popular, approach for PAT reconstruction is a two-step strategy: (i)
to reconstruct the initial pressure field H from measured ultrasound data; and then (ii)
to reconstruct the optical coefficients from the reconstructed initial pressure field H. The
first step involves only the acoustic model and is independent of the optical model, and
reconstruction algorithms for this step have previously been developed in many scenar-

ios [2, 3, 4, 15, 17, 30, 36, 38, 44, 58, 68, 72, 76]. The second step of the reconstruction
have been developed for both the diffusion model (12) [10, 12] and the radiative transport
model (1) [9, 51, 6], but not the simplified P, model (9), to our best knowledge.

The objective of this section is to study the quantitative step of PAT with the simplified
P, model: to reconstruct the optical coefficients from the initial pressure field data H that
one recovers from the ultrasound measurements. We assume again that we have data gen-
erated from J > 1 illumination sources. Let (¢1 ;, ¢ ;) be the solution to the simplified P,
system (9) with source f;. In the quantitative step, we wish to recover the optical coefficients
from the data {HJP2 |FE

The case of reconstructing o, only. We first consider the case where the absorption
coefficient o, is the only coefficient to be reconstructed. That is, the Griineisen coefficient
and the scattering coefficient are both known. In this case, we can show that o, can be
uniquely recovered from only one initial pressure field. Moreover, the reconstruction of o,
is a relatively stable process.

Theorem 4.1. Under the assumptions in (A-i)-(A-iv) and (8), let HJPQ and ];]PQ be the
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initial pressure field corresponding to the coefficients (Z,0,4,05) and (Z,0,,05) respectively,
induced by illumination source f;. Assume further that (0,4,0,) € CY(Q) x CYHQ), and f;
is such that the corresponding solution to the simplified P, model satisfies the condition
(1, — §¢2,j) %0 a.e.. Then HJPQ = HJP2 a.e. implies 0, = 0, a.e.. Moreover, we have the
stability estimate

- 2 ~
(00 = Ta)(¢1; — §¢27j)||L2(Q) < || H® — Hi*| 120, (36)
where the constant ¢ depends on ), =, 0s, a and Q.

Proof. Let ®;; = ¢;; — @j, i = 1,2, where (¢y;,¢2;) and (%J,%J) are solutions to (9)
with (0., 05) and (7, 05) respectively. We verify that (@4 ;, @5 ;) solves the following system

HP — P
~V DV +——— =0, nQ
51 o H — HP .
—V . Dv@2’j + %5@273’ — 3—T = 0, 11 Q (37)
n- DV(I)LJ' + 5@173' - g@Q’j = 0, on 0f)
7 1
n- DVCI)QJ' + EQ)QJ‘ - 8_/£(I)1’j = 0, on 0f)

The coefficients (i.e. D and 0,2) in this system of equations are all known (since o is known),
independent of the unknown absorption coefficient o,. With the regularity assumptions we
have, standard elliptic theory [32, 52] shows that when H]P? = HfQ a.e., l.e. HJPQ — HJI»D2 =0
a.e., the solution (®;;,P5;) = (0,0) a.e.. This immediately implies that (¢, ¢2;) =

~ o~ ok g -
(¢1,5, @2,5). Therefore, o, = . ! = 04 if ¢1; — 2¢2; # 0 a.c.. This proves
the uniqueness part of the theorem.

2, . % 25
$1,5—5P2,5 $1,5—592,5

To derive the stability estimate (36), we observe that

H» - HP 2 o~ 2~ _ 2 _ 2
|?! = |0'a(<i51,j—§¢2J)—0a(¢1u‘—§¢2,j)| = |(Ua—Ua)(<i51,j—§¢2,j)+0a(@u—§¢2,j)|-

This, together with the triangle inequality, gives that

Py 7P

B 9 ; :
[(0a = Ta)(¢1; — §¢27j)”L2(Q) < ol ="z + 2l (P, ;)22 (38)

—

using the fact that o, and 7, are bounded as in the assumption (A-ii).

