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Abstract—This work explores the mechanisms and limita-
tions of natural voltage balancing in flying capacitor multilevel
(FCML) DC-DC converters. A simple discrete-time state space
model is used to explore the fundamental conditions that will
lead to (or prevent) natural balance of flying capacitor voltages,
along with the balancing dynamics. The treatment is used to
highlight straightforward ways to alleviate problems with natural
imbalance by adjusting the switching scheme. The model is
compared against circuit simulations and the proposed switching
scheme is verified in a hardware prototype.

Index Terms—flying capacitor multilevel, DC-DC converter,
state space model, natural balancing

I. INTRODUCTION

Flying capacitor multilevel (FCML) DC-DC converters

have gained interest in recent years due to a number of

favorable characteristics. The FCML architecture leverages a

switched capacitor network to generate a multilevel, stepped-

down voltage waveform which can reduce the energy-storage

requirements and therefore overall volume of the inductor [1],

[2]. The FCML circuit also multiplies the effective switching

frequency seen by the inductor, significantly improving trade-

offs among voltage ripple, size, and efficiency. However, the

issue of maintaining voltage balance on the flying capacitors

remains challenging.
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Fig. 1. General N + 1 level FCML converter.

An N+1 level FCML converter consists of N pairs of

switches and N -1 flying capacitors, as shown in Fig. 1. Flying

capacitor Ci (i = 1, 2, . . . , N -1) should ideally operate with a

balanced voltage of i ·Vin/N , however, the actual voltage can

deviate from its balanced value. Voltage imbalance causes in-

creased current ripple in the inductor and higher voltage stress

on switches, and is a major factor that limits the application

of this topology. The conversion ratio of an N+1 level FCML

converter can be expressed as m/N , where m is a real number

bounded by 0 and N . Cases where m is an integer will herein

be referred to as nominal conversion ratios. Past work has

shown that an inherent mechanism, natural balancing, keeps

the capacitor voltages at their balanced values, but it fails

to function at certain nominal conversion ratios, specifically

when m and N share a common divisor greater than one (they

are not co-prime) [3]. While various control techniques have

been reported to deal with capacitor voltage imbalance caused

by nonidealities [4]–[7], few works have explored solutions

to natural imbalance at nominal conversion ratios where m
and N are not co-prime. Furthermore, [8] showed that under

phase-shifted pulse width modulation (PSPWM) operation, in

any naturally imbalanced case, flying capacitor voltages cannot

be regulated by tuning the gate drive timing: they are neither

controllable nor observable. This implies that a new switching

scheme is necessary to solve the natural imbalance problem

of FCML converters.

In this work, we will expand the state space model proposed

in [8] to investigate the mechanism of natural balancing. It

will be shown that the inductive impedance at the output

provides inherent feedback, similar to an integral controller,

that regulates the voltage levels of the flying capacitors to their

balanced values. Intuitively, natural balancing does not work

when the switched capacitor stage is not controllable. We will

also propose a new switching scheme, modified PSPWM, that

makes FCML converters naturally balanced at any conversion

ratio. The new scheme is verified by a hardware prototype.

II. DISCRETE-TIME STATE-SPACE MODEL

A discrete-time state-space model for FCML converters was

developed in [8] and led to the state equation:

VC(k + 1) = AVC(k) +Bq(k), (1)

where VC is the state vector, containing individual flying

capacitor voltages; q is the input vector, containing charge

transferred through the inductor in each phase; k represents the

period index. It describes the dynamics of flying capacitor volt-

ages assuming arbitrary charge transfer through the inductor.

Importantly, [8] described conditions for controllability and

observability of the flying capacitor voltage states. Specifically,

flying capacitor voltages were shown to be observable (their978-1-7281-1842-0/19/$31.00 ©2019 IEEE



voltages can be estimated from measurements of the switching

node voltage, Vx) and controllable (their voltages can be

regulated arbitrarily by adjusting inductor charge flow via

PSPWM timing) only if the matrix B in (1) is full-rank.

In the treatment that follows here, the relationships between

controllability, observability and natural balancing will be

further investigated. Consider an FCML converter already

under balanced operation, then an instantaneous disturbance

is applied to flying capacitor voltages. According to the

superposition theorem of linear circuits, the overall response

equals the sum of responses caused by individual excitations.

