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ABSTRACT

Single-molecule and super-resolution imaging relies on successfully, sensitively, and accurately
detecting the emission from fluorescent molecules. Yet, despite the widespread adoption of
super-resolution microscopies, single-molecule data processing algorithms can fail to provide
accurate measurements of the brightness and position of molecules in the presence of
backgrounds that fluctuate significantly over time and space. Thus, samples or experiments that
include obscuring backgrounds can severely—or even completely—hinder this process. To date,
no general data analysis approach to this problem has been introduced that is capable of
removing obscuring backgrounds for a wide variety of experimental modalities. To address this
need, we present the SMALL-LABS (Single-Molecule Accurate LocaLization by LocAl
Background Subtraction) algorithm, which can be incorporated into existing single-molecule and
super-resolution analysis packages to accurately locate and measure the intensity of single
molecules, regardless of the shape or brightness of the background. Accurate background
subtraction is enabled by separating the foreground from the background based on differences in
the temporal variations of the foreground and the background—fluorophore blinking, bleaching,
or moving. We detail the function of SMALL-LABS here and we validate this algorithm on

simulated data as well as real data from single-molecule imaging in living cells.
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Single-molecule super-resolution imaging has revolutionized microscopy (1-5) through a variety
of experimental modalities, such as stochastic optical reconstruction microscopy (STORM) (6)
photoactivated localization microscopy (PALM) (7, 8), and points accumulation for imaging in
nanoscale topography (PAINT) (9). Yet, these experimental techniques all rely on accurately and
precisely localizing single emitters with successful data processing algorithms (10—14). Realistic
backgrounds vary in time and space and decrease the signal-to-noise ratio; these backgrounds
can severely obscure super-resolution imaging by reducing the localization precision,
introducing systematic biases, and even preventing successful detection through both false-
positive and false-negative errors. In addition to improving single-molecule localization, a
particular challenge in the field is to attain unbiased measurements of single-molecule intensities
for single-molecule counting experiments, single-molecule fluorescence resonance energy

transfer (FRET) experiments, and as a single-molecule probe of the local environment.

Experimental measures can certainly decrease backgrounds. However, popular methods
for this purpose, such as confined illumination via light sheets (15—17) and total internal
reflection (TIRF) (18), reduce out-of-focus fluorescence, but do not address in-plane
backgrounds. Longer wavelength excitation decreases cellular autofluorescence (19), but
sacrifices the resolution improvement of imaging at a shorter wavelength. Additional fluorescent
objects incorporated into the sample for added functionality, such as plasmonic antennas for
fluorescence enhancement or fiducial markers for drift compensation, improve imaging, but
themselves produce a punctate spot in the background that can be misidentified as a fluorescent
molecule (fluorophore) or that can obfuscate nearby fluorophores (20-22). Moreover, these
adaptations tend to complicate or restrict experiments. As a broadly applicable alternative to
modifying experimental designs to reduce backgrounds, we report here a general algorithm:
SMALL-LABS (Single-Molecule Accurate LocaLization by LocAl Background Subtraction),
which accurately locates and measures the intensity of single molecules, regardless of the shape
or brightness of the background. Accurate background subtraction is enabled by separating the
foreground from the background based on differences in the temporal variations of the

foreground and the background due to fluorophore blinking, bleaching, or moving.

To our knowledge, no other background removal algorithm to date can eliminate the

systematic bias in intensity measurements and position determination (localization) for a wide



range of experimental systems (Supplementary Note 1). For instance, though several new
approaches can accurately localize single molecules within a dense ensemble (10, 11), these
algorithms assume a background shaped like the image of an overlapping neighboring molecule
and fail for arbitrary backgrounds. Additionally, such high-density approaches indiscriminately
identify as molecules all signals that look like the system point spread function (PSF) regardless
of the temporal dynamics. In general, approaches that attempt to subtract the background without
first identifying the foreground (23) will inevitably introduce distortions by subtracting some of
the image of a fluorophore from itself (Supplementary Note 2). SMALL-LABS provides the true
background-subtracted image for single-molecule data by specifically distinguishing the
foreground from the background; the only requirement is that the local background changes
more slowly than the characteristic on/off timescale of the fluorophores. In this Computational
Tools article, we present SMALL-LABS and detail its function, we validate its performance on
simulated single-molecule fluorescence data, and we demonstrate its capability on measured
live-cell single-molecule data. We also provide open-source Matlab code that implements the

SMALL-LABS algorithm.

SMALL-LABS operating principles. The SMALL-LABS algorithm comprises a workflow
described in detail below and summarized here. First, an approximate background calculated
from the running average is subtracted from the raw movie, making single fluorescent molecules
detectable with standard image analysis techniques (Step /; Fig. 1 a and b). This approximate
background correction (23) removes the obscuring background, but will also subtract part of the
true image from itself, reducing the apparent intensity and possibly introducing systematic biases
(Supplementary Note 2). Therefore SMALL-LABS uses the approximate background subtraction
only for this initial molecule detection step (Step /7; Fig. 1 b). Next, for each detection, SMALL-
LABS identifies which frames contained detections at or near the position of the current
detection. Fluorophores can turn on and off due to blinking, bleaching, or moving, so this check
produces a list of “off” imaging frames in which no other molecule is detected in the local
vicinity of each detected molecule (Step /1I). The true local background is defined in SMALL-
LABS as the average of these “off” frame images at the molecule position. Finally, this true

background is removed locally for each detected (“on” frame) molecule (Step /V; Fig. 1 ¢).



Importantly, this algorithm does not subtract the image of a molecule from itself, ensuring that
further analysis of the background-subtracted image provides accurate super-resolution
information and avoids the systematic biases in the determination of each molecule’s brightness

that would arise from incorrect background subtraction (Step V).

The SMALL-LABS algorithm is described in this article. We also provide open-source
code which implements this algorithm. The code we provide is customizable for diverse datasets
(for details, see the User Guide), though optimized here for the case of low-density single-
molecule data. Additionally, the SMALL-LABS algorithm is modular, and we encourage users
to incorporate it into their own code, for instance in order to use different detection, analysis, or
filtering tools than the ones we provide. For example, researchers imaging high-density
fluorophores will need to modify several parts of our code, or use their own code, to implement
the SMALL-LABS algorithm for background removal. Specifically, in the high-density case,
where there are many in-frame overlapping molecule PSFs, our method here of determining
“oft” frames (Step /II) will need to be modified. We show here that, for a range of experimental
conditions and desired measurements, SMALL-LABS successfully detects single molecules and
accurately estimates the background to reduce biases due to background subtraction and thereby

increase the accuracy of single-molecule position and brightness estimations.

The workflow for the SMALL-LABS algorithm is:

I.  Approximate background subtraction from the raw_movie to produce the avgsub_movie
II.  Molecule detection in the avgsub_movie
1. “Off” frame identification for each detected molecule
IV.  Accurate background subtraction for each molecule
V.  Further analysis of the true background-subtracted image of each molecule (intensity
measurement, position determination, tracking, etc.)

1. Approximate background subtraction

To enable the initial single-molecule detection step (//), an approximate background is subtracted
from the original movie (the raw _movie). This background is only an approximation because the
foreground has not been distinguished from the background. The simplest method to calculate
the approximate background, which we employ in the provided code, is to calculate a moving
temporal mean (or median, or similar statistical measure; Figs. S1, S2, and S3; Tables S1 — S4)

for the raw _movie. This mean image is shown in Fig. 1 a. For simplicity, the example shown in



Fig. 1 calculates an approximate background from the mean of the entire movie. In general, the
characteristic on/off frequency of the molecules (from blinking, photobleaching, photoswitching,
or motion) should be considered: the choice of the window length over which to calculate an
average (or median) should be the longest window possible that does not include slow
background changes at lower frequencies than this characteristic frequency. Though the window
time is a fairly weak parameter, if this length is too short, fluorophores which do not blink,
bleach, or move over the window length will be erroneously removed with the more static
background. Having a long window time relative to the characteristic on/off time increases the
accuracy of the approximate calculation of the background by minimizing contributions from
molecules to the mean. The mean raw movie image is then subtracted from each frame of the
raw_movie to produce the avgsub_movie, the approximate background-subtracted movie (20, 23,

24), as shown in Fig. 1 b.