On the other hand, the system (40) provides us with the following stability estimate for
(P15, Pay): B
(@15, @) lpe < sl H” — Hj?|l120)- (39)

The estimate (36) then follows by combining (38) and (39). O
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The above proof is constructive in the sense that it provides an explicit procedure for
the reconstruction of o,. To do that, we first solve

P
-V DV¢1 J % = 0, in
2 H;? ‘
—V - DV, ; + ¢2,g 3%& = 0, in Q (40)
1
n- DV¢1,J + ¢1,J ¢2,j = —fJ( x), on 0
n- DV, + ¢2,3 ¢1,j = ——f]( x), on 0f)

Py
Hj

E(¢1y — 562)
at points where ¢y j(x) — 2¢ ;(x) # 0. When J data sets are available, we reconstruct o, as
J P
21 H5”
— :
:Zj:1<¢17j - §¢2,j)
Therefore, to reconstruct o, from J initial pressure fields, we only need to solve J diffusion

systems (40) and perform some algebraic operations afterwards, even though the reconstruc-
tion problem is a nonlinear inverse problem.

for (¢1,j, ¢2,;). We then simply reconstruct the absorption coefficient as o, =

Oq —

The case of reconstructing the scattering coefficient or more than one coefficients are
significantly more complicated, as demonstrated in the case of the classical diffusion model
studied in [10, 12]. We do not have results for these cases in the full nonlinear setting. We
will instead study the problem in the linearized setting.

We now use the second form of the simplified P, system given in (10). We linearize
the system formally following the differentiability result in Lemma 3.1. We use (Z, 0,,0%)
and (0=, da,, d0,) (note the equivalence D = —do,/[3(1 — g)o?]) to denote respectively the
background coeflicients and the perturbation to the coefficients. We use

(wj, Pa5) = (P15 — §¢2m ¢24),  and  (dwj,0¢9;) = (0¢1; — §5¢2,y’> 0da;)  (41)

to denote the solutions to the background problem and the perturbations to the background
solution caused by the perturbation in the coefficients, respectively. We then have that
(wj, ¢o,;) solves

~V - DVw;+ (1 +3; )aaw] sosde; = 0, in Q
-V Dv¢27j I{/D¢27J ?maawj = 0 in Q (42)
n- Dij + 6/<+1wj 15?2’610(?2,] — 6/~c+1 fj (X) on aQ
n- DV, + 24Ngb2,] SWj = BIif] (x), on 09

while (dw;, g ;) solves

-V DVéwj (1 + = )aaéw] 27}3D5¢2J = V. (SDVU)] (15+ )w350'a — %Qﬁg’jél),
-V Dvacpg] 25009 — Zedw; = V6DV + ‘éQDﬂQ oD + 250,
n- DViéw; + 6”+15w] 15?25105¢ 2; = 0,
n- DV(S(bQJ 24’{(5(252,] 5wj = 0,

(43)

13
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where we have used the fact that Djq is known (since Tsjo0 18 known) in the boundary
conditions.

The perturbed initial pressure field, the data, now take the form:
SH* = (620, + Z60,) wj + Zoadw;. (44)

The linearized data show that if the background Griineisen coefficient = = 0, then 0 H ]P =
0Z04(p1,; — %gbgj) Therefore, we can reconstruct 6=, but not the other parameters. If
the background absorption coefficient o, = 0 (which means that the medium is weakly
absorbing), then 0 H f 2 =Zd0(p1; — %cﬁQ,j). Therefore, we can reconstruct do, but not the
other parameters.

The case of reconstructing o, only. We start with the case of reconstructing only the
scattering coefficient.

We have the following result in the linearized setting.

Theorem 4.2. Under the assumptions in (A-i)-(A-iv) and (8) for the domain and the back-
ground coefficients, let 5HP2 and 6H 2 be two perturbed data sets generated with perturbed
coefficients o and 0o, respectwely Then we have the following bound on the reconstruction:

0D 0D a
O

where the constant ¢ depends on Q0 and the background coefficients, and @Q; is defined as
4 1 9
Qj(x) := (1 + g-)oaw; — 47¢2,)¢2; — W Ve, — 2 D|Vz,l" (46)

If Q;(x) > =953 or Qj(x) > —7=5¢3 . and |Vw;| > & > 0 for some ¢, then (5HP2 =
5HJP2 a.e on Q implies do, = d04 a.e..

Proof. When only o, is sought, the perturbed datum (44) simplifies to

P
SHT

= 0,0w;, (47)

—
—

while the perturbed simplified P, system (43) simplifies to

~V - DVow; + (1 + &)a,0w; — 27{3,35@] — V.6DVw; — 5225.5D, in Q

27k’ D?

—V - DVt + 535000 — =0adw; = V-3DVey;+ 5?2,52 8D, in Q (48)
n- DVow; + 6”‘“ 5wj 15?2H105¢ 2 = 0, on 0f2
n- DV(SQSQ’] 302 — g-0w; = 0, on 052

14



Using (47), we can further rewrite (48) into

—50=8ps; = V6DV, ;;)‘%3250

§H] Pa sH2

+v DV — (L4 )™, inQ

~V - DVigy; + 55003, = V-6DVy, + 5?25250+ 20,7 mo (49
n-DVign; + £udn; = &m, on 99
oD = 0, on 0f?