Therefore, the dynamics of the converter can be decomposed

into two parts: the balanced dynamics and the disturbance

dynamics. Take the voltage on capacitor C1 as an example:

VC1 = VC1,balanced +∆VC1, (2)

where VC1,balanced represents the dynamics of VC1 under

ideally balanced operation; ∆VC1 represents the dynamics of

VC1 when only excited by the disturbance. This treatment

applies to other electrical quantities as well. The disturbance

dynamics of inductor current, ∆IL, is defined as the portion

of inductor current that is excited only by the disturbance, and

it obeys the same superposition rule:

IL = IL,balanced +∆IL. (3)

In our analysis, charge flow (integral of current) is important

as it directly impact capacitor voltage change. Since integral

is a linear operator, superposition still holds:

q = qbalanced +∆q. (4)

This consideration provides significant simplification as it iso-

lates the effect of the disturbance from large-signal dynamics

of the converter, and it is sufficient to determine whether

the convreter is naturally balanced: if the deviation dynamics

approach zero in steady state (the effect of the disturbance

decays), the converter is naturally balanced; if the deviation

dynamics have a non-zero steady state (the effect of the

disturbance persists), the converter is subject to imbalance.

Going forward, the model will be derived for a 5-level

FCML converter at a conversion ratio of 2/4, but the method

is general and applies to any level and nominal conversion

ratio. Shown in Fig. 2, the switched capacitor stage and the

inductor stage are treated as two subsystems. The switching

node voltage, ∆Vx, is the switched capacitor system output

and the inductor system input. Similarly, the charge transferred

through the inductor, ∆q, is the inductor system output and

the switched capacitor system input.

A. Switched Capacitor Model

A common way to operate FCML converters is phase shifted

pulse width modulation (PSPWM): all top switches share the

same duty cycle, and each bottom switch is complementary

with its top counterpart. For an N+1 level FCML converter

(N = 4 in this example), there is a delay of T/N between

two adjacent switches, where T is the switching period. As

a result, at nominal conversion ratios, each period splits into
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Fig. 2. FCML converter modeled as a closed-loop system.

N phases, in which the flying capacitors are connected in

different configurations between the switching node and the

power supply (or ground).

For the switched capacitor system, the state variables are

defined as initial flying capacitor voltages in each period,

[∆VC1,∆VC2,∆VC3]
T . As mentioned previously, we are

treating their deviation from the balanced dynamics. At 2/4
conversion ratio, the equivalent circuits in each phase are

shown in Fig. 3 to highlight capacitor connections. Quantity

∆Vxj and ∆qj represent the initial switching node voltage

and the charge transferred to the switching node (which is the

same as charge transferred through the inductor) in phase j
(j = 1, 2, 3, 4), respectively.
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Fig. 3. Flying capacitor connections in each period.

Take flying capacitor C1 as an example: it is charged in

phase 3 and discharged in phase 1. Therefore, its charge

increases by ∆q3 − ∆q1 in one period. To keep equations

brief and clear, we will assume that all flying capacitors have

the same capacitance, Cfly; violation of this assumption does

not affect the conclusions. The change of ∆VC1 from period

k to period k+1 can be expressed as:

∆VC1(k + 1)−∆VC1(k) =
∆q3(k)−∆q1(k)

Cfly

. (5)

Similar expressions can also be derived for C2 and C3 by

analyzing their charging and discharging phases. Combining

them into matrix form yields the state equation of the system:





∆VC1(k + 1)
∆VC2(k + 1)
∆VC3(k + 1)



 =




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0 0 1


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

∆VC1(k)
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



+
1
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



−1 0 1 0
0 −1 0 −1
1 0 −1 0
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









∆q1(k)
∆q2(k)
∆q3(k)
∆q4(k)









, (6)



or denoted as

∆VC(k + 1) = A∆VC(k) +B∆q(k), (7)

where ∆VC is the state vector; ∆q is the input vector; A

equals the identity matrix; B is defined as charge transfer

matrix and is only dependent on capacitor connections and

the value of Cfly .