11. Molecule detection

An obscuring background in the raw_movie could produce a large number of false-positive or
false-negative errors in single-molecule detection. The approximate background removal in Step
I allows molecules to be identified in the avgsub _movie (Fig. 1 b) with standard image analysis
techniques. Any suitable detection algorithm can be used for Step // in the SMALL-LABS
algorithm. For example, the detection algorithm we provide in our code applies a bandpass to the
image in spatial frequency, then identifies spots brighter than a user-supplied threshold percentile

and that have an equivalent diameter (calculated with regionprops in Matlab) near the PSF size.

Though the accuracy and precision of these detections may be hindered by the
approximate background (Supplementary Note 2), detecting molecules in the avgsub movie
rather than in the raw_movie greatly reduces the likelihood of false-positive and false-negative
detection errors. For example, molecular detection in the raw_movie would likely have missed
molecule 3 in Fig. 1 (a false-negative error). Similarly, single-molecule detection in the
raw_movie would have incorrectly identified the eyes in the background smiley face in Fig. 1 as
molecules, giving several false-positive errors. Doing molecule detection in the avgsub_movie
avoids such errors. Furthermore, as long as the false-negative rate is low, a substantial false-

positive rate is permissible, and the SMALL-LABS algorithm is largely insensitive to any



accuracy or precision loss in this detection step because Step /7 below repeats the
characterization of each single molecule to provide high accuracy and precision measurements

and to allow for further false-positive screening.

III. “Off” frame identification

To accurately calculate the true background, it is essential to exclude the foreground (images of
single molecules). For each molecule detected in Step /7, a local “off” frame list is constructed,
this list enumerates all frames in which no molecule was detected in the local region. Since we
expect a diffraction-limited single molecule image with a shape given by the microscope PSF,
this local region is a box about the molecule position with side length approximately double the
PSF width, though the local region can be changed for different imaging conditions like defocus.
SMALL-LABS is agnostic to whether the same molecule is on in multiple frames. Rather, the
“off” frames list depends only on if any molecule is detected in the same local region in other
imaging frames, regardless of whether this molecule is the same molecule fluorescing for
sequential frames, a molecule that blinks on and off, or distinct molecules that appear at the same
location in different frames. The “off” frames list can be calculated over the entire movie, as in
Fig. 1, or for a smaller number of frames based on the window length considerations discussed in

Step 1.

For example, in Fig. 1, molecule 2 (green arrow) appears in frame 2 and is the only
molecule ever detected in that local region (green box); the “off” frames list for molecule 2
therefore consists of all the other frames in the movie, i.e., frames [1,3,...,25]. Similarly,
molecule 3 (blue arrow in Fig. 1) is only fluorescent in frame 3; its “off” frame list is frames
[1,2,4,...,25]. On the other hand, molecules 1 and 4 (Fig. 1) appear in the same local region
(yellow and red boxes) in different frames, and thus the “off” frames list is the same for both
molecules: this list excludes both the frame in which molecule 1 appears and the frame in which

molecule 4 appears (Fig. 1 ¢).

1V. Accurate background subtraction
In this key step of SMALL-LABS, the true background is calculated by taking the temporal

mean (or median or similar statistical measure) over only frames in the “off” frame list of the



raw_movie in the local region around a molecule detection (dashed boxes in Fig. 1 ¢). Whereas
an approximate background is removed in Step / and non-specific spatial bandpassing can be
used to suppress some backgrounds in Step /7, the true background is subtracted here in Step /V.
This accurate background does not contain partial images of the molecule itself or of any other
molecule (the foreground). This accurate background is subtracted from the original raw_movie
image of the molecule (solid boxes in Fig. 1 ¢) to produce to a local background-free image of
the molecule (mi, mz, m3, and m4 in Fig. 1 ¢). For example, for molecule 3 (Fig. 1 ¢), the local
region around the molecule is averaged over frames [1,2,4,...,25] to produce the true
background, which is subtracted from the image of molecule 3 in the raw_movie frame 3,

thereby completely removing the background from the smiley face mouth.

V. Further single-molecule analysis

Once the background has been accurately removed, any further single molecule analysis can be
performed. For instance, PSF-fitting the background-free single-molecule image provides super-
resolution localization (1-3, 25) while avoiding any biases that could be introduced by the
background or by an inaccurate background removal. We discuss these biases in depth in
Supplementary Note 2. Importantly, though an approximate background removal like that in Step
1 typically preserves the localization precision for very sparse samples, SMALL-LABS is
essential for providing unbiased measurements of single-molecule intensities. Thus, in addition
to enabling precise position determination, the emission intensity of each fluorescent molecule
can be accurately measured based on PSF fitting or by summing pixel intensities after accurate

background subtraction.

Validating SMALL-LABS with simulated data. To test the scope and performance of
SMALL-LABS, we simulated realistic single-molecule data with increasingly difficult realistic
backgrounds and compared the measured results from the algorithm to the ground truth input to
the simulations. Three different simulated movies were analyzed. The first movie (Fig. 2 @) has
only the simple intensity offset background (nonzero dark counts) common to most electron-
multiplying charge coupled device (EMCCD) and scientific complementary metal-oxide-

semiconductor (SCMOS) cameras. In addition to the constant intensity offset of Fig. 2 a, the



second movie (Fig. 2 b) has several static bright background spots identical to fluorophore
images in brightness and size, but invariant over time. This background condition is common
when fiduciary markers or photoluminescent nanoparticles (NPs) are incorporated into a sample
(22, 26, 27). The third movie (Fig. 2 ¢) contains the same background as in Fig. 2 b, and
additionally has a wide, bright Gaussian image overlaid on the entire movie to mimic the

spatially varying background that can result from spatial variations in the excitation laser beam.

The simulated movies were created with signal intensity distributions and noise
parameters that realistically occur in single-molecule experiments with fluorescent probes
detected on an EMCCD detector (20). The purpose of this dataset is to test the background
removal ability of SMALL-LABS and not to push the algorithm to find extremely low signal-to-
noise ratio (SNR) molecules or to try to use the algorithm to achieve high-density localization; to
analyze such datasets, users will need to modify the code that implements the SMALL-LABS
algorithm. Thus, the simulated movies contained reasonable SNRs (here defined as the ratio of
the single-molecule fluorescence amplitude to the standard deviation of the movie noise) ranging
from 1.25 — 10 (Fig. S7), and localizations were well spatially separated (< 1 molecule/um?) as
in standard low-density single-molecule experiments (for instance, single-particle tracking or in
vitro single-molecule kinetics). Furthermore, in accordance with experiments, molecules could
stay on for multiple frames (the duration of their emission was given by the absolute value of a
normal distribution with a mean of one frame and a standard deviation of three frames). Finally,
because their location was randomly determined, molecules could appear at the same location as
a previous molecule (like molecules 1 and 4 in Fig. 1); in these cases, a simpler algorithm would

not remove the background accurately.

