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Designing strategic air traffic management (ATM) solutions at a large spatiotemporal
scale in real time is challenging, considering the range of uncertainties at the strategic time
frame. Big data techniques have drawn increasing attentions to develop optimal ATM
solutions to address these challenges. ATM data, such as convective weather spread and
congestion propagation, represent a new data type called spatiotemporal scenario data,
which has not been systematically studied. This new data type differs from the traditional
spatiotemporal pointwise data in its unique spatiotemporally correlated spread patterns.
As a step towards closing the loop of big data and real-time decision-making for ATM,1

this paper introduces an effective similarity search algorithm for this new data type. This
similarity search algorithm utilizes a multiresolution distance measure, which captures the
difference between spatiotemporal scenarios. Unique properties of this distance measure
are exploited to significantly reduce the computational cost associated with accessing and
processing scenarios in a large database. Using real weather forecast datasets as the case
study, we investigate feasibility of the proposed similarity search algorithm. Systematic
parameter impact analysis is conducted through simulation studies, which provide guide-
lines for parameter selection. Comparative simulation studies validate the effectiveness and
efficiency of the proposed similarity search algorithm for spatiotemporal scenario data.

I. Introduction

Strategic air traffic management (ATM), which plans traffic flows at a long look-ahead time (2-15 hours
in advance), reallocates limited airspace resources in advance to enhance airspace safety.2–4 Managing air
traffic at this strategic time scale is challenging due to the existence of multifarious uncertainties,5–7 such
as convective weather, the main cause of traffic delays.8,9 It is non-trivial to design effective ATM solutions
that are robust to the wide range of uncertainties in real time, considering the large state-, decision-, and
uncertainty- spaces. The new advance of big data techniques brings promising solutions to address these
challenges. The rich information in the large historical ATM datasets, if exploited, can significantly benefit
real-time decision-making for strategic ATM.10,11
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ATM data, such as convective weather spread and congestion propagation, represent a new data type
called spatiotemporal scenario data.12,13 Such type of data, typically generated from physical processes
of spatiotemporal evolving dynamics, has not been systematically investigated. Unlike the spatiotemporal
pointwise data13–15 that describe point objects with static or varying spatial locations over time, the spa-
tiotemporal scenario data are featured by spatiotemporally correlated spread patterns of changing shape,
size, location and intensity. For instance, convective weather can appear/disappear, change in size and inten-
sity at any time and any location. Such data are very commonly observed in natural and engineered systems.
Other than weather, epidemic spread dynamics, cascading failures in power and other networked systems, can
all be represented using this data type. With the growing interest of using big-data techniques to facilitate
the management of modern large-scale dynamical systems,16 innovative data analytics and processing tools
designed specifically for this new data type are urgently needed. In this paper, we seek an efficient similarity
search algorithm that allows quick retrieval of similar spatiotemporal scenarios from a database. Similarity
search is a critical component of the end-to-end spatiotemporal scenario data-driven decision-making frame-
work, which is based on the principle that similar scenarios will lead to similar management solutions. In
particular, stored solutions tagged with similar spatiotemporal scenario data and designed through offline
optimization approaches can be leveraged to significantly speed up the online optimal management design.

Similarity search relies on a distance/similarity measure to find objects that are most similar to the
query objects. Studies on spatiotemporal scenario data are very limited in the literature. Recently, several
papers12,13,17–19 proposed distance measures to cluster spatiotemporal weather-impact scenarios to support
strategic ATM. Paper17 introduced three distance measures which aggregate values along the spatial or/and
temporal dimension. An adjacency weighted distance measure was introduced in papers18,19 which also
aggregates values along the spatial or temporal dimension, with the consideration of additional neighboring
information during the aggregation process. In these methods, the spatial and temporal dimensions are
considered separately. The loss of the correlation information across spatial and temporal dimensions may
lead to misleading similarity results.13 To address this problem, we developed a novel multiresolution distance
measure that can capture concurrent spatiotemporal correlations.12,13 This method adopts the moving
window concept,20,21 and uses a 3-dimensional (3-D) spatiotemporal window of varying size to capture
the spatiotemporally correlated spread patterns of spatiotemporal scenarios. The accuracy of this distance
measure was validated through systematic analyses and comprehensive comparison studies. Guidelines of
parameter selection were also provided through simulation studies on the impact of parameters in the distance
generation algorithm. In this paper, we base on this multiresolution distance measure to explore effective
similarity search methods for spatiotemporal scenario data.

To speed up searches, many search structures have been developed for pointwise data. The commonly
used indexing structures include the B-tree,22 R-tree,23 KD tree,24 cover tree25 and their variants.26,27

These structures utilize numerical constraints, such as the triangle inequality and bounding surfaces, to
prune and select objects. Although they can find the objects that are most similar to the query object, the
similarity search process can be computationally infeasible, when the database is large or the computation
of similarity/distance is costly. To improve efficiency, various approximate indexing structures have been
developed for pointwise data.28–31 Examples include the BD-tree,28 Locality Sensitive Hashing,29,30 and
spatial approximation sample hierarchy.31 However, these indexing techniques cannot be simply combined
with the multiresolution distance measure to perform similarity search for the spatiotemporal scenario data,
due to the inherent non-linearity and complexity of the distance measure.

In this study, we develop a novel similarity search algorithm for spatiotemporal scenario data, based
on the newly developed multiresolution distance measure. Through exploiting properties of the distance
measure, this approach iteratively prunes the search space using bounds of the distances to significantly
reduce the computational cost. Data access strategies are also developed to further enhance efficiency of the
proposed similarity search algorithm for databases of large size. To validate and illustrate the performance
of the proposed approaches, extensive numerical and simulation studies are conducted using real weather
forecast data as the case study. Systematic analysis of parameters’ impact on the query results is also
performed, which provides guidelines for parameter selection.

In the rest of the paper, we first briefly describe the spatiotemporal scenario data and review the multires-
olution distance measure for such type of data in Section II. We then formulate the similarity search problem
for spatiotemporal scenario data, and describe the similarity search algorithm and data access strategies in
Section III. Simulation studies, parameter selection guidelines, and performance analysis are presented in
Section IV. Section V concludes the paper and discusses future works.

2 of 23

American Institute of Aeronautics and Astronautics



II. Review of the Multiresolution Distance Measure for Spatiotemporal
Scenario Data

In this section, we first describe the spatiotemporal scenario data drawn from the dynamics of physical
processes and its unique features. We then briefly introduce the multiresolution distance measure developed
in our previous studies,12,13 which is the first in the literature that truthfully quantifies the similarities of
spatiotemporal scenario data.

II.A. Spatiotemporal Scenario Data

The spatiotemporal scenario data12,13 is a new data type with spatiotemporally correlated spread patterns
of changing shapes, sizes, locations and intensities over time. Figure 1 shows an example spatiotemporal
scenario, which has 9 spatial cells with varying intensities over 3 time points. The intensity value of each
spatial cell at each time point is visualized using colors with darker color indicating higher intensity. As we
can see from the figure, the colored area changes shape, size, location and intensity over time.

Figure 1. An example spatiotemporal scenario.

The spread dynamics of spatiotemporal scenario data make it significantly different from the traditional
spatiotemporal pointwise data that have been widely studied in the literature, including 1) events (e.g.,
crimes) that have static spatial locations over time; 2) georeferenced data (e.g., sensor data) that have
changing values but static spatial locations over time; and 3) moving data (e.g., trajectories of moving
objects) that have changing spatial locations but static sizes and shapes over time. We may consider the
spatiotemporal scenarios as georeferenced data if viewing the snapshots of spatial maps at different time
points as independent images (see Figure 1), but such view loses the spatial spread information.

