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Abstract—This work explores the mechanisms and limita-
tions of natural voltage balancing in flying capacitor multilevel
(FCML) DC-DC converters. A simple discrete-time state space
model is used to explore the fundamental conditions that will
lead to (or prevent) natural balance of flying capacitor voltages,
along with the balancing dynamics. The treatment is used to
highlight straightforward ways to alleviate problems with natural
imbalance by adjusting the switching scheme. The model is
compared against circuit simulations and the proposed switching
scheme is verified in a hardware prototype.

Index Terms—Alying capacitor multilevel, DC-DC converter,
state space model, natural balancing

I. INTRODUCTION

Flying capacitor multilevel (FCML) DC-DC converters
have gained interest in recent years due to a number of
favorable characteristics. The FCML architecture leverages a
switched capacitor network to generate a multilevel, stepped-
down voltage waveform which can reduce the energy-storage
requirements and therefore overall volume of the inductor [1],
[2]. The FCML circuit also multiplies the effective switching
frequency seen by the inductor, significantly improving trade-
offs among voltage ripple, size, and efficiency. However, the
issue of maintaining voltage balance on the flying capacitors
remains challenging.

Fig. 1. General N + 1 level FCML converter.

An N+1 level FCML converter consists of N pairs of
switches and N-1 flying capacitors, as shown in Fig. 1. Flying
capacitor C; (i = 1,2,..., N-1) should ideally operate with a
balanced voltage of i -V}, /N, however, the actual voltage can
deviate from its balanced value. Voltage imbalance causes in-
creased current ripple in the inductor and higher voltage stress
on switches, and is a major factor that limits the application
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of this topology. The conversion ratio of an N+1 level FCML
converter can be expressed as m /N, where m is a real number
bounded by 0 and N. Cases where m is an integer will herein
be referred to as nominal conversion ratios. Past work has
shown that an inherent mechanism, natural balancing, keeps
the capacitor voltages at their balanced values, but it fails
to function at certain nominal conversion ratios, specifically
when m and N share a common divisor greater than one (they
are not co-prime) [3]. While various control techniques have
been reported to deal with capacitor voltage imbalance caused
by nonidealities [4]-[7], few works have explored solutions
to natural imbalance at nominal conversion ratios where m
and N are not co-prime. Furthermore, [8] showed that under
phase-shifted pulse width modulation (PSPWM) operation, in
any naturally imbalanced case, flying capacitor voltages cannot
be regulated by tuning the gate drive timing: they are neither
controllable nor observable. This implies that a new switching
scheme is necessary to solve the natural imbalance problem
of FCML converters.

In this work, we will expand the state space model proposed
in [8] to investigate the mechanism of natural balancing. It
will be shown that the inductive impedance at the output
provides inherent feedback, similar to an integral controller,
that regulates the voltage levels of the flying capacitors to their
balanced values. Intuitively, natural balancing does not work
when the switched capacitor stage is not controllable. We will
also propose a new switching scheme, modified PSPWM, that
makes FCML converters naturally balanced at any conversion
ratio. The new scheme is verified by a hardware prototype.

II. DISCRETE-TIME STATE-SPACE MODEL

A discrete-time state-space model for FCML converters was
developed in [8] and led to the state equation:

Ve(k +1) = AVe(k) + Bq(k), ()

where V¢ is the state vector, containing individual flying
capacitor voltages; g is the input vector, containing charge
transferred through the inductor in each phase; k represents the
period index. It describes the dynamics of flying capacitor volt-
ages assuming arbitrary charge transfer through the inductor.
Importantly, [8] described conditions for controllability and
observability of the flying capacitor voltage states. Specifically,
flying capacitor voltages were shown to be observable (their



voltages can be estimated from measurements of the switching
node voltage, V) and controllable (their voltages can be
regulated arbitrarily by adjusting inductor charge flow via
PSPWM timing) only if the matrix B in (1) is full-rank.