As a first measure of performance, we analyzed the ability of SMALL-LABS to
accurately detect single molecules. The Jaccard index is the ratio of the cardinality (the number
of elements in a set) of the intersection between the set of simulated molecules, S, and the set of

detected molecules, D, to the cardinality of the union of S and D (11):

|SnD|_ |S N D|
ISuD|  |S|+ |D|=1|SnD|

Jaccard =

The false-positive and false-negative rates, F/P and FN, respectively, can be similarly expressed:



|ID| = 1SN D] IS| =15 nD|
= — FN = ——

FP
D] 1S

The detection results for the simulated molecules (after false-positive filtering of the
accurate background-subtracted data in Step V) of the three movies are presented in Table 1. In
all three cases, SMALL-LABS performs well, as evidenced by a high Jaccard index and low
false-positive and false-negative error rates. In particular, the FP rate does not increase upon
addition in Fig. 2 b of the NP background, which is identical in appearance to the molecules.
Furthermore, in the case of the laser spot background (Fig. 2 ¢), molecule detection without
background removal would be extremely limited, leading to a substantial increase in the FN rate,
whereas most molecules are correctly identified after accurate background subtraction by
SMALL-LABS. To illustrate one need addressed by the SMALL-LABS algorithm, we compared
the detection results for the comprehensive ThunderSTORM single-molecule image analysis
package (28) to the results from our code which implements the SMALL-LABS algorithm (SI
Table S5). We find that SMALL-LABS successfully removes the backgrounds in all three cases
to significantly reduce the false-positive and false-negative rates relative to ThunderSTORM

alone (Supplementary Note 3; SI Figures S4 — S6).

Table 1. Detection Results: Jaccard index, false-positive (FP) error rate, and false-negative (FN)
error rate for single molecules in the different simulated movies of Fig. 2.

Background Jaccard | FP rate | FN rate
dark counts 0.903 |0.014 |0.086
dark counts + NPs 0.905 |0.001 |0.089

dark counts + NPs + laser spot | 0.878 | 0.016 | 0.100




Table 2. Error Distribution Characteristics: mean, u, and standard deviation, o, for the simulated

movies.
Background x position ¥ position Intensity
error’ (nm) error (nm) error’ (%)
dark counts p=0.165 u=0.114 w=0.821
o=13.7 o=13.6 o=20.6
dark counts w=-0.112 w=-0.029 wu=1.12
+ NPs o=13.7 c=13.9 o=20.5
dark counts u=-0.050 u=-0.185 u=1.64
+ NPs + laser spot c=14.3 o=144 c=212

* x and y position error is the difference between the measured and true positions of the molecule.
* The intensity percent error is {100% X (measured — true)/true} for the summed pixel intensities in the local region

around the molecule.

In addition to validating the ability of SMALL-LABS to detect molecules (Table 1), we

also analyzed the performance of SMALL-LABS in measuring some relevant characteristics of
the simulated molecules. Table 2 indicates how accurately SMALL-LABS enables the intensity
and super-resolved position (as determined by a least-squares Gaussian fit) of the background-
subtracted molecule images of each molecule in each movie to be measured. The mean (x«) and
standard deviation (o) of the error distributions for each measured quantity for all molecules in
each movie are tabulated in Table 2. Full distributions and further details are given in
Supplementary Note 4. In all three movies, SMALL-LABS performs well (Table 2 and Figs. S8
— S10): all error distributions are centered near x4 = 0 and have small ¢. Furthermore, the error
distributions are fairly insensitive to the nature of the background: there is little change in the
statistics between the three movies. Importantly, many approximate background removal
approaches introduce a bias (u # 0) in these measured quantities, with especially large biases for
intensity measurements (Supplementary Note 2), whereas SMALL-LABS does not introduce any

such systematic biases.

Validating SMALL-LABS with live-cell single-molecule tracking. To validate SMALL-
LABS and demonstrate its scope, we imaged single fluorescent proteins in living bacteria cells
under optimal single-molecule tracking conditions (Fig. 3 a, SI Movie S1) and in conditions that
preclude traditional single-molecule detection (Fig. 3 b, SI Movie S2). We imaged Bacillus

subtilis strains natively expressing the DNA polymerase PolC fused to the photoactivatable
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fluorescent protein PAmCherry as the sole source of PolC (strain JWS213). PolC is one of the
two replicative DNA polymerases in B. subtilis and has been characterized in our previous work
(29). To produce the high background in Fig. 3 b, a constant 15 W/cm?, 488-nm laser
illumination generated a strong autofluorescent background in the cells; this background was
further complicated by its slow decay over time. By stochastically switching a small subset (1 —
3 molecules per cell) of the PolC-PAmCherry molecules into a fluorescent state at a time (in a
single-particle tracking/PALM experiment), we visualized the dynamics of 420 single PolC-
PAmCherry molecules in 200 high-background cells (Fig. 3 b) and 200 single PolC-PAmCherry

molecules in 30 low-background cells (Fig. 3 a).

We removed the subtle background from the low-background movies with SMALL-
LABS and then analyzed the sub-cellular single-molecules with super-resolution PSF-fitting.
The high-background movies were analyzed with the same algorithm. Whereas the background
in Fig. 3 b background is sufficiently high to make single-molecule localization essentially
impossible in the raw data, after SMALL-LABS background removal, PolC-PAmCherry could
be detected in these cells. Both single-molecule localization data sets were then analyzed with
the same single-molecule tracking algorithm: trajectories were determined (Fig. 3 ¢) by
optimizing all possible pairings of molecules between consecutive frames using the Hungarian
algorithm (30-32). Measured diffusion coefficients for PolC-PAmCherry in the high-background
cells matched our previously reported low-background measurements (29) (Supplementary Note
5; Fig. S11). Single-molecule intensities, measured by summing the pixel intensities around each
measured molecule, yielded nearly identical distributions in the high- and low-background
movies (Fig. 3 d). Both of these results show that SMALL-LABS successfully removed the
background from this live-cell imaging experiment without introducing any biases to enable
accurate measurements of fluorescence intensity and position in a dataset that would have been

impossible to analyze without background removal.

Conclusions. The SMALL-LABS algorithm, with which an arbitrary background is removed
from single-molecule imaging data by separating the foreground and the background via local
“on” and “off” frame categorization, addresses a gap in many super-resolution imaging packages
and enables the detection and localization of single molecules even in the presence of obscuring

backgrounds. We have benchmarked the speed of our implementation of SMALL-LABS under a
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variety of computer systems and tools (Supplementary Note 6; Table S6). In addition to
improving single-molecule localization, SMALL-LABS avoids systematic biases caused by
inaccurate background subtraction in measurement of single-molecule intensities. This
brightness measurement is a key metric in single-molecule FRET experiments, in single-
molecule counting experiments, and as a single-molecule probe of the local environment. The
SMALL-LABS data analysis approach requires no changes to experimental methods; in fact, it
relaxes experimental constraints: with its improved accuracy and sensitivity, SMALL-LABS
opens up many systems previously inaccessible to super-resolution analysis due to difficult
backgrounds. Here, we have demonstrated the scope and performance of SMALL-LABS by
accurately and precisely measuring simulated data under a variety of realistic background
conditions, and by successfully measuring and tracking single fluorescent proteins in a live-cell

experiment under conditions that preclude traditional approaches.
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Raw Data Availability. Raw datasets of movies of single PolC-PAmCherry molecules in living
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Code Availability. Open-source Matlab code for implementing SMALL-LABS (GNU General
Public License), full documentation, and a quick-start guide with example data is provided
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will be hosted at https://github.com/BiteenMatlab/SMALL-LABS. DOI:
10.5281/zenodo.1438446.
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FIGURE LEGENDS

FIGURE 1. Schematic illustration of the SMALL-LABS algorithm. (¢) Simulated raw data
(imaging frames), the mean of the entire movie, and the true background (all on the same
grayscale). Frames 1 — 3 have fluorescent molecules, indicated with colored arrows; frames 4 —
25 are identical except for detection noise, and only contain the background; the mean includes a
faint image of the real molecules over the true background. (b) Molecule detection in the
approximate background-subtracted movie. Solid colored boxes indicate a detected molecule,
and dashed colored boxes indicate the local background for that molecule in “off” frames. Box
colors correspond to the arrows in a. (¢) The SMALL-LABS background subtraction process.
The true image of each molecule is obtained by locally subtracting the mean of the “off” frames

from the raw image. To see this figure in color, go online.

FIGURE 2. Representative frames from the simulated movies with similar foregrounds and
different backgrounds. (@) The background consists of only dark counts. (») The background
contains dark counts and static fluorescent nanoparticles. (¢) The movie has dark counts, static
fluorescent nanoparticles (NPs), and a spatially varying background. To see this figure in color,

go online.