To describe a spatiotemporal scenario si, we let gz ∈ G be a spatial cell, tl ∈ T be a time point, and
Ii,z,l ≥ 0 be the intensity of scenario si at spatial cell gz and time point tl, where G and T represent the
full set of spatial cells and time points in this scenario, respectively. Note that the full set of spatial cells G
forms a map defining the spatial structure of a scenario, and a scenario is described by a set of snapshots of
the spatial map G captured at a set of continuous time points T .

II.B. Multiresolution Distance Measure

The multiresolution distance measure developed in our previous studies12,13 has several promising features
that enable capturing the unique aspects of spatiotemporal scenario data. In particular, it captures the
spread patterns of spatiotemporal scenarios through scanning scenarios at different resolutions using a 3-
D spatiotemporal moving window of increasing size. The simultaneous scans along spatial and temporal
dimensions retains the spatiotemporal correlations of physical processes. A variety of other features of this
distance measure include the allowance of irregularly shaped spatial cells, heterogeneous contributions of
spatial cells and time points, and boundary effects removal. Systematic analyses and a series of comparison
studies12,13 validate the accuracy of this distance measure.

Let us now describe the basics of the multiresolution distance measure. Consider two spatiotemporal
scenarios si and sj , each of which is composed of the same number of spatial cells gz ∈ G and time points
tl ∈ T . To capture the similarity of the two scenarios, a 3-D spatiotemporal moving window of increasing size
is used to scan the two scenarios and calculate their distance. Figure 2 illustrates the scanning process, with
spatiotemporal windows marked in red. The definition of the spatiotemporal window considers arbitrary
shaped spatial cells. In particular, along the spatial dimension, a window φz,w of size w centered at cell gz
contains all cells within (w − 1) hops to gz. Along the temporal dimension, a window φl,h of size h starting
from time point tl includes h consecutive time points. Larger windows indicate coarser resolutions. Based
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(a)

(b)

(c)

Figure 2. Illustration of the scanning process with window sizes equal to a) w = 1 and h = 1, b) w = 2 and
h = 2, and c) w = 2 and h = 3.

on this definition, a distance di,j,w,h between two scenarios, si and sj , is computed after each scan using the
spatiotemporal window of size w and h, by comparing the aggregated intensities within the windows, i.e.,

di,j,w,h =
∑

φz,w∈Φw

∑
φl,h∈Φh

1

|φz,w||φl,h||Φh|

∣∣∣∣∣∣
∑

gn∈φz,w

∑
tm∈φl,h

Îi,n,m
λn,wτm,h

−
∑

gn∈φz,w

∑
tm∈φl,h

Îj,n,m
λn,wτm,h

∣∣∣∣∣∣ (1)

where Îi,z,l = βz,lIi,z,l is the weighted intensity of scenario si at cell gz ∈ G and time point tl ∈ T , where
βz,l > 0 is a constant that weights important cells and time points.13 In this study, we set βz,l = 1,
∀gz ∈ G, tl ∈ T . Φw represents the full set of spatial windows of size w. Φh is the full set of temporal
windows of size h. λz,w and τl,h are the spatial contribution factor of cell gz and the temporal contribution
factor of time point tl, respectively. These contribution factors are used to correct the boundary effect so
that each spatial cell or time point has the same contribution to the distance calculation. Specifically, λz,w
and τl,h are computed using following equations:

λz,w =
∑

φn,w∈{φn,w|gz∈φn,w}

1

|φn,w|

τl,h =
∑

φm,h∈{φm,h|tl∈φm,h}

|T |
|φm,h||Φh|

The overall distance Di,j between scenarios si and sj is the weighted sum of di,j,w,h obtained at different
spatiotemporal resolutions. In particular,

Di,j =

hmax∑
h=1

wmax∑
w=1

di,j,w,h
δwαh∑hmax

h=1

∑wmax

w=1 δwαh
(2)

where wmax and hmax represent the coarsest spatial and temporal resolutions to evaluate, respectively.
δw > 0 and αh > 0 are weighting factors. They typically decrease with the increase of window sizes w and h,
indicating that less contributions are associated with coarser resolutions. In this study, we set δw = e−σ(w−1)

and αh = e−ρ(h−1), where σ, ρ ≥ 0.
Algorithm 1 summarizes the key steps to calculate the distance Di,j , given βz,l = 1, ∀gz ∈ G, tl ∈ T , and

pre-calculated windows (φz,w, φl,h) and contribution factors (λz,w and τl,h). The computation cost of this
distance measure is in the range of O(|G||T |wmaxh2

max) and O(|G|2|T |wmaxh2
max).13

4 of 23

American Institute of Aeronautics and Astronautics



Algorithm 1: Multiresolution Distance Generation Algorithm

Input: Scenarios si and sj
Output: Distance Di,j

1 foreach pair of spatial resolution w = 1 : wmax and temporal resolution h = 1 : hmax do
2 foreach pair of spatial cell gz ∈ G and time point tl ∈ T do
3 Calculate the distance for windows φz,w and φl,h as∣∣∣∑gn∈φz,w

∑
tm∈φl,h

Îi,n,m

λn,wτm,h
−
∑
gn∈φz,w

∑
tm∈φl,h

Îj,n,m

λn,wτm,h

∣∣∣;
4 end
5 Calculate the distance di,j,w,h for resolutions w and h using Equation (1);

6 end
7 Calculate the overall distance Di,j using Equation (2);

III. Similarity Search for Spatiotemopral Scenario Data

In this section, we describe the similarity search algorithm for spatiotemporal scenario data. The al-
gorithm exploits bounds of the multiresolution distance measure to prune the search space and reduce the
computational cost. We first formulate the problem and discuss the motivation underlying the proposed
approach. The bounds of the distance measure are then explored, followed by the introduction of two data
access strategies to improve the search speed in large databases. We then describe the similarity search
algorithm and provide the pseudocode.

III.A. Problem Formulation and Motivation

Given a database S and a query scenario sq, the similarity search query over S can be performed in the
following two formats:

• K-nearest neighbor query (K-NN): find a set Sc ⊆ S with size |Sc| = K that satisfies Di,q ≤ Dj,q for all
si ∈ Sc and sj ∈ S \ Sc, where |A| is the cardinality of set A and \ is the set difference operator.

• Rank query: find a set Sc ⊆ S that satisfies Di,q ≤ r for all si ∈ Sc, given a constant real value r ≥ 0.

In this study, we focus on the K-NN query. We note that the proposed approach can be easily extended to
solve the rank query problem.

The simplest way to retrieve similar scenarios from the database is to perform an exhaustive search,
sequentially scanning the whole database, computing the distance Di,q for each scenario si ∈ S, and then
picking scenarios with the smallest distance values.32 This approach is computationally expensive, especially
when the database is large and/or the calculation of the distance measure is costly. Utilizing a proper
search structure can help reduce the number of scenarios to examine. However, as the multiresolution
distance measure for spatiotemporal scenario data does not obey the triangle inequality, traditional indexing
techniques cannot be directly applied. In addition, the computation of the multiresolution distance measure
requires multiple rounds of scenario comparison at different resolutions, which further challenges the query
processing and construction of efficient search structures.