In the treatment that follows here, the relationships between
controllability, observability and natural balancing will be
further investigated. Consider an FCML converter already
under balanced operation, then an instantaneous disturbance
is applied to flying capacitor voltages. According to the
superposition theorem of linear circuits, the overall response
equals the sum of responses caused by individual excitations.
Therefore, the dynamics of the converter can be decomposed
into two parts: the balanced dynamics and the disturbance
dynamics. Take the voltage on capacitor C; as an example:

Ver = Ve batanced + AVer, 2

where Vci1 patanced Tepresents the dynamics of Vi under
ideally balanced operation; AV represents the dynamics of
Vo1 when only excited by the disturbance. This treatment
applies to other electrical quantities as well. The disturbance
dynamics of inductor current, Al, is defined as the portion
of inductor current that is excited only by the disturbance, and
it obeys the same superposition rule:

IL = IL,balanced + AIL (3)

In our analysis, charge flow (integral of current) is important
as it directly impact capacitor voltage change. Since integral
is a linear operator, superposition still holds:

q = Qbalanced T Aq (4)

This consideration provides significant simplification as it iso-
lates the effect of the disturbance from large-signal dynamics
of the converter, and it is sufficient to determine whether
the convreter is naturally balanced: if the deviation dynamics
approach zero in steady state (the effect of the disturbance
decays), the converter is naturally balanced; if the deviation
dynamics have a non-zero steady state (the effect of the
disturbance persists), the converter is subject to imbalance.

Going forward, the model will be derived for a 5-level
FCML converter at a conversion ratio of 2/4, but the method
is general and applies to any level and nominal conversion
ratio. Shown in Fig. 2, the switched capacitor stage and the
inductor stage are treated as two subsystems. The switching
node voltage, AV,, is the switched capacitor system output
and the inductor system input. Similarly, the charge transferred
through the inductor, Ag, is the inductor system output and
the switched capacitor system input.

A. Switched Capacitor Model

A common way to operate FCML converters is phase shifted
pulse width modulation (PSPWM): all top switches share the
same duty cycle, and each bottom switch is complementary
with its top counterpart. For an N+1 level FCML converter
(N = 4 in this example), there is a delay of T/N between
two adjacent switches, where T is the switching period. As
a result, at nominal conversion ratios, each period splits into
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Fig. 2. FCML converter modeled as a closed-loop system.

N phases, in which the flying capacitors are connected in
different configurations between the switching node and the
power supply (or ground).

For the switched capacitor system, the state variables are
defined as initial flying capacitor voltages in each period,
[AVCl,AVCQ,Ach]T. As mentioned previously, we are
treating their deviation from the balanced dynamics. At 2/4
conversion ratio, the equivalent circuits in each phase are
shown in Fig. 3 to highlight capacitor connections. Quantity
AV,; and Ag; represent the initial switching node voltage
and the charge transferred to the switching node (which is the
same as charge transferred through the inductor) in phase j
(3 =1,2,3,4), respectively.
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Fig. 3. Flying capacitor connections in each period.

Take flying capacitor C7 as an example: it is charged in
phase 3 and discharged in phase 1. Therefore, its charge
increases by Ags — Agq; in one period. To keep equations
brief and clear, we will assume that all flying capacitors have
the same capacitance, C'yy,; violation of this assumption does
not affect the conclusions. The change of AV from period
k to period k+1 can be expressed as:

_ Ags(k) — Aqi(k)
Criy
Similar expressions can also be derived for Cy and C5 by

analyzing their charging and discharging phases. Combining
them into matrix form yields the state equation of the system:

AVeor(k+1) — AVeu (k) )

AVea(k +1) 1 0 0] [AVer(k)
AVCQ(k + 1) =(0 1 O AVCQ(k)
AVes(k +1) 0 0 1| |AVes(k)
L[ 010 ﬁglgg
+ 0 -1 0 -1 2 , (6
Cry | 1 o _1 Ags(k) | ©
Aqu(k)



or denoted as
AVe(k + 1) = AAV(k) + BAg(k), %)

where AV is the state vector; Agq is the input vector; A
equals the identity matrix; B is defined as charge transfer
matrix and is only dependent on capacitor connections and
the value of Cy,.