Fig. 3 also implies that in each phase, the switching node

voltage is a linear combination of flying capacitor voltages.

For example, in phase 1 of period k, KVL gives

∆Vx1(k) = ∆Vin(k)−∆VC3(k) + ∆VC1(k). (8)

With constant input voltage, Vin (treatment of input impedance

will be explained in section III), its disturbance dynamics,

∆Vin, is always zero. Hence, (8) simplifies to:

∆Vx1(k) = −∆VC3(k) + ∆VC1(k). (9)

However, this relationship can be slightly more complex in

some other phases. For example, at the beginning of phase

3, capacitor C1 has a voltage of ∆VC1 −∆q1/Cfly (since it

is already discharged in phase 1), and C3 has a voltage of

∆VC3 + ∆q1/Cfly . Consequently, the initial switching node

voltage can be expressed as

∆Vx3(k)

= (∆VC3(k) + ∆q1(k)/Cfly)− (∆VC1(k)−∆q1(k)/Cfly)

= ∆VC3(k)−∆VC1(k) + 2∆q1(k)/Cfly. (10)

The relationships in other phases can be obtained in similar

ways. They are wrapped into a matrix expression to form the

output equation of the system:








∆Vx1(k)
∆Vx2(k)
∆Vx3(k)
∆Vx4(k)









=






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

+
1
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


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0 0 0 0
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0 1 0 0
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∆q1(k)
∆q2(k)
∆q3(k)
∆q4(k)









, (11)

or denoted as

∆Vx(k) = C∆VC(k) +D∆q(k), (12)

where ∆Vx is the output vector; C and D are determined by

capacitor connections.

Equations (7) and (12) form the state space model of the

switched capacitor subsystem shown in Fig. 2. It defines the

system input-output relationship, along with the dynamics of

state variables.

B. Inductor Model

In the closed-loop system shown in Fig. 2, the inductor

is treated as a subsystem that provides input signals to the

switched capacitor stage. When exploring the inductor sys-

tem, the phase index is slightly adjusted for convenience of

derivation: phases 1-4 in the first period remain unchanged,

the 4 phases in the second period now occupy the indexes

5-8, and so on. The state variable of the inductor system is

defined as the initial inductor current of each phase, ∆IL.

Assuming that the output voltage ripple is negligible, Vout is

constant and therefore ∆Vout is always zero. Fig. 4 shows

the equivalent circuit of the inductor system, where Ceq is the

equivalent capacitance of flying capacitors, and Resr captures

the parasitic resistance of switches and the inductor.

L

Resr

Ceq

Fig. 4. Equivalent circuit of the inductor system in each phase.

During phase n, the inductor system is a second-order cir-

cuit with initial capacitor voltage ∆Vx(n) and initial inductor

current ∆IL(n). The transient response of inductor current in

that phase is a linear combination of both initial conditions,

which leads to the time-domain expression:

∆IL(t) = f(t)∆IL(n) + g(t)∆Vx(n), (13)

where f(t) and g(t) are time-dependent coefficients obtained

by solving the equivalent circuit. For their exact expressions,

please refer to the appendix.

Because the inductor current is continuous across the phase

transitions, the final inductor current in phase n must be equal

to the initial inductor current in phase n+1. By denoting the

phase duration as t0, the state equation of the inductor system

can be expressed as:

∆IL(n+ 1) = ∆IL(t)
∣

∣

t=t0
= f∆IL(n) + g∆Vx(n), (14)

where f and g are abbreviations of f(t0) and g(t0) respec-

tively. The charge transferred through the inductor during

phase n, which is the system output, equals ∆IL(t) integrated

from t = 0 to t = t0:

∆q(n) =

∫ t0

0

∆IL(t)dt

=

∫ t0

0

f(t)dt∆IL(n) +

∫ t0

0

g(t)dt∆Vx(n), (15)

or denoted as

∆q(n) = F∆IL(n) +G∆Vx(n), (16)

where F and G represent the definite integrals (which are

scalars) that they replace; their exact expressions are also listed

in the appendix.