To address the aforementioned challenges, our idea is to prune the search space after each resolution
run of a scenario comparison to reduce the number of scenarios to examine, instead of waiting for all the
resolutions to be examined. This is achieved by finding the upper and lower bounds of the distance measure,
and using these bounds to filter out dissimilar scenarios. In particular, suppose Di,j and Di,j are the lower
and upper bounds of Di,j respectively. Given a query scenario sq, let AK = {si} ⊆ S, where AK is the set of
K scenarios with the smallest upper bound values, i.e., Di,q ≤ Dj,q for all si ∈ AK and sj ∈ S \ AK. Let MK

be the largest upper bound value in AK (corresponding to the K-th smallest upper bound value in S), i.e.,
MK = maxDi,q, si ∈ AK. We can then safely discard all scenarios si ∈ S that satisfy the following condition:

Di,q > MK, (3)

which excludes scenarios that are unlikely to be the query results, while retaining all the top K most similar
scenarios. Similar procedures have been used in the No Random Access (NRA) algorithm33 to perform top-K
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queries for objects of sorted feature values. In the following section, we explore the lower bound Di,j and

upper bound Di,j of the multiresolution distance measure for spatiotemporal scenario data.

III.B. Lower and Upper Bounds of the Multiresolution Distance Measure

The overall pairwise distance Di,j in Equation (2) is a weighted sum of distances di,j,w,h computed at
each spatial resolution w and temporal resolution h, where 1 ≤ w ≤ wmax and 1 ≤ h ≤ hmax. Therefore, the
bounds of Di,j are determined by the bounds of di,j,w,h. In our previous study,13 we have proved that finer
resolutions (smaller window sizes) always lead to larger di,j,w,h. In particular, di,j,w,h satisfies the following
inequalities:

di,j,w,h ≤ di,j,w,1 ≤ di,j,1,1 (4)

di,j,w,h ≤ di,j,1,h ≤ di,j,1,1

where di,j,1,1 is the distance calculated at the finest resolution. It is computed by comparing the intensity
of each spatial cell at each time point using the following equation:

di,j,1,1 =
∑
gz∈G

∑
tl∈T

1

|T |

∣∣∣Îi,z,l − Îj,z,l∣∣∣ (5)

Therefore, we have

Di,j =

hmax∑
h=1

wmax∑
w=1

di,j,w,h
δwαh∑hmax

h=1

∑wmax

w=1 δwαh

≤
hmax∑
h=1

wmax∑
w=1

di,j,1,1
δwαh∑hmax

h=1

∑wmax

w=1 δwαh

= di,j,1,1

hmax∑
h=1

wmax∑
w=1

δwαh∑hmax

h=1

∑wmax

w=1 δwαh
= di,j,1,1 (6)

The upper bound of Di,j can be reduced when distances di,j,w,h are calculated at coarser resolutions. In
particular, suppose a spatiotemporal window of size w = a and h = b is used to scan the scenarios at the
k-th iteration, where 1 ≤ a ≤ wmax, 1 ≤ b ≤ hmax, and k ∈ {1, 2, . . . , wmaxhmax}. We can gradually tighten
the upper bound of Di,j using the following equation:

Di,j [k] =

di,j,1,1 if k = 1

Di,j [k − 1] + δaαb∑hmax
h=1

∑wmax
w=1 δwαh

(di,j,a,b − di,j,1,1) if k ∈ {2, 3, . . . , wmaxhmax}
(7)

where Di,j [k] represents the upper bound of Di,j computed at the k-th iteration. Di,j [k] ≤ Di,j [k − 1] as
di,j,a,b ≤ di,j,1,1 according to Equation (4). The deduction of Equation (7) is provided in the Appendix in
Section VI.B.

Similarly, we can prove that coarser resolutions (larger window sizes) always lead to smaller di,j,w,h, i.e.,

di,j,w,h ≥ di,j,w,h∗ ≥ di,j,w∗,h∗ (8)

di,j,w,h ≥ di,j,w∗,h ≥ di,j,w∗,h∗

where w∗ and h∗ represent the sizes of the largest spatial and temporal windows that cover the whole spatial
and temporal spaces, respectively. di,j,w∗,h∗ can be computed using the following equation

di,j,w∗,h∗ =
1

|T |

∣∣∣∣∣∣
∑
gz∈G

∑
tl∈T

Îi,z,l −
∑
gz∈G

∑
tl∈T

Îj,z,l

∣∣∣∣∣∣ (9)
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which is the weighted difference of two scenarios’ total intensities. The proof of Equation (8) can be found
in the Appendix in Section VI.A. The overall pairwise distance Di,j then satisfies

Di,j =

hmax∑
h=1

wmax∑
w=1

di,j,w,h
δwαh∑hmax

h=1

∑wmax

w=1 δwαh

≥
hmax∑
h=1

wmax∑
w=1

di,j,w∗,h∗
δwαh∑hmax

h=1

∑wmax

w=1 δwαh

= di,j,w∗,h∗
hmax∑
h=1

wmax∑
w=1

δwαh∑hmax

h=1

∑wmax

w=1 δwαh
= di,j,w∗,h∗ (10)

The lower bound di,j,w∗,h∗ ofDi,j can also be gradually tightened with distances di,j,w,h at coarser resolutions.
In particular,

Di,j [k] =

di,j,w∗,h∗ + δ1α1∑hmax
h=1

∑wmax
w=1 δwαh

(di,j,1,1 − di,j,w∗,h∗) if k = 1

Di,j [k − 1] + δaαb∑hmax
h=1

∑wmax
w=1 δwαh

(di,j,a,b − di,j,w∗,h∗) if k ∈ {2, 3, . . . , wmaxhmax}
(11)

where w = a and h = b at the k-th iteration. The deduction of Equation (11) is provided in the Appendix
in Section VI.B.

III.C. Data Access Strategies

In this section, we introduce two data access strategies to expedite the similarity search in large databases
based on the bounds of the multiresolution distance measure.

1. Indexing and Filter-Restart

Note that each spatiotemporal scenario si is characterized by |G| × |T | intensity values Ii,z,l, where Ii,z,l
is the intensity at the spatial cell gz ∈ G and time point tl ∈ T . For a large database S, it will be very costly
to access all scenarios and process all |S| × |G| × |T | records. In this section, we design an efficient search
structure to reduce the number of scenarios to examine.

Traditional indexing techniques cannot directly be applied for the spatiotemporal scenario data, as the
multiresolution distance measure for spatiotemporal scenario data does not obey the triangle inequality. To
address this challenge, one possible solution is to construct a hierarchical tree using the clustering algo-
rithm.12,13 The search is then performed within clusters that are closer to the query scenario. However, the
construction of this indexing structure for a large database will be very costly, considering the complexity of
the multiresolution distance measure for spatiotemporal scenario data.

Here we propose a search structure that is simpler and requires very low construction cost. The key idea
is to pre-calculate and store the weighted total intensity Ii =

∑
gz∈G

∑
tl∈T Îi,z,l of each scenario si ∈ S

as an independent table denoted as I, and create indices based on Ii using traditional approaches such as
B-tree. As the overall pairwise distance Di,j is lower bounded by di,j,w∗,h∗ , which can be directly computed
using table I, i.e., di,j,w∗,h∗ = |Ii− Ij |/|T | according to Equation (1), we can perform an initial search using
this lower bound by only accessing table I and a small set of scenarios. Specifically, given a query scenario
sq, the search starts by first calculating its weighted total intensity Iq. We then adopt the Filter-Restart
concept32 described in detail below to retrieve an initial candidate set Sc ⊆ S, which contains all the top K

most similar scenarios.
The selection of an initial candidate set Sc in the traditional filtering step is achieved using the range

query. Specifically, Sc includes all scenarios that satisfy |Ii − Iq| ≤ Ithrd, where Ithrd is the cutoff threshold
that limits the number of scenarios to retrieve. The restart step then expands Sc by increasing the threshold
Ithrd, if the initial set is not sufficient to answer the K-NN query. Whether Sc needs to be expanded is
determined by comparing the lower and upper bounds of Di,q for all si ∈ Sc, which are computed using
Equations (7) and (11) with k = 1. In particular, if scenario si ∈ Sc that satisfies Di,q > MK exits, which
indicates that for all sj ∈ S \ Sc, Dj,q > MK, then the top-K most similar scenarios must be in set Sc.
Otherwise, restart is performed to expand set Sc. Algorithm 2 summarizes the procedures to obtain set Sc
using this approach.
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Algorithm 2: Filter-Restart for Dense Spatiotemporal Scenario Databases