FIGURE 3. Tracking single PolC-PAmCherry molecules in living Bacillus subtilis cells. (a)
Representative raw-data images of a single PolC-PAmCherry molecule (arrow) in a B. subtilis
cell; the molecule is easily identifiable and can be tracked over time. (b) No PolC-PAmCherry
molecules can be identified by eye in the raw-data images in high-background experimental

conditions. (c¢) Accurate background subtraction with SMALL-LABS enables single-molecules
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to be detected and localized from the high-background movie in b, and trajectories are obtained

(colored lines). (d) Comparison of the measured single-molecule intensities of the fluorescent

protein PAmCherry in live-cell movies with low background (white) and with a high background

(red) as in @ and b. Scale bars: 1 um. To see this figure in color, go online.
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Supplementary Note 1: Background and context

SMALL-LABS is, to our knowledge, the first general data analysis approach capable of accurately localizing
single molecules and measuring their intensity, even in the presence of obscuring backgrounds. In this
Supplementary Note, we review other background-removal techniques for single-molecule data to
highlight their similarities and differences compared with SMALL-LABS.

SMALL-LABS methodology and advantages

SMALL-LABS localizes single molecules and measures their intensity regardless of the shape or extent of
the background. This process is accomplished via three main operations. First, an approximate
background removal allows molecules to be detected using standard image analysis techniques. Second,
an “off” frame list is constructed; this list enumerates every other frame in which a molecule is not
detected in the local vicinity of that detection. Third, the accurate background—an image that contains
only “off” frame images and thus no molecules of interest—is specified and removed for each molecule.

The algorithm is very generalizable because it consists of several largely independent modular
steps, which allow users to incorporate the most appropriate detection or post-subtraction analysis
method (i.e., PALM/STORM, single-molecule tracking, single-molecule intensity measurements, etc.) for
their specific application. Furthermore, SMALL-LABS is very flexible: in our code that implements SMALL-
LABS, users may specify all parameters. These two points ensure that this algorithm can handle a wide
variety of backgrounds, imaging conditions, and experimental modalities. Finally, the only requirement
for SMALL-LABS to successfully localize and measure single-molecules is that the local background must
change more slowly than the characteristic on/off timescale of the emitting molecules being imaged.
Overall, as discussed below, though some of the individual steps of SMALL-LABS are found in the
literature, no one approach has put these features together into a cohesive and generalizable algorithm.

(1) Approximate background removal

The first step of SMALL-LABS removes an approximate background to allow single-molecule detection.
This initial subtraction is accomplished in SMALL-LABS by subtracting a running temporal mean or median.
Though using a mean or a median can sometimes produce different results, they are conceptually very
similar; therefore, we do not distinguish between the two operations in the main text. Previously,
Hoogendoorn et al. subtracted a running temporal median (also referred to as median filtering) (1) and
our lab subtracted a running mean (also referred to as mean filtering) (2, 3). Chen et al. used box-car
blurring to create a background image, which was then subtracted from all frames (4). These techniques
provide a good statistical approximation under certain conditions (see Supplementary Note 2). However,
when the approximation breaks down due the stochastic nature of single-molecule data, the accuracy and
precision of localization and brightness measurements will decrease. Furthermore, given the extreme
precision achievable in single-molecule experiments and the deliberate circumvention of ensemble
techniques to understand sample heterogeneities, it is essential to detect and accurately measure each
and every single molecule. Importantly, SMALL-LABS uses the approximate background subtraction only
for this initial molecule detection step.

(2) “Off” frame subtraction only

SMALL-LABS is careful to locally subtract only background frames to leave behind the true foreground.
Though this “off” frame subtraction is inspired by precedents in the literature, SMALL-LABS generalizes
the concept to arbitrary backgrounds, which may have any shape or brightness and a wide variety of
temporal dynamics. In 2014, faced with the challenge of subtracting a specific background—the
photoluminescence of a plasmonic nanoparticle—Blythe et al. identified “on” frames based on an
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expected range of brightnesses for the nanoparticle and the molecules. Then, the specific features of this
background were used: the authors fit the average of the “off” frames to a theoretical model of the
nanoparticle, then subtracted the nanoparticle fit result from the rest of the frames (5). In their
subsequent 2015 work, Blythe et al. generalized this approach by subtracting the average image of the
“off” frames immediately preceding and following each “on” frame instead of the fit (6). Similarly, Zhou
et al. addressed a related application—removing the image of a gold nanorod catalyst—by generating the
background from a small number of “off” frames preceding each “on” frame (7).

SMALL-LABS increases the signal-to-noise ratio (SNR) of the selective background approach by
subtracting all local “off” frames (within a user-specified window, to account for instance for a slowly
changing background) rather than subtracting only a few frames. Moreover, by defining “on” and “off” in
a local area instead of over the full image, SMALL-LABS provides more “off” frames and thus a better
estimate of the background. Furthermore, because SMALL-LABS identifies “on” frames with flexible and
modifiable molecule detection criteria, the algorithm can be very conservative to minimize the number of
false-negative detections which would lead to faulty subtraction (Supplementary Note 2).

In an alternative approach, Zhou et al. identified “on” frames as well as the background intensity
level from a 1D time trace (7). Though this approach is perfect for single molecules confined to a specific
region—for instance in single-particle catalysis—SMALL-LABS broadens the range of applications by
avoiding two main limitations of this 1D signal analysis approach. Firstly, the 1D analysis requires the
region of interest (ROI) to be identified a priori, whereas SMALL-LABS generalizes the approach to cases
in which molecules are detected all over the field of view such that the tail of a given molecule’s image
might obscure a certain ROI, complicating the statistical analysis. Secondly, SMALL-LABS uses the power
of image analysis to identify molecules based on additional pieces of information (size, shape, sparsity,
etc.) beyond merely intensity. Furthermore, modern image analysis takes advantage of new algorithms
and GPU processors to typically run much faster than serial 1D signal analysis of every pixel in the movie.

(3) Combining an approximate background subtraction with “off” frame identification

In SMALL-LABS, we incorporate and further generalize background subtraction concepts introduced by
generalized Single-Molecule High-Resolution Imaging with Photobleaching (gSHRImP) (8) and
Bleaching/Blinking Assisted Localization Microscopy (BALM) (9). The first step of gSHRImMP and BALM
removes an approximate background by sequential frame subtraction (frame »n’ = frame n—frame (n + 1)).
This initial subtraction was also used by Blythe et al. to remove the obscuring background in their
experiment before carefully identifying “on” frames (5). The next step in gSHRImP and BALM identifies
when a molecule turns off based on the resulting bright spot in the sequentially subtracted movie. Then
these algorithms average groups of frames between sequential turn-off events; this background is
subtracted from the detected “on” frames. However, these algorithms are specifically designed for
localizing immobile but overlapping and blinking/bleaching fluorophores. If the molecule moves slightly
(or changes PSF shape, for instance due to rotation or focus drift) between frames, this kind of subtraction
and averaging will reduce the localization accuracy. Here, SMALL-LABS is designed for cases that are more
general. SMALL-LABS can handle moving molecules, backgrounds not shaped like molecules, and
especially highly obscuring, bright backgrounds. Importantly, the true background in SMALL-LABS is mean
(or median) filtered to increase the SNR relative to single background images.
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Supplementary Note 2: Biases introduced from incorrect background
subtraction

The typical approach to background subtraction is to subtract a temporal mean or median without first
doing foreground detection. The assumption in this background subtraction is that because single
molecules will only be emissive during a fraction of the temporal window over which the mean or median
is calculated, the molecular fluorescence will not contribute significantly to the time-averaged image.
However, the fluorescent molecule will contribute some signal, and the magnitude of the single-molecule
localization and measurement biases introduced by this approximate background subtraction will
increase with the fraction of temporal window during which the molecule fluoresces; this problem scales
with the number and density of single molecules.