Equations (14) and (16) are the inductor state space model,

with a time step of one phase. However, the time step of

the switched capacitor model is one period. To bridge the

gap, the inductor system input and output are packed into

groups of 4 to form the corresponding vectors, and the state

variable is accordingly redefined as the initial inductor current



of each period, which yields the unified state-space model of

the inductor system:

∆IL(k + 1) = f4∆IL(k)

+ g
[

f3 f2 f 1
]
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







, (18)

or denoted as:

∆IL(k + 1) = P∆IL(k) +Q∆Vx(k); (19)

∆q(k) = R∆IL(k) + S∆Vx(k), (20)

where the bold symbols represent the matrices (along with

their coefficients) that they are replacing. Equations (19) and

(20) form the state space model of the inductor subsystem

shown in Fig. 2.

III. DISCUSSION ON NATURAL BALANCING

Balancing of an FCML converter requires all flying ca-

pacitors to have balanced voltages in steady state. Balanced

operation is a valid state of the converter, but not necessarily

a stable state: it depends on whether the converter is capable

of compensating for disturbances around the balanced point

[9]. We will analyze the effect of disturbances to explore the

stability of flying capacitor voltages.

A. Open-Loop Analysis

Assume that the 5-level FCML converter shown in Fig. 2

is originally under balanced operation. At the initial period

(k = 0), a disturbance, [∆VC1(0),∆VC2(0),∆VC3(0)]
T , is

introduced as an initial condition. If the steady state returns

to zeros, [∆VC1(∞),∆VC2(∞),∆VC3(∞)]T = [0, 0, 0]T ,

the balanced operation is a stable state, and the converter is

naturally balanced; if the disturbance results in a non-zero

steady state, the converter is not naturally balanced.

At 2/4 conversion ratio, (6) describes the change of states

over time. Adding ∆VC1 and ∆VC3 together reveals an

interesting relationship:

∆VC1(k+ 1) +∆VC3(k+ 1) = ∆VC1(k) +∆VC3(k). (21)

Performing this expression recursively yields

∆VC1(∞) + ∆VC3(∞) = ∆VC1(0) + ∆VC3(0), (22)

which already indicates that 2/4 is an imbalanced conversion

ratio: if ∆VC1(0) + ∆VC3(0) $= 0, at least one of their

steady states will be non-zero. In other words, the steady

state depends on the perturbation. This dependency directly

results from the fact that the charge transfer matrix, B in (7),

contains linearly dependent row vectors (it is not full-rank),

so that the input effect cancels out among a subset of the

flying capacitors (C1 and C3 in this example). Therefore, the

feedback, ∆q, cannot fully control flying capacitor voltages,

leading to unconstrained steady state.

At other nominal conversion ratios (for example, 1/4) where

the charge transfer matrix is full-rank, [8] proved that matrix C

is also full-rank. Flying capacitor voltages are fully controlled

by the feedback of the inductor system, which is characterized

by (19) and (20). To better visualize the actual function of the

feedback, substituting (14) recursively into (16) gives:

∆q(n) = Ffn−1∆IL(1)

+ Fg

n−1
∑

j=1

fn−1−j∆Vx(j) +G∆Vx(n).

The output, ∆q, is weighted sum of the input history (along

with the initial condition): it is essentially a discrete-time

integrator with decaying coefficient. Assuming the closed-

loop system is stable due to damping effect of Resr, the

integrator drives its input, ∆Vx, to zero in steady state, turn-

ing (12) into a homogeneous equation. Since the coefficient

matrix, C, is full-rank, a unique solution can be found:

[∆VC1(∞),∆VC2(∞),∆VC3(∞)]T = [0, 0, 0]T . Therefore,

the converter has zero steady state and is naturally balanced.

Generally, for an N+1 level FCML converter with a nominal

conversion ratio of m/N , [3] showed that under PSPWM

operation, the converter is naturally balanced if m and N
are coprime integers. Combining with [8], this conclusion can

be expanded: at nominal conversion ratios, under any valid

switching scheme, FCML converters are naturally balanced

and flying capacitor voltages are controllable and observable

if the charge transfer matrix B is full-rank, where rank(B)
only depends on capacitor connections in each phase.