Input: Query sq, database S, threshold Ithrd, and query coefficient K
Output: An initial candidate set Sc ⊆ S

1 Calculate Iq;
2 Sc ← {si}, where si ∈ S and |Ii − Iq| ≤ Ithrd;
3 foreach si ∈ Sc do
4 Calculate Di,q and Di,q using Equations (7) and (11), where k = 1;

5 end
6 Determine the value of MK;
7 while Di,q ≤MK, ∀si ∈ Sc do
8 Increase the value of Ithrd;
9 Perform Steps 2-6.

10 end
11 Sc ← Sc \ {si}, where Di,q > MK and si ∈ Sc;

The threshold Ithrd can be determined by analyzing the statistics of data in the database.32 For sparse
databases including many scenarios that are relatively different from all other scenarios, it is not easy to
find a proper threshold. In general, an improper threshold will lead to frequent restarts or a large set
Sc being returned, and hence significantly degrade the query efficiency. To address this issue, we further
propose a K-NN based Filter-Restart procedure that imposes restrictions on the number of scenarios to
return. In particular, the initial search starts by first locating the scenario sm with Im closest to Iq, i.e.,
|Im−Iq| = min |Ii−Iq|, where sm, si ∈ S. We then retrieve up to f |S| scenarios that satisfy Ii−Iq ≥ Im−Iq,
which are saved to set Scu, and up to f |S| scenarios that satisfy Ii − Iq < Im − Iq, which are saved to set
Scl. Hence, Sc = Scu ∪ Scl. f is a threshold that controls the size of Sc. To ensure |Sc| ≥ K, we let f |S|
larger than or equal to K. To determine whether a restart is needed, we calculate the bounds of Di,q for all
si ∈ Sc and derive the value of MK. After that, we perform a slightly different procedure as the Ithrd-based
approach discussed above. In particular, we examine Scu and Scl respectively. If there exists a scenario si
in Scu (or Scl) that satisfies Di,q > MK, we do not need to perform the restart, otherwise, Scu (or Scl) is
expanded by increasing the threshold f . Algorithm 3 summarizes the procedures of this approach. Notice
that both Algorithms 2 and 3 naturally support the approximate similarity search by removing the restart
step.

2. Prioritizing Window Sizes

In this section, we introduce the other data access strategy, motivated by the Stream-Combine algorithm33

developed for the top-K query, to further reduce the query processing time. Note that the number of additional
scenarios that can be discarded at each iteration k is determined by how much the bounds of Di,j can be
tightened. The faster the bounds are tightened, the quicker the search space is reduced and thus the earlier
is the termination. Since the increase (decrease) of each lower (upper) bound at each iteration is directly
affected by the weighting factor δwαh according to Equations (7) and (11), we prioritize window sizes w
and h with large weights δwαh. This is achieved by sorting pair (w, h) based on associated weights δwαh.
We denote the resulting sorted list of window sizes as W = {(w[k], h[k])}wmaxhmax

k=1 , where w[k] and h[k]
represent the spatial and temporal window sizes at the k-th iteration respectively, and δw[i]αh[i] ≥ δw[j]αh[j],
∀i < j, i, j ∈ {1, 2, . . . , wmaxhmax}. Typically, larger window sizes, indicating coarser resolutions, have
smaller weights and thus less contributions to the distance calculation. Here we always have w[1] = 1 and
h[1] = 1.

3. Discussion

The query processing speed can be further increased by allocating more storage resources. Notice that
the aggregated total intensity of each scenario si at a particular spatiotemporal resolution w and h, i.e.,∑
gz∈G

∑
tl∈T

Îi,z,l
λz,wτl,h

, can be pre-calculated and stored into the database. The distance di,j,w,h can thus

be easily computed, which is the weighted difference of the aggregated total intensities (see Equation (1)).
Although this strategy will help reduce the time for computing di,j,w,h online, it requires large amount of
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Algorithm 3: Filter-Restart for Sparse Spatiotemporal Scenario Databases

Input: Query sq, database S, threshold f , and query coefficient K
Output: An initial candidate set Sc ⊆ S

1 Calculate Iq;
2 Find sm ∈ S with |Im − Iq| = min |Ii − Iq|, where si ∈ S;
3 Scu ← {si}, where si ∈ S, Ii − Iq ≥ Im − Iq and |Scu| ≤ max{f |S|, K};
4 Scl ← {si}, where si ∈ S, Ii − Iq < Im − Iq and |Scl| ≤ max{f |S|, K};
5 Sc ← Scu ∪ Scl;
6 foreach si ∈ Sc do
7 Calculate Di,q and Di,q using Equations (7) and (11), where k = 1;

8 end
9 Determine the value of MK;

10 while Di,q ≤MK, ∀si ∈ Scu or Di,q ≤MK, ∀si ∈ Scl do
11 Increase the value of f ;
12 if Di,q ≤MK, ∀si ∈ Scu then
13 Perform Step 3;
14 end
15 if Di,q ≤MK, ∀si ∈ Scl then
16 Perform Step 4;
17 end
18 Perform Steps 5-9;

19 end
20 Sc ← Sc \ {si}, where Di,q > MK and si ∈ Sc;

storage space. In particular, if a single scenario requires an amount of storage resources equal to B, storing
the aggregated total intensities for all scenarios at all resolution levels requires around B|S|(wmaxhmax − 1)
additional storage space, which can be very expansive. In this study, we do not consider this strategy.

III.D. Algorithm Description

In this section, we describe the multiresolution distance based similarity search algorithm that incorpo-
rates the aforementioned features for spatiotemporal scenario data. The key idea of this algorithm is to use
the bounds of the distance measure tightened at each iteration to progressively prune the search space, so as
to quickly find the top K most similar scenarios. The pseudocode is provided in Algorithm 4. In particular,
the algorithm starts by performing the Filter-Restart procedures described in Section III.C to obtain an
initial candidate set Sc (Line 1). Whether to use Algorithm 2 or Algorithm 3 depends on the sparsity of the
database. With an initial candidate set Sc obtained, this set is then evaluated at multiple spatiotemporal
resolutions in a sorted order specified by W to find the top K most similar scenarios. Specifically, at each
spatiotemporal resolution, the bounds of Di,q for all si ∈ Sc are first updated (Lines 3-7), which are then
used to reduce the size of the candidate set Sc (Lines 9-11). The iteration terminates when the top K most
similar scenarios are found or all resolutions are evaluated.