Note that we have added the natural boundary condition for D that we assumed in the
assumption (A-iv). This can now be seen as a system of partial differential equations with
(0¢p2.4,0D) as the unknown.

H;? SH >

Let u = DVw;, p = 6D/D, v = 595 and Y; = V - DV — (1 + gt)—=2. We then
verify that the first equation in (49) can be written as
Vo — ¢ i+ 70¢2,; +Y; = 0, (50)
and the first equation in the background system (42) can be written as
4
—V-u+(1+9—,{)0awj _7¢2,j =0. (51)
Moreover, we observe that for any scalar function v and vector function u, we have
V- ptu—2uV - pu+ p*Vou = 0. (52)
Using (50) and (51), we can write (52) as
4
Vo ptu— i (3yda; — (14 g, )0aws) +2u(70¢2; +Y;) = 0. (53)

We multiply this equation by ¢, ; and integrate over 2 to get
4
/Qﬂz {—u Vo — (372 — (1 + %)anj)%,j} dx + 2/9/1(754252,7' + Yj)ajdx = 0. (54)

Meanwhile, we can multiply the second equation in (49) by d¢. ; and integrate over €2 to
get

J

We can now combine (54) and (55) to get

2 0H;
3—/{ _] 6¢2,j dx = 0.

3 3
D|V5¢2,j|2 + §7|5¢2,j|2 + MDV¢2,j : V5(/52,j - §7M¢2,j5¢2,j -

(55)

4 4
/ w? {—11 Vo — (3v¢2; — (1 + %)anj)ﬁsz} dx +/ [§D|V5¢2,j|2 + 27|5¢2,j|2} dx
Q Q

4 8 0H;"
+ = / [LDVQSQJ‘ . V5¢27jdx + / Q/LY;'QbQJ‘dX - - 5@52] = U. (56)
3 Q Q Q 9k
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Using the fact that Vz,y € R, zy < $((az)*+ (y/a)?), Va # 0, we have the following bounds
for the last three terms in above equation:

1
/MDV¢2,j - Vi jdx < / b/vbzl)lvqﬁz,ﬂ2 + D|V5¢2,j|2] dx,
Q Q

Y2 86 H [ 225 H
2uY: by dx < 202 4+ L\ d / J5-</ — V2 L o502 | dx.
/Qujcbz,gx_/ﬂ{wcbz,ﬁ 7} L e P2 < g (9/15\/7) + 27065 ;| dx

These bounds can be combined with (56) to conclude that

4 1 1
/QMQ [((1 + 9—/{)%% — 42 ;) b2 —u- Vo — §D|V¢2J|2 dx < c||6H* 31y, (57)

with ¢ depending on the background coefficients as well as €2. The stability result in (45)
then follows from the linearity of the problem.

To prove the uniqueness claim, we observe that when 0 H JP 2=01n (56), (57) becomes

/Q {12 [Qj +7¢3 ] + Y1662,/ } dx < 0. (58)

When @; > —7¢%7j, we conclude that © = 0 = d¢9; from the above inequality. When
Q; + ’yqﬁ%j = 0, we conclude from the above inequality that d¢,; = 0. The first equation

in (49) then simplifies to, with (6¢z;,6H,?) = (0,0),
V- pua —ypg i =0, in €, =0, on 0f.

This transport equation admits the unique solution p = 0 when |u| > & > 0 for some
e [10, 26]. The proof is complete.

O

We now consider the case where more than one coefficient is to be reconstructed. We
focus on the practically important cases of reconstructing (0=, do,) and (0o, 005).

The case of reconstructing (0=,00,). In this case, the scattering coefficient o, (and
therefore D) is known. Therefore the linearized simplified P, equation (43) reduces to:

—V - DVow; + (1 + 55)0.0w; — 795002 = —(1+ 5-)dow;, in Q
-V - DVégng + %%(kblj - %aaéwj = %C&TGUJJ‘, in Q (59)
n - DVow; + % ow; + 251056, ; = 0, on 09
n- Dv5¢27]’ + ﬁé(ﬁg}j — é&w‘] = O, on 0f?

Since the linearized data (44) does not depend on the scattering coefficient o, explicitly, it
remains in the original form in this case.

We now develop a two-stage procedure for the reconstruction of (0Z,00,). We first
eliminate = from the system to reconstruct do,. To do that, we check that, for any i # 7,

SH»  6H;
(5H52 = w; = — w; Eaja = wj(5wi - wz‘(swj, (60)
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We then observe that d H. 52 does NOT depend explicitly on the coefficient perturbation §=.
Moreover, the equations for the perturbations in (59) depend only on do,. We could hope
to reconstruct do, out of (59) and (60).

We have the following partial result on the reconstruction of do,.