(1) Avoiding bias in a high density of single molecules

To demonstrate how SMALL-LABS avoids bias (systematic offsets), consider the three-frame movie in Fig.
Sla. In this movie, there is an obscuring background blob, and the fluorescent molecule is present in two
of the three frames. When the approximate background is calculated based on a three-frame temporal
window (Fig. S1b and c), this mean or median filter gives significant biases in localization and intensity
metrics. Measurement results for the four cases shown in Fig. S1 are tabulated in Tables S1 and S2. Simply
measuring the raw movie produces large errors in all measured quantities. The position, width, and
amplitude from a fit of the data to a 2D Gaussian are inaccurate due to the obscuring background. The
intensity calculated by summing the pixels is inaccurate due to both the obscuring background blob and
the background intensity offset. Note that the ground truth of the sum is not equal to the analytical
integral of the 2D Gaussian that was used to simulate the molecules; the volume, V, under a 2D Gaussian
curve with these parametersis V = 2mrAc? = 2513, whereas the value of 2496 was obtained by summing
discrete integer-valued (rounded) pixel intensities in the simulated 2D Gaussian.

In Figs. S1b and c, the mean and median filters qualitatively remove the obscuring background
blob and the background intensity offset. However, these filters introduce a new over-correction error by
subtracting some intensity from the molecule itself. In this case, where the molecule is fluorescent for a
relatively large portion of the filter window time, this over-correction is significant (Tables S1 and S2). The
measured intensities, both from the fit amplitude and the sum, are far lower than the ground truth values.
Any such over-correction will decrease the measurement precision by decreasing the apparent number
of photons measured (10). Furthermore, in the case of a molecule translating between frames (Fig. S1),
imperfect subtraction decreases the accuracy and introduces a bias in the measured positions: the
apparent position in one frame is pushed away from the location in the other frame. Similarly, in this case
of translation where the subtracted molecule is not exactly superposed with the raw molecule image, the
result is an error in the measured width. On the other hand, no biases are introduced by SMALL-LABS (Fig.
S1d), in which only the “off” frames (in this case frame 3) are subtracted. All measured quantities are
measured with high accuracy and precision, closely matching the ground truths.
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Figure S1: Comparison of different background-subtraction methods for a three-frame movie with a
mobile fluorophore; numbers in the top right corners indicate the frame number. (a) The raw image
frames of the movie. The fluorescent molecule in frame 1 moves to a slightly different position in
frame 2 and then photobleaches in frame 3; all frames contain an intensity offset and an obscuring
background blob (frame 3). (b) Approximate background subtraction by subtracting the movie mean
(rightmost panel). (c) Approximate background subtraction by subtracting the movie median
(rightmost panel). (d) True background subtraction using SMALL-LABS, which in this case this is
equivalent to subtracting frame 3 in (a) from all frames.
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Table S1: Measurements of the position and amplitude of the fluorescent molecule in frame 1 of Fig. S1 based on
the background-subtraction approaches in Fig. S1a — d. A 2D Gaussian fit gives the position, width (standard
deviation), and amplitude. The sum is the sum of all pixel intensities in the local region around the molecule.

X position y position Width Fit Amplitude | Sum Intensity

(px) (px) (px) (a.u.) (a.u.)
Ground Truth 13.000 13.000 2.00 100.00 2496
(a) Raw Movie 14.298 11.358 3.50 149.81 6.37x10°
(b) Mean Filter 13.083 12.311 1.89 39.49 800
(c) Median Filter 13.273 11.236 1.63 27.45 451
(d) SMALL-LABS 13.073 13.043 2.00 100.00 2453

Table S2: Measurements of the position and amplitude of the fluorescent molecule in frame 2 of Fig. S1 based on
the background-subtraction approaches in Fig. S1a — d. A 2D Gaussian fit gives the position, width (standard
deviation), and amplitude. The sum is the sum of all pixel intensities in the local region around the molecule.

X position y position Width Fit Amplitude | Sum Intensity

(px) (px) (px) (a.u.) (a.u.)
Ground Truth 13.000 14.000 2.00 100.00 2496
(a) Raw Movie 14.443 11.778 4.25 148.7 6.37x10°
(b) Mean Filter 13.138 14.790 1.97 40.15 852
(c) Median Filter 13.198 15.929 1.62 31.09 502
(d) SMALL-LABS 13.100 14.037 2.06 100.36 2504

Though Fig. S1, in which a molecule is on for two frames out of three, seems extreme, this ratio is
becoming commonplace as the single-molecule imaging field progresses toward high-density super-
resolution imaging by PALM, STORM, or PAINT and toward live-cell imaging of mobile molecules. Overall,
detecting one or more fluorescent molecules at different places in the same local region for some number
of consecutive frames is not necessarily rare; the likelihood of this occurrence highly depends on the
specifics of the imaging and the experimental system. The advantage of SMALL-LABS is that it provides a
bias-free measurement regardless of the frequency of occurrence of situations such as Fig. S1, and
accurate measurements capable of achieving high precision can always be assured.

(2) Decreased bias in a low density of single molecules

Within the length of the filter window, if the number of “off” frames is much greater than the number of
“on” frames, then the bias introduced by approximate background subtraction goes down significantly.
To demonstrate this condition, consider a movie (Fig. S2a) which has the same “on” frames as the movie
in Fig. S1a, but many more “off” frames (28 rather than just one). In this case, mean and median filtering
perform quite well; median filtering gives essentially identical results to accurate background removal
using SMALL-LABS. Measurements are tabulated in Tables S3 and S4.

In the limit that the ratio of “on” frames to “off” during the temporal window used for subtraction
is small, mean or median filtering perform fairly well. However, this condition is not generally satisfied in
single-molecule imaging due to fluorophores remaining “on” for multiple frames, and thus mean or
median filtering will in general introduce significant biases. Therefore, the essential benefit of SMALL-
LABS is that it does not rely on a potentially difficult-to-satisfy approximation to guarantee true
background subtraction.
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Figure S2: Comparison of different background-subtraction methods for a thirty-frame movie with a
mobile fluorophore; numbers in the top right corners indicate the frame number. (a) The raw image
frames of the movie. The fluorescent molecule in frame 1 moves to a slightly different position in
frame 2 and then photobleaches; all frames contain an intensity offset and an obscuring background
blob. (b) Approximate background subtraction by subtracting the mean of the movie (rightmost
panel). (c) Approximate background subtraction by subtracting the median of the movie (rightmost
panel). (d) True background subtraction using SMALL-LABS, which in this case this is equivalent to
subtracting the mean of frames 3 to 30 in (a) from all frames.
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Table S$3: Measurements of the position and amplitude of the fluorescent molecule in frame 1 of Fig. S2 based on
the background-subtraction approaches in Fig. S2a — d. A 2D Gaussian fit gives the position, width (standard
deviation), and amplitude. The sum is the sum of all pixel intensities in the local region around the molecule.

X position y position Width Fit Amplitude | Sum Intensity

(px) (px) (px) (a.u.) (a.u.)
Ground Truth 13.000 13.000 2.00 100.00 2496
(a) Raw Movie 14.336 11.354 3.48 148.95 6.37x10°
(b) Mean Filter 13.030 12.990 1.98 93.91 2252
(c) Median Filter 13.027 13.028 1.98 99.70 2390
(d) SMALL-LABS 13.030 13.022 1.99 100.19 2416

Table S4: Measurements of the position and amplitude of the fluorescent molecule in frame 2 of Fig. S2 based on
the background-subtraction approaches in Fig. S2a — d. A 2D Gaussian fit gives the position, width (standard
deviation), and amplitude. The sum is the sum of all pixel intensities in the local region around the molecule.