IV. Simulation Studies

In this section, we conduct a series of simulation studies using real weather forecast datasets to illustrate
the use and performance of the multiresolution distance based similarity search algorithm for spatiotemporal
scenario data. This algorithm is first prototyped using Matlab, with data directly imported from local files,
to analyze the parameters’ impact on the query results and evaluate the performance of proposed approaches.
This algorithm is then implemented using Java with data stored in a relational database. The Dell Precision
Tower 7810 Workstation with Xeon R© CPU of 2.4GHz and 32GB memory is used to run all simulations.
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Algorithm 4: Multiresolution Distance-based Similarity Search Algorithm

Input: Query sq, Database S, and K

Output: A set of scenarios Sc ⊆ S of size K that are most similar to query sq
1 Apply Algorithm 2 or Algorithm 3 to find an initial candidate set Sc;
2 for k = 2 to wmaxhmax do
3 foreach si ∈ Sc do
4 Calculate di,q,w[k],h[k] using Equation (1), where (w[k], h[k]) ∈ W;

5 Calculate Di,q[k] using Equation (7);
6 Calculate Di,q[k] using Equation (11);

7 end
8 if |Sc| > K then
9 Determine the value of MK;

10 Remove all scenarios si that satisfy Di,q[k] > MK from the candidate set Sc;

11 else
12 Exit from the for loop;
13 end

14 end
15 if |Sc| > K then
16 Sc ← K scenarios selected from Sc that have the smallest upper bound values Di,q[k];
17 end

IV.A. Dataset Description

In the simulation studies, we use a precipitation dataset generated from an ensemble weather forecasting
tool called short-range ensemble forecast (SREF) system, which produces 21 ensemble forecasts per hour
to capture the uncertainty of weather forecast and has been used for air traffic decision support.34–36 This
dataset, which was also used in our previous studies,12,13 is reported at the 40 × 40 km2 resolution and
processed to be sector-specific. It consists of 62 days of weather forecast with each day characterized by
21 SREF ensemble scenario members, leading to 21 × 62 = 1302 weather scenarios. Each weather scenario
consists of |G| = 151 spatial cells covering 3 airspace centers: Cleveland, Chicago and Indianapolis, and
|T | = 12 time points corresponding to 12 hours (from 10:00Z to 21:00Z). Therefore, each scenario si is
described by 151× 12 records {gz, tl, Ii,z,l}, where Ii,z,l is the precipitation intensity of scenario si at spatial
cell gz and time point tl. Figure 3 visualizes one example weather scenario, with darker colors indicating
higher precipitations.

Figure 3. Visualization of an example spatiotemporal weather scenario.

IV.B. Parameter Impact Analysis

In this study, we use a small dataset S of |S| = 124 scenarios to analyze the impact of parameters in the
proposed similarity search algorithm. This dataset is sampled from the larger dataset described in Section
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IV.A, by randomly picking 2 out of 21 SREF ensemble scenarios for each day. The proposed similarity search
algorithm has the following parameters: 1) the maximum spatial and temporal window sizes to evaluate,
wmax and hmax, 2) spatial and temporal window size weighting factors, δw and αh, 3) query coefficient K,
and 4) the threshold Ithrd in Algorithm 2 or f in Algorithm 3 for determining the size of initial candidate
set Sc. Due to the lack of real weather scenario data, we implement Algorithm 3 in all simulation studies,
with f increasing by f0 at Step 11, where f0 is the initial value of the threshold. In the rest of this section,
we analyze the impact of wmax, hmax, δw, αh, and K. The threshold f , which impacts the query efficiency,
is investigated in Section IV.C on performance evaluation.

1. Impact of maximum spatial and temporal window sizes, wmax and hmax

The parameters wmax and hmax have a direct impact on the accuracy of the multiresolution distance
measure and thus the query results. Larger wmax and hmax lead to a more powerful distance measure that
can capture patterns at more spatiotemporal resolutions and thus generate query results of higher confidence.
However, larger wmax and hmax also lead to more scenario comparisons at more resolutions and thus increase
the computational cost. Therefore, the selection of wmax and hmax needs to balance between the efficiency
and accuracy of the query results. To achieve this tradeoff, we conduct the following studies to understand
the impact of wmax and hmax on the distance measure and the query results.

We first conduct a local sensitivity analysis to illustrate the impact of a small change of wmax and hmax
on the change of the overall pairwise scenario distance Di,j . In particular, the sensitivity of Di,j to the
change of wmax evaluated at a particular value wmax = w0 is measured by

∂Di,j

∂wmax

∣∣∣∣
w0

=
Di,j |w0

−Di,j |w0−1

w0 − (w0 − 1)
, (12)

with values of the other parameters being fixed. A|w0 represents that function A is evaluated at w0. The
sensitivity of Di,j to the change of hmax evaluated at a particular value hmax = h0 is measured in a similar
way. Figure 4(a) shows the sensitivity of Di,j with respect to wmax (with hmax = 1) and with respect to
hmax (with wmax = 1). Each sensitivity value is obtained by averaging the results for all possible pairs of
scenarios. The weighting factors are set to δw = e−0.8(w−1) and αh = e−0.8(h−1). As we can see from the
figure, with the increase of wmax or hmax, Di,j becomes less sensitive to the changes of their values. This
indicates that relatively small window sizes are sufficient to capture the difference between two scenarios.

To understand the impact of wmax (or hmax) on the query results, we evaluate the changes of query
results with the increase of wmax (or hmax), by comparing the results with those obtained at the upper
bound of wmax (or hmax), which generate the most trustworthy query results. In particular, wmax is upper
bounded by 13, as a spatial window of size w = 13 is needed to cover the complete spatial map G. hmax is
upper bounded by 12, as a temporal window of size h = 12 is needed to cover the entire time sequence T .
To measure the difference of the query results obtained at an arbitrary wmax (or hmax) and those obtained
at its upper bound, denoted as Sc1 and Sc2 respectively, we adopt the agreement metric described by the
following equation

Agreement =
Number of scenarios common to both Sc1 and Sc2

K
(13)

A low agreement value represents that the query results obtained at a particular wmax < 13 (or hmax < 12)
are very different from those obtained at wmax = 13 (or hmax = 12), indicating a low level of confidence. The
blue solid line in Figure 4(b) shows the change of agreement as wmax grows with hmax = 1, which quickly
converges. This reflects that a small wmax is sufficient to retrieve similar scenarios with high confidence.
A similar conclusion for the selection of hmax can be reached by observing the red dashed line in Figure
4(b), which shows the change of agreement as hmax increases with wmax = 1. In both experiments, K = 10,
δw = e−0.8(w−1) and αh = e−0.8(h−1). Each agreement value is obtained by averaging the results from
|S| = 124 queries, where the top K scenarios from set S \ si that are most similar to scenario si ∈ S are
retrieved in the i-th query, i ∈ {1, 2, . . . , |S|}.

The comparison between the blue solid lines and the red dashed lines in Figures 4(a)-4(b) indicates
that the overall pairwise distance Di,j and the query results are less sensitive to temporal resolutions than
spatial resolutions. This can be more clearly observed in Figure 4(c) that visualizes the change of agreement
with the concurrent increase of wmax and hmax, where the agreement is evaluated by comparing the query
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Figure 4. a) Sensitivity of Di,j to the changes of wmax (or hmax). Agreement of query results at increasing
values of b) wmax (or hmax) and c) wmax and hmax simultaneously.

results obtained at each pair of (wmax, hmax) and those obtained at (wmax = 13, hmax = 12). Therefore, we
typically select wmax > hmax.