Theorem 4.3. Under the assumptions in (A-i)-(A-iv) and (8), let dw; and 571; be solutions
to (59) with coefficients do, and do, respectively. Assume further that the illumination source
fj is selected such that the background solution w; # 0. Then dw; = dw, a.e. implies that

0o, = 00, a.e. . Moreover, we have the following stability bound:
clldw; — 51 ey < 1600 — S0yl ey < Ell6w; — 5w ey (61)

where ¢ and ¢ are constants that depend on the domain €2, the background coefficients and
the background solution (w;, g2 ;).

Proof. We first prove the injectivity claim. Let dw; = 0. Then the first equation in (59)

implies that
10 4
1
5005/ (14 ).

The second equation in (59), together with its boundary condition, then simplifies to

—V - DVé¢y; + K"8¢s; = 0, inQ
n- DVC;QSQJ' + %6¢2,j = 07 on 0f)

dow; =

where k" = &5 — 2= 595/(14 55)) > 0. This equation admits only the trivial solution

d¢2; = 0. Therefore do, = 0.

To derive the stability bound (61), we first observe that the left inequality follows directly
from classical theory for elliptic systems [32, 52]. To obtain the right inequality, we use the
first equation in (59). We take the square of both sides of the equation, integrate over €2,
and use the triangle and the Holder’s inequalities to obtain

100atsl3aqy < €1 (1wl + 1002320 + I0ws o @ I062sllizer ) - (62)

We now multiply the first equation in (59) by 2 5, the second equation by 1 + —, and add
the results together to get, after eliminating the factor 1 + o
oK 6
L
(4 + 9K)K'D 2 = 13 om

Moreover, from the boundary condition for d¢s ; in (59) we have

— VDV, + ——__V.DVéuw;, in Q. (63)

5 1
n- DV(MZ,]’ + m&ﬂﬁg,j = @5111]‘, on OS2 (64)

We can therefore look at (63) and (64) as an elliptic equation for d¢, ; and conclude from
classical theory [32, 28] that

1602,5ll320) < €2l V- DVEw; [ r2() + [10w; | r200) < ¢lldw;llrez()- (65)
We now combine (62) and (65) to get the right equality in (61). O
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So long as we could select two illumination sources f; and f; such that the background
densities w; and w; do not destroy the invertibility of the map do, — 5H52 = w;0w; —w;0w;,
note again that both do, — dw; and do, — dw, are invertible by the previous theorem, we
could uniquely reconstruct do, from 5H52.

To perform numerical reconstruction of do, from J data sets, we use the usual least-
square inversion method. We minimize the functional

V(ooe) = Y |lwidw; — wdw; — SHE|13 ) + BIVOoallFL, - (66)

1<i<j<J

Note that here we form the difference data using all (7, j) pairs satisfying ¢ < j. There
are totally J(J — 1)/2 such pairs. We solve this minimization problem using the SNOPT
algorithm we described in the previous section, even though this problem is linear. Once we
reconstructed do,, we can reconstruct 0= using the data (44):

Z;]:l 5Hf2 — Zdo, Z;.Izl w; — E0, Z;]:l ow
7
Oa Zj:l wj

—_—

The case of reconstructing (do,,d0,). In the case where = is assumed known, the
perturbed data (44) simplify to

P
SHT

—— = 0,0w; + 00,w;. (67)
This simplification allows us to rewrite the system of equations for the perturbations, that
is, system (43), into the form

—V - DVéw; — 79-8¢y; = V-0DVw; — g2 5D — 0192 0
J 27n’D »J T 27k D2 Ik P2: )
—V - DVio; + 755602, = V-5Dv¢2,j + 2D+ 200 im0
n- DVéw; + 6“+1(5w] 15“ 10(5@527] = 0, on 99
n-DVigs; + 2455@,] Héwj = 0, on 0f2
(68)

This system does not depend explicitly on do,.

The simplification (67) also allows us to form the difference data 5H52 in the same way
as in (60). The difference data 5H52 in (60) do not depend on o, either.

Let us again consider a two-stage procedure for the reconstruction of (d0,,d0,). We first
use the combination of (68) and (60) to reconstruct the perturbation of the scattering coef-
ficient, do, (or equivalently §D). We then reconstruct do, once 6D has been reconstructed.

The following result is a simple corollary of Theorem 4.2.
Corollary 4.4. Under the same assumptions made in Theorem 4.2, the linear map

Soy > (SH?, bw;)

OH0w) = p2() s 42(0) x H2(Q)
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is injective when Q;(X) > —g9503 5 or Q;(x) > —55d5  and [Vw;| > &> 0 for some e.
Moreover, we have the following stability bound:

/Q (S0, — 60" Qyiix < ¢ (|0HL* — SHL gy + 10w; — 0, 3p)) . (69)
where ¢ is a constant that depends on €2 and the background coefficients.