B. Closed-Loop Analysis

The model of switched capacitor system and inductor sys-

tem are derived in section II, rewritten here for reference:
{

∆VC(k + 1) = A∆VC(k) +B∆q(k)

∆Vx(k) = C∆VC(k) +D∆q(k)
; (23)

{

∆IL(k + 1) = P∆IL(k) +Q∆Vx(k)

∆q(k) = R∆IL(k) + S∆Vx(k)
. (24)

The switching node voltage, ∆Vx, is the switched capacitor

system output and inductor system input; the charge trans-

ferred through the inductor, ∆q, is the switched capacitor

system input and inductor system output. They are internal

signals that describe the interaction between the subsystems

(see Fig. 2). In closed-loop analysis, internal signals are

canceled out to highlight characteristics of the overall system.

Mathematically, solving (23) and (24) gives:
[

∆VC(k + 1)
∆IL(k + 1)

]

= Acl

[

∆VC(k)
∆IL(k)

]

. (25)



The closed-loop system matrix, Acl, characterizes the overall

system, and is given by the following expression:

Acl =

[

A + BTSC BTR

QC + QDTSC P +QDTR

]

where T = (I − SD)−1, and I is the identity matrix.

Equation (25) wraps all the system dynamics into one single

equation, and eigenvalues of Acl determine system stability.

If all the eigenvalues have a magnitude smaller than one,

the system is asymptotically stable: for any initial condition,

the steady state is zero, and the FCML converter is naturally

balanced. If at least one eigenvalue has a magnitude greater

than one, the system is unstable: for any non-zero initial

condition, the steady state is unbounded, and the FCML

converter is naturally imbalanced. If the largest magnitude of

the eigenvalues is equal to one, the system is marginally stable:

for a non-zero initial condition, the steady state is bounded but

not zero, therefore the FCML converter is also imbalanced.

Among the three cases above, instability is unlikely to

happen without positive feedback, and is not a concern here.

But the closed-loop system can be marginally stable, and in

fact, this is always the case when the charge transfer matrix

B is not full-rank. To prove this, we need to investigate the

matrix Acl − I , where I is the identity matrix:

Acl − I =

[

BTSC BTR

QC + QDTSC P +QDTR− 1

]

=

[

B 0

0 1

] [

TS TR

Q + QDTS P +QDTR− 1

] [

C 0

0 1

]

,

or denoted as

(Acl − I)N×N = B′

N×(N+1)MC′, (26)

where the subscripts show the dimensions of matrices for an

N+1 level FCML converter. If B is not full-rank, B′ is not

full-rank either, meaning rank(B′) < N . Since the rank of a

(a)

(b)

 

 

 

 

 

 

Fig. 5. Transient response of state variables at (a) 1/4 conversion ratio and
(b) 2/4 conversion ratio; inductor current, ∆IL, is not shown.

matrix product is not greater than the rank of any factor, we

have rank(Acl − I) < N , which leads to det(Acl − I) = 0.

Therefore, when B is not full-rank, Acl has an eigenvalue on

the unit circle, and the closed-loop model is marginally stable,

meaning the FCML converter is subject to imbalance. This is

consistent with the conclusion in open-loop analysis.

(a) (b)

Fig. 6. Eigenvalues of Acl in z-plane at (a) 1/4 conversion ratio and (b) 2/4
conversion ratio; the unit circle is marked with black for reference; the fourth
eigenvalue is close to the origin thus does not appear.

Fig. 7. Eigenvalue trajectories in z-plane at 1/4 conversion ratio when the
quality factor changes from 0.1 to 100; the unit circle is marked with black
for reference; the fourth eigenvalue is close to the origin thus does not appear.

Fig. 8. Settling time of disturbances in N+1 level FCML converters at 1/N
conversion ratios; the settling time is normalized to that of a 3-level converter;
the phase duration is kept constant for different number of levels.



Under PSPWM operation, state-space simulation and circuit

simulation are conducted on a 5-level FCML covnerter. Fig. 5

and Fig. 6 show the transient response of state variables and

eigenvalues of Acl, at conversion ratios of 1/4 (balanced case)

and 2/4 (imbalanced case), with the same circuit parameter.