X position y position Width Amplitude Sum

(px) (px) (px) (a.u.) (a.u.)
Ground Truth 13.000 14.000 2.00 100.00 2496
(a) Raw Movie 14.416 11.700 4.04 142.03 6.37x10°
(b) Mean Filter 13.003 14.009 2.02 93.11 2334
(c) Median Filter 13.002 13.983 2.01 99.06 2472
(d) SMALL-LABS 13.005 13.976 2.02 99.38 2498

(3) Varying the density of single-molecules

The example movies analyzed in sections (1) and (2) above show that SMALL-LABS accurately removes the
background and provide bias-free measurements regardless of the density of single-molecules. However,
in the low-density case (2), SMALL-LABS does not provide a significant advantage over simple mean or
median filtering for most measurables. To demonstrate how the biases introduced by incorrect
background subtraction, and consequently the advantage of using SMALL-LABS, scales with the density of
molecules, here we analyze the error trends by sweeping the range from the high-density case (1) to the
low-density case (2).

The example movies shown in (1) and (2) were simulated with 1 “off” frame and 28 “off” frames,
respectively. Here, we held the number of “on” frames at 2 and vary the number of “off” frames from 1
to 28. To statistically sample the errors and account for the simulated noise, each “off” frame case was
simulated 1000 times. Each movie was analyzed as described in (1), and the measurement results were
compared with the ground truths. The error trends for each measurable are shown in Fig. S3.
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Figure S3: Relationship between single-molecule density and error. The error trends are calculated for a
range of conditions from high-density (2 “on” frames and only 1 “off” frames per 30-frame movie) to
low-density (2 “on” frames and 28 “off” frames per 30-frame movie). The results for molecule #1 (in
frame 1) and molecule #2 (in frame 2) are shown side-by-side. (a) x-position error in pixels. (b) y-position
error in pixels. (c) Width percent error. (d) Amplitude percent error. (e) Sum intensity percent error. (a)
— (e) black: raw, red: mean filter, green: median filter, blue: SMALL-LABS; the line shown is the median
error, and the ribbon edges show the 5™ and 95 percentile of the measured errors.

In these movies, the molecule is stationary along the x axis. Accordingly, all background removal
approaches similarly remove the background blob and accurately measure the x position (Fig. S3a).
However, the molecule translates 1 pixel along the y-axis between frames 1 and 2. Accordingly, for the y
position (Fig. S3b), the standard mean filtering never produces a median zero-error result, and the
standard median filtering requires more “off” frames than “on” frames to produce an accurate
measurement. For the measured width of a fitted 2D Gaussian (Fig. S3c), both mean and median filtering
achieve small error, but these approaches require a significant number of “off” frames to produce median
zero error. In contrast to these biases for the standard background removal techniques, SMALL-LABS
achieves zero median error (blue curves in Fig. S3 a — c) regardless of the number of “off” frames.

For measurements of the molecule intensity, SMALL-LABS provides an even greater comparative
advantage. The measured fit amplitude (Fig. S3d) produces large errors for mean and median filtering for
a small number of “off” frames. For mean filtering, the median error never reaches zero error for the
analyzed number of “off” frames. Median filtering approximately produces the correct measurement only
once there are more “off” frames than “on” frames. The preferred measurement of molecule intensity is
usually not using the amplitude of a fitted Gaussian (which depends strongly on width and therefore
focus), but instead is to use the sum of measured pixel intensities. For the summed intensity (Fig. S3e),
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neither mean nor median filtering ever achieve median zero error for the analyzed number of “off”
frames; furthermore, both techniques produce very large errors for small numbers of “off” frames.
Median filtering does however somewhat quickly achieve small errors.

In contrast to the biases incurred above due to inaccurate background removal techniques, SMALL-LABS
achieves zero median error regardless of the number of “off” frames. In particular, if molecule intensity is
being measured, then mean or median filtering do not reliably achieve accurate measurements.
Furthermore, though mean or median filtering can achieve fairly accurate measurements of position and
width in the presence of a sufficiently high number of “off” frames, SMALL-LABS is the only background
removal approach capable of always achieving accurate measurements of any measurable, regardless of
the background or number of “off” frames.

Supplementary Note 3: Comparison to ThunderSTORM

In addition to background subtraction, the SMALL-LABS algorithm improves the detection efficiency of
single-molecule localization. To illustrate how SMALL-LABS improves detection, we compared the
performance of our open-source code that implements the SMALL-LABS algorithm with the
ThunderSTORM data processing package (11). Overall, we find that, despite the simplicity of our open-
source code within which SMALL-LABS is implemented, this background-subtraction algorithm serves a
need that is not addressed in the state-of-the-art packages to improve the detection efficiency. We
therefore propose that even state-of-the-art packages like ThunderSTORM could benefit from the
addition of the SMALL-LABS algorithm.

We analyzed the three simulated movies described in the main text (Fig. 2); additional details about these
simulated movies are given in Supplementary Note 2. The first movie (Fig. 2a) has only the simple intensity
offset background (nonzero dark counts) common to most electron-multiplying charge coupled device
(EMCCD) and scientific complementary metal-oxide-semiconductor (sCMQS) cameras. In addition to the
constant intensity offset of Fig. 2a, the second movie (Fig. 2b) has several static bright background spots
identical to fluorophore images in brightness and size, but invariant over time to represent fiduciary
markers or photoluminescent nanoparticles (NPs). The third movie (Fig. 2c) contains the background of
Fig. 2b in addition to a wide, bright Gaussian image overlaid on the entire movie to mimic the spatially
varying background that can result from spatial variations in the excitation laser beam.

We analyzed each of these movies using ThunderSTORM. For all three movies, we used ThunderSTORM’s
most advanced pre-processing options: filtering with the Wavelet filter (B-Spline) and molecule detection
accomplished by locating the centroid of connected components. A user-specified threshold is then
applied; we used the recommended approach of scaling the std(Wave.F1) metric by a scalar multiplier.
The detection results for ThunderSTORM are compared to the results from our code, which implements
the SMALL-LABS algorithm shown in Table S5.

Overall, we find that for the cases of interest in this manuscript, SMALL-LABS successfully removes the
backgrounds in all three cases to significantly reduce the false-positive and false-negative rates.
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Table S5. Comparison to ThunderSTORM detection results: Jaccard index, false-positive (FP) error rate,
and false-negative (FN) error rate for single molecules in the three simulated movies of Fig. 2.

SMALL-LABS Analysis* ThunderSTORM Analysis
Background Jaccard | FPrate | FNrate | Jaccard | FPrate | FN rate
dark counts 0.903 0.014 0.086 0.788 0.102 0.134
dark counts + NPs 0.905 0.001 0.089 0.595 0.336 0.150
dark counts + NPs + laser spot 0.878 0.016 0.100 0.170 0.700 0.719

*From Table 1

(1) A sparse set of single molecules overlaid with dark-count statistics (Fig. 2a)

In this most simple example, the detection statistics are excellent for both ThunderSTORM and SMALL-
LABS. Fig. S4 shows a representative frame of this movie that shows the excellent performance of
ThunderSTORM for this case: a single false positive event (red circle toward the bottom) and a single false
negative event (blue circle at the top).

Detections

Raw Frame

Bandpassed Frame

Figure S4: ThunderSTORM analysis of a representative frame in the dark counts movie (Fig. 2a). The
bandpassed frame is the result of the preprocessing bandpass filter (calculated with wavelets). The
detections are indicated by red circles and the true location of the molecules are indicated by blue
circles. Successful detections are denoted by concentric red and blue circles, which may appear pink.

(2) A sparse set of single molecules overlaid with dark-count statistics AND photoluminescent
nanoparticles (Fig. 2b)

This movie incorporates several static bright background spots identical to fluorophore images in
brightness and size, though invariant over time. This background condition is common when fiduciary
markers or photoluminescent nanoparticles (NPs) are incorporated into a sample. Using ThunderSTORM
to analyze this movie achieves a low false negative rate. However, ThunderSTORM cannot distinguish
between invariant punctate NPs and blinking or photobleaching single molecules, and as a result, it fails
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to remove the NP background. In every frame, ThunderSTORM incorrectly identifies the NP background
as molecules (green arrows in Fig. S5), leading a significant increase in the false positive rate. Bandpassing
an image by any technique does not remove its background.