Proof. The proof is almost identical to that of Theorem 4.2. If we move the terms involving
dw; to the right hand side, the system (68) has exactly the same structure as (48). The
stability bound (69) follows from the same argument for (45). The injectivity claim follows
when taking ((5H]P2, dw;) = (0,0). O

To reconstruct 6D from data (5[—[;32,51—[52) (or equivalently (5Hf2,6Hf2) ), we need
to select two illumination sources f; and f; such that the background densities w; and
w; do not destroy the injectivity of the map 6D s (§H,?, 5H52) = (0H  widw; — w;ow;).
Computationally, we solve the reconstruction problem by solving a least-square minimization
problem with the same objective function in (66) (besides the regularization term which is
now on 0D). Once we reconstructed do,, we can reconstruct do, using the data (67):

Z}]:1 5Hf2/E — 0, Z;.Izl dw,

0o, = =
z]‘:1 wj

Comparing simplified P, and P, reconstructions. The main motivation for using
more accurate forward light propagation models in PAT is that the reconstructions based
these models are more accurate. For instance, the difference between the reconstruction of
the Griineisen coefficient from the radiative transfer model (1) and that from the classical
diffusion model (12), using the same data H, is given as

= = gO—fS2 (x,v)dv)
—rte —diff — fgg X, V dV ( )

In this simple case, the error in the reconstruction of = is proportional to the difference
between the solutions to the two models. In the next theorem, we characterize the difference
between the reconstruction of o, using the simplified P» model (9) and that using the classical

diffusion model (12).

Theorem 4.5. Let Q, ¢ and Z satisfy the assumptions in (A-i)-(A-iv) and assume that
the assumptions in (8) holds. Let o and o be the absorption coefficients reconstructed
with the simplified Py model (9) and the classical diffusion model (12) respectively, using the
same datum H. Assume that H is also known on the boundary 02. Then we have

Up2_0p1:£¢_(¢1_§¢2) :2
3

I L)

= 70
H052051 02 ( )
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where ¢y solves

—V - DV, +

P2 = =,

"D =
DV¢ +9K5 ¢ = 3f( -
" 27245 T Bk
procedures:

—
o=

- f(x)),

O.Pz _

H
== 5 and oh
E(p1 — 502)
words, (¢1, ¢2) solves

a ’:‘¢
—

H
5
—V - DV +

9x'D P2

in 2
= %7:{, in
n- DV, + %%gbl %f(xj{ % lj:, on 052
neDVor+ gty = ooz~ f(x)), on 09
while ¢ solves
-V -DV¢ = —g, in Q
n-DVe+ %qﬁ =
We therefore conclude that
052 —

)
o — £¢_ (¢1 - §¢2)
“ 2 b §0n)
in (73) that ¢ is the unique solution to (71).

—

—

= HUP20P1 <(¢ - ¢1)

2
+ ¢ ).
3¢2)
We observe from the second equation and its boundary condition (i.e. the forth equation)

Let 5 = ¢ — ¢1. We verify that 5 solves

(75)
~V-DVé = 0, inQ
n- DV(E—F %(Z

0, on 02
=0,
Therefore (75) simplifies to (70).

(76)

where we have used the assumption that o, is known on 0f2, made in (A-iv), so that

(p1 — 502) = ¢ = —— on the boundary. This equation has a unique solution 5 = 0.
20

]

on OS2
Proof. We first observe that of? and o' can be explicitly reconstructed with the following
H

where (¢1, ¢2) is the solution to the simplified P, system (9) with o,(¢; — %cﬁz) replaced with

H/=, and ¢ is the solution to the diffusion model (12) with o,¢ replaced by H/Z. In other

mn

(71)

(72)

(73)



This result says that the difference between reconstructions based on the simplified P
model (9) and reconstructions based on the classical diffusion model (12) are noticeable. In
particular, if the data are generated with the simplified diffusion model (9), then using the
classical diffusion model (12) would give us reconstructions that are simply not as accurate,
vice versa. An implication of this is that if we believe that the data we used in PAT
are generated by a physical process best modeled by the radiative transport equation (1),
then using the simplified P, model to perform reconstructions is advantageous to using
the classical diffusion model, although we do not have an explicit characterization as in
Theorem 4.5.

5 Numerical experiments

We now present some numerical simulations on the inverse problems studied in the previ-
ous sections. For simplicity, we consider a setup in which the physical properties and the
illuminations used are invariant in the z direction so that we can perform simulations in the
two-dimensional case.