Fig. 3 also implies that in each phase, the switching node
voltage is a linear combination of flying capacitor voltages.
For example, in phase 1 of period k, KVL gives

Ale(k) = AV”L(]{I) — AVCg(k) + AV (k) (8)

With constant input voltage, V;,, (treatment of input impedance
will be explained in section III), its disturbance dynamics,
AV;,, is always zero. Hence, (8) simplifies to:

AV (k) = —AVes(k) + AV (k). 9)

However, this relationship can be slightly more complex in
some other phases. For example, at the beginning of phase
3, capacitor C4 has a voltage of AV — Agq/Clyy (since it
is already discharged in phase 1), and C3 has a voltage of
AVes + Aqi/Cyiy. Consequently, the initial switching node
voltage can be expressed as

AV,3(k)

= (AVes(k) + Aqi(k)/Cpiy) = (AVer (k) — Aqu(k)/Cy)
= AVes(k) — AVer(k) + 28q1(k) /Crruy. (10)
The relationships in other phases can be obtained in similar

ways. They are wrapped into a matrix expression to form the
output equation of the system:

AV (k) 1 0 -1
AVes (k
AVio(k)| _ |0 1 0 Av§;§k§
AV,3(k) 10 1)y )
AV, 4(k) 0 -1 0 o3
0 0 0 0] [Aq(k)
1 10 0 0 0| |Ag(k) an
Chy |2 0 0 0| |Ags(k)|”
0 1 0 0| |Ag(k)

or denoted as

AV, (k) = CAVg (k) + DAq(k), (12)

where AV, is the output vector; C' and D are determined by
capacitor connections.

Equations (7) and (12) form the state space model of the
switched capacitor subsystem shown in Fig. 2. It defines the
system input-output relationship, along with the dynamics of
state variables.

B. Inductor Model

In the closed-loop system shown in Fig. 2, the inductor
is treated as a subsystem that provides input signals to the
switched capacitor stage. When exploring the inductor sys-
tem, the phase index is slightly adjusted for convenience of
derivation: phases 1-4 in the first period remain unchanged,

the 4 phases in the second period now occupy the indexes
5-8, and so on. The state variable of the inductor system is
defined as the initial inductor current of each phase, Al
Assuming that the output voltage ripple is negligible, V,,; is
constant and therefore AV, is always zero. Fig. 4 shows
the equivalent circuit of the inductor system, where C., is the
equivalent capacitance of flying capacitors, and R.g, captures
the parasitic resistance of switches and the inductor.
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Fig. 4. Equivalent circuit of the inductor system in each phase.

Cey

During phase n, the inductor system is a second-order cir-
cuit with initial capacitor voltage AV,,(n) and initial inductor
current Al (n). The transient response of inductor current in
that phase is a linear combination of both initial conditions,
which leads to the time-domain expression:

AIL(t) = f(t)AIL(n) + g(t)AV(n),

where f(t) and g(t) are time-dependent coefficients obtained
by solving the equivalent circuit. For their exact expressions,
please refer to the appendix.

Because the inductor current is continuous across the phase
transitions, the final inductor current in phase n must be equal
to the initial inductor current in phase n+1. By denoting the
phase duration as ¢, the state equation of the inductor system
can be expressed as:

AlL(n+1) = AL (t)|,_, = fAIL(n) + gAV,(n), (14)

13)

where f and ¢ are abbreviations of f(¢y) and g(to) respec-
tively. The charge transferred through the inductor during
phase n, which is the system output, equals ATy (t) integrated
from ¢t =0to t =ty:

Ag(n) = /Oto AT (t)dt

to tO
= F@)dtAIL(n) + / g(t)dtAVy(n),  (15)
0 0

or denoted as

Ag(n) = FAIL(n) + GAV,(n), (16)

where F' and G represent the definite integrals (which are
scalars) that they replace; their exact expressions are also listed
in the appendix.