Raw Frame Bandpassed Frame Detections

e T e s e, s o et

Figure S5: ThunderSTORM analysis of a representative frame in the dark counts + NP movie (Fig. 2b).
The bandpassed frame is the result of the preprocessing bandpass filter (calculated with wavelets). The
detections are indicated by red circles and the true location of the molecules are indicated by blue
circles. Successful detections are denoted by concentric red and blue circles, which may appear pink.
The bright spots which come from the temporally static NP background are indicated by green arrows.

(3) A sparse set of single molecules overlaid with dark-count statistics AND photoluminescent
nanoparticles AND an uneven background (Fig. 2c)

This movie additionally includes a wide, bright Gaussian image overlaid on the entire movie to mimic the
spatially varying background that can result from spatial variations in the excitation laser beam. In this
movie ThunderSTORM, fails to detect most of the molecules obscured by the laser spot and gives a very
high false negative rate in addition to the high false negative rate in Case 2. These results are shown in
Fig. S6.

Raw Frame Bandpassed Frame Detections

Figure S6: ThunderSTORM analysis of a representative frame in the dark counts + NP + laser sport movie
(Fig. 2c). The bandpassed frame is the result of the preprocessing bandpass filter (calculated with
wavelets). Successful detections are denoted by concentric red and blue circles, which may appear pink.
The bright spots which come from temporally static NP background are indicated by green arrows.
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Supplementary Note 4: Analyzing simulated data with different backgrounds

To test the scope and performance of SMALL-LABS, we simulated realistic data with increasingly difficult
realistic backgrounds and compared the measured results from the algorithm to the ground truth, as
described in the main text. The simulated movies were created with parameters similar to realistic data
measured in our lab (3) in a Points Accumulation for Imaging in Nanoscale Topography (PAINT) (12)
experiment. The Matlab code used to generate this data is available in the SMALL-LABS GitHub repository
under the Test data and simulations directory where users can create their own test data matching their
experimental setup. The purpose of this simulated data is to show the background removal ability of
SMALL-LABS (the purpose of this article) and not to push the algorithm to find extremely low SNR
molecules or to try to use the algorithm to do high-density localization, though these functionalities can
certainly be incorporated by the user. Thus, the simulated molecules had minimum brightness (Gaussian
amplitude) SNR of 1.25, and the data contained no overlapping molecules.

The simulated data uses parameters taken from our experiments on the red dye Cy5 visualized at
20 fps in an epifluorescence microscope with a 1.40-NA 100x objective and a 3x beam expander after the
objective; these conditions give a 50-nm pixel width on our Photometrics Evolve electron-multiplying
charge-coupled device (EMCCD) detector. The simulated movies have a frame size of 256 x 256 pixels and
are 300 frames long. As is the case for low-brightness optical measurements on an EMCCD camera, the
noise was Poissonian (shot noise) for everything except the laser spot itself, which is so bright that it
instead has uniformly distributed noise. The intensity offset (dark counts) in all movies is 1040 counts, for
which Poissonian noise gives a standard deviation 32.25 counts.

Because most of our experiments are conducted in the red frequency range, each molecule is
simulated as a symmetric 2D Gaussian spot with a width (standard deviation) of 100 nm = 2 pixels. The
amplitude of the molecules is taken from a normal distribution with a lower bound (Fig. S7). We simulate
a PAINT experiment, in which each molecule adsorbs non-specifically onto the coverslip at a random
position. The integer number of molecules that appear in each frame is taken from a normal distribution
with mean = 1 and standard deviation = 3. In a PAINT experiment, each adsorbed molecule will fluoresce
for a finite amount of time before desorbing or photobleaching, the molecule on-times (integer number
of frames) are also normally distributed with mean = 3 frames and standard deviation = 7 frames.
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Figure S7: Simulated molecule signal-to-noise ratios (SNRs) in no-background (the dark counts only)
movie (Fig. 2a). The SNR is here calculated as the brightness (amplitude of the simulated Gaussian)
normalized to the noise standard deviation. The molecule brightnesses in the dark counts + NPs (Fig. 2b)
and the dark counts + NPs + laser spot (Fig. 2c) movies followed a similar distribution.
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The fluorescent nanoparticle (NP) background (Fig. 2b) was simulated as seven randomly
positioned fluorescent spots that were emissive throughout the entire movie. The NP brightnesses were
normally distributed with mean = 350 (SNR = 10.9) and standard deviation = 100 (SNR standard deviation
= 3.1). The laser spot background (Fig. 2c) was simulated as a Gaussian spot with width (normal
distribution standard deviation) of 200 pixels and amplitude of 2 x 10* counts. Because the laser spot is
so bright, it falls outside the regime where Poissonian noise is dominant, and instead this background has
simple readout noise, which is uniformly distributed from 0 to 200 counts. Representative frames from
each movie are shown in Fig. 2.

The movies were analyzed using our open-source code that implements SMALL-LABS. The Matlab
function call to run SMALL-LABS to analyze the movies was:

SMALLLABS_main('Documents\SMALL-LABS\Test data and simulations\, 7, 151, 100, 'do_avg', 0, 'do_avgsub', 0, 'bpthrsh', 94.5)

As explained in the User Guide, this function call calculates a running median with a window of 151 frames
to do the initial approximate background subtraction. After molecule detection, the accurate background
is the median of all the local “off” frames within the surrounding 100 frames. Gaussian PSF fitting then
super-resolves the locations of the molecules, and the fit parameters are used in a series of checks to
reduce to false positives; molecules that pass this check are called goodfits in the code and the User Guide.
The measured results were then compared to the ground truth input into the simulation.

We analyzed the detection results to determine how well a least-squares Gaussian fit of the
accurate background-subtracted molecules measured the super-resolved positions of the molecules, their
widths (Gaussian standard deviation), and the amplitude of the fitted Gaussian. We also analyzed how
well SMALL-LABS measured the integrated fluorescence intensity of the molecule. Here, we show the full
error distributions that correspond to the results shown in the main text (Table 2). The results of this
analysis are show in Figs. S8 — S10, in which the percent error is:

% error = 100 X (true — measured) /true

Figs. S8 — S10 and Table 2 in the main text show that SMALL-LABS performs quite well in all three cases.
The measurement results are generally very accurate and bias-free (centered about mean, u = 0 error).
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Figure S8: Single-molecule analysis for the dark counts only movie (Fig. 2a). (a) Distribution of the error
(in pixels) on the localization (blue: x position, orange: y position). (b) Distribution of the percent error

on the width. (c) Distribution of the percent error on the intensity from the fit. (d) Distribution of the

percent error on the intensity as measured as the sum of the pixels of the molecule. The mean (u) and

standard deviation (o) of the error distributions for each measured quantity for all molecules in each

movie are tabulated in Table 2.
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Figure S9: Single-molecule analysis for the dark counts + NPs movie (Fig. 2b). (a) Distribution of the error
(in pixels) on the localization (blue: x position, orange: y position). (b) Distribution of the percent error

on the width. (c) Distribution of the percent error on the intensity from the fit. (d) Distribution of the

percent error on the intensity as measured as the sum of the pixels of the molecule. The mean (u) and

standard deviation (o) of the error distributions for each measured quantity for all molecules in each

movie are tabulated in Table 2.
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Figure S10: Single-molecule analysis for the dark counts + NPs + laser spot movie (Fig. 2c). (a)
Distribution of the error (in pixels) on the localization (blue: x position, orange: y position). (b)
Distribution of the percent error on the width. (c) Distribution of the percent error on the intensity from
the fit. (d) Distribution of the percent error on the intensity as measured as the sum of the pixels of the
molecule. The mean (u) and standard deviation (o) of the error distributions for each measured quantity
for all molecules in each movie are tabulated in Table 2.