2. Impact of spatial and temporal window size weighting factors, δw and αh

The window size weighting factors, δw = e−σ(w−1) and αh = e−ρ(h−1), determine the contribution of
distance di,j,w,h for resolutions w and h to the overall pairwise distance Di,j . Coarser resolutions (larger
window sizes) usually have less contributions (smaller weights). To analyze the impact of the spatial window
size weighting factor δw on the query results, we evaluate the changes of the query results with the increase
of σ. Figure 5(a) shows the trajectories of the agreement between query results obtained at increasing values
of wmax and those obtained at wmax = 13 for different values of σ, with hmax = 1, ρ = 0 and K = 10. As
shown in this figure, the time required to reach an agreement of 1 descreases with the increase of σ. This
is because the contributions of di,j,w,h at coarse resolutions (large w) are smaller for larger σ, leading to
quicker convergence of Di,j , as illustrated in Figure 5(b). In the special case when σ = 0, both the query
results (Figure 5(a)) and the overall pairwise scenario distance Di,j (Figure 5(b)) fail to converge, as di,j,w,h
evaluated at different spatial resolutions w contribute equally to Di,j . This study suggests that the selection
of wmax needs to take the spatial weighting factors into the consideration. Specifically, if a small σ is used, a
relatively large wmax is required to capture the difference between two scenarios and to achieve higher query
accuracy.

Similar experiments have been conducted to analyze the impact of the temporal window size weighting
factor αh on the query performance. The results are shown in Figure 6 with wmax = 1, σ = 0, and K = 10,
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Figure 5. a) Agreement of query results at increasing values of wmax and σ. b) Sensitivity of Di,j to the
changes of wmax at different values of σ.
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Figure 6. a) Agreement of query results at increasing values of hmax and ρ. b) Sensitivity of Di,j to the changes
of hmax at different values of ρ.

from which similar observations and conclusions can be drawn. The lines in Figure 6 are flatter than those
in Figure 5 as temporal resolutions have less impact than spatial resolutions on the overall pairwise distance
and thus the query results. In the following studies, we choose σ = ρ = 0.8 and thus δw = e−0.8(w−1) and
αh = e−0.8(h−1).

3. Impact of query coefficient K

The query coefficient K determines the number of similar scenarios to retrieve from the database. To
understand whether the selection of wmax and hmax needs to take K into the consideration, we evaluate
the changes of query results with the increase of wmax and hmax at different values of K. As shown in
Figure 7, given wmax and hmax, the query results are relatively robust to the changes of K, indicating that
approximately the same query accuracy can be achieved at different values of K using the same wmax and
hmax. An exception happens at K = 1, where the query results converge quickly with the increase of wmax
or hmax. This suggests that small wmax and hmax are sufficient to identify the most similar scenario.
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Figure 7. Agreement of query results at increasing values of a) wmax and b) hmax for different values of K.

IV.C. Comparative Performance Studies

In this section, we conduct various comparative studies to evaluate and illustrate the performance of the
proposed similarity search algorithm.

1. Effectiveness of the multiresolution distance based similarity search algorithm

The effectiveness of a similarity search algorithm relies on the accuracy of the underlying distance measure.
As we have justified in our previous work,13 the multiresolution distance measure quantifies the similarity
between spatiotemporal scenarios with high accuracy. Based on this distance measure, the proposed simi-
larity search algorithm always finds the exact top K most similar scenarios, since it only eliminates scenarios
that are unlikely to be the query results at each iteration. The bounds of Di,j used to prune the search space
cover all top K most similar scenarios. They are tightened at each iteration and finally converge to the exact
distance value Di,j , as illustrated in Figure 8(a).
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Figure 8. a) Trajectories of upper and lower bounds for the distance between two randomly selected scenarios.
b) Agreement of query results obtained using different distance measures.

To illustrate the effectiveness of the proposed similarity search algorithm, we compare our algorithm
with two alternative exhaustive search-based approaches that use 1) the total intensity-based (TI) distance
measure that aggregates all intensity values,17 and 2) the adjacency weighted (AW) distance measure18,19

respectively. Both exhaustive search-based approaches compare the query scenario with each scenario in
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the database, and pick the top K scenarios with the smallest distance values. As this is the first work that
investigates the similarity search for spatiotemporal scenario data, we are unable to find existing similarity
search methods that can be directly applied for such data type. The small dataset of |S| = 124 scenarios
described in Section IV.B is then used to conduct experiments, with the parameters of our similarity search
algorithm set to wmax = 4, hmax = 3, δw = e−0.8(w−1), αh = e−0.8(h−1), and f = 0.1.

(a)

(b)

(c)

(d)

Figure 9. Snapshots of scenarios a) 12, b) 14, c) 10, and d) 15.
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In the first experiment, we run the three algorithms to find the scenario that is most similar (i.e., K = 1)
to scenario 12. The scenarios retrieved by our algorithm, TI based approach, and AW based approach are
14, 10, and 15, respectively. Figure 9 visualizes these scenarios. As we can see from the figure, the query
scenario 12 (Figure 9(a)) is very similar to scenario 14 (Figure 9(b)) found by our algorithm, both of which
demonstrate a developing precipitation over the 12h span. However, the intensity in scenario 10 (Figure
9(c)) found by the TI based approach is much lower than that in scenarios 12 and 14. Scenario 15 (Figure
9(d)) found by the AW based approach is similar to the query scenario 12 in general, but shows relatively
different temporal patterns in the first six hours.

To show the impact of inaccurate distance measures on the query results, we plot in Figure 8(b) the
agreement between the query results obtained using the multiresolution distance measure of high accuracy,
and those obtained using the inaccurate TI and AW based distance measures at different values of K. This
figure demonstrates the importance of using the multiresolution distance measure in the similarity search
tasks.

2. Efficiency of the multiresolution distance based similarity search algorithm

To evaluate the computational efficiency of these approaches, we compare our algorithm with the ex-
haustive search-based approach that uses the multiresolution distance measure and the TI and AW based
approaches. We use the small dataset of |S| = 124 scenarios and measure the execution time of these ap-
proaches to perform the K-NN query at different values of K. The comparison results are shown in Figure
10, with wmax = 4, hmax = 3, δw = e−0.8(w−1), αh = e−0.8(h−1), and f = 0.1. Each value is obtained by
averaging the time spent to process |S| queries with si ∈ S being the query scenario and S \ si being the
database at the i-th query. This figure shows that the TI and AW based approaches are the most efficient,
while the multiresolution distance based exhaustive search method is the least efficient. The TI and AW
based approaches are more efficient than our approach as they compare scenarios at a single resolution.
However, as we have demonstrated in the previous section, both TI and AW based approaches often fail to
find the most similar scenarios.

Figure 10 also shows a significant improvement of computational efficiency for our approach compared
with the multiresolution distance based exhaustive search method. This improvement illustrates the effec-
tiveness of the iterative search space pruning procedures in reducing the computational cost. Of interest,
the efficiency of the exhaustive search-based approaches is independent from K, while the efficiency of our
approach degrades with the increase of K. This is because exhaustive search-based approaches perform the
same number of scenario comparisons regardless of K. However, in our approach, a larger K typically leads
to more scenarios to evaluate at more resolutions.
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Figure 10. Comparison of the execution time of different similarity search algorithms.
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Figure 11. Illustration of a) distribution of Īi; and b) efficiency of the proposed similarity search algorithm
before and after implementing the data accessing strategies.

3. Efficiency of the data access strategies

We here investigate the effectiveness of the data access strategies described in Section III.C in improving
the query efficiency. To evaluate their performance, we compare the efficiency of the proposed similarity
search algorithm before and after implementing the data access strategies, and vary the size of the database
to study the capability of these strategies in handling large databases.