In Fig. 5, the initial condition (which models the disturbance)

of VC1 is set to 200mV, while others are zeros. Circuit

simulation results are plotted with light colors (because of

voltage ripple, they look like bands); state-space simulation

results are plotted with darker colors. Both the steady state

values and the dynamics match well. As predicted by the

state-space analysis, at 1/4 conversion ratio, the charge transfer

matrix B is full-rank and the magnitude of all eigenvalues

are smaller than one, the closed-loop model is asymptotically

stable and the converter is balanced; at 2/4 conversion ratio,

the charge transfer matrix is not full-rank and one eigenvalue

is on the unit circle, the closed-loop model is marginally stable

and the converter is imbalanced.

With the closed-loop system model, it is possible to sweep

circuit parameters and observe the change of eigenvalue loca-

tions. An example that sweeps Resr at 1/4 conversion ratio

is shown in Fig. 7, where the quality factor, Q, changes

from 0.1 to 100. Arrows indicate the moving direction of

the corresponding eigenvalues. As Resr decreases (and Q
increases), the eigenvalues first move away from the unit

circle and then move towards the unit circle, which means

the balancing dynamics first accelerate and then slow down.

The influence of other parameters can be explored as well.

Another interesting observation is the comparison between

even and odd level FCML converters. The settling time of

response to disturbances at the lowest nominal conversion

ratio (where the converter is always naturally balanced) are

plotted against the number of levels in Fig. 8. Even-level

converters exhibits stronger rejection to disturbances than odd-

level converters. The same phenomenon was observed and

discussed in [4].

It is worth noticing that, in practical implementation, natu-

rally balanced FCML converters do not necessarily operate in

the balanced state. Non-idealities (such as input impedance,

timing mismatch, etc.) can be modeled as disturbances on

flying capacitor voltages. The state-space analysis shows that

for naturally balanced FCML converters, instantaneous dis-

turbance results in zero steady state. However, in practice,

disturbances are usually continuous over time, and the steady
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Fig. 10. Comparison of traditional PSPWM and modified PSPWM (new switching scheme) at 2/4 conversion ratio.



state is not necessarily zero. In short, natural balancing

indicates the capability to compensate for disturbances, but

not immunity to disturbances.

IV. SWITCHING SCHEME AND EXPERIMENTAL RESULTS

Under traditional PSPWM operation, FCML converters

are naturally imbalanced at some nominal conversion ratios

(where the charge transfer matrix B is not full-rank). The

analysis outlined in section III points towards a simple and

direct method to rectify this imbalance issue. By modifying

the switching scheme, it is possible to make B full rank, and

thus naturally balance the converter. This can be done without

increasing switching losses and without hardware complexity.

A. Modified PSPWM scheme

The new switching scheme (modified PSPWM) is obtained

by inserting an additional phase between every two traditional

phases. For a 5-level FCML converter with 2/4 conversion

ratio, Fig. 9 shows top side switches driven by the new scheme

during a sample of 3 phases: in traditional PSPWM, ‘on’

switches are shifted together, whereas in the new scheme, they

are shifted one by one. This pattern can be repeated for a

full PSPWM period, yielding all of the phases shown in Fig.

10, where phase n is abbreviated as ϕn, and the current flow

paths are highlighted in red. In traditional PSPWM, capacitor

C1 and C3 are always connected in a group (highlighted in

blue), which leads to certain linear dependency among row

vectors of matrix B (thus B is not full-rank); in the new

scheme, additional phases introduce interconnections among

all capacitors, so that no such ‘isolated’ group exists, making

matrix B full-rank. According to the state-space analysis in

section III, at 2/4 conversion ratio, the 5-level FCML con-

verter is imbalanced under PSPWM operation but is naturally

balanced when operated by the new switching scheme.

To compare the switching loss of these two schemes, we

hold the effective switching frequency at the switching node,

feff , as constant. The energy loss when turning one switch on

and off once is denoted as Eg . For a traditional PSPWM pe-

riod, there are 4 phases and each switch turns on and off once.

The switching loss per device is: PPSPWM = Egfeff/4.

For a period in the new scheme, there are 8 phases and each

switch turns on and off twice. The switching loss per device

is: Pnew = 2Egfeff/8 = Egfeff/4. It is clear that the new

switching scheme does not introduce additional switching loss.