Supplementary Note 5: Imaging PolC-PAmCherry in living Bacillus subtilis cells

B. subtilis cells were prepared as previously described (13). Cells were grown at 30 °C to OD ~0.55
—0.65 in S750 minimal medium supplemented with glucose. 2 uL cell culture was pipetted onto a pad of
1% (wt/vol) agarose in S750, which was sandwiched between two coverslips that had been cleaned by
oxygen plasma (Plasma Etch PE-50) for 20 min. The sample was then mounted on the microscope for
imaging. In both high- and low-background experiments, PAmCherry was photoactivated by a 200-ms
pulse of the 405-nm laser (power density: 100 W/cm?; Coherent 405-100) and then imaged with a 561-
nm laser (power density: 200 W/cm?; Coherent Sapphire 561-50). The 488-nm laser was not used in the
low-background case.

A wide-field inverted microscope (Olympus IX71) was used for imaging, and fluorescence emission
was collected by a 1.40-NA 100x oil-immersion phase-contrast objective and detected ona 512 x 512 pixel
EMCCD camera (Photometrics Evolve) at 50 ms/frame. Appropriate dichroic and band-pass filters
(Semrock) were placed in the light path to reject scattered laser light and maximize the SNR.
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The Matlab function call used to run SMALL-LABS to analyze all the live-cell movies was:

SMALLLABS_main ('DataDirectory', 8, 51, 50, 'do_avg', 0, 'do_avgsub', 0)

This function call uses a running median with a window of 51 frames to do the initial approximate
background subtraction. After molecule detection, the accurate background subtraction was calculated
as the median of the “off” frames within the surrounding 50 frames. The intensities of the “good fit”
molecules from both high- and low-background cells were obtained by summing the pixel intensities in
the accurate background-subtracted images of the individual molecules. We observe no significant
difference of the intensity distributions in the high and low-background cells (Fig. 3d).
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Figure S11: Apparent diffusion coefficients, D, of PolC-PAmCherry in live B. subtilis cells. (a) Distribution
of PolC-PAmCherry diffusion coefficients in cells in high-background conditions. (Inset) Zoom-in on the 0
— 0.1 pm?/s region of the histogram and a representative frame showing a high-background image. (b)
Adapted from Liao et al. (13). Distribution of PolC-PAmCherry diffusion coefficients in cells in low-
background conditions. (Inset) Zoom-in on the 0 — 0.1 pm?/s region of the histogram and a
representative frame showing a low-background image. Scale bars: 1 um.

High- and low-background data sets were analyzed with the same single-molecule tracking
algorithm. The trajectories were determined by optimizing all possible pairings of molecules between
consecutive frames using the Hungarian algorithm (14, 15). The likelihood that the two particles are the
same molecule in different frames is described in the code by a merit value m (params.trackparams(1) =
0.01), which considers the spatial separation (params.trackparams(4) = 9), the intensity difference, and
the temporal separation between the two particles (params.trackparams(3) = 2.5). The sum of m is
maximized for each set of adjacent frames and this maximization is repeated until all frames are
processed. The apparent diffusion coefficients, D, of single-molecule trajectories were then calculated
from the mean squared displacement versus time lag (16). All trajectories at least 5 frames long were
analyzed. The distribution of PolC-PAmCherry diffusion coefficients in high-background cells (Fig. S11a)
resembles the distribution characterized in low-background cells (Fig. S11b).
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Supplementary Note 6: Benchmarking the speed of SMALL-LABS

The code we provide to implement the SMALL-LABS algorithm is highly modular with a wide range of user
options and parameters. Furthermore, the code is open-source and can be updated and improved.
Therefore, though the User Guide for the supplied code indicates how various computational methods
and parameters are likely to affect the speed, no simple formula can predict how long a given movie will
take to analyze with this code.

With these caveats in mind, potential users may wish to get a sense of how fast the code currently
runs. To test the speed, we ran a series of benchmarking tests, in which we analyzed three movies with
the current version of SMALL-LABS (commit c20943a on GitHub) on three different computers using
different computing tools. The movies were made using the same parameters as the tutorial movie
supplied with the Quick Start Guide. Briefly, the movies were 100, 1000, and 4000 frames long,
respectively. Each movie had on average 17 molecules per frame. The frame size for each movie was
256x256 pixels with 16-bit pixel depth, giving file sizes of 8, 79, and 316 MB, respectively. These movies
were loaded from the local hard drive. The three computers used, C1, C2, and C3 are described below:

e (C1- Matlab 2017b on Windows 10. Processor: 4x Intel Xeon E5-1620 v4 CPU @ 3.50GHz. Memory:
32 GB DDR4 2400 MHz ECC. Storage: Samsung SSD 850 EVO. GPU: Nvidia GeForce GTX 1070.

e (C2-Matlab 2017b on Windows 7. Processor: 4x Intel Core i7-3770 CPU @ 3.40GHz. Memory: 16
GB DDR3 1330 MHz. Storage: Seagate Barracuda 7200 HDD. No GPU.

e (3 - Matlab 2018a on Windows 10. Processor: 2x Intel Core i7-7500U CPU @ 2.70GHz. Memory: 16
GB DDR4 2133 MHz. Storage: Samsung SSD MZNTN. No GPU.

In the current code, SMALL-LABS either uses a graphical processing unit (GPU), runs parallel computations
on the main processor, or does the calculations without using Matlab’s parallel computing toolbox (PCT)
at all. Of the computers tested, only C1 had a CUDA-enabled GPU, and all computers had the PCT installed.

This benchmarking test mostly used the default parameters for processing a batch of movies. The call to
SMALL-LABS used was:

SMALLLABS_main ('movie_filename', 7, 500, 100, 'bpthrsh’, 96, 'makeViewfFits', false)

This command instructs the code to analyze the movie with the SMALL-LABS algorithm, do super-
resolution PSF fitting, and track the molecules. As is typical for our batch processing, this command turned
off the diagnostic ViewFits movie function, which would add a significant amount of time to the process.
Additional details on the numbers and parameters used in this function call can be found in the User
Guide.

The results of the benchmarking test are tabulated in Table S6. The results show that for this task and
version of SMALL-LABS, using a GPU greatly speeds up analysis. Interestingly, using the PCT does not
always speed up the processing, though it usually does.
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Table S6. SMALL-LABS benchmarking results for movies of varying lengths run on different computer
systems using a range of computing tools.

Computer & setup | 100 frame movie | 1000 frame movie | 4000 frame movie
runtime (s) runtime (s) runtime (s)

Clw/GPU 3.9 22 160
C1lw/PCTw/oGPU | 15 88 401

Clw/oPCT & GPU | 32 232 986

C2 w/ PCT 34 277 1,130

C2 w/o PCT 42 257 1,044

C3w/PCT 24 140 590

C3 w/o PCT 22 191 796

Conclusion

Because the simulated data is realistic, the results in Supplementary Note 4 demonstrate that SMALL-
LABS performs similarly well on real data (for which the ground truth is not known). Taken together with
the cellular imaging results presented in Supplementary Note 5, we believe that SMALL-LABS is a powerful
tool for localizing and measuring single molecules even in the presence of obscuring backgrounds.

Captions for Supporting Movies S1 —S2

Movie S1. Tracking single PolC-PAmCherry molecules in living Bacillus subtilis cells with limited
background. Movies are acquired under continuous 561-nm laser excitation at a rate of 40 fps. Scale bar
=1 um. This movie corresponds to Fig. 3a in the main text.

Movie S2. Tracking single PolC-PAmCherry molecules in living Bacillus subtilis cells with a high-
background. A constant 15 W/cm?, 488-nm laser illumination generated a strong autofluorescent
background in the cells. Movies are acquired under continuous 561-nm laser excitation at a rate of 40
fps. Scale bar = 1 um. This movie corresponds to Fig. 3b in the main text.

The raw, uncompressed data corresponding to Supporting Movies S1 and S2 are provided in
uncompressed TIFF format at the University of Michigan’s permanent data depository, Deep Blue.
https://doi.org/10.7302/Z2CR5RKD
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