The spatial variables in the simplified P, model (9), the classical diffusion model (12), and
the acoustic equation for ultrasound propagation (3) are discretized using the finite element
method with piecewise linear Lagrange elements. The time variable in the wave equation
is discretized with a second-order finite difference scheme. The optical illumination sources
are all selected to have strength distribution along the boundary following the Gaussian
distribution with standard deviation 0.5. The specific locations, i.e. centers, of the sources
will be given later in the numerical examples.

The synthetic acoustic data we will use are generated by solving the forward diffusion
models with the true optical properties and then feeding the corresponding initial pressure
field H into the acoustic wave equation. To mimic measurement error, we pollute the data
with additional random noise by multiplying each datum point by (1 + /37 x 10~2random),
with random a uniformly distributed random variable taking values in [—1, 1], and 1 being
the noise level (i.e. the size of the variance in percentage). When no additional random
noise are added to the synthetic data, we will say the data are “clean” (n = 0). Otherwise,
we say the data are “noisy” (1 # 0).

The numerical simulations performed are all based on the minimization of the mismatch
functional (15) as documented in Section 3. In all the simulations, the Griineisen coefficient
is assumed known and = = 0.5. We emphasize that as long as = is assumed known, whether
or not it is a constant has no visible impact on the reconstruction of o, and o;.

We perform two groups of numerical simulations.

5.1 Inversions based on the simplified P, model

In the first group, we study PAT reconstructions with the simplified P, light propagation
model. That is, we generate synthetic data using the model equation system (9) and perform

21



the reconstruction using the same system of equation.

Experiment 1 [Reconstructing o, from Acoustic Data]. In the first numerical ex-
periment, we attempt to reconstruct the absorption coefficient assuming that the scattering
coefficient, as well as the Griineisen coefficient which is set to be = = 0.5 as mentioned
above, is known. More precisely, the spatial domain we take is the square 2 = (0, 2) x (0, 2),
the scattering coefficient o, = 80, and the anisotropic factor of the scattering kernel g = 0.9.
The true absorption coefficient has the form

04(x) = 0.1+ 0.1xp, + 0.2x5,, (77)

with B; = {(z,y) : (x—1.0)>+(y—1.5)? < (0.2)*} and By = {(x,y) : (x—1.5)*+(y—1.0)*> <
(0.3)?}.

-0.04 -0.04
o o

0.06 0.14

0.08 |
0.06 |
0.04

0.0z |

0.02

-0.04 -

~0.02 . . ' _0.06 . . .
o 5 10 15 20 o 5 10 15 20

Figure 1: Ultrasound signals measured at two different locations ((0.0,0.8) (left) and
(1.0,1.2) (right)) for two different illumination sources (top row: source located on the left
boundary; bottom row: source located on the right boundary) in the time window (0, 20).

We first show in Figure 1 some typical acoustic signals we recorded in this setup. Shown
are signals measured at (0.0,0.8) and (1.0, 1.2) respectively for two different optical illumi-
nations in the time interval (0,7 = 20). Note that the data used in the reconstructions in
the rest of the paper are on a larger time interval with 7" = 40, even though we observe in
our numerical experiments that 7" = 10 is often more than enough for stable reconstructions.

In Figure 2, we show the reconstruction of the absorption coefficient (77) using data with
noise levels 7 = 0 (i.e. noise-free data) and n = 5 respectively. The algorithm parameters
are as follows. The initial guess for all the reconstructions is o2 = 0.1. The linear bounds
we impose on the absorption coefficient are very loose: 1072 < o, < 0.5. The regularization
parameter in (15) was chosen as a = le — 9 by trial and error.

Visual observation confirms that the reconstructions are of very high quality in this case,
comparable to the quality of reconstructions for PAT using the radiative transfer model [22,
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Figure 2: The absorption coefficient o, in (77) (left) and the reconstructions using noise-free
data (n = 0, middle) and noisy data (n = 5, right).

51, 66] and the classic diffusion model [10, 19]. To quantitatively measure the quality of the
reconstructions, we compute the relative L? distance between the reconstructions and the
true coefficient. This distance is defined as

Ha'a - UaHL2(Q)

£ =

a2 ()

where o, and &, are respectively the true and reconstructed absorption coefficients. The
relative L? error for the reconstructions in Figure 2 are respectively £ = 0.006 and £ = 0.035
for the case of n = 0 and n = 5. The reconstruction results are very stable with respect to the
initial guess we used, and the linear bounds we imposed on ¢, do not play a major role in this
case either. These observations indicate that the inverse problem is fairly well-conditioned.

L

0.1 0.15 0.2 0.25 03 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25 0.3

Figure 3: The absorption coefficient o, in (78) (left) and the reconstructions using noise-free
data (n = 0, middle) and noisy data (n = 5, right).