Equations (14) and (16) are the inductor state space model,
with a time step of one phase. However, the time step of
the switched capacitor model is one period. To bridge the
gap, the inductor system input and output are packed into
groups of 4 to form the corresponding vectors, and the state
variable is accordingly redefined as the initial inductor current



of each period, which yields the unified state-space model of
the inductor system:

AlL(k+1) = fAAIL(K)

AV, (k)
vl o ] nEnsan
AV (k)
Afh(k) 1
Aga (k) f
Ags(k)| = | 2| AW
Aqy (k) f?
G 0 0 0] [AVa(k)
Fg G 0 0f]|AVi®)
T rrg Fg o of |avam| 1Y
Ff?q Ffg Fg G| |AVu(k)

or denoted as:

Al (k+1) = PAIL(k) + QAVy(k);
Aq(k) = RAIL(k) + SAV,(k),

19)
(20)

where the bold symbols represent the matrices (along with
their coefficients) that they are replacing. Equations (19) and
(20) form the state space model of the inductor subsystem
shown in Fig. 2.

III. DISCUSSION ON NATURAL BALANCING

Balancing of an FCML converter requires all flying ca-
pacitors to have balanced voltages in steady state. Balanced
operation is a valid state of the converter, but not necessarily
a stable state: it depends on whether the converter is capable
of compensating for disturbances around the balanced point
[9]. We will analyze the effect of disturbances to explore the
stability of flying capacitor voltages.

A. Open-Loop Analysis

Assume that the 5-level FCML converter shown in Fig. 2
is originally under balanced operation. At the initial period
(k = 0), a disturbance, [AVc1(0), AVea(0), AVes(0)]7, is
introduced as an initial condition. If the steady state returns
to zeros, [AVei(00), AViea(o0), AVesz(oo)]T = [0,0,0]7,
the balanced operation is a stable state, and the converter is
naturally balanced; if the disturbance results in a non-zero
steady state, the converter is not naturally balanced.

At 2/4 conversion ratio, (6) describes the change of states
over time. Adding AVp; and AVes together reveals an
interesting relationship:

AVer(k+1)+ AVes(k+ 1) = AV (k) + AVes(k). (21)
Performing this expression recursively yields
AVe1(o0) + AVes(0o) = AVe1(0) + AVes(0), (22)

which already indicates that 2/4 is an imbalanced conversion
ratio: if AVe1(0) + AVes(0) # 0, at least one of their
steady states will be non-zero. In other words, the steady

state depends on the perturbation. This dependency directly
results from the fact that the charge transfer matrix, B in (7),
contains linearly dependent row vectors (it is not full-rank),
so that the input effect cancels out among a subset of the
flying capacitors (C; and Cj in this example). Therefore, the
feedback, Ag, cannot fully control flying capacitor voltages,
leading to unconstrained steady state.

At other nominal conversion ratios (for example, 1/4) where
the charge transfer matrix is full-rank, [8] proved that matrix C
is also full-rank. Flying capacitor voltages are fully controlled
by the feedback of the inductor system, which is characterized
by (19) and (20). To better visualize the actual function of the
feedback, substituting (14) recursively into (16) gives:

Ag(n) = Ff"TAIL(1)
n—1
+Fg Y " IAVL(5) + GAVy(n).
j=1

The output, Ag, is weighted sum of the input history (along
with the initial condition): it is essentially a discrete-time
integrator with decaying coefficient. Assuming the closed-
loop system is stable due to damping effect of R.s, the
integrator drives its input, AV, to zero in steady state, turn-
ing (12) into a homogeneous equation. Since the coefficient
matrix, C, is full-rank, a unique solution can be found:
[AV1(00), AVea(o0), AVes(00)]T = [0,0,0]7. Therefore,
the converter has zero steady state and is naturally balanced.

Generally, for an N+1 level FCML converter with a nominal
conversion ratio of m/N, [3] showed that under PSPWM
operation, the converter is naturally balanced if m and N
are coprime integers. Combining with [8], this conclusion can
be expanded: at nominal conversion ratios, under any valid
switching scheme, FCML converters are naturally balanced
and flying capacitor voltages are controllable and observable
if the charge transfer matrix B is full-rank, where rank(B)
only depends on capacitor connections in each phase.