As we only have 1302 real weather scenarios, databases with size larger than 1302 are created by inserting
random scenarios, where the precipitation Ii,z,l in each random scenario follows the same distribution as the

mean precipitation of the real weather scenarios. In particular, the mean precipitation Īi =
∑

gz∈G,tl∈T
Ii,z,l

|G||T |
of the real weather scenario approximately follows an exponential distribution with mean 0.9932, as shown in
Figure 11(a). The comparison results are shown in Figure 11(b), with wmax = 4, hmax = 3, δw = e−0.8(w−1),
αh = e−0.8(h−1), K = 2, and f = 0.1. Each value is obtained by averaging the time spent to perform 21 query
requests. The baseline approach does not use any data access strategies, i.e., it examines all scenarios with
randomly sorted window sizes. As shown in Figure 11(b), the baseline approach has the worst performance
in terms of execution time. Prioritizing window sizes significantly improves the efficiency. Implementing
the indexing and the Filter-Restart schemes further reduces the computational cost for large databases, but
degrades the performance when the database is relatively small. This is because implementing these schemes
introduces additional computational cost, which exceeds the cost to access all scenarios in the databases of
small sizes.

4. Impact of threshold f

In this study, we analyze the impact of the threshold f on the query efficiency, which determines the
number of scenarios to examine. Figure 12(a) shows the execution time of the proposed similarity search
algorithm with f taking different values and K = 2. As we can see from the figure, the highest efficiency is
achieved at f = 0.01, while smaller or larger values lead to degraded performance. This is because a small f
would lead to frequent restarts, and a large f would lead to a large number of unnecessary scenarios being
retrieved. We also notice that the optimal value of f may change for different K, as shown in Figure 12(b)
with |S| = 1302. This is easy to understand as larger K typically leads to more scenarios to examine and
thus a larger f may achieve higher efficiency. For instance, when K = 13, the highest efficiency is achieved
at f = 0.3.

IV.D. Java-based Implementation

We further implement the similarity search algorithm using Java and store weather scenarios into a
relational database using MySQL, where the scenario table has |S| rows and four columns including the
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Figure 12. Execution time versus a) the size of the database and b) the query coefficient K at different values
of the threshold f .

scenario index i, spatial cell gz, time point tl, and the associated intensity value Ii,z,l. Other information
stored in the database include the weighted total intensity table I, spatial windows φz,w centered at each cell
gz with different window sizes w, contribution factors λz,w and τl,h, and spatial and temporal weights δw,
αh. User interfaces are also designed using Java SWINGS to improve the usability of the proposed similarity
search algorithm, which allow the users to configure parameters, upload the query scenario, analyze and
download the query results, and update the database.
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Figure 13. Comparison of the efficiency of Matlab-based prototype and Java-based implementation with
increasing a) database size and c) query coefficient K at different values of f .

To evaluate the performance of the Java-based implementation, we conduct two experiments similar
as the ones described in Section IV.C.3. In the first experiment, we vary the database size and compare
the efficiency of the Matlab-based prototype and the Java-based implementation. Note that the Matlab-
based prototype directly reads weather scenarios from local MAT files. Although Matlab can also connect
to MySQL databases, accessing databases from Matlab is very time consuming and thus is not evaluated
here. In this experiment, the parameter values are set to K = 2, wmax = 4, hmax = 3, δw = e−0.8(w−1),
αh = w−0.8(h−1), and f ∈ {0.01, 0.1}. As shown in Figure 13(a), the Java-based implementation is the most
efficient when the database size or the threshold f is small, even if the Matlab-based prototype accesses data
directly from local files. However, the performance of the Java-based implementation degrades significantly
when the database size or the threshold is large. This is because a larger database size or threshold f leads
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to more scenarios to examine and thus more pairwise comparisons, which are realized by costly loops in Java
but efficient vectorized operations in Matlab. In the second experiment, we vary the query coefficient K and
connect to the largest database with |S| = 30698. Figure 13(b) shows the comparison results, which further
illustrates the high efficiency of the Java-based implementation when a proper threshold f is selected.

V. Conclusion

In this paper, an innovative similarity search algorithm for a new data type, spatiotemporal scenario
data, was developed to achieve quick retrieval of similar scenarios from the database. The algorithm allows
the similarity search for spatiotemporal scenario data to be handled by commodity computing hardware for
real-time decisions. The correctness of this similarity search algorithm is guaranteed by a novel multireso-
lution distance measure, which quantifies the differences between spatiotemporal scenarios. To address the
computational complexity of this distance measure that scans scenarios at multiple resolutions, we devel-
oped an iterative procedure that uses gradually tightened lower and upper bounds of the distance measure
to prune the search space. An indexing and Filter-Restart scheme were further developed to reduce the
number of scenarios to examine for large databases. We further prioritized window sizes to achieve earlier
termination of the iterations. To illustrate the use and performance of the proposed approaches, extensive
simulation studies using real weather forecast data have been conducted. In particular, the impact of the
parameters in the similarity search algorithm was analyzed, providing insights on the guidelines for parame-
ter selection. Comprehensive comparative studies were then conducted, which demonstrate the effectiveness
of the proposed approaches. This similarity search algorithm is a critical component of the spatiotempo-
ral scenario-data driven decision-making framework1 that closes the loop between big data and control to
face the challenges of real-time management for large-scale dynamical systems. Building on the similarity
search algorithm developed in this paper, we will develop the scenario-driven decision-making framework1 for
strategic ATM in our future work. We will also investigate the similarity search for spatiotemporal scenarios
described by multiple metrics.

VI. Appendix

VI.A. Lower Bound of di,j,w,h

In this section, we show the proof of Equation (8) in Section III.B by following similar procedures of the
proof for Equation (4) given in the Appendix in reference.13

First, let us prove di,j,w,h ≥ di,j,w∗,h. Note that when w = w∗, we can easily derive φz,w∗ = G,
|φz,w∗ | = |G|, Φw∗ = {G,G, . . . , G︸ ︷︷ ︸

|G|

}, and λz,w∗ = 1. Therefore, according to Equation (1),

di,j,w∗,h =
∑

φl,h∈Φh

∑
φz,w∗∈Φw∗

1

|φz,w∗ ||φl,h||Φh|

∣∣∣∣∣∣
∑

gn∈φz,w∗

∑
tm∈φl,h

Îi,n,m
λn,w∗τm,h

−
∑

gn∈φz,w∗

∑
tm∈φl,h

Îj,n,m
λn,w∗τm,h

∣∣∣∣∣∣
=

∑
φl,h∈Φh

|G|
|G||φl,h||Φh|

∣∣∣∣∣∣
∑
gn∈G

∑
tm∈φl,h

Îi,n,m
τm,h

−
∑
gn∈G

∑
tm∈φl,h

Îj,n,m
τm,h

∣∣∣∣∣∣
=

∑
φl,h∈Φh

1

|φl,h||Φh|

∣∣∣∣∣∣
∑
gn∈G

 ∑
tm∈φl,h

Îi,n,m
τm,h

−
∑

tm∈φl,h

Îj,n,m
τm,h

∣∣∣∣∣∣
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We now compare di,j,w,h and di,j,w∗,h. According to Equation (1) and the triangular inequality rule,