We repeat similar numerical experiments for a few other absorption coefficients. The
quality of the reconstruction results are very similar to the case we reported above. For
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instance, in Figure 3, we show the reconstructions of a smooth absorption map defined as
04(x) = 0.2+ 0.1 cos(mx — 7) cos(my — 7). (78)

We again used the four sources to generate four data sets and initialize the reconstruction
algorithm at o2 = 0.1, very different from the true coefficient. We also impose the same
pointwise inequality constraints on the absorption coefficient, i.e. 1073 < o, < 0.5, and the
same regularization parameter .. The reconstruction quality is comparable to the smooth
case and with results from the diffusion model [19]. The reconstruction errors are concen-
trated at the discontinuities, as expected. The relative L? error in the reconstructions are
respectively £ = 0.004 and £ = 0.034 for the cases of n =0 and n = 5.

0.25

0.01 0.015 0.02 0.025 0.03 0.01 0.02 0.03 0.04 0.05 0.02 0.04 0.06 0.08

Figure 4: Reconstructions of the absorption coefficient o, (defined in (77), top row) and the
diffusion coefficient (= 1/[3(1 — g)os] with o, defined in (79), bottom row). Show are the
true coefficients (left) and the reconstructions using noise-free data (middle) and noisy data
with n =5 (right).

Experiment 2 [Reconstructing (0,,0,) from Acoustic Data]. In this numerical ex-
periment, we perform simultaneous reconstruction of the absorption and the scattering coef-
ficients. The absorption coefficient is the same as the one defined in (77) while the scattering
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coefficient is defined as
0s(x) = 85 4 260xB,(x) + 260y s, (x), (79)

with By = {(z,y) : (x — 0.5)* + (y — 0.8)*> < (0.3)?} and By = {(z,y) : (v — 1.4)* +
(y — 1.6)* < (0.2)?}. We again collect data from four different illumination patterns. The
reconstruction are initialized at ¢ = 0.1 and 02 = 120. The linear bound constraints are
set as 10 < 0, < 500 and 0 < g, < 1 in all cases. The regularization strength are selected
at « = le — 6 and § = le — 10 after a couple of trial and error testings. Note that the
discrepancy between the parameter o and f mainly come from the fact that the coefficients

0, and o, have values that are different on a few orders of magnitude: o, ~ 0.1 while
o ~ 100.

Noise Level E = 6a=0all 2 £ — 6s—0sl,2
¢ loalle s 7 Joule
n=70 0.023 0.182
n=2 0.043 0.251
n=>5 0.091 0.984
n=10 0.174 0.385

Table 1: Relative L? errors in the simultaneous reconstructions of the absorption and scat-
tering coefficients given in (77) and (79) from acoustic data with different noise levels.

In Figure 4 we show the reconstructions results from clean data and noisy data with n = 5.
The relative L? errors in these reconstructions, as well as two additional reconstructions, are
summarized in Table 1.

We observe that the quality of the reconstructions is again very high when noise level is
very low. However, the quality degenerates quickly as the noise level increases, especially
for the scattering coefficient. As we observed in the previous cases, the box constraints on
the coefficients are very loose and do not have significant impact on the reconstructions.
Tighter bounds can be imposed to improve the quality of the reconstructions when these
a priori information are available. More carefully selection of the regularization coefficient
might also help improve the reconstructions. Those are not the directions that we want to
pursue in this research.

5.2 Inversions for cross-model comparisons

The numerical tests in Experiment 1 and Experiment 2 suggest that the PAT inverse
problem based on the simplified P, model has very similar stability properties and recon-
struction quality as those based on the classical diffusion model or the radiative transport
model [10, 11, 51, 66], assuming that the data used in the reconstructions are generated
from the same model. In the next numerical experiment, we address a different issue in
PAT reconstructions. We are interested in studying the impact of model inaccuracies on
the quality of the reconstructions of the absorption and the scattering coefficients. More
precisely, assuming that the measurement data are generated by an accuracy model but we
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perform reconstructions based on a less accurate model. We are interested in the impact of
the inaccuracy of the inversion model on the reconstruction results. This problem has been
studied in Theorem 4.5 for the simple case of reconstructing only the absorption coefficient.
We now provide some numerical evidences.

0.1 0.15 0.2 0.25 0.3 0.35

0 20 30 40 50 60 70 80 10 20 30 40 50 60 70 &0

Figure 5: Reconstructions of the absorption coefficient o, (left column) and the scattering
coefficient o (right column) defined in (80) from noise-free data (n = 0, top row) and noisy
data with n = 5 (bottom row). The reconstructions are performed using the simplified P,
model as the forward light propagation model.