B. Closed-Loop Analysis

The model of switched capacitor system and inductor sys-
tem are derived in section II, rewritten here for reference:

AVo(k+1) = AAVo(k) + BAg(k) .,y
AV, (k) = CAVi (k) + DAqg(k) ’

Al (k+1) = PAIL(E) + QAVL(k) (24)
Aq(k) = RAIL(k) + SAV, (k)

The switching node voltage, AV, is the switched capacitor
system output and inductor system input; the charge trans-
ferred through the inductor, Agq, is the switched capacitor
system input and inductor system output. They are internal
signals that describe the interaction between the subsystems
(see Fig. 2). In closed-loop analysis, internal signals are
canceled out to highlight characteristics of the overall system.
Mathematically, solving (23) and (24) gives:

[AVc(k+ 1)] A, [AVc(k‘)} |

ATL(k+1) ATy (k) 25)



The closed-loop system matrix, A, characterizes the overall
system, and is given by the following expression:

[ A+ BTSC BTR
<~ 1QC + QDTSC P+ QDTR

where T = (I — SD)™!, and T is the identity matrix.

Equation (25) wraps all the system dynamics into one single
equation, and eigenvalues of A.; determine system stability.
If all the eigenvalues have a magnitude smaller than one,
the system is asymptotically stable: for any initial condition,
the steady state is zero, and the FCML converter is naturally
balanced. If at least one eigenvalue has a magnitude greater
than one, the system is unstable: for any non-zero initial
condition, the steady state is unbounded, and the FCML
converter is naturally imbalanced. If the largest magnitude of
the eigenvalues is equal to one, the system is marginally stable:
for a non-zero initial condition, the steady state is bounded but
not zero, therefore the FCML converter is also imbalanced.

Among the three cases above, instability is unlikely to
happen without positive feedback, and is not a concern here.
But the closed-loop system can be marginally stable, and in
fact, this is always the case when the charge transfer matrix
B is not full-rank. To prove this, we need to investigate the
matrix A — I, where I is the identity matrix:

BTSC BTR
QC+QDTSC P+QDTR-1

[B o TS TR Cc o
~lo 1||Q+QDTS P+QDTR-1||0 1|’

or denoted as

(Aa —I)nxn = B'nx(n41yMC,

A

Acl_I:|:

(26)

where the subscripts show the dimensions of matrices for an
N+1 level FCML converter. If B is not full-rank, B’ is not
full-rank either, meaning rank(B’) < N. Since the rank of a
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Fig. 5. Transient response of state variables at (a) 1/4 conversion ratio and
(b) 2/4 conversion ratio; inductor current, Ay, is not shown.

matrix product is not greater than the rank of any factor, we
have rank(Ae — I) < N, which leads to det(Aq — I) = 0.
Therefore, when B is not full-rank, A.; has an eigenvalue on
the unit circle, and the closed-loop model is marginally stable,
meaning the FCML converter is subject to imbalance. This is
consistent with the conclusion in open-loop analysis.
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Fig. 6. Eigenvalues of A in z-plane at (a) 1/4 conversion ratio and (b) 2/4
conversion ratio; the unit circle is marked with black for reference; the fourth
eigenvalue is close to the origin thus does not appear.
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Fig. 7. Eigenvalue trajectories in z-plane at 1/4 conversion ratio when the
quality factor changes from 0.1 to 100; the unit circle is marked with black
for reference; the fourth eigenvalue is close to the origin thus does not appear.
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Fig. 8. Settling time of disturbances in N+1 level FCML converters at 1/N
conversion ratios; the settling time is normalized to that of a 3-level converter;
the phase duration is kept constant for different number of levels.