Past works have shown that in practical implementation,

natural imbalance occurs not only at certain nominal conver-

sion ratios, but also in their neighborhood [10]. Therefore, it is

important to extend the new switching scheme to non-nominal

conversion ratios, so that FCML converters can be naturally

balanced at any conversion ratio. For an N+1 level FCML

converter with a non-nominal conversion ratio of m/N (m is

not an integer), we denote the largest integer that is smaller

than m as Mf , and the smallest integer that is greater than m
as Mc. There are 2N phases in a period, in which N phases

are the same as nominal conversion ratio Mf/N , and the other

N phases are the same as nominal conversion ratio Mc/N . If

any nominal conversion ratio is imbalanced, the new switching

scheme should be applied to the corresponding phases. If the

numbers of phases do not match, the one with fewer phases

should be duplicated to double that number.

B. Experimental Validation

A 5-level FCML prototype is built to test the new switching

scheme. Fig. 11 shows the printed circuit board and important

parameters. In steady-state, difference between each flying

capacitor voltage and its balanced value, along with the output

voltage, are measured in the conversion ratio range of 0.4 to

0.6, where natural imbalance is most severe under traditional

PSPWM operation. Experimental results validate the model at

2/4 conversion ratio: C1 and C3 are imbalanced in PSPWM

operation and are balanced in Modified PSPWM operation,

as shown in Fig. 12. Moreover, the new switching scheme

naturally balances the converter at conversion ratios that are

close to 2/4.

Inductor

Isolated DC-DC

converters

GaN 

transistors

Flying 

capacitors

Gate

drivers

Cfly = 3.3uF

L = 1uH

Vin = 24V

Cout = 9.9uF

Cin = 13.2uF

Fig. 11. Printed circuit board and important parameters of the prototype.

Fig. 12. Steady state values of flying capacitor voltages using traditional
PSPWM and Modified PSPWM, with a load current of 200mA.

Fig. 13 shows the converter efficiency under a load current

sweep using traditional and new switching schemes. Both

schemes have similar efficiency at light load, which verifies



Fig. 13. Converter efficiency when operated by traditional PSPWM and
Modified PSPWM (the new scheme).

that the new switching scheme does not introduce additional

switching loss. However, in modified PSPWM, more flying

capacitors are connected in series during additional phases,

which increases conduction loss and cause an efficiency drop

at heavy load. It is also observed that the converter becomes

imbalanced at heavy load even under the new switching

scheme. These problems can potentially be mitigated by

adjusting gate drive timing (such as applying active balancing

control), and remains to be further investigated.

V. CONCLUSIONS

In this work, a state-space model is derived to explore

natural balancing of FCML converters. It is shown that natural

balancing depends on the rank of a matrix, which is deter-

mined only by the flying capacitor connections in each phase.

Based on the model, a new switching scheme is developed to

naturally balance FCML converters at any conversion ratio.

The new switching scheme is verified by a 5-level FCML

converter prototype.

APPENDIX

Exact expressions for the inductor system model in section

II are provided here. Solving the second-order circuit in Fig.

4 yields the time-domain expression:

∆IL(t) =
ω0∆IL(n)

ωd

e−αtcos(ωdt+ θ)

+
∆Vx(n)

ωdL
e−αtsin(ωdt), (27)

where:

α =
Resr

2L

is the attenuation;

ω0 =
1

√

LCeq

is the natural resonant frequency;

ωd =
√

ω0
2 − α2

is the damped resonant frequency;

θ = arcsin(
α

ω0

)

is the phase shift. By comparing (13) and (27), we have:

f(t) =
ω0

ωd

e−αtcos(ωdt+ θ); (28)

g(t) =
1

ωdL
e−αtsin(ωdt). (29)

Performing integration yields:

F =

∫ t0

0

f(t)dt =
1

ω0ωd

(e−αt0(ωdsin(ωdt0 + θ))

− αcos(ωdt0 + θ))− (ωdsinθ − αcosθ)); (30)

G =

∫ t0

0

g(t)dt = −
Ceq

ωd

(e−αt0(αsin(ωdt0)

+ ωdcos(ωdt0))− ωd). (31)
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