Experiment 3 [Cross-model Inversion Comparisons]. The setup is as follows. The
domain is the unit square Q = (0,1) x (0,1). The true absorption and scattering coefficients

are
o.(x) = 0.2+ 0.1xp,(x),

0y(x) = 20+ 60xp,(x) + 605, (x), (80)
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6 = {(z,y) : (z—0.25)*+(y—0.75)?

with Bs = {(z,y) : (x—0.5)*+(y—0.25)* < (0.2)?}, B
75)? < (0.15)?}. The anisotropic factor is

(0.15)*}, and By = {(z,y) : (z — 0.75)* + (y — 0.
again g = 0.9.

We collect data from the four different illumination patterns that we used in the previous
numerical experiments. The data are generated by solving the simplified P, model with the
true absorption and scattering coefficients. To exclude the impact of the acoustic wave
model on the comparison, we perform reconstructions directly from the internal data H, not
from the boundary ultrasound data as in the previous numerical experiments.

In all the reconstruction results below, we initialize the inversion algorithm at ¢¥ = 0.1
and ¢? = 50. The linear bound constraints are set as 10 < g, < 100 and 0 < 0, < 1 in all
cases. The regularization strength are selected at & = le — 3 and 8 = le — 8 after extensive
numerical tests.

Noise Level £, = Lazcell2 g, = ooz
@ = Toale s = ol
n=0 0.039 0.244
n=2 0.041 0.244
n=>5 0.052 0.245
n =10 0.079 0.250

Table 2: Relative L? errors in the simultaneous reconstructions of the absorption and scat-
tering coefficients in (80) based on the simplified P, model data with different noise levels.

In Figure 5 and Figure 6 we show respectively the reconstruction results using the sim-
plified P, model and the classical P; model as the model for light propagation. The relative
errors in the reconstructions for the two groups of numerical simulations are summarized in
Table 2 and Table 3 respectively.

A quick comparison between the first row of Figure 5 and that of Figure 6 shows that
the reconstructions are significantly different, even though the internal data used in the
reconstructions are the same. To be more precise, the relative L? errors in the reconstructions
changed from roughly (0.04,0.24) in the first row of Figure 5 to roughly (0.12,0.39) in the
first row of Figure 6. This shows that the right hand side of equation (70) is relatively large,
which indicates that in this specific setting, the solutions to the simplified P, model and the
classical diffusion model are quite different.

Noise Level g — loa—call2 P 2 P
¢ lloalla 5 7 oulle
n=>0 0.115 0.335
n= 0.116 0.388
n= 0.120 0.383
n=10 0.134 0.387

Table 3: Same as Table 2 except that the reconstructions are performed using the P;
model (12) as the forward light propagation model.

The last row of Table 2 shows the reconstruction results with data containing 10% ran-
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Figure 6: Same as Figure 5 except that the reconstructions are performed using the P;
model (12) as the forward light propagation model.

dom noise. Comparing the results with these in the first row of Table 3 shows that the
former is still better. This implies in some sense that the “noise” we introduced here, by
using the classical diffusion model (12) to replace the simplified P» model (9), is larger than
10%. Therefore, if we believe that the data are generated with accurate model, using the
same model to do PAT reconstructions gives better results than using a less accurate model.
This is in general true for most of the inverse problems we know. However, for problems such
as optical tomography, the benefit of using more accurate models in reconstructions is lost
at relatively low noise level [16, 62, 75], which is mainly due to the severe ill-conditioning of
the inversion problem. In our case, the inversion is less ill-conditioned (roughly, not math-
ematically speaking, although this can be characterized mathematically), and the accuracy
of the forward model plays a more important role.
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6 Concluding remarks

We studied in the paper the problem of reconstructing optical absorption and scattering
coefficients in quantitative photoacoustic tomography with the simplified P, model as the
model of light propagation in the underlying medium. We showed numerically that one
can reconstruct the absorption and scattering coefficients from ultrasound data generated
under multiple illuminations, in a relatively stable manner. We also studied the quantitative
step of the reconstructions where we developed some uniqueness and stability results under
simplified circumstances.

There are multiple aspects of the current research that can be improved. One of our
near future plan is to generalize method proposed in this work to the case of the multiple
wavelength data. In that setup, we hope to be able to simultaneously reconstruct the
absorption, and the scattering and the Griineisen coefficients as proved in the classical
diffusion case [10]. Another practically important issue to address is to perform similar
reconstructions from experimentally measured ultrasound data. It would be interesting
to see whether or not we can observe any difference between the reconstructions with the
simplified P, model and those with the classical diffusion model with real-world experimental
data.
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