Under PSPWM operation, state-space simulation and circuit
simulation are conducted on a 5-level FCML covnerter. Fig. 5
and Fig. 6 show the transient response of state variables and
eigenvalues of A, at conversion ratios of 1/4 (balanced case)
and 2/4 (imbalanced case), with the same circuit parameter.
In Fig. 5, the initial condition (which models the disturbance)
of Vi is set to 200mV, while others are zeros. Circuit
simulation results are plotted with light colors (because of
voltage ripple, they look like bands); state-space simulation
results are plotted with darker colors. Both the steady state
values and the dynamics match well. As predicted by the
state-space analysis, at 1/4 conversion ratio, the charge transfer
matrix B is full-rank and the magnitude of all eigenvalues
are smaller than one, the closed-loop model is asymptotically
stable and the converter is balanced; at 2/4 conversion ratio,
the charge transfer matrix is not full-rank and one eigenvalue
is on the unit circle, the closed-loop model is marginally stable
and the converter is imbalanced.

With the closed-loop system model, it is possible to sweep
circuit parameters and observe the change of eigenvalue loca-
tions. An example that sweeps R, at 1/4 conversion ratio
is shown in Fig. 7, where the quality factor, (), changes

off  Off On On Off On
Sy S3 s, s, Sy S3
WL Lo L L N B

traditional phase

additional phase

from 0.1 to 100. Arrows indicate the moving direction of
the corresponding eigenvalues. As R.,- decreases (and @
increases), the eigenvalues first move away from the unit
circle and then move towards the unit circle, which means
the balancing dynamics first accelerate and then slow down.
The influence of other parameters can be explored as well.

Another interesting observation is the comparison between
even and odd level FCML converters. The settling time of
response to disturbances at the lowest nominal conversion
ratio (where the converter is always naturally balanced) are
plotted against the number of levels in Fig. 8. Even-level
converters exhibits stronger rejection to disturbances than odd-
level converters. The same phenomenon was observed and
discussed in [4].

It is worth noticing that, in practical implementation, natu-
rally balanced FCML converters do not necessarily operate in
the balanced state. Non-idealities (such as input impedance,
timing mismatch, etc.) can be modeled as disturbances on
flying capacitor voltages. The state-space analysis shows that
for naturally balanced FCML converters, instantaneous dis-
turbance results in zero steady state. However, in practice,
disturbances are usually continuous over time, and the steady
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Fig. 9. An additional phase is inserted between two traditional phases.
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Fig. 10. Comparison of traditional PSPWM and modified PSPWM (new switching scheme) at 2/4 conversion ratio.



state is not necessarily zero. In short, natural balancing
indicates the capability to compensate for disturbances, but
not immunity to disturbances.

IV. SWITCHING SCHEME AND EXPERIMENTAL RESULTS

Under traditional PSPWM operation, FCML converters
are naturally imbalanced at some nominal conversion ratios
(where the charge transfer matrix B is not full-rank). The
analysis outlined in section III points towards a simple and
direct method to rectify this imbalance issue. By modifying
the switching scheme, it is possible to make B full rank, and
thus naturally balance the converter. This can be done without
increasing switching losses and without hardware complexity.

A. Modified PSPWM scheme

The new switching scheme (modified PSPWM) is obtained
by inserting an additional phase between every two traditional
phases. For a 5-level FCML converter with 2/4 conversion
ratio, Fig. 9 shows top side switches driven by the new scheme
during a sample of 3 phases: in traditional PSPWM, ‘on’
switches are shifted together, whereas in the new scheme, they
are shifted one by one. This pattern can be repeated for a
full PSPWM period, yielding all of the phases shown in Fig.
10, where phase n is abbreviated as ¢,,, and the current flow
paths are highlighted in red. In traditional PSPWM, capacitor
Cy and C3 are always connected in a group (highlighted in
blue), which leads to certain linear dependency among row
vectors of matrix B (thus B is not full-rank); in the new
scheme, additional phases introduce interconnections among
all capacitors, so that no such ‘isolated’ group exists, making
matrix B full-rank. According to the state-space analysis in
section III, at 2/4 conversion ratio, the 5-level FCML con-
verter is imbalanced under PSPWM operation but is naturally
balanced when operated by the new switching scheme.