di,j,w,h ≥
∑

φl,h∈Φh

1

|φl,h||Φh|

∣∣∣∣∣∣
∑

φz,w∈Φw

1

|φz,w|

 ∑
gn∈φz,w

∑
tm∈φl,h

Îi,n,m
λn,wτm,h

−
∑

gn∈φz,w

∑
tm∈φl,h

Îj,n,m
λn,wτm,h

∣∣∣∣∣∣
=

∑
φl,h∈Φh

1

|φl,h||Φh|

∣∣∣∣∣∣
∑

φz,w∈Φw

∑
gn∈φz,w

1

|φz,w|λn,w

 ∑
tm∈φl,h

Îi,n,m
τm,h

−
∑

tm∈φl,h

Îj,n,m
τm,h

∣∣∣∣∣∣
=

∑
φl,h∈Φh

1

|φl,h||Φh|

∣∣∣∣∣∣
∑
gz∈G

1

λz,w

 ∑
φn,w∈{φn,w|gz∈φn,w}

1

|φn,w|

 ∑
tm∈φl,h

Îi,z,m
τm,h

−
∑

tm∈φl,h

Îj,z,m
τm,h

∣∣∣∣∣∣
As λz,w =

∑
φn,w∈{φn,w|gz∈φn,w}

1
|φn,w| , we then have

di,j,w,h ≥
∑

φl,h∈Φh

1

|φl,h||Φh|

∣∣∣∣∣∣
∑
gz∈G

 ∑
tm∈φl,h

Îi,z,m
τm,h

−
∑

tm∈φl,h

Îj,z,m
τm,h

∣∣∣∣∣∣
= di,j,w∗,h

Next, let us prove di,j,w,h ≥ di,j,w,h∗ by following a similar procedure. Note that when h = h∗, we find
φl,h∗ = T , |φl,h∗ | = |T |, Φh∗ = T , |Φh∗ | = 1, and τl,h∗ = 1. Therefore,

di,j,w∗,h =
∑

φl,h∗∈Φh∗

∑
φz,w∈Φw

1

|φz,w||φl,h∗ ||Φ∗h|

∣∣∣∣∣∣
∑

gn∈φz,w

∑
tm∈φl,h∗

Îi,n,m
λn,wτm,h∗

−
∑

gn∈φz,w

∑
tm∈φl,h∗

Îj,n,m
λn,wτm,h∗

∣∣∣∣∣∣
=

∑
φz,w∈Φw

1

|φz,w||T |

∣∣∣∣∣∣
∑
tm∈T

 ∑
gn∈φz,w

Îi,n,m
λn,w

−
∑

gn∈φz,w

Îj,n,m
λn,w

∣∣∣∣∣∣
Again, according to Equation (1) and the triangular inequality rule,

di,j,w,h ≥
∑

φz,w∈Φw

1

|φz,w|

∣∣∣∣∣∣
∑

φl,h∈Φh

1

|φl,h||Φh|

 ∑
gn∈φz,w

∑
tm∈φl,h

Îi,n,m
λn,wτm,h

−
∑

gn∈φz,w

∑
tm∈φl,h

Îj,n,m
λn,wτm,h

∣∣∣∣∣∣
=

∑
φz,w∈Φw

1

|φz,w|

∣∣∣∣∣∣
∑

φl,h∈Φh

∑
tm∈φl,h

1

|φl,h||Φh|τm,h

 ∑
gn∈φz,w

Îi,n,m
λn,w

−
∑

gn∈φz,w

Îj,n,m
λn,w

∣∣∣∣∣∣
=

∑
φz,w∈Φw

1

|φz,w|

∣∣∣∣∣∣
∑
tl∈T

1

τl,h

 ∑
φm,h∈{φm,h|tl∈φm,h}

1

|φm,h||Φh|

 ∑
gn∈φz,w

Îi,n,l
λn,w

−
∑

gn∈φz,w

Îj,n,l
λn,w

∣∣∣∣∣∣
As τl,h =

∑
φm,h∈{φm,h|tl∈φm,h}

|T |
|φm,h||Φh| , we have

di,j,w,h ≥
∑

φz,w∈Φw

1

|φz,w||T |

∣∣∣∣∣∣
∑
tl∈T

 ∑
gn∈φz,w

Îi,n,l
λn,w

−
∑

gn∈φz,w

Îj,n,l
λn,w

∣∣∣∣∣∣
= di,j,w,h∗

Now have proved that di,j,w,h ≥ di,j,w∗,h and di,j,w,h ≥ di,j,w,h∗ , which naturally leads to Equations (8).

VI.B. Upper and Lower Bounds of Di,j

In this section, we prove Equations (7) and (11) in Section III.B.
First, let us prove Equation (7). Denote Wk ⊂W and Hk ⊂ H as the set of spatial and temporal window

sizes that have been evaluated so far after k iterations, where W = {1, 2, . . . , wmax}, H = {1, 2, . . . , hmax}

20 of 23

American Institute of Aeronautics and Astronautics



and k ∈ {1, 2, . . . , wmaxhmax − 1}. We can then rewrite the formula of Di,j as follows

Di,j =

hmax∑
h=1

wmax∑
w=1

di,j,w,h
δwαh∑hmax

h=1

∑wmax

w=1 δwαh

=
1∑hmax

h=1

∑wmax

w=1 δwαh

∑
h∈Hk

∑
w∈Wk

di,j,w,hδwαh +
∑

h∈H\Hk

∑
w∈W\Wk

di,j,w,hδwαh


where w ∈ W \Hk and h ∈ H \Hk are the window sizes that haven’t been evaluated at the k-th iteration.
By approximating di,j,w,h by di,j,1,1 for all w ∈ W \Hk and h ∈ H \Hk, where di,j,w,h ≤ di,j,1,1 according
to Equation (6), we derive the upper bound Di,j [k] at the k-th iteration:

Di,j [k] =
1∑hmax

h=1

∑wmax

w=1 δwαh

∑
h∈Hk

∑
w∈Wk

di,j,w,hδwαh +
∑

h∈H\Hk

∑
w∈W\Wk

di,j,1,1δwαh


In the special case when k = 1, we have Di,j [1] = di,j,1,1. Suppose the spatial and temporal window sizes
are increased to w = a and h = b at the (k + 1)-th iteration, where 1 ≤ a ≤ wmax, 1 ≤ b ≤ hmax and
(a, b) 6= (1, 1). The upper bound Di,j [k + 1] at the (k + 1)-th iteration is then computed by

Di,j [k + 1] =
1∑hmax

h=1

∑wmax

w=1 δwαh

 ∑
h∈Hk+1

∑
w∈Wk+1

di,j,w,hδwαh +
∑

h∈H\Hk+1

∑
w∈W\Wk+1

di,j,1,1δwαh


= Di,j [k] +

1∑hmax

h=1

∑wmax

w=1 δwαh
(di,j,a,bδaαb − di,j,1,1δaαb)

= Di,j [k] +
δaαb∑hmax

h=1

∑wmax

w=1 δwαh
(di,j,a,b − di,j,1,1)

where Wk+1 = Wk ∪ {a} and Hk+1 = Hk ∪ {b}.
The lower bound Di,j [k] can be computed similarly by approximating di,j,w,h by di,j,w∗,h∗ for all w ∈

W \Hk and h ∈ H \Hk, where di,j,w,h ≥ di,j,w∗,h∗ according to Equation (10). In particular,

Di,j [k + 1] =
1∑hmax

h=1

∑wmax

w=1 δwαh

 ∑
h∈Hk+1

∑
w∈Wk+1

di,j,w,hδwαh +
∑

h∈H\Hk+1

∑
w∈W\Wk+1

di,j,w∗,h∗δwαh


= Di,j [k] +

1∑hmax

h=1

∑wmax

w=1 δwαh
(di,j,a,bδaαb − di,j,w∗,h∗δaαb)

= Di,j [k] +
δaαb∑hmax

h=1

∑wmax

w=1 δwαh
(di,j,a,b − di,j,w∗,h∗)

In the special case when k = 1, we have

Di,j [1] =
1∑hmax

h=1

∑wmax

w=1 δwαh

di,j,1,1δ1α1 +
∑

h∈H\{1}

∑
w∈W\{1}

di,j,w∗,h∗δwαh


= di,j,w∗,h∗ +

δ1α1∑hmax

h=1

∑wmax

w=1 δwαh
(di,j,1,1 − di,j,w∗,h∗)

The proof is complete now.
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