To compare the switching loss of these two schemes, we
hold the effective switching frequency at the switching node,
fezs, as constant. The energy loss when turning one switch on
and off once is denoted as E;. For a traditional PSPWM pe-
riod, there are 4 phases and each switch turns on and off once.
The switching loss per device is: Ppspwm = Egfers /4.
For a period in the new scheme, there are 8 phases and each
switch turns on and off twice. The switching loss per device
is: Phew = 2Egferr/8 = Egfeps/4. It is clear that the new
switching scheme does not introduce additional switching loss.

Past works have shown that in practical implementation,
natural imbalance occurs not only at certain nominal conver-
sion ratios, but also in their neighborhood [10]. Therefore, it is
important to extend the new switching scheme to non-nominal
conversion ratios, so that FCML converters can be naturally
balanced at any conversion ratio. For an N+1 level FCML
converter with a non-nominal conversion ratio of m/N (m is
not an integer), we denote the largest integer that is smaller
than m as My, and the smallest integer that is greater than m
as M,.. There are 2NN phases in a period, in which N phases
are the same as nominal conversion ratio My /N, and the other
N phases are the same as nominal conversion ratio M./N. If

any nominal conversion ratio is imbalanced, the new switching
scheme should be applied to the corresponding phases. If the
numbers of phases do not match, the one with fewer phases
should be duplicated to double that number.

B. Experimental Validation

A 5-level FCML prototype is built to test the new switching
scheme. Fig. 11 shows the printed circuit board and important
parameters. In steady-state, difference between each flying
capacitor voltage and its balanced value, along with the output
voltage, are measured in the conversion ratio range of 0.4 to
0.6, where natural imbalance is most severe under traditional
PSPWM operation. Experimental results validate the model at
2/4 conversion ratio: C7 and C3 are imbalanced in PSPWM
operation and are balanced in Modified PSPWM operation,
as shown in Fig. 12. Moreover, the new switching scheme
naturally balances the converter at conversion ratios that are
close to 2/4.
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Fig. 11. Printed circuit board and important parameters of the prototype.
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Fig. 12. Steady state values of flying capacitor voltages using traditional
PSPWM and Modified PSPWM, with a load current of 200mA.

Fig. 13 shows the converter efficiency under a load current
sweep using traditional and new switching schemes. Both
schemes have similar efficiency at light load, which verifies
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Fig. 13. Converter efficiency when operated by traditional PSPWM and
Modified PSPWM (the new scheme).

that the new switching scheme does not introduce additional
switching loss. However, in modified PSPWM, more flying
capacitors are connected in series during additional phases,
which increases conduction loss and cause an efficiency drop
at heavy load. It is also observed that the converter becomes
imbalanced at heavy load even under the new switching
scheme. These problems can potentially be mitigated by
adjusting gate drive timing (such as applying active balancing
control), and remains to be further investigated.

V. CONCLUSIONS

In this work, a state-space model is derived to explore
natural balancing of FCML converters. It is shown that natural
balancing depends on the rank of a matrix, which is deter-
mined only by the flying capacitor connections in each phase.
Based on the model, a new switching scheme is developed to
naturally balance FCML converters at any conversion ratio.
The new switching scheme is verified by a 5-level FCML
converter prototype.

APPENDIX

Exact expressions for the inductor system model in section
IT are provided here. Solving the second-order circuit in Fig.
4 yields the time-domain expression:

AT
AlL(t) = we‘“cas(wdt +0)
Wy
AV,
+ Tén)e*atsin(wdt), (27)
where:
RGST
o =
2L
is the attenuation;
1
Wwo =
LC¢,
is the natural resonant frequency;
wg = Vwp? — a?

is the damped resonant frequency;

a
0= in(—
arcsin( ; )

is the phase shift. By comparing (13) and (27), we have:

f() = ﬂe_‘:“tcos(wdt + 0); (28)
wq
1 .
= « . 2
g(t) ol sin(wqt) (29)
Performing integration yields:
to
F= | ft)dt = — (e (wasin(wato + 0))
0 WoWd
— acos(wgto + 0)) — (wgsind — acosh)); (30)
G = / t)dt = —%(6_‘”0 (asin(wato)
wd
+ wgcos(wgto)) — wq). 31
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